
Tool-Assisted Componentization of
Java Applications

Mahmoud M. Hammad
Software Engineering Department

Jordan University of Science and Technology
Irbid, Jordan

m-hammad@just.edu.jo

Ibrahim Abueisa
Software Development Engineer

Amazon Inc.
Amman, Jordan

abueis@amazon.com

Sam Malek
Informatics Department

University of California, Irvine
Irvine, USA

malek@uci.edu

Abstract—Many popular object-oriented (OO) programming
languages, such as Java, do not provide explicit support for
architecture-based development, i.e., do not provide programming-
language constructs that are at the granularity of architectural
constructs, such as components and ports. The gap between how
engineers design their systems and how they implement them
has been one of the leading causes of architectural drift—a
situation in which the prescriptive architecture (the designed
architecture) does not match the descriptive architecture (the
implemented architecture). To mitigate this challenge, in its
ninth iteration, Java introduced the concept of Java Platform
Module System (JPMS), which for the first time provides explicit
implementation-level support for well-known architectural con-
structs, such as components (called modules) and ports (called
module directives). Despite this, the majority of existing Java
applications (apps) are still purely OO programs that do not
make use of the new constructs, because converting them to
well-structured component-based (CB) programs is a tedious
and error-prone task. In fact, prior research has shown that
when engineers convert OO apps to CB apps, they tend to be
highly over-privileged, i.e., components are granted more access
privileges than they actually need. To mitigate these challenges,
we have developed OO2CB, an approach for conversion of
an OO Java app to a least-privilege CB Java app. OO2CB
employs component recovery techniques to assist the developer
in determining a given OO app’s components. It then statically
analyzes the source code of the app to determine the dependencies
among its recovered components and the required port types
for facilitating their interaction. Finally, OO2CB generates a
functionally equivalent CB app that satisfies the least-privilege
security principle. Our experiments on several large real-world
OO Java apps corroborate the effectiveness of OO2CB.

I. INTRODUCTION

A software system’s architecture consists of a set of principal

design decisions governing the system [1]. Ensuring that the

prescriptive architecture (the designed architecture) matches

the descriptive architecture (the implemented architecture) is of

utmost importance, and particularly challenging when a system

evolves [1], [2]. One of the leading causes of architectural

mismatch, known as architectural erosion or drift, is that

many popular programming languages, such as Java, support

Object Oriented (OO) programming but not architecture-based

development. An architecture of a software system is typically

conceived in terms high-level constructs, such as components,

connectors, and ports, but implemented in terms of a different

set of low-level constructs, such as packages, classes, and

methods. This gap makes it exceptionally challenging to keep

the implementation of a software system in sync with its

architecture.

In a promising development, Java, arguably the most widely

used OO programming language, released the Java Platform

Module System (JPMS) in version 9 of Java [3]. JPMS

explicitly supports architecture-based development, allowing

the software engineers to define components (called modules),

ports (called module directives), and interfaces.1 In addition,

Java 9 itself is also modularized, meaning that one can require

subset of the Java Runtime Environment (JRE) system modules.

The benefits of JPMS are threefold: (1) better encapsulation of

the software in terms of its architecturally significant elements,

(2) reduction in software bloat by reducing the size of the

code loaded at runtime, and (3) improved security through the

reduction of attack surface.

Despite its promise, approximately 5 years after the public

release of Java 9, the great majority of existing open-source

OO Java applications (apps) have not been converted to a

component-based (CB) equivalent using JPMS.2 We believe

this can be attributed, at least partly, to the lack of tool support

to help developers modularize their OO Java apps. Manually

porting an OO Java app to JPMS is a cumbersome task, as it

requires the developer to fundamentally refactor the code base

and to carefully consider the dependencies among the system’s

components. Prior work [4] has shown that when developers

manually refactor their apps to use the newly introduced JPMS

constructs, they tend to take the easy way out, which is to

simply open each module to the rest of the system, thereby

creating highly over-privileged apps, i.e., a situation in which

components (i.e., modules) are granted more access than they

need to function. As a result, none of the benefits associated

with the adoption of JPMS is fully materialized.

To systematically overcome the aforementioned problem, we

have developed OO2CB, a system for conversion of a Java OO

app to a Java CB app, and determination of the least-privilege

architecture for the resulting app. A least-privilege architecture

1 Explicit support for software connector as a first class construct is still
missing.

2 In our analysis of over 1,300 open-source Java projects, we found that
only 33 are utilizing JPMS capabilities. This comports with the results reported
in prior work [4].

36

2022 IEEE 19th International Conference on Software Architecture (ICSA)

978-1-6654-1728-0/22/$31.00 ©2022 IEEE
DOI 10.1109/ICSA53651.2022.00012

20
22

 IE
EE

 1
9t

h
In

te
rn

at
io

na
l C

on
fe

re
nc

e
on

 S
of

tw
ar

e
A

rc
hi

te
ct

ur
e

(I
C

SA
) |

 9
78

-1
-6

65
4-

17
28

-0
/2

2/
$3

1.
00

 ©
20

22
 IE

EE
 |

D
O

I:
10

.1
10

9/
IC

SA
53

65
1.

20
22

.0
00

12

Authorized licensed use limited to: Access paid by The UC Irvine Libraries. Downloaded on June 15,2023 at 19:53:15 UTC from IEEE Xplore. Restrictions apply.

is an architecture in which each component is granted the

exact privileges, in terms of inter-component communications

as well as the required JRE modules, it needs to provide its

functionality[1].
More precisely, given an OO app in Java, OO2CB (1) aids

the developer with determining the components of the app

using well-known component recovery tools, (2) leverages

static program analysis to determine the dependencies among

the app components as well as the JRE components, (3)

determines the required ports between the components, and

finally (4) generates the corresponding CB version of the app.

Our evaluation of OO2CB on large real-world OO Java apps

corroborates the effectiveness of our approach, including the

ability of OO2CB to accurately determine the least-privilege

architecture of OO apps and to automatically create their

corresponding CB versions.
The remainder of this paper is structured as follows. Section

II provides an illustrative example to motivate our work and to

illustrate our approach. Section III describes OO2CB in more

details and Section IV provides its implementation. Section

V evaluates OO2CB. VI shows the threats to the validity of

our approach and results. Section VII overviews the related

research efforts. Finally, Section VIII concludes the paper and

sheds light on future directions.

