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Abstract—GUI testing is important for examining the end-to-
end workflows and usability of GUI-based software. To reduce the
manual effort of writing GUI tests, recent research has explored
the potential of automatically reusing GUI tests by transferring
them across similar applications. However, what is missing from
the prior work is that such transfer may be required for apps
available on different platforms. In particular, both web and
Android are dominant platforms on which many organizations
provide their software services. At the state-of-the-practice, even
if the web and Android versions of an app provisioned by an
organization substantially share the functionality, the developers
have to manually write separate sets of tests for each version.
This paper proposes TRANSDROID, an automated tool that
transfers GUI tests from a web app to its Android counterpart.
Evaluation of TRANSDROID on real-world web and Android
apps corroborates its effectiveness by achieving 77% success rate
among the attempted transfers, along with 82% precision and
99% recall in the mapping of the GUI events and oracles.

Index Terms—Test Transfer, Test Reuse, Cross-Platform Test-
ing, GUI Testing

I. INTRODUCTION

Usage-based GUI testing aims to cover the use-case sce-
narios of the software under test. Developers typically prefer
usage-based GUI testing to other forms of GUI testing (e.g.,
crawling) that are use-case agnostic and simply aim for higher
code coverage [1], [2]. Usage-based GUI testing provides
the developers with actionable information that allows them
to properly recreate the failures and debug their programs.
However, this form of testing is tedious and time-consuming,
since it often involves substantial manual effort of writing the
test cases from scratch.

To reduce the manual effort of writing usage-based GUI
tests, recent research has explored the possibility of reusing
GUI tests by automatically transferring them across similar
applications (apps) within a platform [3]–[8]. By platform, we
mean a particular computing domain, such as mobile, web, and
desktop. A key insight guiding these efforts is that the GUI
widgets of different apps providing the same functionality are
semantically similar. As a result, it is possible to automatically
generate a usage-based GUI test for a target app by reusing
the test of a source app, provided that (1) both apps share the
same feature (functionality); and (2) the correct mapping of
the widgets between these two apps can be identified.

While the current techniques for intra-platform test transfer
are promising, missing from the prior work is that such transfer
may be required for apps on different platforms. In fact, many
organizations provide their software services on multiple plat-
forms. Case in point, among the top 50 most visited websites in
the United States [9], 80% of them also provide native mobile

apps for their users. Another example is WordPress [10], one
of the most popular content management systems, which can
be accessed via web browsers, mobile apps (Android and
iOS), and desktop apps (Windows, MacOS, and Linux). At
the state-of-the-practice, despite substantial overlap among
several versions of an app provisioned by an organization and
intended for execution on different platforms, developers have
to manually write separate sets of tests for each version of
app. We believe automated test transfer presents a promising
solution in such settings, yet has never been explored in the
past.

There are two main challenges in cross-platform test transfer
that prior work has not addressed. The first is incompatible
actions. Event synthesis is a necessary process for test transfer,
in which appropriate actions such as a click are determined
for the identified GUI widgets in the target app to compose
executable events. This synthesis is guided by both the actions
performed by the source test and the type of target widgets.
While GUI-based apps share certain common actions such
as click and text input, different platforms usually provide
additional unique actions to optimize the user experience.
As a result, if the source actions are platform-specific and
not supported on the target platform, current techniques are
not able to finish the transfer. For example, mouseOver is a
common action in web testing for sub-menu exploration, but
its corresponding action on Android is undefined.

The second challenge in cross-platform test transfer is
unclear widget context. A core process in test transfer is to
search and map the GUI widgets between the source and target
apps. For example, what is most similar to the “Sign Up”
button in the source app can be the “Register” button in the
target app. In this case, a source GUI event clicking the “Sign
Up” button can be transferred to a target event clicking the
“Register” button. In prior work, the similarity between wid-
gets are determined by their context, such as text values (e.g.,
“Register”) and types (e.g., Android.widget.Button).

As part of the context, type information is important for the
search and mapping of the widgets. For instance, if the source
widget is an Android.widget.Button, the most similar
target widget is likely also an Android.widget.Button
(or at least a clickable). Nevertheless, such context may be
missing or ambiguous when the transfer crosses platform
boundaries. Take GUI widgets in web apps, i.e., HTML tags,
as an example. There are two main categories of HTML
tags: specific tags (e.g., <a>, <textarea>, and <li>) and
generic tags (e.g., <span> and <div>). A characteristic



of web apps is that, through registered JavaScript event
handlers, the behavior of widgets can be easily changed or
assigned. For example, developers can change the behavior of
a <textarea> from editable to clickable. Furthermore, it is
even more common to assign arbitrary behaviors to generic
tags like <span>. In turn, context of source widgets on
web may provide no or even wrong hints for the search and
mapping of target widgets on, for instance, a mobile platform,
like Android.

In this paper, we propose TRANSDROID, an automated tool
that addresses the aforementioned challenges in the context of
web-to-Android test transfer. In other words, TRANSDROID
transfers GUI tests from a web app to its Android counterpart.
The reason for this implementation choice is the fact that
the Internet era precedes the smartphone era [11], [12], and
there are a large number of organizations developing their
web app prior to their mobile app. Typical examples include
WordPress [10], Wikipedia [13], Twitter [14], and Zoom [15].
As a result, we believe many organizations may benefit from
TRANSDROID, allowing the tests created for their web app
to be reused for their mobile app. Nevertheless, it should be
noted that the aforementioned challenges are shared in all
types of cross-platform test transfer, e.g., mobile-to-web, web-
to-desktop, and we expect the overall approach described in
this paper to have application in other domains, albeit with
a different implementation to account for platform-specific
differences.

