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Android is a highly fragmented platform with a diverse set of devices and users. To support the deployment

of apps in such a heterogeneous setting, Android has introduced dynamic delivery—a new model of software

deployment in which optional, device- or user-specific functionalities of an app, called Dynamic Feature Mod-

ules (DFMs), can be installed, as needed, after the app’s initial installation. This model of app deployment,

however, has exacerbated the challenges of properly testing Android apps. In this article, we first describe

the results of an extensive study in which we formalized a defect model representing the various conditions

under which DFM installations may fail. We then present DeltaDroid—a tool aimed at assisting the devel-

opers with validating dynamic delivery behavior in their apps by augmenting their existing test suite. Our

experimental evaluation using real-world apps corroborates DeltaDroid’s ability to detect many crashes

and unexpected behaviors that the existing automated testing tools cannot reveal.
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1 INTRODUCTION

The Android framework runs on diverse types of devices that vary both in terms of hardware
properties, e.g., CPU architectures or hardware sensors, and software configuration, e.g., Android
version or default language. Due to this variability, developers need to customize features or offer
optional features for specific devices. More importantly, to ensure an app runs properly on different
devices, developers need to include various device-specific resources and features in their apps.
This strategy forces users to download larger apps with unnecessary code and resources specific
to other devices. Alternatively, developers can maintain and publish multiple device-specific APKs
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for a single app, requiring them to spend additional effort to build, sign, upload, and manage several
APKs.

To address these issues, Android has recently introduced a new publishing format, called An-

droid App Bundle [10]. One of the main goals of app bundles is to enable dynamic delivery [24], i.e.,
enhance modularization so that developers can customize their apps based on user requirements
and deliver optional features on a user’s demand. To that end, each app bundle consists of several
cohesive modules that together implement an app’s full functionality. Specifically, the base mod-

ule of the app bundle implements the core functionality of the app, configuration modules include
device-specific resources, and Dynamic Feature Modules (DFMs) implement optional features.
When users install an app for the first time, they install only the base module and a configuration
module specific to their devices. DFMs can be downloaded later based on the user’s demand.1 To
install a DFM, the app’s base module should send an installation request to the Android app store
operator through its runtime interface, i.e., the app store API. Once the app store operator accepts
the request, the app downloads the requested DFM and installs it on the user’s device. The lifecycle
of an installation request is not always straightforward. In fact, such requests may fail due to sev-
eral reasons and result in critical failures, e.g., crashes [25]. Android documentation has provided
instances of best practices regarding dynamic delivery [27], suggesting that developers monitor the
state of an installation request throughout its lifecycle and transparently communicate to the user
if a failure happens. More specifically, if a DFM installation fails, Android best practice suggests
that developers notify the user about the root cause of the failure and adjust the app’s behavior.

As a result, to ensure an app’s proper behavior in dynamic delivery, developers require tests that
(1) reach the installation request in the code and (2) induce the contexts in which the installation
request fails. The challenge here lies in the fact that such failures happen under peculiar conditions,
e.g., network disconnection, missing the proper permission, or no support for the app store API on
the requesting device. Since these conditions cannot be effectively produced through GUI actions,
most existing Android testing techniques (e.g., [18, 44, 56]) that target GUI testing are not suitable
for testing an app’s dynamic delivery. While Android documentation provides a list of conditions
that may cause an installation request to fail [24], the description of those conditions is both vague
and incomplete, making developers struggle with dynamic delivery testing and understanding the
conditions under which dynamic delivery fails [2–4, 7–9, 13–16].

To overcome these challenges, we propose DeltaDroid, an approach for Dynamic DELivery
Testing of AnDroid, i.e., a test-suite augmentation approach that leverages static and dynamic
analysis techniques to (1) identify tests that reach DFMs’ installation requests, and (2) modify the
identified tests with a combination of GUI and system actions to generate new test cases that
induce different conditions, which may cause a DFM installation request to fail. To identify proper
actions, it relies on a novel defect model that formally describes the contexts in which failures
occur. Such tests will help developers with the steps that lead to DFM installation failure, and they
only need to specify application-specific assertions.

Given the fact that Dynamic Delivery has been widely used in recent Android apps [11] (over
40% of all app releases on Google Play [23]), validating the correctness of Dynamic Delivery
is crucial. Our evaluation shows that while state-of-the-art [44] and state-of-the-practice [18]
Android testing techniques, which mostly focus on GUI testing, are potentially able to generate
tests that can initiate the installation of DFMs, they are not capable of creating the proper condi-
tions to make an installation request fail. More specifically, we detected 44 critical dynamic delivery
failures, i.e., crashes, across 25 subject apps. After reporting these failures to developers, 18 of them
were verified to date.

1Developers define how and when users can download different dynamic features on devices running Android 5.0 (API

level 21) or higher.
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Fig. 1. Installation of a new DFM on K9Mail.

This article makes the following contributions:

— Construction of a defect model representing Android dynamic delivery failure through the
formalization of failure conditions.

— A hybrid static and dynamic analysis technique for augmenting existing test suites with tests
that can validate Android dynamic delivery. An implementation of the proposed technique
is publicly available [20].

— An extensive empirical evaluation of real-world Android apps demonstrating DeltaDroid’s
effectiveness in test augmentation.

The remainder of this article is organized as follows. Section 2 illustrates a motivating example.
Section 3 introduces the formal specifications of the defect model. Section 4 describes the details
of DeltaDroid and its implementation. Section 5 presents the experimental evaluation of the re-
search. The article concludes with a discussion of the related research and avenues of future work.

2 ILLUSTRATIVE EXAMPLE

As an illustrative example, we use the Android app K9Mail [12]. We describe the functionality of
K9Mail, a defect in the app associated with dynamic delivery, and how a test can reveal the defect.

App: K9Mail is an e-mail client app whose main functionalities are viewing and sending e-mails,
managing multiple e-mail accounts, searching, and so on. In addition to these core functionalities,
K9Mail offers an optional feature for encrypting e-mails to provide an additional level of security.
Since most users do not use this feature, it is encapsulated into a DFM which users can install
on-demand.

Defect Scenarios: Figure 1 shows three steps that lead to installation of the Encryption DFM.
First, the user clicks on an e-mail’s menu—denoted by three dots—to access more options. Clicking
on the “Encrypt” option initiates the installation of the Encryption DFM. If the module installation
is successful, the user will see a dialog to enter a password and confirms the encryption. Other-
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Fig. 2. An Appium test, written in Python, to test the installation success scenario of Figure 1.

wise, if the installation request fails due to a contextual reason (Section 3), K9Mail goes to the
initial screen without notifying the users about the failure or instructing them to take proper
actions—potentially giving users the false impression that the e-mail is encrypted. Without a
proper test to reveal the failure scenario, a developer may not detect this defect. We describe two
possible dynamic delivery failures for this scenario, i.e., network disconnection [6] and insufficient
storage [17]. We further discuss properties of the required tests to identify such failures.

Tests: Figure 2 shows an Appium [19] system test to validate the behavior of K9Mail during
installation of the Encryption module. While this test can validate the proper implementation of
K9Mail when the installation request is successful, it is unable to capture dynamic delivery failures
occurring due to network disconnection or insufficient storage. Consequently, we need two addi-
tional tests to validate the proper handling of unsuccessful installation of the Encryption module.
These new tests, shown in Figures 3 and 4, include adding system events to the test in Figure 2.
The test in Figure 3 disconnects the network connection before clicking on the “Encrypt” option
(line 4), making the installation request fail, and then re-connects the network connection (line 8)
after clicking on the “Encrypt” option. The test then checks whether the desired alert dialog, no-
tifying the user about the network connection failure, is displayed. On the other hand, the test in
Figure 4 fills the storage of the device before clicking on the “Encrypt” option, making the instal-
lation request fail due to insufficient storage (lines 4–7), and then reverts it after clicking on the
“Encrypt” option (lines 11 and 12). The test then checks if the desired dialog, asking the user to
remove unnecessary files, is displayed. There are two main challenges to designing such tests:

(1) Installation request failures depend on the contextual settings in which a test is executed
and cannot be achieved simply through GUI actions. To that end, developers need to inject
additional system or GUI events into the test event sequences to induce a failure. In the
test case of Figure 3, line 4 contains the system event that disables the network, making the
installation request for the Encryption DFM fail due to a network error (Section 3, Equation
(1)). To ensure that the change in the state of the network only impacts the DFM installation
and not the rest of the test, the network connection is restored afterward.