II. ILLUSTRATIVE EXAMPLE

This section provides an illustrative example of two versions

of a Java app. The first version is a Java 8 OO app and the

second version is a Java 9 CB app. The Java app is part

of a simple university system that we have developed. The

illustrative example is used to motivate our work and illustrate

our approach.

Fig. 1. Structure of the object-oriented (OO) application.

Figure 1 shows the descriptive architecture as a class diagram

of the Java 8 OO application. The class StuSchedule builds

a suggested schedule for a student and logs any information

to a log file using the Java 8 java.util.Logger class. A

student can be either an Undergraduate or a Graduate
student. Both of these two classes implement the Java interface

IStudent. All of these classes belong to different packages

but we removed them to reduce the clutter and more importantly
because, in Java 8, if a class is a public class, all other classes in

the system can communicate with it regardless of the packaging

structure.

As shown in Figure 1, the OO structure shows only the

class communications in terms of method invocations and

inheritance relationships but lack the architectural constructs

such as components and ports. To get the many benefits of

the architectural development provided by the JPMS, we have

converted this OO app to a CB app using our approach.

The Java Platform Module System (JPMS) [3] is a central

part of the project Jigsaw [5]. The idea of the JPMS is to

provide a scalable module system for the Java platform. The

JPMS allows software engineers to build their applications in

terms of architectural constructs: components (called modules)

and ports (called module directives). These constructs provide

a higher level of abstraction than Java packages and classes,

as in the Java 8 and prior versions. The Java 9 JRE is also

modularized, meaning that an app can require part of the JRE

instead of requiring the whole JRE, resulting in a reduction of

the JRE runtime size. Moreover, Java 9 allows developers to

create a custom runtime image of their CB applications using

jlink tool [6]. The custom runtime image contains the app,

3rd-party libraries, and only the required Java 9 modules and

their dependencies, hence reducing the size of the CB app.

This self-contained executable custom runtime image can run

on an operating system (OS) even if the required JRE version

is not installed on that OS.

In the JPMS, each module has a configuration file, or

descriptor, named “module-info.java” file, which defines the

ports and the dependencies of this component with other

components; both the system (JRE) modules and the user-

defined components. The JPMS supports various types of ports.

These ports allow a component to export part of the services

it provides or all of them. Similarly, a component can require

services from other components.

37

Authorized licensed use limited to: Access paid by The UC Irvine Libraries. Downloaded on June 15,2023 at 19:53:15 UTC from IEEE Xplore. Restrictions apply.

Fig. 2. Component-based (CB) application.

Fig. 3. module-info.java file

Figure 2 depicts part of the component-based architecture of

the university system with three components, while Figure 3

depicts the “module-info.java” files of the three components.

In practice, a module is likely to have more Java classes and

dependencies than the modules of our illustrative example.

As shown in Figure 2, the stuService component

contains the IStudent interface inside the people package.

In order for the Undergraduate and Graduate classes

from the serviceProvider component to implement the

interface, the stuService needs to export the people
package either to public using the export port or to a

specific component using the exports to port. Here, the

latter satisfies the least-privilege security principle, whereas

the former may violate it, if not all of the components

require the people package in providing their services.

Line 10 of Figure 3 shows the logic for creation of the

exports to port. In addition to the exports to port, the

serviceProvider component needs to define two more

ports. One port to require the stuService component as

shown in Line 14 of Figure 3 and another provides with
port to provide the functionalities of the IStudent interface

using the Graduate and Undergraduate implementation

as shown in Lines 15 – 17 of Figure 3 .

As depicted in Figure 2, the registration component

contains the StuSchedule class inside the schedule
package. Since the StuSchedule class uses the IStudent
interface from the people package in its code, the

registration component needs to define a requires
port in its “module-info.java” file as shown in Line 3 of Figure 3

and the stuService component needs to define an export
port to export the people package to the registration
component as shown in Line 9 of Figure 3. Now since the

IStudent is an interface, the registration component

also needs to define a uses interface as shown in Line 4 of

Figure 3.

Finally, since StuSchedule class communicates with the

java.util.Logger Java 8 class as depicted in Figure 1,

the CB app needs to define a requires port to be able to

use the JRE module named java.logging in Java 9.

The above example illustrates the steps one would take to

transform an OO app to its equivalent CB app in Java. While

this may be a straightforward process for a small app, it is

indeed a cumbersome manual process when applied to a large

OO app. It requires the developers to manually determine (1)

the components of their app, (2) the dependencies among those

components, (3) the JRE modules utilized by the app, and

(4) the types of dependencies among components. Upon that

determination, developers have to refactor their code (i.e., create

the proper directory structure and prepare the module-info.java
files), prior to building their apps in Java 9. Unfortunately, in

practice, many developers simply place all of their code in a

single module and open that module to the public to rapidly

build their apps in Java 9, thereby failing to reap the benefits

of a truly CB architecture.

III. APPROACH

This section describes our approach, named OO2CB, for

assisting software engineers to determine the least-privilege

architecture of an OO app and converting it to a CB app. The

least-privilege architecture has the precise dependencies each

component needs to fulfill its functionality. The benefits of

the least-privilege architecture are two-fold: (1) reducing the

attack surface of the generated CB app and (2) reducing the

software bloat. As depicted in Figure 4, our approach consists

38

Authorized licensed use limited to: Access paid by The UC Irvine Libraries. Downloaded on June 15,2023 at 19:53:15 UTC from IEEE Xplore. Restrictions apply.

Fig. 4. Overview of OO2CB

of four steps to convert an OO app to the corresponding CB

version of the app. The rest of this section describes each step

in detail.

A. Step 1: Component Determination

In order to build a CB app, we need to determine the

components that constitute the app and the classes that belong

to each component. Large body of previous research efforts

investigated and developed various tools and techniques to

automatically determine software components from the binary

or source code of OO apps including [7], [8], [9], [10],

[11], [12], [13], [14], [15], [16], [17], [18], [19], [20], and

[21]. These research efforts followed various approaches to

automatically determine the components of an OO app such as

having accurate and up-to-date UML diagrams of the system,

rule-based techniques, machine learning models, and clustering

algorithms. However, the existing tools are known to suffer

from inaccuracies, and different tools sometimes even return

different components for the same system [14].