TRANSDROID has several key differences from prior work.
First, it includes a pre-transfer phase with customizable action
transformation rules to covert incompatible actions in the
source test into compatible ones with the target platform.
Moreover, besides widget context, TRANSDROID considers
two other types of contextual information, i.e., screen context
and action context. The inclusion of additional contextual
information not only helps the search and mapping of the GUI
widgets with unclear widget context, but also makes TRANS-
DROID capable of supporting the transfer of test steps or
events that have no associated GUI widgets, e.g., jumpByURL
event that navigates to a web page by directly changing the
URL field in the browser.

We evaluated TRANSDROID with 20 real-world web and
Android apps and 110 test cases, including 561 GUI and oracle
events for the web apps. The experimental results show that
77% of the attempted transfers were successful, along with
82% precision and 99% recall for the widget mapping.

In short, this paper makes the following contributions:

• A description of cross-platform test transfer problem
and the associated challenges in the context of web-to-
Android transfer.

• A novel approach to automatically transfer GUI tests
from a web app to its Android counterpart. The tool
implementing this approach is publicly available [16].

• An empirical evaluation on real-world apps demonstrat-
ing the effectiveness and efficiency of the proposed
approach.

TABLE I: The GUI and oracle events for saving a draft in
WordPress on different platforms

Source Events on Web Target Events on Android
1. (“Posts”, mouseOver)
2. (“All Posts”, click) (“Posts”, click)

3. (“Add New”, click) (“Create a Post”, click)
4. (“Title”, (input, “Blog Title”)) (“Title”, (input, “Blog Title”)
5. (“Content”, (input, “Blog Content”)) (“Content”, (input, “Blog Content”))

6. (“Save Draft”, click) (“More options”, click)
(“Save”, click)

7. (“”, (JumpByURL, all-posts.php)) (“Posts”, click)
8. (“Draft”, click) (“Drafts”, click)
9. (“Blog Title”, isDisplayed) (“Blog Title”, isDisplayed)

The rest of this paper is organized as follows. Section II
provides the background for understanding this work using
a motivating example. Section III provides an overview of
TRANSDROID as well as the implementation details of its
components. Section IV illustrates our proposed test gener-
ation algorithm. Section V presents the evaluation results.
Section VI discusses the limitations of this work. The paper
concludes with an overview of the related research and future
work.

II. BACKGROUND AND MOTIVATING EXAMPLE

User interaction with GUI-based software is in terms of
GUI events. A GUI event (w, a) consists of a widget w and
an action a performed on w. Note that it is possible that
there is no widget associated with a GUI event, such as the
jumpByURL event mentioned earlier. Moreover, an action in
GUI events can be a simple operation (e.g., button click), or
an operation with arguments (e.g., text input). Finally, if the
action of a GUI event is an assertion, e.g., isDisplayed, we
categorize the event as an oracle event.

To provide background knowledge about test transfer and
illustrate the new challenges when the transfer is across
platforms, consider WordPress [10], a popular blog and content
management system. Figure 1 shows the excerpted steps to
save a draft in WordPress using its web app. The user first gets
to the post-listing page and then clicks the “Add New” button
to initiate a new blog. After typing in the title and content,
she clicks the “Save Draft” button and finally navigates back
to the post-listing page to ensure the draft is saved. Figure 2
depicts how the same functionality is performed and tested on
the Android app of WordPress. Table I shows the GUI and
oracle events for this functionality on the two platforms.

As shown in Table I, while the core steps to perform
this functionality on these two platforms are conceptually
identical, automatically reusing the source test for web app to
generate the target test for Android app is hindered by several
challenges. A critical challenge that has been addressed by
prior work [7], [8] is the mapping of syntactically different
but semantically similar GUI widgets between apps, such as
the “Add New” and “Create a Post” buttons in Table I. By
leveraging advances in natural language processing (described
in Section IV), prior work has shown the possibility of
resolving such non-trivial mappings to transfer the GUI events.

Nevertheless, prior techniques have not addressed several
challenges that are unique to cross-platform transfer. First,



Fig. 1: Saving a draft with the web app of WordPress

Fig. 2: Saving a draft with the Android app of WordPress

here the source test contains actions that do not exist on the
Android platform, i.e., mouseOver and jumpByURL. Second,
sometimes the contextual information about the source widgets
are insufficient for guiding the search and mapping of the
target widgets. For instance, if the source widget is a <span>
HTML tag with text “Posts”, and there are two target widgets,
an Android.widget.TextView with text “Blog Posts”
and an Android.widget.Button with text “Create a
Post” (just as shown in the second screen of Figure 2), it
is difficult to determine which one is the corresponding target
widget. In other words, the behavior of the source tag (i.e.,
<span>) is unclear and other attributes, such as text values,
are insufficient for determining the proper target widget.

We have designed TRANSDROID to overcome the afore-
mentioned challenges and transfer such tests from web to An-
droid. For example, the first mouseOver event and the second
click event in the source test are merged, and then transferred
as the first click event on the target app. Furthermore, the
jumpByURL event in the source test is first converted to an
intermediate event navigateToActivity on Android, and then
transferred as the click event on the target app.

III. APPROACH

Figure 3 provides an overview of TRANSDROID. It takes
a source test, a source app, and a target app as input, and
generates a target test that examines the same functionality as
the source test on the target app. TRANSDROID consists of
four components: Context Extraction, Action Transformation,
NavGraph Extration, and Test Generation. We describe the
implementation of each component in the following subsec-
tions.

A. Context Extraction

Context Extraction component execute the source test and
retrieves the contextual information related to each event in
the source test. Like prior work [7], [8], we extract widget
context that comes from the attributes of the GUI widgets

Fig. 3: Overview of TRANSDROID

interacted by the source test. However, unlike prior work, we
additionally extract two other types of contextual information:
screen context and action context. Screen context comes from
the attributes of the GUI screens visited by the source test.
Action context simply comes from the actions in the source
test.

