
Automated Construction of Energy Test Oracles for Android
Reyhaneh Jabbarvand

University of Illinois at Urbana-Champaign, USA
reyhaneh@illinois.edu

Forough Mehralian and Sam Malek
University of California at Irvine, USA

{fmehrali,malek}@uci.edu

ABSTRACT

Energy efficiency is an increasingly important quality attribute for
software, particularly for mobile apps. Just like any other software
attribute, energy behavior of mobile apps should be properly tested
prior to their release. However, mobile apps are riddled with energy
defects, as currently there is a lack of proper energy testing tools.
Indeed, energy testing is a fledgling area of research and recent
advances have mainly focused on test input generation. This paper
presents ACETON, the first approach aimed at solving the oracle
problem for testing the energy behavior of mobile apps. ACETON
employs Deep Learning to automatically construct an oracle that
not only determines whether a test execution reveals an energy
defect, but also the type of energy defect. By carefully selecting
features that can bemonitored on any app andmobile device, we are
assured the oracle constructed using ACETON is highly reusable.
Our experiments show that the oracle produced by ACETON is
both highly accurate, achieving an overall precision and recall of
99%, and efficient, detecting the existence of energy defects in only
37 milliseconds on average.

CCS CONCEPTS

• Software and its engineering → Software testing and de-

bugging.

KEYWORDS

Software Testing, Test Oracle, Deep Learning, Green Software En-
gineering, Android

ACM Reference Format:

Reyhaneh Jabbarvand and Forough Mehralian and Sam Malek. 2020. Au-
tomated Construction of Energy Test Oracles for Android. In Proceedings

of the 28th ACM Joint European Software Engineering Conference and Sym-

posium on the Foundations of Software Engineering (ESEC/FSE ’20), Novem-

ber 8–13, 2020, Virtual Event, USA. ACM, New York, NY, USA, 12 pages.
https://doi.org/10.1145/3368089.3409677

1 INTRODUCTION

Improper usage of energy-greedy hardware components on a mo-
bile device, such as GPS, WiFi, radio, Bluetooth, and display, can
drastically discharge its battery. Recent studies have shown energy
to be a major concern for both users [43] and developers [37]. In
spite of that, many mobile apps abound with energy defects. This

Permission to make digital or hard copies of part or all of this work for personal or
classroom use is granted without fee provided that copies are not made or distributed
for profit or commercial advantage and that copies bear this notice and the full citation
on the first page. Copyrights for third-party components of this work must be honored.
For all other uses, contact the owner/author(s).
ESEC/FSE ’20, November 8–13, 2020, Virtual Event, USA

© 2020 Copyright held by the owner/author(s).
ACM ISBN 978-1-4503-7043-1/20/11.
https://doi.org/10.1145/3368089.3409677

is mainly due to the lack of tools and techniques for effectively
testing the energy behavior of apps prior to their release.

In fact, advancements on mobile app testing have in large part
focused on functional correctness, rather than non-functional prop-
erties, such as energy efficiency [29]. To alleviate this shortcoming,
recent studies have tried to generate effective energy tests [19, 28].
While the proposed techniques have shown to be effective for gen-
erating energy-aware test inputs, they either use manually con-
structed oracles [19, 28] or rely on observation of power traces, i.e.,
series of energy consumption measurements throughout the test
execution, to determine the outcome of energy testing [9, 10, 29].

Test oracle automation is one of the most challenging facets of
test automation, and in fact, has received significantly less atten-
tion in the literature [11]. A test oracle compares the output of a
program under test for a given test to the output that it determines
to be correct. While power trace is an important output from an
energy perspective, relying on that for creating energy test ora-
cles faces several non-trivial complications. First, collecting power
traces is unwieldy, as it requires additional hardware, e.g., Mon-
soon [4], or specialized software, e.g., Trepn [5], to measure the
power consumption of a device during test execution. Second, noise
and fluctuation in power measurement may cause many tests to be-
come flaky. Third, power trace-based oracles are device dependent,
making them useless for tests intended for execution on different
devices. Finally, power traces are sensitive to small changes in the
code, thus are impractical for regression testing.