To determine the components of an OO app, in this step,

OO2CB supports three options to assist developers.

• Option #1. Automatically determine the components of

an OO app using a component recovery tool. The tool

can be added as a plug-in to our approach.

• Option #2. Allowing software engineers to adjust the

results of the leveraged component recovery tool. In this

option software engineers can add or remove components

and correct the classes in each component.

• Option #3. Software engineers can manually determine the

components and the classes that belong to each component

without running any component recovery tool.

We integrated a well-maintained component recovery frame-

work implemented by Garcia et al. [14], called ARCADE,

in our implementation of OO2CB. The ARCADE framework

utilizes several well-known component recovery tools including

Architecture Recovery using Concerns (ARC) [15], Bunch [16],

scaLable InforMation BOttleneck (LIMBO) [17], Algorithm

for Comprehension-Driven Clustering (ACDC) [18], a tool

implemented by Corazza et al. [19], and Weighted Combined

Algorithm (WCA) [20]. Although any of the above-mentioned

recovery techniques can be used in OO2CB, in our experiments

we have used the results of the ACDC tool, since as concluded

in prior work [14], it is one of two best performing component

determination tools.

We also attempted to integrate with another recovery

technique, called ROMANTIC [21], that employs a type of

class clustering algorithm. Unfortunately, even with the help

of the authors we were unable to run it correctly and obtain

reliable results.

B. Step 2: Dependency Analyzer

Prior work [4] has shown that when manually porting a Java

app to use JPMS features, developers do not determine the

accurate dependencies between components and they tend to

open the entire app as one module. Failing to determine the

precise dependencies between components not only increases

the attack surface of the app, but also contributes to unnecessary

memory usage, i.e., software bloat. Therefore, in this step,

OO2CB takes the recovered components and the binary code

of an OO app as input and determines its least-privilege
architecture as output. The least-privilege architecture is an

architecture in which each component is only granted access

to components and resources that are needed to provide its

functionality. The Dependency Analyzer component identifies

two categories of dependencies (1) the allowed inter-component

communications (ICC) and (2) and the allowed communications

between the app’s components and JRE modules, referred

hereafter as the system communications.

To determine the exact communications each component

requires to provide its services, OO2CB first builds a call graph

of an OO app, where the nodes are classes and the edges are

method invocations. To build the call graph, OO2CB generates

the Abstract Syntax Tree (AST) of the OO app using the

Byte Code Engineering Library (BCEL) [22]. The BCEL is

a widely-used Apache library for analyzing Java binary files,

i.e., the .class files. Then, OO2CB traverses the call graph and

determines the communications between the various classes

and the communications between the OO app and the JRE

classes, i.e., the Java 8 classes.

Using the determined components in the first step and the

communications between the classes in the call graph, OO2CB
determines the inter-component communications (ICCs). For

example, since the StuSchedule class communicates with

the IStudent interface as shown in Figure 1, the Dependency
Analyzer of our approach adds a required ICC between the

39

Authorized licensed use limited to: Access paid by The UC Irvine Libraries. Downloaded on June 15,2023 at 19:53:15 UTC from IEEE Xplore. Restrictions apply.

TABLE I
NUMBER OF CLASSES.

Item Count

JDK 8 classes 7,701

JDK 9 classes (JPMS classes) 19,368

Automatically mapped classes 7,469

Manually mapped classes 191

Unmapped classes 41

registration component and the stuService compo-

nent to the CB architecture.
As mentioned earlier, the JRE itself is modularized, allowing

a CB app in Java to require a part of the JRE instead of requiring

the whole JRE with all its components (83 system components

in Java 9). Therefore, OO2CB determines the required JRE

components (JRE modules) and the system communications

for each component. However, mapping between Java 8

classes and Java 9 classes is not a trivial task as Java 9

introduced many changes to the structure and the arrangement

of the JDK classes. These changes include moving classes

between different packages, adding and removing some classes,

changing class names with the same functionalities, and

changing functionalities of some classes.
A software engineer who wants to manually convert an

OO app to a CB app needs to be aware of these changes.

Unfortunately, there is no reference document describing

all of these changes, turning this into an arduous process

for software engineers. To overcome this problem, we semi-

manually mapped Java 8 classes to Java 9 classes and stored the

results in the Mapping Rules repository of our approach,

shown in Figure 4.
To conduct the class mapping, our approach automatically

scanned Java 8 classes and matched them with the Java 9

classes based on the name and the path of the class. For

example, the Java 8 class com.sun.org.apache.xalan
.internal.xsltc.dom.SingletonIterator.java
is mapped to the Java 9 class com.sun.org.apache.xa
lan.internal.xsltc.dom.SingletonIterator.j
ava since they have the same name and path. However, not

all Java 8 classes are mapped to Java 9 classes. Therefore, we

manually investigated and mapped additional classes through

(1) studying a Java 8 class’s implementation and looking for

it counterpart in Java 9, (2) reading the Java documentation of

the Java 8 class and trying to find the matching Java 9 class, or

(3) reading online resources for software engineers who faced

the same problems and solved them.
At the end of the semi-manual mapping process, some

Java 8 classes were not mapped to any Java 9 classes for

a variety of reasons. For example, the Java 8 class com.sun.
image.codec.jpeg.JPEGCodec.java, a factory class

for implementing a JPEG image decoder/encoder, cannot be

mapped to any Java 9 class, since Oracle has removed it from

the JPMS JDK as indicated in an Oracle bug report [23]. The

same bug report does not provide any alternative class, instead

it indicates that “For JDK 9, the module system would need
to decide how to expose/export this.”

As a summary of the mapping process, given that the Java

8 JDK contains 7,701 classes and the JPMS JDK contains

19,368 classes, we automatically mapped 7,469 Java 8 classes

to Java 9 classes. We further manually mapped an additional

191 Java 8 classes. However, 41 Java 8 classes could not be

mapped to any Java 9 classes. Table I summarizes the statistics

of the mapping process.