(2) The position of the injected events in the test event sequence is critical. For example, if the
developer disables the network connection at the very beginning (line 2 in Figure 2), the test
cannot load the list of e-mails, cannot find the menu icon for the “Security Alert” e-mail, and
thus fails without being able to execute the module installation, resulting in an invalid test.
Similarly, if the network connection is disabled after initiating the installation request (line 4
in Figure 2), the test cannot observe the behavior of K9Mail when the installation request
fails; therefore, it would not be a useful test for validating the Encryption DFM’s behavior.

3 DEFECT MODEL

The previous section’s defect scenario describes an installation request failure. Developers should
be aware of all the different situations causing the installation failure, two of which are mentioned
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Fig. 3. An Appium test, written in Python, to test the installation failure scenario of Figure 1 due to no

network connection.

Fig. 4. An Appium test, written in Python, to test the installation failure scenario of Figure 1 due to insuffi-

cient storage.

in Section 2, and take appropriate actions to handle them. To identify the situations leading to an
installation failure, we first need to describe the process through which a DFM is installed.

Once an Android app attempts to install a DFM, it creates an installation request that can go
through multiple states, as demonstrated in Figure 5. First, at the Requesting state, the app store
API—the app’s runtime interface with the app store services—sends the installation request to
the app store (e.g., Google Play [23]). In the Pending state, the request has been accepted by the
app store operator, and the download should start momentarily. Through Android dynamic de-
livery, DFMs are downloaded as separate APK files, called split APKs. During download time, the
request is in the Downloading state. Once the device completes the download, in case the app has
SplitCompat2 installed, it can immediately access the DFM to install it, leading the request to the
Installing state. Otherwise, the request will go to the Downloaded state, where the DFM split APK
is downloaded but cannot yet be installed. As soon as SplitCompat is installed in the app, the DFM
can be installed in the background by the app store operator. Finally, if the installation finishes
successfully, the request is in the Installed state. During the Pending or Downloading states, the
installation request can be canceled, leading to the Canceling and Canceled states. After down-
loading, the Android device automatically installs the DFM, which can be uninstalled by the user
later. For modules that are larger than 10 MB, the installation requires user confirmation (the User

Confirmation state). If the user confirms the installation, the request follows the normal lifecycle.
Otherwise, it goes to the Canceling and Canceled states [24].

An installation request may also terminate the normal lifecycle and go to any of the Failed states,
which are denoted by dashed lines in Figure 5. Based on the root cause of the failure, developers
need to handle it accordingly. For instance, if the request fails due to a network error, developers

2SplitCompat is an Android library class that enables immediate access to code and resources of the DFM split APKs.
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Fig. 5. The lifecycle of a DFM installation request.

should check the network connection and only resend the request if the network is stable. As
another example, if the request fails due to insufficient storage, which prevents the module from
being installed on the device, the developer should ask the user to free up some space, install the
module, and monitor for different root causes of the module installation failure.

While Android documentation briefly explains the Failed states and provides recommendations
for proper actions to handle the failure of an installation request [24], it does not sufficiently de-
scribe the context required to reach the Failed states for the purpose of testing. In fact, developers
might have a hard time understanding the root cause of each Failed state [2–5, 7–9, 13–16]. For in-
stance, [5] states, “My application uses app bundle, but dynamic feature performs a very poor rate
of success when downloading, with a lot of error codes, and I cannot do anything for it. I search
the docs but no help!”. To overcome this challenge, we constructed a defect model for Android
dynamic delivery failures. This defect model formally defines a Failed State Context as the context
in which its associated Failed state will occur. The formulation will be used by DeltaDroid to
augment existing tests to induce Failed states (Section 4).

To construct a comprehensive defect model, we explored multiple resources to understand
the root causes of dynamic delivery failures and to identify contextual factors that trigger them.
Specifically, we started from Android documentation and classified failures into 11 classes, based
on the different error messages Android framework generates upon the occurrence of each fail-
ure [25]. We then explored issue repositories on GitHub [21] and discussion forums (e.g., Stack-
OverFlow [26]) for keywords related to installation errors and DFM install failures, such as
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dynamic feature module installation failure, SplitInstallErrorCode, names of each specific error code,
and their messages included in the Android documentation [25]. Additionally, we investigated
many open-source Android apps’ implementations for instances of SplitInstallErrorCode and
the way developers handle them using onFailureListeners upon the occurrence of different fail-
ures. Investigating these resources, we identified the contextual factors contributing to the mani-
festation of dynamic delivery. For a few cases where the mentioned resources were inconclusive,
we exhaustively examined all the relevant contextual factors that could produce the desired Failed

state.

3.1 Failed State Context Definition

The manifestation of a Failed state depends on the properties of an app bundle, DFM, installation
request, and device configurations.

Definition 1. The configuration of a device in which a DFM will be installed can be formally
specified as a tuple Dev ≡ 〈Android_Version, App_Store, Account, Network, Storage〉, where

—Android_Version is the device’s Android version,
—App_Store is the device’s app store app (e.g., Play Store app),
—Account is the user’s app store account registered on the device,
— Network ∈ {true, f alse} is the network connection status of the device (true if connected

and false otherwise), and
— Storaдe is the amount of storage available on the device.

Definition 2. An app bundle can be represented as a tuple AB ≡ 〈DFMs, Permissions,
DownloadSource〉 where

— DFMs ≡ {DFMi | i ∈ {1, . . . ,n}} is a set of all DFMs in the app bundle AB,
— Permissions is the set of permissions required to install DFMs, and
— DownloadSource is the source from where the app bundle has been downloaded, e.g., Google

Play Store.

Definition 3. A DFM can be formally specified as a tuple DFM ≡ 〈AB, Min_SDK_Version,
Authorized_Users, Size〉 where

—AB is the app bundle of DFM ,
— Min_SDK_Version indicates the minimum API version of the Android device that the DFM

is compatible with, i.e., minSdkVersion in DFM build file,
—Authorized_Users are a set of users’ app store accounts that have access to the DFM and can

install it, and
— Size is the necessary storage for installation of DFM .

Definition 4. An installation request, i.e., a request from an app to install a DFM is defined as a
tuple Req ≡ 〈SessionID, DFM, State〉 where

— SessionID is a unique identifier for a request assigned by the app store API to track the status
of the request,

— DFM is the dynamic feature module that will be installed through this request, and
— State ∈ {R, P ,UC,Dinд,Ded , Iinд , Ied ,Cinд ,Ced , F } is the current state of the installation re-

quest. As shown in Figure 5, the possible values are R (Requesting), P (Pending), UC (User
Confirmation), Dinд (Downloading), Ded (Downloaded), Iinд (Installing), Ied (Installed),Cinд

(Canceling), Ced (Canceled), and F (Failed).
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With these definitions, we can represent a Failed State Context as a tuple FSC = 〈Dev, AB, Req〉
and identify the contextual settings in which a distinct Failed state happens.