The key insight in our work is that whether a test fails—detects
an energy defect—or passes can be determined by comparing the
state of app lifecycle and hardware elements before, during, and
after the execution of a test. If such a state changes in specific ways,
we can determine that the test is failing, i.e., reveals an energy issue,
irrespective of the power trace or hardware-specific differences.
The challenge here lies in the fact that determining such patterns
is exceptionally cumbersome, and requires deep knowledge of en-
ergy faults and their impact on the app lifecycle and hardware
elements. Furthermore, energy defects change, and new types of
defects emerge, as mobile platforms evolve, making it impractical
to manually derive such patterns.

To overcome this challenge, we present ACETON, an approach
for automated construction of energy test oracles for Android.
ACETON employs Deep Learning to determine the (mis)behaviors
corresponding to the different types of energy defects. It represents
the state of app lifecycle and hardware elements in the form of a
feature vector, called State Vector (SV). Each instance of our training
dataset is a sequence of SVs sampled before, during, and after the
execution of a test. ACETON leverages Attention mechanism [8] to
ensure generation of explainable DL models. This paper makes the
following contributions:

https://doi.org/10.1145/3368089.3409677
https://doi.org/10.1145/3368089.3409677

ESEC/FSE ’20, November 8–13, 2020, Virtual Event, USA Reyhaneh Jabbarvand and Forough Mehralian and Sam Malek

• A Deep Learning technique for automated construction of an
energy test oracle in Android apps that relies on a novel repre-
sentation of app lifecycle and hardware elements as a feature
vector. ACETON is app and device independent.
• A novel utilization of Attention Mechanism from the Deep Learn-
ing literature to go beyond the usage of Deep Learning as a
black-box technique and understand how ACETON determines
the correctness of test execution outcome.
• An extensive empirical evaluation on real-world Android apps
demonstrating that ACETON is (1) highly accurate—achieves
an overall precision and recall of 99%, (2) efficient—detects the
existence of energy defects in only 37 milliseconds on average,
and (3) reusable across a variety of apps and devices.
• An implementation of ACETON, which is publicly available [7].

The remainder of this paper is organized as follows. Section 2
provides a background on energy defects and illustrates a motivat-
ing example. Section 3 provides an overview of ACETON, while
Sections 4-6 describe details of the proposed approach. Section 7
presents the evaluation results. The paper concludes with a discus-
sion of the related research.

2 MOTIVATING EXAMPLE

An energy defect occurs when the execution of code leads to un-

necessary energy consumption. The root cause of such issues is
typically misuse of hardware elements on the mobile device by apps
or Android framework under peculiar conditions. To determine
whether test execution reveals an energy defect, developers can
monitor the state of hardware elements and environmental factors,
e.g., speed of user or strength of network signal, before, during, and
after the test execution. If those states change in a specific way (or
do not change as expected) between consecutive observations, it
can be an indicator of energy defect.

For example, When developing location-aware apps, develop-
ers should use a location update strategy that achieves the proper
trade-off between accuracy and energy consumption [3]. User lo-
cation can be obtained by registering a LocationListener. While
the accuracy of the location updates obtained from a GPS location
listener is higher than that of a Network location listener, GPS con-
sumes more power than Network to collect location information.
To achieve the best strategy, developers should adjust the accuracy
and frequency of listening to location updates based on the user
movement. Example of violating the best practice is when the app
uses GPS to listen to location updates while the user is stationary.
This energy defect can be detected if the following pattern in the
state of user and GPS hardware is observed during test execution:

𝐺𝑃𝑆𝑖 == 𝐺𝑃𝑆𝑖+1 == “𝑂𝑛” ∧
𝐿𝑜𝑐𝑎𝑡𝑖𝑜𝑛_𝐿𝑖𝑠𝑡𝑒𝑛𝑒𝑟𝑖 == 𝐿𝑜𝑐𝑎𝑡𝑖𝑜𝑛_𝐿𝑖𝑠𝑡𝑒𝑛𝑒𝑟𝑖+1 == “𝐺𝑃𝑆” ∧
𝑈𝑠𝑒𝑟_𝑀𝑜𝑣𝑒𝑚𝑒𝑛𝑡𝑖 == 𝑈𝑠𝑒𝑟_𝑀𝑜𝑣𝑒𝑚𝑒𝑛𝑡𝑖+1 == “𝑆𝑡𝑎𝑡𝑖𝑜𝑛𝑎𝑟𝑦”

Here,𝐺𝑃𝑆 , 𝐿𝑜𝑐𝑎𝑡𝑖𝑜𝑛_𝐿𝑖𝑠𝑡𝑒𝑛𝑒𝑟 , and𝑈𝑠𝑒𝑟_𝑀𝑜𝑣𝑒𝑚𝑒𝑛𝑡 are the fac-
tors corresponding tomanifestation of energy defect and the indices
indicate to which state, 𝑆𝑡𝑎𝑡𝑒𝑖 or 𝑆𝑡𝑎𝑡𝑒𝑖+1, they belong.

As shown in the above example, existence of a defect can be
determined by monitoring for certain patterns in the state of hard-
ware and environmental settings during test execution. Identifying
such patterns manually requires significant expertise, and can be

Attention
Analysis

DL Engine

Test Case

Training DatasetLabeled Database

P

P F

P

F
DL

Algorithm

Oracle

Label

SV Sequence

Attention
Weights

Attended Features

Sequence
Collector

Tr
ai

ni
ng

Te
st

in
g

ACETON

Figure 1: Overview of the ACETON framework

extremely complicated and time consuming. For example, a pat-
tern corresponding to violation of location best practice by listen-
ing to location updates at a high frequency when the user moves
slowly, i.e., walking, should include additional invariants related to
𝑁𝑒𝑡𝑤𝑜𝑟𝑘 and 𝐿𝑖𝑠𝑡𝑒𝑛𝑒𝑟_𝐹𝑟𝑒𝑞𝑢𝑒𝑛𝑐𝑦. Thereby, our objective in this
paper is to construct an oracle that automatically learns such pat-
terns to determine the correctness of test execution. Such oracle
can be reusable across different apps and mobile devices, as long as
the changes in the state of software and hardware can be monitored.
Automatic construction of test oracles this way is specifically im-
portant for Android, as the platform rapidly evolves, i.e., substantial
amounts of APIs become deprecated and new APIs and features are
introduced in newer versions.

3 APPROACH OVERVIEW

Prior research has shown that energy defects manifest themselves
under specific contextual settings [28]. Specifically, some energy
defects, e.g., wakelocks and resource leaks, happen under specific
sequences of lifecycle callbacks, while others manifest themselves
under peculiar hardware states, e.g., poor network signal, no net-
work connection, or low battery. This observation forms the basis of
our work. We hypothesize an automated energy test oracle can be
constructed by monitoring and comparing the state of app lifecycle
and hardware elements before, during, and after the execution of a
test. If such a state changes in specific ways, the oracle determines
that the test is failing, i.e., reveals an energy issue.

Determining such patterns requires a deep knowledge of both
energy defects and their corresponding impact on the app lifecy-
cle and hardware elements. To overcome this challenge, ACETON
leverages Deep Learning (DL) techniques to automatically learn the
(mis)behaviors corresponding to the different types of energy de-
fects. Specifically, ACETON monitors the state of app lifecycle and
hardware elements during the execution of a test. Each sampled
state is represented as a bit vector, called State Vector (SV). The result
of executing a test is thus a sequence of SVs, which serves as the
feature vector for the DL algorithm. Each instance of training and
test dataset is a sequence of SVs sampled during the execution of a
test. ACETON feeds the SVs and their corresponding labels (indi-
cating the presence of an energy defect or not) to a Long Short Term
Memory (LSTM) network, which is a variant of Recurrent Neural
Networks (RNNs), to train a classifier. This classifier is subsequently
used as our test oracle to determine the label of new tests.