Using the Mapping Rules repository, OO2CB traverses

the generated call graph and determines the required JRE
system modules as well as the system communications for each

component. For example, from the communication between the

StuSchedule class and the Java 8 java.util.Logger
class in Figure 1, the Dependency Analyzer determines that the

registration component requires the java.logging
Java 9 module and adds a system communication between

them in the CB architecture.

C. Step 3: Configuration File Builder

In this step, OO2CB creates a configuration file, called

“module-info.java” file, for each component. The configuration

file contains the ports and the communication privileges for

each component. To create well designed ports following the

least-privilege security principle, we have carefully defined

rules for creating various types of ports.

The following rules are definitions for various types of ports

which OO2CB applies in this step to create ports for each

component and adds them to the configuration file of each

component in the CB app.

Definition 1 (Requires): Let C1 be a class that belongs to

module M1 and C2 be a class or an interface that belongs to

module M2. If C1 communicates with C2, then M1 requires

M2.

Requires(M1,M2) ≡ (C1 ∈ M1) ∧ (C2 ∈ M2) ∧
∃ communicates(C1, C2)

According to Definition 1, OO2CB adds a requires
port to the registration component, since the class

StuSchedule communicates with IStudent, by defining

objects of this type, and writes the port creation code in the

“module-info.java” file of the registration component as

shown in Line 3 of Figure 3.

Definition 2 (Exports To): Let C1 be a class that belongs to

package P1 in module M1 and C2 be a class that belongs to

package P2 in module M2. If C2 communicates with C1, then

module M1 needs to export package P1 to M2, otherwise, C2

will not be able to communicate with C1.

ExportsTo(M1, P1,M2) ≡ (C1 ∈ P1) ∧ (P1 ∈ M1) ∧ (C2 ∈
P2) ∧ (P2 ∈ M2) ∧ ∃ communicates(C2, C1)
According to Definition 2, OO2CB adds an exports to
port to the stuService component to export the package

people since the StuSchedule communicates with the

40

Authorized licensed use limited to: Access paid by The UC Irvine Libraries. Downloaded on June 15,2023 at 19:53:15 UTC from IEEE Xplore. Restrictions apply.

IStudent, and adds this port creation rule to the “module-

info” file of the stuService as shown in Line 10 of

Figure 3. This definition strictly follows the least-privilege

security principle. OO2CB exports people of stuService
component to only the modules that need it, thereby reducing

the attack surface.

Definition 3 (Uses): Let C1 be a class that belongs to module

M1, and A2 be an interface or an abstract class in module M2.

If C1 uses A2, then M1 uses A2 in M2.

Uses(M1, A2,M2) ≡ (C1 ∈ M1)∧ (A2 ∈ M2)∧ type(A2) ∈
[interface, abstract class] ∧ (∃ communicates(C1, A2))

According to Definition 3, OO2CB adds a uses port to

registration component since the StuSchedule class

uses the interface IStudent from the stuService and

adds the port creation rule to the “module-info.java” file of the

registration component as shown in Line 4 of Figure 3.

Definition 4 (Provides With): Let C1 be a class in module

M1 and A2 be an abstract class or an interface in module M2.

If C1 implements or extends A2, then M1 provides A2 with

C1.

ProvidesWith(M1, A2, C1) ≡ (C1 ∈ M1) ∧ (A2 ∈
M2) ∧ type(A2) ∈ [interface, abstract class] ∧
(∃ implements(C1, A2) ∨ ∃ extends(C1, A2))

According to Definition 4, since the classes

Undergraduate and Graduate in module

serviceProvider implements the interface IStudent
from the stuService component, OO2CB adds a

provides with port to serviceProvider to provide

the functionality of IStudent through the implementation

of Registration. Then, OO2CB add the port creation

code to the “module-info.java” file as shown in Lines 15

– 17 of Figure 3. In such a case, a component can utilize

the java.util.ServiceLoader from the java.base
JDK 9 module to load implementations of a service (A2 in

our definition).

D. Step 4: CB App Builder

In this step, OO2CB builds a CB app considering the

determined least-privilege architecture. It takes the user-defined

components along with their classes. Next, it creates an OS

directory for each component and adds all the Java packages

and classes that belong to the component into the directory.

Then, OO2CB modifies the header and the import section of

each class in every component to make it compatible with the

new CB application structure.

Finally, the result of our approach is a compiled CB app

following the least-privilege security principle with precise

dependencies between components.

IV. IMPLEMENTATION

OO2CB is a Java application that takes a Java OO application

as input and determines the least-privilege architecture and

builds a CB app as an output. As mentioned earlier, to

determine the components of an OO app, OO2CB assists

developers in recovering the components of the app using

well-known component recovery tools. OO2CB integrates with
the ARCADE framework [14] which has various recovery

methods. In the experiments reported in this paper, we have

relied on the results of the ACDC, one of the recovery methods

in ARCADE, but OO2CB can be easily configured to take the

results of other recovery methods. After the components are

identified, OO2CB determines the required ICCs, the needed

JPMS modules, the system communications, and the required

ports for each component to provide its functionality. The

implementation of our approach consists of more than 8, 000
lines of code, excluding the implementation of ARCADE. The

full implementation of OO2CB is available online as an open-

source tool [24].

V. EXPERIMENTAL EVALUATION

This section describes the experimental evaluation of our

approach. Our evaluation addresses the following research

questions:

• RQ1 How effective is OO2CB in successfully converting

real-world OO apps to CB apps?

• RQ2 How much OO2CB is able to reduce the attack

surface of converted apps?

• RQ3 How much OO2CB is able to reduce the runtime

memory footprint of converted apps?

• RQ4 What is the performance of OO2CB?

To conduct our experiments and evaluate our approach, we

utilized five real-world large Java 8 applications. Following

are the five applications:

1) Apatche Nutch release 2.3, a mature web crawler relying

on the Hadoop data structure.

2) Openjpa version 2.4.1, a widely used open-source Java

object-relational mapping (ORM) tool.

3) Apache CXF version 3.1.6, an open-source web services

framework.