3.2 Failed States

As shown in Figure 5, an installation request may terminate in ten different Failed states: Network

Error, Insufficient Storage, Access Denied, Incompatible With Existing Session, Active Sessions Limit

Exceeded, Module Unavailable, API Not Available, Session Not Found, App Not Owned, and Invalid

Request.
(1) Network Error. An installation request goes to the Network Error state if a network excep-

tion [6] occurs when the request is in any of the Requesting, Pending, or Downloading states. For a
dev : Dev and req : Req, the contextual parameters that induce such failure are as follows:

FSCN etwork_Error ≡ req.State ∈ {R, P ,Dinд } ∧ dev .Network_Connection = f alse . (1)

To ensure developers have considered a proper action when such failure happens, there should
be a test to disconnect network connection during the lifecycle of the request.

(2) Insufficient Storage. The Insufficient Storage failure happens when an app requests to
install a DFM, whose size is larger than available storage on the phone. More specifically, once an
installation request is initiated, the Android device checks its remaining storage before starting
the installation request, and in case of insufficient available storage, it fails at the Requesting state.
It will only start downloading and installing in case the device has enough storage. For a dev : Dev
and req : Req, the contextual parameters that induce such failure are as follows:

FSCInsuf f icient_Stor aдe ≡ req.State ∈ {R} ∧ (req.DFM .Size > dev .Storaдe ). (2)

Developers should handle this situation, e.g., show a proper notification informing the user
about the space availability issue on the phone. To validate this behavior, a test needs to mock the
storage of the device as being full.

(3) Access Denied. Without proper permissions to download a DFM, i.e., REQUEST_
INSTALL_PACKAGES permission, an installation request from the app store operator is denied in
its inception, i.e., when in the Requesting state. For an ab : AB and req : Req, the contextual
parameters that induce such failure are as follows:

FSCAccess_Denied ≡ req.State ∈ {R} ∧ Request_Install_Packaдes � ab .Permissions . (3)

To ensure developers implement proper actions in response to this failure, test suites should
have either a test that permanently revokes the app’s REQUEST_INSTALL_PACKAGES permission or
temporarily revokes it by taking the app to the background.3

(4) Incompatible With Existing Session. Installation of a DFM might be accessible from dif-
ferent paths in the program. Thus, more than one installation request can be sent to the app store
operator for the same DFM. Specifically, consider the case where an installation request of a DFM is
in progress and the DFM is not installed yet, and meanwhile, another installation request attempts
to install the same DFM. In this case, the second request will terminate and reach the Incompatible

With Existing Session state. This failed state happens while the first request is in any of the Request-

ing, Pending, Downloading, or Installing states, and the second request is in the Requesting state.
For a dev : Dev , req1 : Req, and req2 : Req, the contextual parameters that induce such failure are

3From Android 11, an app’s permission can be temporarily revoked while it is not in the foreground.
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as follows:

FSCIncompatible_W ith_Exist inд_Session

≡ req1.DFM = req2.DFM

∧ req1.SessionID � req2.SessionID

∧ req1.State ∈ {R, P ,Dinд , Iinд } ∧ req2.State ∈ {R}

. (4)

To ensure the app implements the proper means of accounting for this failure, a test should
simultaneously initialize at least two installation requests for the same DFM.

(5) Active Sessions Limit Exceeded. While the previous situation includes multiple requests
for the same DFM, an installation request for a DFM is also rejected if there is already an active
installation request for another DFM. This failed state occurs while the first request is in any of
the Pending, Downloading, or Installing states, and the second request is in the Requesting state.
For a dev : Dev , req1 : Req, and req2 : Req the contextual parameters that induce such failure are
as follows:

FSCActive_Sessions_Limit_Exceeded

≡ req1.DFM � req2.DFM

∧ req1.State ∈ {P ,Dinд , Iinд } ∧ req2.State ∈ {R}
. (5)

If the app contains multiple DFMs in the bundle, installing any of them may result in Active

Session Limit Exceeded failed state. Since the implementation of these DFMs might be distributed
in the code, different test cases executing different parts of the code are required to induce this
failed state.

It is worth to note that Active Session Limit Exceeded state does not subsume Incompatible with

Existing Session, as the SessionID of req1 and req2 might be the same in the former. To ensure devel-
opers implement proper actions to account for this failure, a test should simultaneously initialize
installation requests for different DFMs.

(6) Module Unavailable. This failed state can occur due to two possible causes: (1) For each
DFM installation request, the app store API checks whether the minSdkVersion of the DFM
matches that of the Android system running on the device. Module Unavailable failed state occurs
if the Android version running on the device is less than the minSdkVersion in the DFM’s build
file, i.e., mismatches the required API Version of the DFM. (2) In some cases, the developer might
not make the DFM available to all users. If a DFM is unavailable for the user’s app store account
on the device, the request reaches the Module Unavailable state. This failed state happens while
the request is in the Requesting state. For a dev : Dev and req : Req, the contextual parameters
that induce such a failure are as follows:

FSCModule_U navailable ≡ req.State ∈ {R}
∧ (dev .Android_Version < req.DFM .Min_SDK_Version

∨ dev .Account � req.DFM .Authorized_Users )

. (6)

To validate the app implements proper means of handling this failure, a test suite should include
a test that either changes the Android version of the device or the app store account on the device.

(7) API Not Available. App bundles and thus on-demand DFMs are available on Android ver-
sion 5 (API level 21) or higher. For older versions, developers should change the configuration of
DFMs, such that they can be downloaded with the base APK. This allows the app to support down-
loading all modules of an APK, similar to a monolithic APK from Android versions that do not
support DFMs. Otherwise, users of devices with older versions can only download the base APK.
Attempts of an app to violate this by trying to download a DFM results in the installation request
terminating with the API Not Available error. This failed state occurs while the request is in the
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Requesting state. For a dev : Dev and req : Req, the contextual parameters that induce such failure
are as follows:

FSCAP I _N ot_Available ≡ req.State ∈ {R} ∧ dev .Android_Version < Android_5. (7)

A test to validate the proper action to account for this failure should mock the Android version
running on the device.

(8) App Store API Not Found. This Failed state happens when the app store (e.g., Play Store
app) is either not installed or not the official version. This failed state occurs while the request is
in the Requesting state. For a dev : Dev and req : Req, the contextual parameters that induce such
failure are as follows:

FSCApp_Stor e_AP I _N ot_F ound ≡ req.State ∈ {R}∧dev .App_Store � O f f icial_App_Store_app. (8)

A test to validate an app’s behavior in response to this failure should mock a device that does
not have the official app store installed.

(9) Session Not Found. This Failed state happens when the session ID generated by the app
store operator for an installation request is not valid, i.e., does not correspond to an active session
in the app store services. This failed state occurs while the request is in any of the Pending, Down-

loading, or Installing states. For a req : Req, the contextual parameters that induce such failure are
as follows:

FSCSession_N ot_F ound ≡ req.State ∈ {P ,Dinд , Iinд } ∧ req.SessionID = invalid . (9)

(10) App Not Owned. This Failed state happens when the app has not been installed by the
designated app store and the feature cannot be downloaded. This failed state occurs while the
request is in the Requesting state. For a req : Req, the contextual parameters that induce such
failure are as follows:

FSCApp_N ot_Owned ≡ req.State ∈ {R} ∧ ab .DownloadSource � O f f icial_App_Store_app. (10)

(11) Invalid Request. This Failed state happens when the app store received the installation
request, but the request is not valid., i.e., the information included in the request is not complete
or accurate. This failed state occurs while the request is in the Requesting state. For an ab : AB and
a req : Req, the contextual parameters that induce such a failure are as follows:

FSCInvalid_Request ≡ req.State ∈ {R} ∧ (req.SessionID = invalid ∨ req.DFM = invalid ) . (11)

A test to validate an app’s behavior in response to the last three failures should mock the app
store operator API to generate an invalid session ID for an installation request, e.g., SessionID =
null , or an invalid source of download for an app bundle.