The DL engine of ACETON uses Attention Mechanism, a method
for making the RNNs work better by letting the network know

Automated Construction of Energy Test Oracles for Android ESEC/FSE ’20, November 8–13, 2020, Virtual Event, USA

Lifecycle Battery Bluetooth CPU Display Location Network Sensor

Activity
Running

Activity
Paused

Activity
Stopped

Activity
Destroyed

Service
Idle

Service
Running

Service
Stopped

Broadcast
Registered

Broadcast
Called

Broadcast
Destroyed

Charging AC
Powered

USB
Powered

Wireless
Powered

Battery
Full

Battery
Ok

Battery
Low

Battery
Very Low Overheat Temperature

Increasing
Low Power

Mode

Enabled Connected/
Connecting

Scanning/
Discovering Discoverable Bonded/

Paired
A2DP Service

Connected

Lifecycle

Battery

Bluetooth

Awake Dozing
Enabled

Process
Exists Utilized Partial

Wakelock WakelockCPU

Display

Location

Network

Sensor

On Brightness
Dark

Brightness
Dim

Brightness
Medium

Brightness
Light

Brightness
Bright

Auto
Brightness

Long
Tieout

GPS
Registered

Network
Registered

High
Frequency

Last Known
Location

GPS
Enabled

User
Still

User
Walking

User
Running

User
Biking

User
Driving

Airplane
Mode Scanning WiFi

Available
WiFi

Connected
Radio

Available
Radio

Connected
Signal
Poor

Signal
Good

Signal
Great

High Perf
Locked

Full
Locked

Scanning
Locked

Infinite
Wait

Background
Network

Active
Sensor

Wake Up
Fast Delivery

Fast Delivery
Accelerometer

Fast Delivery
Gravity

Fast Delivery
...

Fast Delivery
Temperature

Figure 2: State Vector Representation

where to look as it predicts a label [8], to generate an explainable
model. Specifically, ACETON is able to identify a subset of SVs that
the oracle attends to for determining the final passing or failing
outcome. By analyzing in what features the attended SVs are dif-
ferent from their predecessor SVs, we can verify whether the DL
model has attended to the relevant features corresponding to the
energy defects, in order to determine the correctness of a test.

Figure 1 provides an overview of our proposed approach, consist-
ing of three major components: (1) Sequence Collector, (2) DL Engine,
and (3) Attention Analysis. To construct the oracle, ACETON takes a
labeled database of apps with energy defects accompanied with test
suites as input. The Sequence Collector component executes each
test case and captures SVs at a fixed rate during test execution to
build the training dataset for ACETON. The training dataset is then
fed to the DL Engine, which constructs the classifier that serves
as our test oracle. To use the oracle, ACETON takes a test case as
input and collects a sequence of SVs during its execution. The oracle
takes the sequence as input and produces a fine-grained label for it,
indicating whether the test has failed, and if so, the type of energy
defect that was revealed by the test. To help us understand the
nature of patterns learned by the model, the oracle also produces an
Attention Weights vector. Attention Analysis component then takes
the Attention Weights vector to determine the list of features that
involved in the oracle’s decision. These features essentially con-
stitute the defect signature learned by the oracle. In the following
sections, we describe the details of ACETON’s components.

4 SEQUENCE COLLECTOR

The Sequence Collector component takes a test case 𝑡𝑖 as input,
executes it, and captures the state of app lifecycle and hard-
ware components at a fixed rate to generate a sequence of SVs,
»
𝑆𝑒𝑞𝑖 = ⟨𝑆𝑉0, 𝑆𝑉1, . . . , 𝑆𝑉𝑚⟩. In ACETON, # »

𝑆𝑒𝑞𝑖 serves as the feature
vector for the DL algorithm. In this section, we first explain details
of SV and then describe the process of sequence collection.