4) Apache Camel version 2.17.0, an open-source Java

message-oriented middleware.

5) Apache Lucene-4.6.1, a widely used open-source search

engine library.

In addition to the above, we also utilized the university

system discussed in Section II. We use the university system

as a ground-truth, since we know the OO structure and the CB

structure of the app.

For evaluation, we automatically recovered the components

of the Java 8 applications using the ACDC [18] tool. We

chose ACDC since, as concluded in the ARCADE framework

[25], it is one of two best performing component recovery

tools as evaluated on expert-recovered and carefully-verified

architectures. In practice, we envision a developer familiar

with the source code of an app may adjust the recovered

components produced by a recovery method, such as ACDC.

For an unbiased evaluation, however, we did not make such

adjustments in the results reported here.

41

Authorized licensed use limited to: Access paid by The UC Irvine Libraries. Downloaded on June 15,2023 at 19:53:15 UTC from IEEE Xplore. Restrictions apply.

TABLE II
RQ1: THE EFFECTIVENESS OF OO2CB.

App
OO App CB App

Compiled?
Classes Comps Ports ICC Sys Comm

University system 16 5 23 6 7 Y

Nutch release 2.3 347 57 257 93 69 Y

Openjpa 2.4.1 1,352 95 1,358 426 101 Y

CXF-3.1.6 2,958 325 9,319 3,609 853 Y

Camel-2.17.0 1,414 67 1,490 496 138 Y

Lucene-4.6.1 1,081 41 1,490 397 95 Y

Average 1,194.7 98.3 2,322.8 837.8 210.5

A. RQ1: Effectiveness of OO2CB
This research questions measures the effectiveness of our

approach in successfully taking an OO app as input and

determining the least-privilege architecture and successfully

building a CB app as an output. To do this experiment we

ran our approach on the 5 real-world large OO apps and our

university system. Table II compares between the structures

of the OO apps and the CB apps converted by OO2CB and

shows if OO2CB was able to successfully build a compiled

Java 9 CB app.
The OO App Classes column of Table II shows the

number of classes in each OO app. For example, the CXF has

2,958 classes.
The CB App column of Table II shows the structure

of the determined least-privilege CB architecture and the

created CB app by OO2CB in terms of the number of

determined components (Comps), number of created ports

(Ports), number of inter-component-communications (ICC),

and number of communications between the CB app and

the JRE system modules (Sys Comm). For example, the

determined least-privilege CB architecture of the CXF app

contains 325 components, 9,319 ports, 3,609 ICCs, and 853

JRE system communications.
As shown in Column Compiled? of Table II, OO2CB was

able to successfully determine and build CB apps for all Java 8

OO apps. The results in Table II corroborate the effectiveness

of our approach in determining the least-privilege architecture

and successfully building compiled CB apps.

B. RQ2: Attack Surface Reduction
The main purpose of our approach is to assist developers in

converting their OO apps to CB apps with precise dependencies.

As prior work [4] showed, when software engineers convert

their OO apps to CB apps, they tend to create over-privileged

architectures in which components are granted more privileges

than they need. An over-privileged architecture for an app has
security implications, since it increases the attack surface of

the app.

By determining the precise dependencies among components,

OO2CB aids security architects (or security analysis tools) to

understand the security posture of the system and reduces the

attack surface.

Table III shows the attack surface reduction measured in 3

dimensions for the 6 subject apps.

• D1. ICC Reduction column compares between the

allowed inter-component communications (ICCs) and the

determined ICCs. The allowed ICCs are the communi-

cations that are allowed between the components of an

app without applying the least-privilege principle. This

reflects a situation in which developers leave the modules

open, i.e., allowing the modules to freely communicate

with one another. The determined ICCs are computed

by our approach following the least-privilege security

principle. As shown in Table III, the CXF app has 105,300

Allowed ICCs and only 3,609 Determined ICCs,

resulting in a 96.6% ICC Reduction. On average, our

approach achieved 87.2% ICC reduction.

• D2. Sys Comm Reduction column compares be-

tween the allowed system communications and the de-

termined system communications. The allowed system

communications are what is allowed by default without

determining the exact JRE modules required by each com-

ponent in the app. The determined system communications

are JRE module communications that OO2CB found to be

necessary. For example, as shown in the table, the Openjpa

CB app has 7,885 allowed system communications and

only 101 determined system communications, resulting

in a 98.7% reduction. On average, our approach achieved

97.9% in the system communication reduction dimension.

• D3. Required Sys Comp Reduction column

measures the amount of reduction in the required JRE

modules, i.e., all the 83 JRE modules vs. the JRE modules

that were determined by our approach. For example, the

over-privileged Nutch app requires all the 83 JRE system

modules, whereas the least-privilege Nutch app created

42

Authorized licensed use limited to: Access paid by The UC Irvine Libraries. Downloaded on June 15,2023 at 19:53:15 UTC from IEEE Xplore. Restrictions apply.

TABLE III
RQ2: ATTACK SURFACE REDUCTION.

CB App Comps

D1. ICC Reduction D2. Sys Comm Reduction D3. Required Sys Comp Reduction

Determined Allowed
Reduction (%)

Determined Allowed
Reduction (%)

Determined Allowed
Reduction (%)ICC ICC Sys Comm Sys Comm JRE Comps JRE Comps

University system 5 6 20 70.0 7 415 98.3 2 83 97.6

Nutch release 2.3 57 93 3,192 97.1 69 4,731 98.5 4 83 95.2

Openjpa 2.4.1 95 426 8,930 95.2 101 7,885 98.7 10 83 88.0

CXF-3.1.6 325 3,609 105,300 96.6 853 26,975 96.8 12 83 85.5

Camel-2.17.0 67 496 4,422 88.8 138 5,561 97.5 8 83 90.4

Lucene-4.6.1 41 397 1,640 75.8 95 3,403 97.2 7 83 91.6

Average 98.3 837.8 20,584.0 87.2 210.5 8,161.7 97.9 83.0 7.2 91.4

by our approach only requires 4 JRE system modules,

resulting in a 95.2% reduction. On average, our approach

achieved 91.4% reduction in this dimension.