While we share the same insight as prior work that widget
context can help identify correct target widget in test transfer,
we believe that screen and action contexts, which are missing
from the prior work, are also important to address the new
challenges posed by cross-platform transfer. If we perceive
the execution of a test as traversal through a graph consisting
of an app’s GUI screens, screen and action contexts provide
additional information about how the path is visited. Following
this insight, including the screen context in our analysis allows
us to support source events that have no associated GUI
widgets, such as the jumpByURL event mentioned previously.
Furthermore, including action context in our analysis allows us
to supplement our knowledge of the behaviorally ambiguous
widgets. Taking the <span> tag described in Section II as
an example, if its accompanied action is click, the search for



Fig. 4: Retrieved contexts of (“Posts”, mouseOver) in Table I

the target widgets on Android can be limited to clickables.
On the other hand, if the accompanied action is input, the
search for the target widgets can be limited to editables such
as Android.widget.EditText. Our transfer algorithm,
thus, relies on all three forms of contextual information for
search and mapping of the widgets.

In TRANSDROID, the Context Extraction component is im-
plemented for web apps. It instruments and executes the source
test to retrieve the contextual information related to each event.
The widget context for GUI widgets in web apps, i.e., HTML
elements, comes from their attributes, such as id, name, class,
href, placeholder, etc., as well as the enclosed text. Moreover,
the screen context in web apps are the title of the page (i.e.,
<title> tag) and first header element (e.g., <h1> tag), since
they indicate the primary semantics of the screens. The action
context in web apps are the actions performed by the source
test, such as click, input and mouseOver. For example, Figure 4
shows the retrieved contexts of the first event in Table I, i.e.,
(“Posts”, mouseOver).

B. Action Transformation

Action Transformation component processes the source test
and ensures that the actions in the transformed source test are
compatible with the target platform.

To better understand how the actions between web and
Android should be transformed, we systematically inspected
all input events supported by Selenium [17] (a widely-used
framework for web automation testing) and Android [18].
Following our inspection, we identified four basic operations
that can be used to define a set of customizable rules for
the transformation: reuse, merge, conversion, and removal.
First, the actions commonly shared by GUI-based software
such as click can be directly reused on the target platform.
Next, if an event contains a platform-specific action, it is
possible to combine the event with its preceding or succeeding
event (i.e., merge). Alternatively, we may replace the action
with a similar action available on the target platform (i.e.,
conversion). Finally, if the incompatible action is not suitable
for merge or conversion, the event may be removed from the
transformed test.

Table II shows the action transformation rules adopted by
TRANSDROID. An example of merge action is mouseOver,
since this action is typically followed by click to form a
common combo operation on web apps to open a sub-menu.

TABLE II: Action Transformation Rules in TRANSDROID

Source Action
on Web

Target Action
on Android

Operation
Type

click() click() reuse
textInput() textInput() reuse
mouseOver() (merge into the next source action) merge
rightClick() (merge into the next source action) merge
jumpByURL() navigateToActivity() conversion
doubleClick() click() conversion
keyDown() (removed) removal
switchToWindow() (removed) removal

Therefore, a mouseOver event, together with the retrieved
context, is merged with the following click event.

Examples of the converted actions include jumpByURL
and doubleClick. Because the semantics behind jumpByURL
is a change of GUI state, this action is converted to
navigateToActivity, an intermediate action defined in TRANS-
DROID for Android with the similar intention. On the other
hand, doubleClick in web apps is usually adopted to provide
desktop-like user experience for features, such as opening a
file in file manager or editing cells in a spreadsheet. Since such
a user experience is rarely available in native mobile apps, we
simply change doubleClick to click.

Finally, an instance of removed actions is keyDown, since
it is usually used to perform a modifier key press (e.g., Shift)
and may be safely removed without affecting the testing
flow of the generated target test. Note that the presented
action transformation rules can be extended for more platform-
specific actions, or customized to accommodate the context of
the target apps.

C. NavGraph Extraction

NavGraph Extraction component extracts the Navigation
Graph of the target app. A Navigation Graph G of an app
A is generally defined as a tuple (s, V,E) where:

• s denotes the starting state, i.e., the initial state after A
has been fully loaded and started.

• V is a set of GUI states (screens). Each v ∈ V represents
a unique runtime GUI state in A. Moreover, each v is
associated with a set of GUI widgets, Wv , that could be
rendered in state v.

• E is a set of edges between the GUI states. Each e =
(v1, v2, (w, a)) ∈ E represents a transition from v1 to v2
by firing a GUI event (w, a).

We leveraged and modified the static analysis tool in prior
work [8] to construct the Navigation Graph for the target
app. The tool first extracts Activities in the target app as the
GUI states. For each Activity, it then retrieves the associated
GUI widgets (as well as their context if possible) from the
resource files and source code. At last, it identifies transitions
among Activities as the edges, by analyzing the registered
event handlers on the widgets associated with each Activity.
Figure 5 illustrates part of the Navigation Graph for WordPress
on Android. This graph provides information about the screens
and widgets comprising the target app to the Test Generation
component, which as described next, applies a novel, heuristic-
based algorithm to generate the target tests.



Fig. 5: Excerpted Navigation Graph for WordPress on Android

IV. TEST GENERATION

Test Generation component takes a targetApp and its
corresponding navGraph, as well as a transformed source
test t as input, and generates the target test tn using a model-
based, greedy search algorithm, as described in Algorithm 1.
The algorithm consists of three main steps: (1) transfer the
source events one-by-one to the target app; (2) update the
Navigation Graph based on runtime information; and (3) repeat
the transfer until no improvement can be made.