4.1 State Vector (SV)

Proper feature selection, i.e., feature engineering, is fundamental
to the application of DL techniques, as the quality and quantity
of features greatly impact the utility of a model. We chose our

features to reflect the changes in the state of app lifecycle and
hardware elements during the execution of a test, as these factors
have shown to play an important role in manifestation of energy
defects [28]. To capture the state during the execution of a test,
ACETON relies on a model called State Vector (SV). At the highest
level, SV consists of entries representing the lifecycle state of app
under test and the state of major energy-greedy hardware elements,
namely Battery, Bluetooth, CPU, Display, Location, Network (e.g.,
WiFi or radio), and Sensors (e.g., Accelerometer, Gravity, Gyroscope,
Temperature, etc.), # »

𝑆𝑉 = ⟨𝐶0,𝐶1, . . . ,𝐶7⟩, where 𝐶 represents the
element category. At a finer granularity, each category is broken
down to sub-entries that capture the corresponding state in terms
of multiple features, #»

𝐶 𝑗 = ⟨𝑓0, 𝑓1, . . . , 𝑓𝑛 𝑗
⟩, where 𝑓 is a binary value

representing the state of feature.
Figure 2 demonstrates the representation of SV at the highest

level in the first row and at a finer granularity for all the entries.
As shown in Figure 2, Location element consists of ten sub-entries,
namely GPS Registered (indicates whether a GPS listener is regis-
tered by an app), Network Registered (indicates whether a Network
listener is registered by an app), High Frequency (indicates if the
registered location listener listens to location updates frequently),
Last Known Location (indicates whether the last known location is
available for an app), GPS Enabled (indicates whether the GPS hard-
ware is on or off), and entries indicating the type of user movement
as the test executes.

To determine sub-entries, i.e., features, we needed two sets of
information: (1) a set of lifecycle states for Android components,
i.e., Activity, Lifecycle, and BroadcastReceiver, and (2) states of key
hardware elements that can be changed at the software level. We
referred to Android documentation [1, 2, 6] to determine the former.
For the latter, we followed a systematic approach similar to that
presented in the prior work [28] to obtain all the Android APIs
and constant values in the libraries that allow developers to moni-
tor or utilize hardware components. Specifically, we performed a
keyword-based search on the Android API documentation to col-
lect hardware-relevant APIs and fields, identified all the hardware
states that can be changed or monitored at the software level, and
constructed State Vector as demonstrated in Figure 2. By identifying

ESEC/FSE ’20, November 8–13, 2020, Virtual Event, USA Reyhaneh Jabbarvand and Forough Mehralian and Sam Malek

the hardware features using the mentioned approach, i.e., deter-
mining the hardware states that can be manipulated or monitored
using application software or Android framework, we are assured
the oracles constructed following our approach are device indepen-
dent. Additionally, the constructed oracle is app independent, as it
monitors the features that are related to app’s lifecycle state, which
are managed by Android framework, in contrast to features that
are related to the code of apps, e.g., usage of specific APIs. Thereby,
once trained on a set of apps, the oracle can be reused for testing
of other apps.

An SV consists of a total of 84 binary features. We leveraged
One-Hot encoding to transform all the categorical data into binary
values. For example, while user movement can be a single feature
with categorical text values of Still,Walking, Running, Biking, and
Driving

1, we model it as five binary features. This is mainly because
binary features are easier to learn by DL techniques, thereby leading
to a higher level of accuracy in a shorter amount of time.

4.2 Collecting Sequences

The Sequence Collector component executes a given test, 𝑡𝑖 , and
collects the values for different sub-entries of SV at a fixed sampling
rate to generate # »

𝑆𝑒𝑞𝑖 . ACETON’s DL Engine requires the size of all
the # »

𝑆𝑒𝑞𝑖s be the same. Since tests may take different amounts of time
to execute, Sequence Collector adjusts the frequency of sampling
based on the length of tests. Current implementation of ACETON
requires 128 SV samples (details in Section 7).