The average of attack surface reduction achieved by our

approach over the three dimensions is 92.2%

C. RQ3: Software Bloat
Since JDK is modularized in Java 9, a CB app can require

only a subset of the JDK modules that it needs to create

a lightweight JRE, and hence reduce its runtime memory

requirement. To that end, we evaluated the runtime memory

reduction between the over-privileged CB app, an app in

which all components have access to all JRE modules, and the

determined least-privilege CB app, where each component is

granted the exact JRE modules it needs to function.
Table IV shows the runtime memory reduction in the custom

JRE. As shown in the table, an over-privileged CXF app that

requires all JRE modules consumes, if all modules are loaded,

236 MB of memory, while the CXF app produced by our

approach requires only 12 JRE modules, which consumes 95.9

MB of memory, resulting in a 59.4% reduction. As shown

in Table IV, on average, OO2CB achieves a 65.1% memory

reduction in the subject apps. Such a substantial reduction in

memory requirement is crucial for deployment in resource-

constrained devices, such as IoT devices.

D. RQ4: Performance of OO2CB
We measured the performance of our approach in determin-

ing the least-privilege component-based architecture of OO

apps and successfully building CB versions of the 6 apps.

We conducted our performance experiments on a Lenovo

laptop with 2.2 GHz Intel Core i7 8th generation and 12

GB DDR4 RAM. Table V shows the results in minutes in

the Performance column. As shown in the table, it took

our approach 14.56 minutes to determine the least-privilege

architecture and successfully build a compiled CB app of the

Camel application. On average, to determine the least-privilege

architecture of a large OO app and building the CB app, OO2CB
takes 2.8 minutes. These results corroborate the efficiency of

OO2CB for practical use.

VI. THREATS TO VALIDITY

The main threat to internal validity of our work is the false

positives caused by the static analysis of our approach. Static

analysis results may overestimate the communications between

components which might lead to granting a component more

privileges than it needs in the resulted CB app. To reduce this

threat, we leveraged the BCEL [22], a widely-used library in

the industry to analyze Java apps. Notably, our approach is

not susceptible to false negatives, corroborated by the fact that

we were able to successfully build large open-source software

systems after they were componentized.

The selection of our Java apps is a threat to the external

validity of our results. To mitigate this threat, we included

OO Java apps that are large in size and widely used in the

industry. Another threat to external validity is whether the

ports we create are comprehensive and enough to create CB

apps. To overcome this threat, we defined all ports except the

ones responsible for Java reflection and dynamic class loading

techniques, i.e., the open and opens with ports. However,

Java reflection and dynamic class loading are infrequently used

in Java apps. Part of our future work involves extending support

to these additional port types.

Another threat to the external validity of our experimental

results is the use of component recovery tools. To reduce this

threat in our experiments, we leveraged the best-performing

component recovery tool, i.e., ACDC [18], as concluded in

prior comparative studies of recovery techniques [14].

VII. RELATED WORK

Our work is related to large body of previous research efforts

in recovering components and converting OO systems to CB

systems. In this section, we briefly discuss prior efforts in light

of our work.

Xia Cai et al. [26] surveyed component-based software

technologies, described their advantages and disadvantages,

and discussed the features they inherit. They also addressed

quality assurance (QA) issues for component-based software

systems. They proposed a quality assurance (QA) model for

component-based software development which covers compo-

nent requirement analysis, component development, component

certification, component customization, and system architecture

design, integration, testing, and maintenance. Remco C. de

Boer [27] identified the main characteristics an architectural

43

Authorized licensed use limited to: Access paid by The UC Irvine Libraries. Downloaded on June 15,2023 at 19:53:15 UTC from IEEE Xplore. Restrictions apply.

TABLE IV
RQ3: SOFTWARE-BLOAT REDUCTION.

App
Required JRE Size with JRE Size with the Runtime

System Modules All Modules (MB) Required Modules Reduction (%)

University system 2 236 36.1 84.7

Nutch release 2.3 4 236 86.7 63.3

Openjpa 2.4.1 10 236 96.1 59.3

CXF-3.1.6 12 236 95.9 59.4

Camel-2.17.0 8 236 90.2 61.8

Lucene-4.6.1 7 236 89.4 62.1

Average 7 236 82.4 65.1

TABLE V
RQ4: PERFORMANCE OF OO2CB.

App
CB App

Performance (Min)
Comps Ports ICC JPMS Sys. Comm

University system 5 23 6 7 0.01

Nutch release 2.3 57 257 93 69 0.02

Openjpa 2.4.1 95 1358 426 101 0.13

CXF-3.1.6 325 9319 3609 853 1.73

Camel-2.17.0 67 1490 496 138 14.56

Lucene-4.6.1 41 1490 397 95 0.18

Average 98.3 2,322.8 837.8 210.5 2.8

knowledge discovery method should exhibit. They concluded

that Latent Semantic Analysis (LSA) is a promising technique

for architectural knowledge discovery. LSA statistically infers

the meaning of words in a context. To that end, LSA discovers

the semantic structure latent in a collection of documents. This

semantic structure can be employed to satisfy the requirements

for successful architectural knowledge discovery. However, the

distributional model of LSA is not an efficient representation

compared with the recent deep neural network approaches. In

addition, LSA representation is dense and hard to index based

on individual dimensions. The aforementioned research works

did not convert OO apps to CB apps, instead they focused on

showing the benefits of component-based development which,

among other research works, inspired us to develop OO2CB.
Kim and Chang [7] proposed a systematic UML-based

method to generate component-based architecture of an appli-

cation. To identify components, they used various techniques

including clustering algorithms, metrics, decision rules and a

set of heuristics. Their approach provides detailed instructions

on how to design components. Using the proposed method,

they showed that high quality components can be identified

and designed given that an up-to-date and accurate UML

design of a targeted system is available. Unfortunately, such

an assumption is not valid in most software systems. In fact,

most of the time, there is no model or the model is obsolete.

Similarly, in their later work [28], they built an L2CBD

(Legacy to Component Based Development) method to convert

legacy systems to components-based systems. They relied on a

specific re-engineering process that was manual. Their approach

instructs developers with fine-grained steps to convert their

legacy systems to CB systems. These approaches are hard to

apply in practice due to the extensive manual effort. They are

different from our work, which aims to provide a tool to assist

the developers with the componentization process.