4 DELTADROID

Figure 6 depicts a high-level overview of DeltaDroid, consisting of two major components: Test-

Suite Analysis and Test-Suite Augmentation.
Test-Suite Analysis takes an Android app bundle and the corresponding initial test suite as inputs

and produces the Baseline Test Cases—representing those tests that initiate a DFM installation—and
the associated Metadata—data about the specific test step in which a DFM is installed. The Baseline

Test Cases are subsequently reused in the creation of new tests.
Test-Suite Augmentation takes the Baseline Test Cases and associated Metadata together with the

Defect Model, which formally defines the contexts in which a DFM installation request can fail, as
inputs and generates additional tests that are effective for dynamic delivery validation. Specifically,
this component creates new tests by first replicating a baseline test and then modifying it with a
combination of system and GUI events to induce the context that may manifest installation request
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Fig. 6. A high-level overview of DeltaDroid.

Fig. 7. Code snippet from K9Mail app that requests the installation of Encryption DFM.

failures. The newly generated tests create all the failure scenarios that an app should handle. In the
remainder of this section, we provide a more detailed explanation of the components comprising
DeltaDroid.

4.1 Test-suite Analysis

The Test-Suite Analysis component identifies tests that are suitable for validating the behavior of
dynamic delivery in the app. To that end, App Bundle Analyzer pinpoints the code responsible
for installing DFMs in the app and instruments it. Subsequently, DFM Install Detector executes
the initial test suite on the instrumented app to determine the Baseline Test Cases, i.e., the tests
in the initial test suite that execute the installation request. Finally, Test Analyzer identifies the
locations in baseline tests where additional GUI or system events should be injected to create
effective dynamic delivery tests.

4.1.1 App Bundle Analyzer. To aid in understanding how App Bundle Analyzer works, Figure 7
shows the code snippet corresponding to the installation request of the Encryption DFM in
k9Mail. The code initiates the request by creating instances of SplitInstallManager (line 2) and
SplitInstallRequest (line 4). It then sends the installation request of the Encryption DFM to
the app store API by invoking the startInstall method (line 6).

App Bundle Analyzer performs a flow-sensitive analysis to find invocations of startInstall
method and injects a logging statement immediately before it in the control-flow graph. Addition-
ally, App Bundle Analyzer registers a SplitInstallStateUpdatedListener to monitor and log
the state of the installation request at run-time.

4.1.2 DFM Install Detector. DFM Install Detector takes the instrumented app bundle as input,
runs it against the initial test suite, and identifies the tests that initiate DFM installation requests
as Baseline Test Cases, i.e., tests that execute the instrumented log statements.
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ALGORITHM 1: Test Analyzer

Input: app // Instrumented app bundle

Input: T // Baseline tests

Output: MD: {md | md = 〈location,DFM〉} // Baseline tests’ metadata

1 MD ← ∅
2 foreach test ∈ T do

3 loggedEntries ← RunTestCase(test ,app)

4 sortByTimeStamp(loддedEntries)

5 foreach entry ∈ loggedEntries do

6 if entry.type is TestEvent then

7 location← getEventID(entry)

8 else

9 DFM ← getDFMIDentifier(entry)

10 MD ← MD ∪ 〈location,DFM〉
11 break

12 end

13 end

14 end

4.1.3 Test Analyzer. After identifying Baseline Test Cases, the next step is to find the proper
location of modification, i.e., the index in the test event sequence where new test events should
be injected, which we refer to as target location. To that end, Test Analyzer first instruments the
tests to record all the test events, their types, and orders. Events could be either GUI events (e.g.,
button clicks) or system events (e.g., changes in network connection). It then uses Algorithm 1
to locate the last event in each test after which an installation request is initiated, i.e., the target

location.
Algorithm 1 shows how Test Analyzer identifies target locations. Test Analyzer takes the instru-

mented app and a set of baseline tests, T , as input, and provides a set of tuples 〈 location, DFM〉
as output. The first element in the output tuple, location, indicates the index at which a test ∈ T
should be modified, and the second element indicates the DFM that is installed by test at that
location.

Algorithm 1 starts by initializing the metadata, MD, to an empty set. For each instrumented test
test ∈ T , Algorithm 1 executes the test on the instrumented app bundle, app, and collects all the
entries recorded in the log file during test execution in loддedEntries (line 3). These entries are
either test events that are recorded by the instrumented test, test , or log messages that show app
has initiated an installation request. At the next step, the Algorithm sorts the logged entries based
on their corresponding time stamp, i.e., the actual time the event happens, to account for potential
race conditions (line 4). Subsequently, Algorithm 1 iterates over all the entries in loддedEntries to
identify the target location, i.e., the location of the last event in each baseline test after which an in-
stallation request is initiated (lines 5–13). Specifically, it starts from the first entry in loддedEntries
and keeps track of the order of test events (lines 6 and 7). Once Algorithm 1 reaches an entry that
is made by app that installs a DFM (line 8), it extracts the DFM identifier from the entry (line 9)
along with the location of the last test event, location, saves it as a tuple in MD (line 10) for the
corresponding test.

The algorithm terminates once the target locations corresponding to all tests are identified. As
a result, it provides a set of tuples containing the information required by the next component in
DeltaDroid’s workflow, i.e., Test-Suite Augmentation.
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ALGORITHM 2: Test-Suite Augmentation

Input: FSCs: {fsc | fsc = 〈Dev, AB, Req〉} // Failed State Context formula

Input: T // Instrumented baseline tests

Input: MD: {md | md = 〈location, DFM〉} // Metadata corresponding to baseline tests
Output: GenTCs

1 GenTCs ← ∅
2 foreach test ∈ T do

3 foreach fsc ∈ FSCs do

4 eventssys ← systemEventGenerator(fsc)

5 eventsGUI ← GUIEventGenerator(fsc)

6 test ′ ← test ∪ injectEvents(md, eventssys, eventsGUI )

7 GenTCs ← GenTCs ∪ test ′

8 end

9 end

4.2 Test-suite Augmentation

Test-Suite Augmentation takes our defect model (Section 3) as well as the output of Test-Suite An-

alyzer as inputs and generates effective dynamic delivery tests as output, i.e., 11 additional tests
for a given baseline test. Each of these new tests is responsible for creating one of the FSCs for-
mally defined in Section 3 to make the installation requests fail. FSCs can be created by injecting
additional system and GUI events into the test event sequence.

Algorithm 2 shows how Test-Suite Augmentation generates effective dynamic delivery tests.
There are three inputs to this algorithm. The first input is FSCs = {fsc | fsc = 〈Dev,AB,Req〉},
which is a set of Failed State Contexts we formally defined in Section 3.2. The second and third in-
puts are T and MD, respectively, the output of Test-Suite Analysis. T represents a set of candidate
tests and MD is the corresponding metadata, i.e., information about the DFM each test installs and
the location at which DFM installation occurs within each baseline test.

Algorithm 2 initializes GenTCs, a set of newly generated tests, as an empty set (line 1). It then
iterates over baseline tests (lines 2–7) and for each DFM installation request by a baseline test,
it generates 11 new tests, where each of them is responsible to create the context corresponding
to one of the FSCs (lines 3–6). Specifically, Algorithm 2 generates a set of test steps for creating
system events (line 4) and GUI events (line 5), and injects them in the baseline test to create a new
test, test ′, (line 6). After generation of each new test, Algorithm 2 updates GenTCs with the new
test (line 7).

The systemEventGenerator method is responsible for the generation of proper system events.
It takes the formulation of a Failed State Context, fsc, parses the formulation to obtain contextual
properties that contribute to the corresponding fsc’s failure, and generates system events accord-
ingly. For example, to generate the example test for k9Mail (Figure 3), systemEventGenerator
parses FSCN etwork_Error and identifies the state of the request, req.State , and connectivity sta-
tus of the device, dev .Network_Connection, as the related contextual parameters (Equation (1))
and generates corresponding system events. There are two categories of system events that
systemEventGenerator injects into the baseline tests. The first category includes system events
that directly change a context, e.g., disabling the network connection, slowing down the network
speed, or creating a large file to take up device storage. The second category includes system
events that indirectly change contexts by simulating the device’s running Android version, user’s
app store account, or the SessionID assigned to an installation request.
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For a subset of FSCs in which the failure originates in the app store API (Equations (6)–(11)),
systemEventGenerator mocks the app store API to induce a specific behavior. For instance, in
Module Unavailable FSC, the failed state will be induced if the version of the requested module is not
compatible with the app bundle uploaded in the app store. To that end, systemEventGenerator re-
places SplitInstallManager with a customized implementation reflecting the required context.