Sequence Collector leverages dumpsys and systrace capabilities
of the Android Debug Bridge (ADB), along with instrumentation of
apps, to collect the necessary information at different time stamps.
dumpsys is a command-line tool that provides information about
system services, such as batterystats, connectivity, wifi, power, etc.
For example, “adb shell dumpsys wifi” command collects and
dumps the statistics related to the WiFi hardware element. To de-
termine if there is a WiFi network available, we look at the value of
“WiFi is” line in the dumpsys report. Similarly, to see if the phone
is connected to a WiFi network, we look at the value of “curState”.
If “curState = NotConnectedState”, the phone is not connected
to a WiFi network. If “curState = ConnectedState”, the phone
has connection to a WiFi network, in which case we collect addi-
tional information about the connection, e.g., the strength of the
signal.

While dumpsys provides detailed information about all the run-
ning services on a phone, its reporting time for CPU is very long.
That is, it batches all the CPU usage information and updates the
CPU report every several minutes. Thereby, we used systrace to
collect the information about CPU usage of an app during test ex-
ecution. Finally, we could not find information in either dumpsys

or systrace report for a subset of features. To that end, ACETON
automatically instruments the app under test to collect such infor-
mation. For example, Location category contains features related to
the type of user movement. To identify how and when user move-
ment changes, ACETON instruments the app to register an Activity

Recognition listener and listens to the changes in user movement.
That is, when the device recognizes a change in the user movement
by collecting the data from various sensors, Android will notify the

1These categories are specified in the Android documentation.

RNN =

=

(a)

(b)

x i

hi

x 0

h t

RNN

h0

x0

RNN

h t

x t... ...

x i

LSTMLSTM

x 0 x t... ...

hih0 h t

LSTM

x 0

h t

Figure 3: Architecture of an RNN and LSTM networks

listener about the type of detected activity, e.g., walking, running.
As another example, all the lifecycle callbacks will be instrumented
to print a message Android log, i.e., LogCat, as they are invoked. By
processing the log files collected for an SV during test execution,
we determine the values for lifecycle features.

5 LEARNING ENGINE

In this section, we describe the DL-based construction of our energy
test oracle.

5.1 Model Selection

To determine what Machine Learning model is suitable for solving
the energy oracle problem, we considered the following criteria:

1) The construction of energy oracle is a form of Classification
problem, i.e., we train our model based on a set of labeled pass-
ing or failing tests. Hence, the model should be suitable for such
supervised learning problem;

2)We have a relatively high-dimensional data, i.e., each single in-
put to the model is a sequence of SVs sampled during execution of a
test. For a sequence size of 128 and SV size of 84 with binary features,
each instance of our feature vector can take 128 × 84 = 2, 1504 val-
ues. Thereby, the model should be able to deal with both sequential

and high-dimensional data;
3) Energy defects can occur anywhere during the execution of

a test. As a result, the index of SVs where an energy defect occurs
can be different among tests. Thereby, our proposed oracle should
be able to detect emergence of the anomalous energy behavior in
𝑆𝑉𝑘 from the SVs that appear before it, {𝑆𝑉𝑙 | 𝑙 < 𝑘}. That is, our
model should be able to holistically consider the observed SVs in
order to accurately detect energy defects.

Given these criteria, the learning component of ACETON uses
Long Short-Term Memory (LSTM), which is a type of Recurrent Neu-
ral Network (RNN). Specifically, ACETON uses an LSTM Neural
Network, augmented by Attention mechanism, to construct oracles
for energy defects in Android. In the remainder of this section, we
describe the intuition behind why LSTM is the best DL model for
construction of an energy test oracle.

5.2 Long Short-Term Memory (LSTM)

Neural Networks (NNs) have been widely used to recognize un-
derlying relationships in a set of data through a statistical process.