Gholam et al. [13] proposed a clustering-based technique to

automatically generate a CB system. They identify components

based on features explicitly stated in the use case diagrams

of the system and an expert to choose the best results.

Bertolino and Mirandol [8] proposed an approach called

CB-SPE for specifying and analyzing performance-related

properties in component-based systems. The proposed approach

is considered a starting point towards an engineering approach

to encompass performance validation in component-based

systems on the basis of the architectural specification. Lee

44

Authorized licensed use limited to: Access paid by The UC Irvine Libraries. Downloaded on June 15,2023 at 19:53:15 UTC from IEEE Xplore. Restrictions apply.

et al. [9] proposed an object-oriented component development

methodology (COMO). They used COMO to develop software

components. COMO extends the Unified Modeling Language

(UML) and Rationales Unified process with semantics related

to component development. COMO extends the UML notations

by adding message flows between components and the ability to

define classes within a component. However, it only considers

data dependency among classes and components. Hamza et

al. [11] proposed a framework that used the theory of Formal

Concept Analysis (FCA) and the concepts of Software Stability

Model (SSM) to build a component-based architecture of a

system. The framework requires use-case diagrams and class

diagrams to identify components. The framework was evaluated

on a simple case study. Similarly, Mishra et al. [29] proposed

an approach called CORE to convert legacy OO systems to

CB systems using reverse engineering techniques depending

on their UML diagrams. Unlike our approach, these research

efforts depend on up-to-date UML-based diagrams to build the

component-based architecture.

Jain et al. [10] showed that component-based software

development is carried out in two phases: component building

and application assembly. The approach leveraged a clustering

algorithm named CompMaker, certain constraints, a predefined

rule and a set of heuristics to identify business components in

a system. The proposed approach uses static and dynamic

relationship between classes to group related classes into

components. Manolios et al. [30] tried to solve the system

assembly problem directly from system requirements. Their

framework includes an expressive language for declaratively

describing system-level requirements, including component

interfaces and dependencies, resource requirements, safety

properties, objective functions, and various types of constraints.

Moreover, Barrett R. Bryant et al. [31] presented an approach to-

wards automatic component assembly based on aspect-oriented

generative domain modeling. Aspect-oriented techniques are

applied to capture the crosscutting concerns that emerge during

the assembly process. Subsequently, those concerns are woven

to generate glue/wrapper code for assembling heterogeneous

components to construct a single integrated system. Unlike

our work, these research efforts require up-to-date system

requirements and they do not convert OO apps to CB apps.

Other research effort have focused on testing of component-

based software systems as in [32], [33], [33]. Wu et al.

[32] analyzed different test elements that are critical to test

component-based software systems. They proposed a group

of UML-based test adequacy criteria that can be used to test

CB systems. Similarly, Harrold et al. [33] described issues and

challenges in applying analysis and testing techniques to CB

systems and presented an approach for analyzing and testing CB

systems. Although such research work has different motivation

than our work, their tools can be used by software engineers

to test the generated CB applications by our approach.

Recently, Ghorbani et al. [4] proposed a technique, named

DARCY, to detect architectural inconsistencies in Java 9 apps.

While OO2CB aims to convert a Java 8 app to a Java 9 app that

properly uses the JPMS constructs, DARCY takes a Java 9 app
as input and checks if the app has architectural inconsistencies,

and if so, attempts to fix them. Finally, the work of Hammad et

al. in [34] and [35] determines and enforces the least-privilege

architecture of an Android system at runtime. However, their

works are specific to Android apps and cannot be applied to

Java OO apps.

VIII. CONCLUSION

This paper presents OO2CB, a system for determining the

least-privilege architecture of an OO Java app and its conversion

to a CB Java app. The determined least-privilege architecture

reduces the software-bloat and narrows the attack surface of a

component-based software system in Java. Our experimental

evaluation on several real-world object-oriented Java apps show

the effectiveness of our approach in successfully converting

OO apps to CB apps. Notably, through careful analysis of

the dependencies and communication requirements, OO2CB
achieved an average of 87.2% reduction in inter-component

communications, 97.9% reduction in system communications,

and 91.4% reduction in the number of required JRE system

components.

Since some security attacks take advantage of the Java

reflection and dynamic class loading features to implement

their malicious intent, in our future work we intend to extend

support to additional JPMS ports, namely open and opens
with, which would mitigate such threats. Furthermore, as

part of our future work, we will conduct user studies with

developers to evaluate the degree to which OO2CB can aid

developers in componentization of their Java apps.

Our research artifacts, including tools and evaluation data,

are available publicly [24].

IX. ACKNOWLEDGMENTS

This research is partially funded by Jordan University of

Science and Technology. Research Grant Number: 301-2019

REFERENCES

[1] R. N. Taylor, N. Medvidovic, E. M. Dashofy, Software architecture:
foundations, theory, and practice.(2009), Google Scholar Google Scholar
Digital Library Digital Library.

[2] D. M. Le, D. Link, A. Shahbazian, N. Medvidovic, An empirical study of
architectural decay in open-source software, in: 2018 IEEE International
conference on software architecture (ICSA), IEEE, 2018, pp. 176–17609.

[3] Jpms, http://openjdk.java.net/projects/jigsaw/spec/.
[4] N. Ghorbani, J. Garcia, S. Malek, Detection and repair of architectural

inconsistencies in java, in: 2019 IEEE/ACM 41st International Conference
on Software Engineering (ICSE), 2019, pp. 560–571. doi:10.1109/
ICSE.2019.00067.

[5] OpenJDK: Jigsaw Project, https://openjdk.java.net/projects/jigsaw/.
[6] jlink tool, https://docs.oracle.com/javase/9/tools/jlink.htm#

JSWOR-GUID-CECAC52B-CFEE-46CB-8166-F17A8E9280E9.
[7] S. D. Kim, S. H. Chang, A systematic method to identify software

components, in: 11th Asia-Pacific software engineering conference, IEEE,
2004, pp. 538–545.

[8] A. Bertolino, R. Mirandola, Modeling and analysis of non-functional
properties in component-based systems, Electronic Notes in Theoretical
Computer Science 82 (6) (2003) 158–168.