System events and mocking are not enough for creating a subset of FSCs. For instance, in the case
of Access Denied (Formula 3), an effective test should revoke the REQUEST_INSTALL_PERMISSION
of the app. This can be done either by permanently revoking the permission through Android
settings or temporarily revoking the app’s permission to download a DFM by moving the app
to the background right before the DFM installation begins. Each of these decisions requires a
series of consecutive GUI actions. For example, one series of GUI actions may involve clicking on
the Home button to move the app to the background, relaunching the app in the same state by
clicking the App Switch button, and choosing the app among the recent running apps.

After producing the proper events, Algorithm 2 injects them into a copy of the given base-
line test and generates a new test (line 6). To that end, the injectEvents method takes eventsys

and eventGU I sets and injects them into test at the index specified by md .location. Specifically,
injectEvents first injects eventsys and then eventGU I . This is mainly because some GUI actions
are useless without proper system events before them. For example, in the case of Active Session

Limit Exceeded, the installation request should be in the Pending, Downloading, or Installing states
before requesting installation of another DFM to make the failure occur. To ensure this, we need
to inject system events that slow down the speed of network connection, making the transition
of installation requests between states slower and allowing GUI actions to be effective. In the rare
cases where the baseline tests already contain proper events to simulate any or a subset of FSCs,
the specific FSC(s) are simply repeated. This repetition does not break the augmented test.

Finally, once a new test is generated, Algorithm 2 adds it to the set of newly generated tests.
Algorithm 2 terminates after generating all the tests that make each installation request enter all
the 11 Failed states described in Section 3. That is, the size ofGenTCs is 11 times the size of baseline
tests, i.e., |GenTCs | = 11 × |T |.

Once the new tests are generated, the Oracle component automatically determines if developers
properly handle the failed states. We follow the specification of unhandled behavior from An-
droid documentation [25], in which an app takes no action, visible to the user, to handle the
failure. Such behavior in our illustrative example (Section 2) could be due to either missing an
OnFailureListener in the code or any additional UI element on the app screen notifying the
user about a failure. To identify unhandled behaviors, the oracle performs two actions. First, it
investigates the invocation of OnFailureListener during the execution. If such a callback is not
invoked after an installation failure, a clear indicator is that a DFM failure is not handled in the
implementation. However, a developer may implement OnFailureListener in the code without
actually handling the failure in a meaningful manner. To account for such cases, our proposed
oracle investigates changes in the visible UI elements before and after the DFM installation failure.
If there is an addition of UI elements to the screen, e.g., a UI widget is added to show an error mes-
sage, developers have satisfied the minimum requirement to handle the DFM failure, i.e., informing
users about the failure [25]. Otherwise, the oracle can confidently judge that the developer has not
properly handled the DFM installation failure.

We do not generate assertions here for two reasons: First, the purpose of DFM testing is to
help developers with the steps that lead to dynamic delivery failures and determine whether a
particular failed state was handled properly. Assertions for dynamic delivery testing are highly
app-specific. For example, depending on the developer’s design decision, they can either show a
message, which notifies the user about the failure and its reason, or stops the installation progress
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bar. In the former case, the assertion checks for the visibility of a dialog message, e.g., line 10 in
Figure 3. In the latter, the assertion could check for a specific amount of progress (e.g., 0%) on the
progress bar. As another example, the developer of k9Mail, in our illustrative example (Section 2),
may decide that the proper action to handle Network Failed state is to notify the users and ask them
to retry once the network is connected. Hence, the appropriate assertion should check the existence
of the notification element. Alternatively, the developer may decide to flag the encrypted e-mails
with a specific icon so that the user knows if an e-mail is encrypted or not. In this design decision,
the appropriate assertion should check the existence of the specific icons. While these assertions
are simple, they require the developer’s judgment and understanding of the app’s behavior. That
said, DeltaDroid can suggest the locations where developers could add assertions.

5 EVALUATION

To evaluate DeltaDroid’s effectiveness in validating Android apps’ dynamic delivery, we investi-
gate the following research questions:

RQ1: Effectiveness of Inducing Failed States. How effective is DeltaDroid in augmenting test
suites to generate test cases that induce different Failed states?

RQ2: Effectiveness of Revealing Installation Defects. To what extent does DeltaDroid reveal
installation defects in real-world Android apps’ behavior?

RQ3: Performance. What is DeltaDroid’s runtime efficiency in terms of execution time?

5.1 Experimental Setup

To answer these research questions, we selected a set of open-source Android apps from
GitHub [21] which are also uploaded to Google Play. Our inclusion criteria select apps that
(1) are open-source, (2) implement Android dynamic delivery, (3) have at least two DFMs, and
(4) have an initial test suite. Note that dynamic delivery features need the developer to sign an app
when deployed onto the Google Play platform which, in turn, requires our subject apps to be open
source. To select subject apps that implement dynamic delivery, we searched for “apply plugin:
com.android.dynamic-feature” statement in the Android projects’ build files, i.e., Gradle [22].
Among the search results, we excluded toy or demo apps, which are minimal Android apps with
no specific functionalities, mainly developed to learn or examine Android dynamic delivery. In the
next step, we excluded apps with only one DFM, as one of the Failed states, namely Active Session

Limit Exceeded, requires subjects to have at least two DFMs.
Our final dataset includes 25 apps with a total of 51 DFMs, shown in Table 1. These apps come

from various categories, reducing any bias towards a certain type of app. Among these 25 apps, the
initial test suite of 15 apps has tests to cover all of the DFM installation requests in the code. Since
DeltaDroid requires baseline test cases that attempt to install DFMs, we manually extended the
test suites of the remaining 10 apps with a total number of 20 test cases that initiate the installation
of DFMs. The additional test cases are small, i.e., only 10–22 lines of code per test case.

For a thorough evaluation of DeltaDroid, we first compare it against a baseline static
analysis approach, which can detect failures corresponding to the missing implementation of
OnFailureListener callbacks using Soot [52]. This approach performs a flow-sensitive analy-
sis to find locations in code where an installation request is initiated. It then checks whether the
OnFailureListener is implemented. In case the OnFailureListener callback is not implemented,
the static analysis will report a dynamic delivery failure. The rationale here is that without an
OnFailureListener callback implementation, the app will fail in any of the Failed State Contexts.
The issue with the static analysis approach is that it does not execute the OnFailureListener
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Table 1. Subject Apps

No. Application Application # Size Test-Suite Size
Name Category DFMs (LoC) Initial Aug.

1 Alert Productivity 2 914 12 34
2 Amaze File Manager Utility 3 107,141 68 101
3 AntennaPod Entertainment 2 192,094 51 73
4 K9Mail Utility 2 218,242 95 117
5 LeafPic Utility 2 144,332 16 38
6 AnkiDroid Educational 2 113,547 32 54
7 Authorizer Utility 2 92,990 22 44
8 Open Camera Utility 2 73,128 11 33
9 TimeTable Educational 2 39,371 17 39
10 Ping Utility 2 1,633 13 35
11 Bills Utility 2 55,304 12 34
12 Travel Destinations Lifestyle 2 762 12 34
13 Alkaa To-Do Productivity 2 46,064 37 59
14 Kredit Utility 2 414 12 34
15 Calculator Productivity 2 36,884 12 34
16 Movie Stats Entertainment 2 61,646 10 32
17 Mediation Ads Lifestyle 2 29,482 4 26
18 MyNews Educational 2 41,764 4 26
19 Dictionary Educational 2 32,841 16 38
20 JackOfAll Productivity 2 37,958 6 28
21 Income Tracker Productivity 2 31,025 19 41
22 Translator Utility 2 131,401 12 34
23 BigFiles Utility 2 213,679 8 30
24 SuperHero Lifestyle 2 1,784 10 32
25 TOKO Game Game 2 48,491 10 32

callback, and, as a result, it does not provide the developers with accurate information regarding
their app’s behavior under different Failed State Contexts.