First, for each event = (wi, ai) ∈ t, if the event has an
associated widget, i.e., wi is not null, Algorithm 1 consults
navGraph with the widget context and action context of
the event, and collects a list of widgets in the target app,
widgets, in which the widgets are ranked based on their
similarity to wi (line 6-9). Next, for each wn ∈ widgets,
it checks whether wn is reachable, and if so, identifies a
sequence of events, leadingEvents, that should be executed
to reach wn (line 10-12). After that, it determines an ap-
propriate action an for the identified wn, and composes the
targetEvent = (wn, an) (line 13-14), which will be added
into tn together with leadingEvents (line 28). More details
about similarity computation (lines 9 and 20), reachability
check (lines 11 and 22), and action generation (line 13) are
described in the next subsections.

On the other hand, if the source event has no widget
attached, i.e., wi is null, that means no target widget needs
to be mapped. Instead, we consult navGraph with the screen
context of the event, and try to identify a reachable GUI screen
s in the target app that is most similar to the screen visited by
the source event (lines 18-26). In this case, leadingEvents
is a sequence of events that should be executed to reach s,
(line 23) and targetEvent is left to be null.

Once all the events in t are processed, the algorithm
computes the fitness of the generated test tn by evaluating its
similarity to source test t, i.e., a weighted average of similarity
scores (described in the next subsection) is computed for the
corresponding events. If the fitness of tn cannot be improved
any further by a user-specified threshold or other termination
criterion such as time limit is reached (line 30), the algorithm

Algorithm 1 Test Generation
Input:

targetApp, navGraph, and
Transformed source test t = {(w1, a1), (w2, a2), ...}

Output:
tn = {(wn1 , an1), (wn2 , an2), ...} for targetApp

1: while true do
2: tn = ∅
3: for each event = (wi, ai) ∈ t do
4: leadingEvents = ∅
5: targetEvent = null
6: if wi is not null then
7: xw = getWidgetContext(event)
8: xa = getActionContext(event)
9: widgets =

getSimWidgets(xw, xa, navGraph)
10: for each wn ∈ widgets do
11: if isReachable(wn, tn, navGraph) then
12: leadingEvents =

getPath(wn, navGraph)
13: an = generateAction(wi, ai, wn)
14: targetEvent = (wn, an)
15: break
16: end if
17: end for
18: else
19: xs = getScreenContext(event)
20: screens = getSimScreens(xs, navGraph)
21: for each s ∈ screens do
22: if isReachable(s, tn, navGraph) then
23: leadingEvents =

getPath(s, navGraph)
24: break
25: end if
26: end for
27: end if
28: tn = tn ∪ leadingEvents ∪ targetEvent
29: end for
30: if ∆ fitness(t, tn) ≤ threshold or timeout
31: break
32: end if
33: end while
34: return tn

terminates and returns (line 34). Otherwise, it repeats the
transfer and tries to find a better solution with an updated
navGraph. As described in the following subsections, during
the reachability analysis (lines 11 and 22), we also update
navGraph to improve the precision of our statically-retrieved
app model with dynamically observed behaviors, thereby
improving the likelihood of solving the search problem with
each iteration of the algorithm.

A. Similarity Computation

Similarity between GUI widgets or screens is primarily
determined by their context. The similarity between two
widgets is based on their widget context and action context.
For two GUI screens, the similarity is determined by their
screen context. Since the contexts are represented as words
or word lists, the similarity can be computed by leveraging
different metrics in natural language processing (NLP). In this
paper, following the recent test transfer works [7], [8], we
leverage Word2Vec [19] to compute the similarity between two



Algorithm 2 Function: isReachable()
1: function ISREACHABLE(entity, tn, navGraph)
2: execute(tn)
3: curScreen = getCurrentGUIScreen()
4: if entity is a widget then
5: dstScreen = getGUIScreen(entity, navGraph)
6: else . entity is a GUI Screen
7: dstScreen = entity
8: end if
9: paths = getPaths(curScreen, dstScreen, navGraph)

10: for each path ∈ paths do
11: isV alid = validate(entity, path, navGraph)
12: if isV alid is true then
13: return true
14: end if
15: end for
16: return false
17: end function

widgets or GUI screens. Word2Vec is a neural network model
that captures the linguistic contexts of words. In this model,
each word is represented as a real-value vector (called word
embedding). A characteristic of Word2Vec is that semantically
related words are close together in terms of their cosine
similarity. For instance, “Create” is closer to “Add” (with
cosine similarity of 0.47) than “Delete” (with cosine similarity
of 0.33) in the vector space. As a result, even if the “Add
New” button does not exist in the Android App, TRANSDROID
can still find its most similar widget, i.e., the “Create a Post”
button, as shown in the motivating example (the second row
in Table I).

To exemplify how we compute the similarity between two
contexts, consider the “Add New” button and the “Create a
Post” button in the motivating example (the second row in
Table I). To compute the similarity between their text, i.e.,
“Add New” and “Create a Post”, we first apply a series
of common practices in NLP, including tokenization and
stopword removal, to convert the text into word lists, i.e.,
[“Add”, “New”] and [“Create”, “Post”]. Next, we query a pre-
trained Word2Vec model released by Google [20] to obtain
the cosine similarity scores for the word pairs as follows:

[ Add New

Create 0.47 0.22
Post 0.10 0.12

]
The similarity for the text is then calculated as
(0.47 + 0.12)/2 = 0.29, the average of the pairs with
the highest score. We compute the similarity scores for other
attributes of these two buttons following the same way. The
final similarity score is calculated as a weighted sum of the
scores from all of their attributes.