Automated Construction of Energy Test Oracles for Android ESEC/FSE ’20, November 8–13, 2020, Virtual Event, USA

Such systems learn to perform a task or predict an output by con-
sidering examples (supervised learning) rather than pre-defined
rules. For example, NN algorithms have been shown to effectively
identify presence of a certain object in a given image, only by ana-
lyzing previously seen images that contain that object and without
knowing its particular properties. Neural Networks are basically a
collection of nodes, i.e., artificial neurons, which are typically ag-
gregated into layers. The network forms by connecting the output
of certain neurons in one layer to the input of other neurons in the
predecessor layer, forming a directed, weighted graph. Neurons and
their corresponding edges typically have a weight that adjusts as
the learning proceeds. “Classic” NNs transmit information between
neurons in a single direction, thereby are not effective in dealing
with sequential data.

Recurrent Neural Networks (RNNs) are specific type of NNs that
have shown to be effective in solving large and complex problems
with sequential data, e.g., speech recognition, translation, and time-
series forecasting. They are networks with loops in them, which
allows them to read the input data one sequence after the other.
That is, if the input data consists of a sequence of length 𝑘 , RNN
reads the data in a loop with 𝑘 iterations. Figure 3-a shows the ar-
chitecture of an RNN on the left, which is unfolded over time on the
right. While the chain-like nature of RNNs enables them to reason
about previous sequences, basic RNNs are unable to learn long-term
dependencies due to the Vanishing Gradient problem [13].

Learning long-term dependencies is essential in the energy oracle
problem, defect patterns should persist for some time in order to
be considered a defect. For example, registering a GPS listener that
listens to location updates as frequently as possible—by setting the
time and distance parameters of requestLocationUpdates() to
0—is an example of an energy defect [29]. The pattern of this defect
may involve GPS Registered and High Frequency sub-entries in the
SV (Figure 2), i.e., turn their corresponding value to “1” as an app
registers the listener. However, simply observing that pattern in
a sampled SV does not necessarily entail an energy defect. That
is, if developer registers a high frequency location listener in a
short-lived Broadcast Receiver or Service, or set a short timeout to
unregister it, the pattern does not impact the battery life, hence,
should not be considered a defect. In other words, the pattern should
persist among several consecutive SVs during the execution of a
test, or persist after the test terminates to be an energy defect.

LSTM networks are special kind of RNNs that are capable of
learning long-term dependencies [26], thereby can remember the
patterns that will persist. Similar to classic RNNs, LSTMs have the
form of a chain of repeating modules of neural network, as shown
in Figure 3-b. However, the repeating module in LSTM (right hand
side of Figure 3-b) has a different structure compared to that of
RNN (right hand side of Figure 3-a). While RNNs have a single
NN layer (demonstrated by black rectangle), LSTMs have four of
them, which are interacting in a special way to create an internal
memory state. The combination of layers enable LSTM to decide
what information to throw away and what to keep, i.e., empowering
LSTM to remember what it has learned till present.

The LSTM layer consists of several LSTM modules that take a
sequence of SVs as input and generate an output vector, # »

ℎ𝑚 . A regu-
lar classification algorithm projects this output to the classification

space, with dimensions equal to the number of classes, and then
applies a probabilistic function, a.k.a. softmax, to normalize the val-
ues between [0, 1] and generate a label. However, to produce more
accurate labels, ACETON takes # »

ℎ𝑚 as an input to an additional
layer, i.e., Attention layer, as discussed next.

5.3 Dataset Curation

A DL approach requires the availability of large amounts of high
quality training data, i.e., a large dataset with diverse types of en-
ergy defects in mobile apps accompanied by test suites that reveal
their existence. We present a novel usage of mutation testing to
curate such dataset. Specifically, we used 𝜇Droid, an energy-aware
mutation testing framework designed for Android [29]. The ratio-
nale behind this choice includes:

(1) 𝜇Droid can provide us with a large, diverse, and high quality
dataset. The mutation operators of 𝜇Droid are designed based on
the most comprehensive energy defect model for Android to date,
which is constructed from real energy defects obtained from several
dozens of Android apps. These defects have been shown to strongly
associate with previously unknown real energy defects in apps
that were different from those where the defect model was derived
from. 𝜇Droid also comeswith a set of high quality developer-written
passing and failing tests, which are essential for generating a labeled
dataset for our classification problem. Each pair of ⟨𝑚𝑢𝑡𝑎𝑛𝑡, 𝑡𝑒𝑠𝑡⟩
from 𝜇Droid contributes one data point for our dataset.