We also compared DeltaDroid against three alternative testing approaches. The first one is
Monkey [18], one of the most widely used automated testing tools for Android in practice, which is
shown to outperform many other automated testing tools [36]. Second, we compared DeltaDroid
against APE [44], the state-of-the-art automated model-based approach for testing Android apps,
which dynamically optimizes the model based on the run-time information. APE is shown to
outperform similar state-of-the-art Android GUI testing tools (Sapienz [56] and Stoat [66]) in
terms of both testing coverage and the number of detected unique crashes. Third, we compared
DeltaDroid against App Crawler [28], which tests an Android app by running alongside the app
and automatically issuing actions, e.g., tap, swipe, and so on, to explore the state-space of the tar-
get app. It automatically terminates when there are no more unique actions to perform, the app
crashes, or after a designated timeout.

Test augmentation techniques target a specific goal in testing, e.g., achieving higher coverage of
the code or reproducing the crashes. Unlike those techniques, DeltaDroid uses test augmentation
to cover all the failed states in the lifecycle of a DFM installation request by relying on a novel
defect model. None of the other test augmentation approaches target the same goal. Hence, they
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are not suitable candidates for comparison against DeltaDroid. That said, we tried to compare
DeltaDroid with Thor [31], a test suite augmentation technique in the domain of Android, since
it creates events that can induce the Network Error and Access Denied failed states (but not other
failed states). However, the current version of Thor is outdated, as also mentioned in their issue
repository [29]. We have also contacted the authors who confirmed that Thor is no longer actively
maintained and, since it is built on Android 4, it will not support Android apps with dynamic
delivery.

In addition, we were unable to compare our results against TimeMachine [41], since the cur-
rent version of it does not support Google Play Services, as reported on its issue repository [30],
preventing us from running it on app bundles that use dynamic delivery.

Note that no other testing tool is quite comparable to DeltaDroid, as none of those tools gener-
ate the necessary system events for testing Android dynamic delivery. Explicitly handling dynamic
delivery of Android apps (e.g., DFMs), and representing and accounting for the corresponding de-
fect model and Failed State Contexts, are key novel elements of DeltaDroid that contribute to its
testing effectiveness.

For the purpose of comparison, we gave Monkey and APE an hour to run, similar to prior stud-
ies [36, 44]. We also ran App Crawler without any designated timeout to be able to explore all
states of the application. To further avoid any bias in favor of DeltaDroid, we re-installed the
apps on the device once any test by Monkey, APE, and App Crawler completed a DFM installation.
That is mainly due to the fact that once a DFM is installed, a Failed state cannot possibly be reached.
Therefore, alternative approaches had many chances to cover Failed states during the hour-long
period.

5.2 RQ1: Effectiveness of Inducing Failed States

To answer RQ1, we ran DeltaDroid over all the subject apps to augment their existing test suites.
Table 1 shows the size of the initial and augmented test suites for each subject app under the Test-

Suite Size column. These results confirm that DeltaDroid was able to generate a new test case
for each Failed state for subject apps’ DFMs, i.e., the size of the initial test suite is increased by
#DFM × 11 tests.

We executed augmented test suites and ran Monkey, APE, App Crawler, and the baseline static
analysis approach on the subject apps. Each app is instrumented (Section 4.1.1); we thus monitored
the apps’ log statements during test execution to identify whether the tests covered different Failed

states. If the log record of a test indicates that the installation request entered any of the Failed

states, we confirm that the test covers the state. We also ran the applications’ initial test suite
without manually extending them, and they could not test any of the defined failed states, as these
states occur only under peculiar contextual settings.

Table 2 demonstrates the results of this study. It shows that DeltaDroid was able to reach
almost all of the Failed states for the DFMs in a total of 25 subject apps. The only exception was
the Access Denied Failed state, which was only reached by the tests in one app. The scenario in
which an installation request can enter the Access Denied Failed state is quite a rare case that
requires the app to initiate the installation from a concurrent thread that can be executed while
the app is in the background (see Equation (3)). Only one of the apps among our subjects, namely
Travel Destinations, was implemented in such a way, for which DeltaDroid was able to cover the
Access Denied Failed state.

Monkey, APE, and App Crawler were all able to generate tests that installed all the DFMs in the
subject apps, as reported in Table 2. However, they all performed quite poorly in terms of testing
different Failed states. Specifically, APE was able to only cover the Active Sessions Limit Exceeded

Failed state for 1 DFM. App Crawler performed better than APE and covered two Failed states,
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Table 2. Testing Tools’ Effectiveness of Covering Failed States

Monkey [18] APE [44] App Crawler [28] Baseline DeltaDroid
Static Analysis

# # Avg. # # Avg. # # Avg. # # # # Avg.

Failed State Apps DFMs T.T.F.1 Apps DFMs T.T.F. Apps DFMs T.T.F. Apps DFMs Apps DFMs T.T.F.

N.E. 19 38 611 0 0 - - - - 9 19 25 51 7
I.S. 0 0 - 0 0 - - - - 9 19 25 51 9
A.D. 0 0 - 0 0 - - - - 1 1 1 1 13
I.W.E.S. 0 0 - 0 0 - 1 1 3 9 19 25 51 5
A.S.L.E. 4 5 193 1 1 221 2 2 2 9 19 25 51 6
M.U. 0 0 - 0 0 - - - - 9 19 25 51 4
A.N.A. 0 0 - 0 0 - - - - 9 19 25 51 5
A.S.A.N.F. 0 0 - 0 0 - - - - 9 19 25 51 5
S.N.F. 0 0 - 0 0 - - - - 9 19 25 51 4
A.N.O. 0 0 - 0 0 - - - - 9 19 25 51 4
I.R. 0 0 - 0 0 - - - - 9 19 25 51 6

Avg. Total 3,600 seconds 3,600 seconds 52 seconds 53 seconds 146 seconds

time per app

% Installed 100% 100% 100% N/A2 100%

DFMs

1T.T.F., short for Time To Failed states, indicates the testing time required to reach the failed state.
2The baseline static analysis approach does not initiate DFM installations, since it statically analyzes the apps.

i.e., Incompatible With Existing Sessions in 1 DFM of 1 app and Active Sessions Limit Exceeded in
2 DFMs of 2 different apps. While Monkey performed better than APE and App Crawler in covering
Failed states, it was far behind DeltaDroid. That is, Monkey was able to reach the Network Error

Failed state for 38 DFMs of 19 apps and the Active Sessions Limit Exceeded Failed state in 5 DFMs
of 4 apps, making it cover 2 Failed states and 43 DFMs in total.

The baseline static analysis approach was able to inform us about missing the implementation
of OnFailureListener callbacks in 19 DFMs of 9 apps, indicating the possibility of all types of
Failed states for these apps. However, the static analysis approach results in a false negative in case
the OnFailureListener is implemented, but not in a way to properly handle the failed states. Ad-
ditionally, static analysis cannot generate tests to help developers induce the failed state contexts.

Overall, Table 2 demonstrates that DeltaDroid significantly outperforms alternative ap-
proaches in testing Android dynamic delivery. Additionally, these results confirm our choice to
formulate dynamic delivery testing as a test-suite augmentation technique, since even a pure ran-
dom testing technique, such as Monkey, can reach program points that install DFMs.