[9] S. D. Lee, Y. J. Yang, F. S. Cho, S. D. Kim, S. Y. Rhew, Como: A
uml-based component development methodology, in: Proceedings Sixth
Asia Pacific Software Engineering Conference (ASPEC’99)(Cat. No.
PR00509), IEEE, 1999, pp. 54–61.

45

Authorized licensed use limited to: Access paid by The UC Irvine Libraries. Downloaded on June 15,2023 at 19:53:15 UTC from IEEE Xplore. Restrictions apply.

[10] H. Jain, N. Chalimeda, N. Ivaturi, B. Reddy, Business component
identification-a formal approach, in: Proceedings Fifth IEEE International
Enterprise Distributed Object Computing Conference, IEEE, 2001, pp.
183–187.

[11] H. S. Hamza, A framework for identifying reusable software components
using formal concept analysis, in: 2009 Sixth International Conference
on Information Technology: New Generations, IEEE, 2009, pp. 813–818.

[12] M.-S. Choi, E.-S. Cho, A component identification technique from object-
oriented model, in: International Conference on Computational Science
and Its Applications, Springer, 2005, pp. 778–787.

[13] G. Shahmohammadi, S. Jalili, S. M. H. Hasheminejad, Identification
of system software components using clustering approach., Journal of
Object Technology 9 (6) (2010) 77–98.

[14] J. Garcia, I. Ivkovic, N. Medvidovic, A comparative analysis of software
architecture recovery techniques, in: 2013 28th IEEE/ACM International
Conference on Automated Software Engineering (ASE), IEEE, 2013, pp.
486–496.

[15] J. Garcia, D. Popescu, C. Mattmann, N. Medvidovic, Y. Cai, Enhancing
architectural recovery using concerns, in: 2011 26th IEEE/ACM Inter-
national Conference on Automated Software Engineering (ASE 2011),
IEEE, 2011, pp. 552–555.

[16] B. S. Mitchell, S. Mancoridis, On the automatic modularization of
software systems using the bunch tool, IEEE Transactions on Software
Engineering 32 (3) (2006) 193–208.

[17] P. Andritsos, V. Tzerpos, Information-theoretic software clustering, IEEE
Transactions on Software Engineering 31 (2) (2005) 150–165.

[18] V. Tzerpos, R. C. Holt, Acdc: an algorithm for comprehension-driven
clustering, in: Proceedings Seventh Working Conference on Reverse
Engineering, IEEE, 2000, pp. 258–267.

[19] A. Corazza, S. Di Martino, V. Maggio, G. Scanniello, Investigating
the use of lexical information for software system clustering, in: 2011
15th European Conference on Software Maintenance and Reengineering,
IEEE, 2011, pp. 35–44.

[20] O. Maqbool, H. Babri, Hierarchical clustering for software architecture
recovery, IEEE Transactions on Software Engineering 33 (11) (2007)
759–780.

[21] A. Shatnawi, A. Seriai, H. Sahraoui, Z. Al-Shara, Mining software
components from object-oriented apis, in: International conference on
software reuse, Springer, 2015, pp. 330–347.

[22] BCEL byte code engineering library, https://commons.apache.org/proper/
commons-bcel/.

[23] Oracle bug database, https://bugs.java.com/bugdatabase/view bug.do?
bug id=JDK-8038838.

[24] OO2CB artifact and evaluation data,
Honoring-the-double-blind-policy-of-ICSA-2021.

[25] J. Garcia, I. Krka, N. Medvidovic, C. Douglas, A framework for
obtaining the ground-truth in architectural recovery, in: 2012 Joint
Working IEEE/IFIP Conference on Software Architecture and European
Conference on Software Architecture, IEEE, 2012, pp. 292–296.

[26] X. Cai, M. R. Lyu, K.-F. Wong, R. Ko, Component-based software
engineering: technologies, development frameworks, and quality assur-
ance schemes, in: Proceedings Seventh Asia-Pacific Software Engeering
Conference. APSEC 2000, IEEE, 2000, pp. 372–379.

[27] R. C. de Boer, Architectural knowledge discovery: why and how?, ACM
SIGSOFT Software Engineering Notes 31 (5) (2006) 1.

[28] H.-K. Kim, Y.-K. Chung, Transforming a legacy system into compo-
nents, in: International Conference on Computational Science and Its
Applications, Springer, 2006, pp. 198–205.

[29] S. K. Mishra, D. S. Kushwaha, A. K. Misra, Creating reusable
software component from object-oriented legacy system through reverse
engineering., Journal of object technology 8 (5) (2009) 133–152.

[30] P. Manolios, D. Vroon, G. Subramanian, Automating component-based
system assembly, in: Proceedings of the 2007 international symposium
on Software testing and analysis, ACM, 2007, pp. 61–72.

[31] F. Cao, B. R. Bryant, C. C. Burt, R. R. Raje, A. M. Olson, M. Auguston,
A component assembly approach based on aspect-oriented generative
domain modeling, Electronic Notes in Theoretical Computer Science
114 (2005) 119–136.

[32] Y. Wu, M.-H. Chen, J. Offutt, Uml-based integration testing for
component-based software, in: International Conference on COTS-Based
Software Systems, Springer, 2003, pp. 251–260.

[33] M. J. Harrold, D. Liang, S. Sinha, An approach to analyzing and testing
component-based systems, in: First International ICSE Workshop on
Testing Distributed Component-Based Systems, Los Angeles, CA, 1999,
pp. 333–347.

[34] M. Hammad, H. Bagheri, S. Malek, Determination and enforcement
of least-privilege architecture in android, in: 2017 IEEE international
conference on software architecture (ICSA), IEEE, 2017, pp. 59–68.

[35] M. Hammad, H. Bagheri, S. Malek, Deldroid: an automated approach for
determination and enforcement of least-privilege architecture in android,
Journal of Systems and Software 149 (2019) 83–100.

46

Authorized licensed use limited to: Access paid by The UC Irvine Libraries. Downloaded on June 15,2023 at 19:53:15 UTC from IEEE Xplore. Restrictions apply.