B. Reachability Check

The Navigation Graph needs to be verified and updated
during transfer, because the graph may be initially derived
through static analysis, which tends to over-approximate the
app’s runtime behavior. Algorithm 2 describes the function
isReachable called on lines 11 and 22 of Algorithm 1.
This function serves two main purposes: (1) check if an

entity, i.e., a widget or GUI screen, is reachable by verifying
the possible paths leading to it; and (2) update navGraph,
including the events that trigger transitions between screens as
well as the associated widgets with each GUI screen, during
the verification.

To that end, the function first restarts the app and executes
tn, i.e., the events successfully transferred so far, to get to the
current GUI screen, curScreen (line 2-3). Next, if entity is
a widget, the function assigns the GUI screen associated with
entity to the destination screen, dstScreen (line 5); otherwise
the entity itself is assigned to dstScreen (line 7). After
that, all possible paths between curScreen and dstScreen
are executed to verify whether entity is reachable. The
function returns true once a feasible path for entity is found;
otherwise it returns false (line 9-16). Moreover, the function
validate in line 11 updates navGraph by (1) removing
unreachable paths; and (2) adding newly encountered widgets
at runtime to the associated widgets of the GUI screen.

C. Action Generation

The function generateAction in line 13 of Algorithm 1
determines a proper action an for the identified target widget
wn. Typically, if the source event (wi, ai) contains a generic
action such as click or text input, the action can be directly
reused, i.e., an = ai. However, it is possible that the correct
action for an is other type of actions supported by or registered
on wn, such as longClick. On the other hand, an can be an
assertion (e.g., isDisplayed) if the source event is an oracle
event. Therefore, the implementation of generateAction
needs to accommodate these situations.

In our implementation, for GUI events, we first analyze the
source code1 to check whether the identified target widget
has specific event listeners, such as setOnLongClickListener(),
and if so, we assign the action corresponding to such an event
listener as the target action an. Otherwise, we reuse the source
action.

If the source event (wi, ai) is an oracle event, i.e., ai is an
assertion, this function needs to be customized for different
types of assertion. Currently, TRANSDROID supports four
types of assertion commonly used in web testing [22], as
shown in Table III. The first two assertion types, isAttrEqual
and isDisplayed, are widget-specific, and their arguments
needs to be modified when transferred to the target app. The
other two assertion types, textPresent and textNotPresent, are
widget-irrelevant assertions and can be directly transferred to
the target app.

D. Walk-Through of the Motivating Example

We provide a walk-through of how TRANSDROID transfers
the test shown in our illustrative example (recall Figures 1
and 2) to help the reader see the entire framework in action.
First, Context Extraction executes the source test shown in
Table I on the source app to retrieve the contextual information
related to each event, and annotates the source test with

1Our analysis is actually performed on decompiled binary code (i.e., APKs)
using Soot, a static analysis framework for Java [21].



TABLE III: Assertion types supported by TRANSDROID.
(wi, ai): source oracle event. (wn, an): transferred target
event.

ai an
isAttrEqual(V ALUEi, attr(wi)) isAttrEqual(V ALUEn, attr(wn))
isDisplayed(wi) isDisplayed(wn)
textPresent(STRING) textPresent(STRING)
textNotPresent(STRING) textNotPresent(STRING)

this information. After that, Action Transformation parses
the source test and transforms it to an Android-compatible
test, i.e., a test in which all of the actions are supported in
Android. Particularly, the first mouseOver event is merged
into the following click event, and the jumpByURL event
is converted to navigateToActivity event. At the same time,
NavGraph Extraction statically retrieves the Navigation Graph
of the target app as the input for Test Generation.

In Test Generation, each event in the transformed source test
is transferred one-by-one. The target widgets or GUI screens
most similar to the source contexts are identified from the
Navigation Graph with our formula for computing similarity.
For example, when transferring the navigateToActivity event
(transformed from jumpByURL), the algorithm searches for
an Android Activity that is most similar to the screen context
retrieved from all-posts.php (i.e., Activity with a name
that is most similar to title/heading of php file), and generates
the events leading to that screen. This results in a click on
“Posts” button, which initiates a transition from MainActivity
to PostsListActivity, as shown in Figure 5. All other events
are similarly transferred. Finally, the last oracle event in the
source test, i.e., existence check for the <a> tag with text
“Blog Title”, is transferred to an existence check for the
android.widget.TextView with the same text.

V. EVALUATION

We investigate the following research questions in our
experimental evaluation of TRANSDROID:
RQ1. How effective is TRANSDROID in terms of (1) the

precision and recall for widget mapping, and (2) the
number of successful transfers compared to total at-
tempted transfers?

RQ2. What are the main reasons behind transfer failure?
RQ3. How much effort can be saved by using TRANSDROID

to generate tests?
RQ4. How efficient is TRANSDROID in terms of the running

time to perform cross-platform transfer?

A. Experimental Setup

We implemented TRANSDROID with Python and Java for
web tests written using Selenium [23]. Existing test cases for
the subject apps are written with Selenium’s Python client.
The transferred Android tests are stored in JSON format and
executed by our test runner implemented with Appium [24].
In our experiments, we used ChromeDriver [25] to execute the
web tests, and a Pixel 2 Emulator running Android 7.1 (API
25) for test generation. The experiments were conducted on a
Windows laptop with 2.8 GHz Intel Core i7 CPU and 32 GB
RAM. Our experimental data is publicly available [16].