5.3 RQ2: Effectiveness of Revealing Installation Defects

To assess the DeltaDroid’s ability to reveal defective behavior in Android apps, we investigated
each app’s behavior in our dataset once any of the Failed states occur. Proper behavior for an
app entering a Failed state could notify the users of the situation, explain the reason for failure,
give them an instruction, or retry the installation as described in Android documentation [27].
However, in our study, we conservatively consider a defective behavior only when an app
crashes (Crash) or takes no action to handle the failure, i.e., no change in the behavior of the app
(Unhandled), such as the illustrative example in Section 2. As a result of this study, we found 18
apps (i.e., 72%) with a total of 160 unhandled behaviors upon the occurrence of a Failed state. More
importantly, we discovered 48 new instances of the app crashing in 7 apps (i.e., 28%), which were
not detected by their initial test suites. Unlike a typical crash where simply restarting the app is
sufficient to return the app to a stable state, in all of these 7 crashing apps, we had to manually
uninstall and install the apps to resume their regular functionalities. We believe this is because
DFM-induced crashes occur during the installation of new modules that, if not completed properly,
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Table 3. Installation Defects Revealed by DeltaDroid

No. Application Failed States

Name N.E. I.S. A.D. I.W.E.S. A.S.L.E. M.U. A.N.A. A.S.A.N.F. S.N.F. A.N.O. I.R.

1 Alert UH UH - UH CR UH UH UH UH UH UH
2 Amaze File Manager UH UH - UH UH UH UH UH UH UH UH
3 AntennaPod � � - � � � � � � � �
4 K9Mail UH CR - CR CR CR CR CR CR CR CR
5 LeafPic UH UH - UH UH UH UH UH UH UH UH
6 AnkiDroid UH UH - UH UH UH UH UH UH UH UH
7 Authorizer � � - � � � � � � � �
8 Open Camera UH UH - UH UH UH UH UH UH UH UH
9 TimeTable UH UH - UH UH UH UH UH UH UH UH
10 Ping UH UH - CR CR UH � � � � �
11 Bills1 UH UH - UH UH UH UH UH UH UH UH
12 Travel Destinations � � � CR � � CR CR CR CR CR
13 Alkaa To-Do UH UH - UH UH UH UH UH UH UH UH
14 Kredit � � - UH UH � UH UH UH UH UH
15 Calculator CR CR - CR CR CR CR CR CR CR CR
16 Movie Stats UH UH - UH UH UH UH UH UH UH UH
17 Mediation Ads UH UH - UH UH UH UH UH UH UH UH
18 MyNews UH UH - UH UH UH UH UH UH UH UH
19 Dictionary CR CR - CR CR CR CR CR CR CR CR
20 JackOfAll UH UH - UH UH UH UH UH UH UH UH
21 Income Tracker UH UH - UH UH UH UH UH UH UH UH
22 Translator CR CR - CR CR CR CR CR CR CR CR
23 BigFiles UH UH - UH UH UH UH UH UH UH UH
24 SuperHero � � - � � � � � � � �
25 TOKO Game UH UH - UH UH UH UH UH UH UH UH

% of apps not handling the failed state 64% 64% 0% 64% 60% 64% 64% 64% 64% 64% 64%
% of apps crashing in the failed state 16% 16% 0% 24% 24% 16% 20% 20% 20% 20% 20%

1Bills app freezes in every Failed state in which the user cannot have any further interaction unless the app is

restarted or forced to quit.

corrupt the app bundle permanently. DeltaDroid’s oracle was able to successfully determine the
crashes, handled, and unhandled behaviors in 23 apps in our dataset (i.e., 92%). For the remaining
2 apps, the oracle resulted in false positives, i.e., incorrectly identified an unhandled behavior as
handled since a UI element appeared on the screen after the failure, but not for the purpose of
handling it.

Table 3 describes the apps’ detailed behavior in our dataset under different Failed states. Nota-
tions “UH” (colored in yellow) and “CR” (colored in red), respectively, imply unhandled behaviors
and crashes under the Failed States columns. The checkmark notation (colored in green) indicates
that the app handles the corresponding Failed state by taking an extra action. All of the 6 apps in
our dataset that handle at least one Failed state only display an error message without providing
any instructions to the user. Excluding the rare scenario of Access Denied Failed state, our evalu-
ation results indicate that for different Failed states, the unhandled behavior ranges from 60% to
64%, and crashes range from about 16% to 24% of the apps. These results emphasize the importance
of testing Android dynamic delivery and the consequences of disregarding it.

One important outcome of these results is that a mere static analysis is not effective for vali-
dating dynamic delivery. Specifically, static analysis techniques, e.g., the baseline static analysis
approach, at best, can only determine dynamic delivery failures corresponding to the missing im-
plementation of “OnFailureListener” callback. Such failures constitute 70 out of 160 unhandled
behaviors and 10 out of 48 crashes in our results. This is because dynamic delivery failures depend
on contextual settings, e.g., regarding network connection, permissions, device storage, and so on
that require app execution and dynamic analysis.

Finally, we reported all the discovered issues to the subject app developers. As of this submis-
sion date, 21 crashes and 54 unhandled behaviors are confirmed by the developers. Developers’
responses also confirm the wide-reaching importance of the problem, the difficulty of testing
Android dynamic delivery, and their interest in using our technique. For example, one developer
indicated that they had not considered testing the installation failure scenarios before our report.

ACM Transactions on Software Engineering and Methodology, Vol. 32, No. 4, Article 84. Pub. date: May 2023.



84:20 N. Ghorbani et al.

Fig. 8. The results of comparing alternative approaches in revealing dynamic delivery faults over time.

(a) The number of discovered faults over the elapsed time for all approaches listed in Table 2. (b) The AUC

of the plots in Figure 8(a).

The developer said, “As a developer, we try to cover all the failure scenarios, and testing them is not
straightforward. Therefore, a testing tool that could detect all the loopholes for dynamic delivery
implementation would be very helpful to us.” Another developer noted that “The Android docu-
mentation is not very clear, and it is indeed difficult to test traditionally, or it requires a lot of code.
I think a framework or utility to check the behavior of Android apps when module installation
fails could be very useful”.

5.4 RQ3: Performance

To investigate the performance characteristics of DeltaDroid, we first assess the performance of
its two main components, i.e., Test-Suite Analysis and Test-Suite Augmentation. We next compare
the efficiency of DeltaDroid to alternative approaches. We ran all of the tools on a Pixel 3a mobile
device with Android 10 and an Android Emulator with Android 9 running on a MacBook Pro 2013
(2.3 GHz Intel Core i7, 16 GB, MacOS 10.14), depending on the Android versions of the apps.

To assess the performance characteristics of DeltaDroid, we measured the execution time
corresponding to each of its components, as shown in Table 4. On average, it takes about 69 seconds
for DeltaDroid to perform all of the required analysis on the initial test suite and 8 seconds to
generate new test cases. The overall average execution time of 77 seconds confirms the scalability
of DeltaDroid for validating Android apps’ dynamic delivery.

To investigate the efficiency of DeltaDroid compared to alternative approaches, listed in
Table 2, we measured the number of discovered dynamic delivery faults over a specific amount of
time for each approach. To that end, we considered the maximum execution time of all approaches,
i.e., an hour for Monkey and APE. Figure 8(a) shows the resulting plots with each approach in a
different color. Then, to better compare the effectiveness of all candidate approaches, we measured
the corresponding area-under-the-curve (AUC) for each plot. Figure 8(b) shows the amount of
AUC of the mentioned plots for each approach. The results indicate that DeltaDroid’s efficiency
in revealing dynamic delivery faults is exceedingly superior to alternative approaches.