Subject apps and test suites. As noted by others [26],
[27], it is very difficult to find publicly available web apps
that have working UI test suites. We managed to find 10 pairs
of web and Android apps (20 in total) with either existing tests,
or existing documentation containing the test descriptions.
Specifically, we reused the existing tests of DocuWiki [28],
GitLab [29] and OwnCloud [30], and created the tests for
other subject apps by following the test descriptions found
in prior work [6], [31]. Table IV shows the 10 pairs of real-
world subjects used in our study, including the size of test
suites and the number of GUI and oracle events. There are
110 web tests in total, each containing 5.1 events (including
1.8 oracle events) on average. The features examined by the
test suites can be found on TRANSDROID’s website [16]. In
addition, we manually constructed the corresponding Android
tests. These tests served as the ground truth in our experiments
to determine if (1) the target widgets were correctly identified,
and (2) the transfers were successful or not (detailed in the
next paragraph).

Effectiveness of attempted transfers. TRANSDROID trans-
fers each of the tests for a web app to its Android counterpart,
resulting in 110 total attempted transfers. For each transfer, we
used the ground truth to examine the generated test to identify
false positive, false negative, and true positive cases as follows:
false positive occurs when the target widget of manual transfer
is different from the widget identified by TRANSDROID; false
negative occurs when TRANSDROID fails to find a target
widget, while manual transfer can; and true positive occurs
when the target widget from manual transfer matches the
widget identified by TRANSDROID. Based on these metrics,
we measured the Precision as the number of generated target
events that are correct. Additionally, Recall measures how
many of the source events are correctly transferred.

Precision and recall can faithfully evaluate the correctness
of widget mapping, but not necessarily the successfulness of
test transfer [8], [31]. In other words, precision and recall
do not consider whether the generated tests are executable
or applicable in the context of the target app. For example,
suppose a web app requires the user to provide a password
only once during registration, but twice on its Android coun-
terpart for confirmation. In that case, the transfer may have
very high precision and recall if most of the source events are
correctly migrated. However, the generated test on Android
is still not executable because it lacks the required password
confirmation step. As a result, we also report whether the
attempted transfers were successful by manually examining
the generated tests. A successful transfer means that the
generated test was executable and actually meaningful in the
context of the target app, verifying the same feature as the
source test.

Effort Reduction. Another perspective to evaluate the
usefulness of TRANSDROID in practice is to measure how
much effort developers can save if they adopt this tool to
generate tests instead of writing them from scratch, regardless
of whether the transfers are successful or not. To that end,
we first measure how close a transferred test is to its ground-



TABLE IV: Subject apps and test suites

Subject App Description Web Version Android Version #Web Tests #Events in Web Test
GUI Oracle Total

BuzzFeed News and entertainment Live website com.buzzfeed.android:v2021.3 11 30 19 49
DokuWiki Collaborative editor v2018-04-22 com.fabienli.dokuwiki:v0.10 9 29 17 46
Etsy E-commerce Live website com.etsy.android:v5.53.1 13 40 18 58
Fox News News television channel Live website com.foxnews.android:v4.22.0 11 30 17 47
GitLab DevOps lifecycle tool v13.2.2 com.commit451.gitlab:v2.6.3 11 38 27 65
Groupon E-commerce Live website com.groupon:v20.10.224420 13 39 23 62
Hacker News Social news forum Live website net.dreambits.hackernews:v2.5 12 39 24 63
OwnCloud File hosting v10.5 com.owncloud.android:v2.15 11 40 20 60
Wikipedia Online encyclopedia Live website org.wikipedia:v2.7.50320 9 37 14 51
WordPress Content management v5.3.2 org.wordpress.android:v14.3 10 43 17 60

Total 110 365 196 561

TABLE V: Effectiveness evaluation of TRANSDROID

Subject GUI Event Oracle Event #Successful
Precision Recall Precision Recall Transfer

BuzzFeed 64% 95% 63% 100% 64% (7/11)
DokuWiki 70% 90% 94% 94% 89% (8/9)
Etsy 95% 100% 94% 100% 100% (13/13)
Fox News 86% 100% 71% 100% 64% (7/11)
GitLab 81% 100% 81% 100% 64% (7/11)
Groupon 74% 100% 87% 100% 69% (9/13)
Hacker News 79% 100% 83% 100% 67% (8/12)
OwnCloud 71% 96% 85% 100% 73% (8/11)
Wikipedia 86% 100% 92% 92% 89% (8/9)
WordPress 88% 100% 100% 100% 100% (10/10)

Total 80% 99% 85% 99% 77% (85/110)

truth test by computing their Levenshtein distance [32] or edit
distance. Levenshtein distance is a string metric to compute
the minimum number of edits required to change one word
to another word. In our case, a single edit is defined as an
insertion, deletion or substitution of an event in the transferred
test. Next, we further define reduction of effort as follows:

Reduction(tn) = 1− editDistance(tn, tg)

#events(tg)

This equation measures the manual effort reduced by a gen-
erated test tn compared to writing its ground truth tg from
scratch. For example, if a 6-event generated test needs 2 edits
(e.g., 1 deletion and 1 substitution) to its 5-event ground truth,
compared to writing the ground truth from scratch, the reduced
manual effort through the generated test is 1− (2/5) = 60%.

B. RQ1: Effectiveness

Table V demonstrates the effectiveness of TRANSDROID
in terms of precision, recall, and successful transfers for each
subject listed in Table IV. These results show that in total, 77%
of the attempted transfers by TRANSDROID are successful,
with an overall 82% precision and 99% recall considering
all the transferred GUI and oracle events. TRANSDROID is
substantially effective in identifying correct GUI widgets and
successfully transferring tests from web to Android.

Interestingly, we found that perfectly matching all the
widgets and screens in a source test is not always neces-
sary to successfully transfer the test. Two instances for such
cases are WordPress and Etsy, in which all the tests were
successfully transferred (i.e., 100% success rate), despite the
existence of several false positives in the matched GUI events
(i.e., imperfect precision). The reason is that sometimes false
positives are not harmful, since the same feature may be

implemented differently on two platforms. For example, to
access the “About Me” page on WordPress’s web app, users
need to expand and navigate the side menu, which is not
required on the Android app, as it provides a shortcut to that
page on its main screen.

Another important observation from the results in Table V is
that the success rate varies among different subjects, ranging
from 64% (on BuzzFeed, Fox News, and GitLab) to 100%
(on Etsy and WordPress). In the next research question, we
investigate the attributes that impact the success rate of test
transfer.

C. RQ2: Factors Impacting Effectiveness

We manually investigated all of the attempted transfers,
including both successful and failed ones, to identify the
factors that impact the effectiveness.

Insufficient widget context. Insufficient contextual infor-
mation in the target widgets, such as indistinguishable or
missing textual information, impacts TRANSDROID’s ability
to find a proper match. For instance, while the input fields for
shipping address in Groupon’s web app contain distinguishable
identifiers such as city and zip-code, the Android app
uses the same identifier, i.e., edit-text, for all of the
corresponding fields. As a result, TRANSDROID failed to
transfer the tests dealing with the shipping feature. Another
example is the Navigation Drawer (a.k.a., the menu icon or
hamburger icon) in GitLab’s Android app. It is implemented
as an image button, rather than a native Android icon, without
any associated textual information. As TRANSDROID only
considers textual information for widget context, this button
could not be matched and the features accessible through this
button remain undiscovered.

Missing features. The test transfer fails if the tested feature
is not implemented in the target app/platform. For example,
the web users of OwnCloud can restore deleted files from the
recycle bin, but this feature is not provided on OwnCloud’s
Android app. Another instance of such transfer failure is the
“unvote” feature (i.e., to revoke the vote for a news post) that
is only provided on the web app of Hacker News, and not its
Android counterpart.

Radically different interaction flows. If the interaction
flow of accessing a feature is utterly different across platforms,
the transfer may fail. For example, to create a new page
on DokuWiki’s web app, users need to first search for the



(a) Create a page on the web app
through the search bar and a dy-
namically generated link

(b) Create a page on the Android
app through a button

Fig. 6: Different interaction flows to create a page on
Dokuwiki across platforms

TABLE VI: Average reduction of effort

Subject
#Events on Average

%ReductionGenerated Ground Truth Edit
Test Test Distance

BuzzFeed 5.13 4.13 1.75 58%
DokuWiki 6.11 5.89 0.78 87%
Etsy 4.62 4.46 0.23 95%
Fox News 4.89 4.67 0.67 86%
GitLab 6.27 6.09 1.27 79%
Groupon 5.23 4.85 1.08 78%
Hacker News 6.82 6.55 1.00 85%
OwnCloud 6.80 6.30 1.50 76%
Wikipedia 6.33 5.89 0.89 85%
WordPress 6.50 5.60 0.90 84%

Total 5.84 5.44 0.98 82%

name of the page that they want to create, and then click the
link dynamically generated in the search result. This form of
interaction, however, is not supported by the Android app. A
new page can only be created by clicking the “Create page”
button on the Android app, as shown in Figure 6.

Test length is NOT a key factor. Prior work in intra-
platform test transfer [8] found a strong negative correlation
between test length (i.e., number of total events) and the
effectiveness metrics (i.e., precision, recall, and success rate).
Their finding inspired us to investigate if a similar correlation
can be found in inter-platform test transfer. We conducted a
Pearson correlation analysis [33] on our dataset, and observed
a negligible correlation with the coefficients ranging between
0.03 and 0.30. Since it appears test length is not a key
factor impacting effectiveness of cross-platform test transfer,
we argue that future research should focus on other factors to
improve the success rate of cross-platform transfer.

D. RQ3: Reduced Effort

Table VI demonstrates the average number of events com-
prising the ground-truth tests and transferred tests, along with
their edit distance. The results show that TRANSDROID can
save 82% of the manual effort on average, compared to
writing the ground-truth tests from scratch. Taking WordPress
as an example, on average the tests generated by TRANS-
DROID contain 6.5 events and need only 0.9 manual edits
to be transformed to the ground truth, thereby achieving a

TABLE VII: Efficiency evaluation of TRANSDROID

Subject Time in Sec for a Transfer
Min Max Avg

BuzzFeed 48 3160 518
DokuWiki 14 2060 396
Etsy 17 271 95
Fox News 50 1724 639
GitLab 13 157 66
Groupon 54 644 199
Hacker News 21 424 133
OwnCloud 42 3132 629
Wikipedia 51 4445 769
WordPress 18 613 212

Total 13 4445 349

substantial reduction in the manual effort of creating the
tests from scratch. This result hints at the potential utility of
TRANSDROID, even when it fails to successfully transfer the
entire test suite.

E. RQ4: Efficiency

Table VII shows the execution time for the attempted trans-
fers in our experiments. On average, a test transfer takes less
than 6 minutes, ranging from 13 seconds to 1.2 hours among
the different tests and subject apps. Note that, however, among
all 110 attempted transfers, only 4 of them took more than half
an hour (the four largest numbers shown in Table VII). The
average execution time for the other 106 transfers is only 241
seconds or approximately 4 minutes. While it is not feasible
to directly compare our inter-platform transfer work against
prior works targeting intra-platform transfer, the efficiency
demonstrated by TRANSDROID is quite impressive, since prior
work for intra-platform transfer takes 1.5 hours on average [8]
to finish a transfer.

We investigated the four longest transfers and found that
they spent most time in checking the reachability of many can-
didate widgets. That is, they ran the function isReachable
in Algorithm 2 repeatedly. This is the most time-consuming
element of the Test Generation component in general, as it
frequently restarts the target app to validate the potential
paths for a candidate widget or screen. Nevertheless, such
reachability checks may be accelerated if executed in parallel
with multiple devices or emulators.