Furthermore, to compare DeltaDroid’s efficiency with alternative approaches, we measured
the average time to cover a Failed state for the first time in each testing approach, i.e., Monkey,
APE, and App Crawler. This metric does not apply to the baseline static analysis approach since
it statically analyzes the apps’ source code, reports the final results, and terminates the execution.
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Table 4. Execution Time of DeltaDroid

Phase Avg. Execution Time (s)

Test-Suite Analysis 68.94
Test-Suite Augmentation 8.25

Total 77.19

Table 2 shows the results of this study (under columns Avg. T.T.F. which is short for Time to Failed
state). DeltaDroid takes about 6 seconds on average to reach a Failed state, with a minimum of
4 and a maximum of 13 seconds. The corresponding numbers for Monkey, APE, and App Crawler
are 402, 221, and 2.5 seconds on average, respectively. Although App Crawler reaches the failed
states exceedingly fast compared to DeltaDroid, it performs quite poorly in terms of covering
different failed states.

Furthermore, we calculated the average testing time of each technique and the total execution
time for the baseline static analysis approach among all subjects. The results show that the test
cases generated by DeltaDroid took a total time of 146 seconds, on average, to test each app.
On the other hand, Monkey and APE were allowed to run for an hour on each app. App Crawler
completed testing each app after 52 seconds, on average. The events DeltaDroid injects, e.g., con-
necting and disconnecting Wi-Fi for the Network Error failed state, or filling the device’s remain-
ing storage for the Insufficient Storage failed state, take more time compared to GUI events, e.g.,
clicking buttons. Therefore, DeltaDroid is slightly slower compared to App Crawler. The base-
line static analysis approach also took a total time of 53 seconds, on average, to execute on each
app. Although the App Crawler and the baseline static analysis approach execute more quickly
than other techniques, these faster techniques are substantially inferior to DeltaDroid in terms
of covering different failed states and revealing dynamic delivery defects.

6 THREATS TO VALIDITY

The main threat to internal validity is that DeltaDroid, indeed as a test augmentation technique,
requires initial tests that reach program points that install DFMs. In case the test suite does not
include test cases initiating the installation of DFMs, DeltaDroid reports no baseline tests to
augment. Therefore, DeltaDroid would not be able to generate new test cases to test Android
dynamic delivery failures. However, these test cases are easily obtained. According to our investi-
gation, even a pure random testing technique such as Monkey [18] was able to create such tests
for all apps, as reported in Table 2. For the evaluation of DeltaDroid, we have also manually
extended the existing test suites of a subset of subject apps with test cases that attempt to install
their DFMs, and reported that these test cases were small, i.e., only 10–22 lines of code per test
case, and would be straightforward for a developer to write.

One of the main threats to external validity is the selection of subject Android apps in our eval-
uation. To mitigate this threat, we selected open-source Android apps that (1) implement Android
dynamic delivery, (2) have at least two DFMs, and (3) have an initial test suite among the hundreds
of applications on GitHub [21], one of the largest and most widely used open-source repositories
online. Another threat to external validity is whether the types of dynamic delivery failed state
contexts, defined in our defect model, accurately describe the existing dynamic delivery failures.
To alleviate this threat, we explored multiple resources, including the Android documentation, is-
sue repositories, discussion forums, and open-source Android apps’ source code, to understand
the root causes of dynamic delivery failures and identify contextual factors to induce them. Note
that to construct a defect model for the purpose of test generation, we only need one situation in
which the desired failed state is induced.
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7 RELATED WORK

We provide an overview of the prior work on test-suite augmentation and test-input generation
for mobile apps.

Test-Suite Augmentation: Software evolves, and so should the test suites to ensure validation
of the evolving software. The purpose of test-suite evolution is two-fold [61, 74]. First, it can be used
to repair available test cases for corrective regression testing [42, 45, 58, 72]. Second, developers can
create additional tests for either progressive regression testing [34, 38, 39, 50, 63, 65, 67–71, 75–77]
or to fulfill additional testing criteria, e.g., achieve higher coverage, find more crashes, or perform
non-functional testing [31, 32, 40, 51, 59, 60, 62, 73]. Reuse of the available test suites to generate
additional tests is known as test augmentation.

The closely related work to DeltaDroid are [31, 59, 62, 73]. Adamsen et al. proposed a technique
that augments the existing test suites and systematically exposes them to adverse conditions where
certain unexpected events may interfere with the test execution. They realized their technique in a
tool, Thor, working on Android. Milani Fard et al. [59] proposed a technique that leverages existing
test suites to automate the generation of tests for web applications. Specifically, they mine the
human knowledge from the existing test suite to generate additional tests that explore uncovered
parts of the program. Xuan et al. [73] proposed a technique to reproduce crashes by leveraging the
existing test suites, instead of the automatic generation of new tests. Pradhan et al. [62] proposed
a search-based technique to obtain the program dependence graph from the existing test suite to
generate new tests to cover untested program configurations.

Although Thor [31] is similar in terms of using test augmentation techniques to provide contex-
tual factors in running existing test suites, the events it injects into the test cases are substantially
different from DeltaDroid’s GUI and system events. It only generates events that might simulate
two failed state contexts, namely Network Error and Access Denied. Therefore, it cannot be used
to comprehensively test Android dynamic delivery failures. Furthermore, unlike [59, 62] which
tries to achieve a higher coverage of the code by augmenting the existing test suites, the goal of
DeltaDroid is to cover all the Failed states in the lifecycle of a DFM installation request through
test augmentation. Moreover, While [73] relies on the information from a stack trace of a crash
report to identify target tests and augments the existing test suite using random mutation opera-
tors, DeltaDroid relies on a novel defect model that formally defines failure contexts to generate
effective tests.

Android Testing: Android test generation techniques mainly focus on either fuzzing to gener-
ate inputs or exercise an Android app through its GUI. The majority of recent techniques [37, 44, 66]
rely on a GUI model, usually constructed dynamically and non-systematically, leading to unex-
plored program states. Sapienz [56], EvoDroid [55], and time-travel testing [41] employ an evo-
lutionary algorithm. ACTEve [33], and Collider [49] utilize symbolic execution. CrawlDroid [35]
introduces a feedback-based exploration strategy to effectively explore different states of Android
apps. AimDroid [43] discovers unexplored activities with a reinforcement learning guided random
algorithm. AppFlow [47] leverages machine learning to automatically recognize common screens
and widgets and generate tests accordingly. MonkeyLab [53] mines app executions to generate
GUI-based scenarios. Dynodroid [54] and Monkey [18] generate test inputs using random input
values. Another group of techniques focuses on testing for specific defects [46, 48, 64, 78]. Mao
et al. introduce a different approach [57] that generates replicable test scripts from crowd-based
testing by collecting and analyzing test inputs from a crowd call to non-technical users with no
specific software testing expertise or experience. None of these techniques can be used to properly
validate the dynamic delivery in Android apps, as they cannot generate meaningful test inputs to
induce the contextual settings for the manifestation of Failed states.
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Similar to DFM-induced defects, energy defects occur under peculiar contextual settings. Jabbar-
vand et al. [48] proposed a search-based technique that leverages contextual models to generate
both system and GUI test inputs. Unlike [48], which searches for contextual settings that manifest
energy defects using meta-heuristics, we use a formal model of such contexts to generate tests for
all of them.

8 CONCLUSION

In this article, we formally defined a novel defect model representing the conditions (contexts)
under which the installation of a DFM in an Android app could fail. Utilizing the defect model,
we introduced DeltaDroid, a test-suite augmentation approach for testing dynamic delivery in
Android apps. DeltaDroid leverages static and dynamic analyses to detect the test cases that
initiate the installation of DFMs in apps. DeltaDroid then modifies these tests to create new
tests that augment the initial test suite to effectively create the conditions for reaching all of the
Failed states. Our experimental results corroborate the effectiveness of DeltaDroid in inducing
Failed states and detecting a significant number of installation defects among real-world Android
apps. We have made DeltaDroid publicly available [20]. In our future work, we aim at extending
DeltaDroid to test dynamic delivery in other platforms, e.g., Java Platform Module System [1].
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