VI. THREATS TO VALIDITY

The major external threat to validity of our results is the
generalization to other subject apps and test cases. To mitigate
this threat, we collected both commercial and open-source
subjects under various categories. We also reused existing tests
and created tests by closely following the documented specifi-
cations. Moreover, TRANSDROID also assumes the interaction
flows between the web and the Android versions of an app are
similar, albeit not identical, for a given feature. As discussed
in RQ2 (Section V-C), we acknowledge that the same feature
may be realized with drastically different interaction flows
on different platforms. Nevertheless, as our evaluation shows,
that is typically not the case in practice, and the proposed
transfers are effective on a considerable number of apps that
have similar cross-platform behaviors. The main internal threat



to validity of the proposed approach is the possible mistakes
involved in our implementation and experiments. We manually
inspected all of our results to increase our confidence in their
correctness. The experimental data is also publicly available
for external inspection.

Similar to all prior work in intra-platform test transfer [3]–
[8], TRANSDROID assumes the source web app and its An-
droid counterpart have similar features. If not, test transfer
would not work. In some cases the Android app may have
unique and platform-specific features, such as notification- or
geolocation-related functionalities, for which test transfer will
not be possible, since the corresponding web app lacks those
features and hence does not have any related tests for transfer.
Nevertheless, the goal of this work is to reduce the manual
effort of writing tests for features that are shared.

The current implementation of TRANSDROID does not
support some actions in web testing such as drag and drop.
Furthermore, this paper does not consider external communi-
cations in the source web test, such as choosing a local file
or login with OAuth. Such limitations could be addressed by
extending the current action transformation rules. That said,
one can trivially construct an automated pre-processing phase
to exclude the source tests containing unsupported actions to
improve the success rate of transfers.

VII. RELATED WORK

Intra-platform test transfer. In recent years, researchers
have proposed approaches for transferring or reusing GUI
tests for apps within a platform [3]–[8], [31]. Rau et al. [3]
proposed a technique for mapping of GUI widgets among web
applications. Hu et al. [5] presented a framework that leverages
machine learning to synthesize reusable UI tests for Android
apps. Qin et al. [6] proposed TestMig to migrate GUI events
for the different instances of the same app running on iOS
and Android. Behrang and Orso [4] proposed an approach to
migrate test cases by mapping the GUI widgets to support
assessment of mobile app coding assignments. That work
was later extended to general test transfer between similar
Android apps [7], [8]. A recent work by Zhao et al. [31]
presented a framework as well as dataset to evaluate several
test transfer techniques for Android apps. Unlike all prior
work, TRANSDROID targets the needs and new challenges for
cross-platform, i.e., web-to-Android, test transfer.

The key novelty of this paper is that we consider and
address the new challenges in cross-platform transfer, i.e.,
unclear widget context and incompatible actions. First, unlike
previous work such as [7], we propose to include two new
types of contextual information (screen context and action
context) in test generation. Moreover, we introduce Action
Transformation, a pre-transfer phase with customizable rules
to accommodate incompatible actions between different plat-
forms. Note that, while at a high level we adopt the techniques
similar to [7], e.g., combination of static and dynamic anal-
yses, TRANSDROID is different from [7] in terms of several
algorithmic details. For example, in [7], the statically extracted
model of app is used as secondary information only when

the dynamic exploration fails to find a match of widget. In
contrast, TRANSDROID leverages the result of static analysis
as primary information to construct Navigation Graph, which
is the basis of the proposed algorithm.

Cross-platform testing. A significant number of previ-
ous studies have focused on cross-platform testing [34]–
[40]. Developed concurrently, CrossT [34] and WebDiff [35]
addressed the problem of cross-browser inconsistencies (XBIs)
in web apps, i.e., the same web app behaving differently on
different browsers. CrossCheck [36] combined the approaches
in CrossT and WebDiff, and leveraged machine learning
techniques such as decision tree to improve the accuracy of
the reported XBIs. Later, based on an extensive study of XBIs
in real-world web apps, X-PERT [37] proposed a framework
applying different techniques for different types of XBIs to
increase the effectiveness. Regarding the similar presentation
issues on Android apps caused by device fragmentation,
DiffDroid [38] combined input generation and differential
testing to find cross-device inconsistencies. On the other
hand, FMAP [39] analyzed the client-server communication
of the desktop version and mobile version of a web app to
identify missing features in either version. Similar to FMAP,
CheckCAMP [40] proposed to identify missing functionality
in either the iOS or Android version of the same app. However,
none of these works aim to reuse and migrate existing tests
across platforms.

VIII. CONCLUSION

Automated test transfer is a promising method of generating
high-quality tests for verification of similar features among
mobile apps. In this paper, we described the cross-platform
test transfer problem and the associated challenges that prior
works have not addressed. We presented TRANSDROID, an
automated tool for solving this problem in the context of
web-to-Android transfer. TRANSDROID adopts novel transfor-
mation techniques and test generation algorithms to resolve
the challenges of overcoming the incompatibilities between
platforms. Our evaluation on real-world apps demonstrated the
effectiveness and efficiency of TRANSDROID, as it success-
fully transferred 77% of the test cases in our experiments. Our
results indicate that even when test transfer is not completely
successful, it has the potential of significantly reducing the
manual effort of creating tests for similar apps, i.e., 82%
reduction on average in our study subjects.

We also discussed the factors impacting the effectiveness of
TRANSDROID, addressing which will frame part of our future
work. We also aim to conduct a user study involving real
developers to further validate our empirical findings. Finally,
we plan to investigate the application of TRANSDROID for
test transfer among other platforms, such as mobile-to-web
and web-to-desktop.
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