(2) 𝜇Droid categorizes mutants based on the hardware com-
ponents that they misuse, providing us with fine-grained labels
for failing tests, namely 𝑃𝑎𝑠𝑠 , 𝐹𝑎𝑖𝑙𝐵𝑙𝑢𝑒𝑡𝑜𝑜𝑡ℎ , 𝐹𝑎𝑖𝑙𝐶𝑃𝑈 , 𝐹𝑎𝑖𝑙𝐷𝑖𝑠𝑝𝑙𝑎𝑦 ,
𝐹𝑎𝑖𝑙𝐿𝑜𝑐𝑎𝑡𝑖𝑜𝑛 , 𝐹𝑎𝑖𝑙𝑁𝑒𝑡𝑤𝑜𝑟𝑘 , and 𝐹𝑎𝑖𝑙𝑆𝑒𝑛𝑠𝑜𝑟 , to perform additional
analysis and verify the validity of the DL model (see Section 6).

5.4 Attention Mechanism

While LSTMs have memory, their performance drastically degrades
as the length of sequences gets longer, known as the long sequence
problem in the literature [18]. Attention mechanism is a method for
making LSTMs overcome this challenge by reminding the network
where it has previously looked as it performs its task [8]. Thereby,
no matter how long the sequences, LSTM knows where it has fo-
cused and decides what to do next based on that information. In
addition to solving the long sequence problem, Attention mecha-
nism is extensively used in the deep learning community to resolve
the explainability of neural networks.

The responsibility of Attention layer is to generate an Attention

Weight vector, # »
𝐴𝑊 = ⟨𝑤0,𝑤1, . . . , 𝑥𝑚⟩, and adjust the weights as

SVs are sequentially being fed to the LSTMs. Once the oracle re-
ceives all the SVs, # »

𝐴𝑊 contains weight values corresponding to
each SV. ACETON uses soft attention, where𝑤𝑖 values in

»
𝐴𝑊 are

between 0 and 1 and
∑𝑚
𝑖=0𝑤𝑖 = 1. Thereby, it provides a convenient

probabilistic interpretation of which SVs in the test case the oracle
has relied on to determine the outcome of a given test. For example,
if ACETON decides a test fails due to a location-related energy de-
fect, i.e., predicts 𝐹𝑎𝑖𝑙𝐿𝑜𝑐𝑎𝑡𝑖𝑜𝑛 label for it, we expect that the highest
weights in # »

𝐴𝑊 belong to SVs in which Location sub-entries were
actively changed as the test executed. If so, the model proves to
focus on relevant sequences to predict the outcome. Otherwise, it
has learned an incorrect pattern and might be invalid.

ESEC/FSE ’20, November 8–13, 2020, Virtual Event, USA Reyhaneh Jabbarvand and Forough Mehralian and Sam Malek

SV index SV index SV index SV index
(a) (b) (c) (d)

At
te

nt
ion

 W
eig

ht

Figure 4: Visualization of Attention Weight vector for energy defects related to a) CPU, b) Display, c) Location, and d) Network

6 ATTENTION ANALYSIS

Interpretability of DL models is essential, as they are highly vul-
nerable to the data leakage problem [32]. Data leakage causes a
model to create unrealistically good predictions based on learning
from irrelevant features. A famous example of data leakage is a
cancer predictive model that makes its decision based on the lab’s
label on the X-Ray, rather than focusing on the content of X-Ray
itself. While this model may make good predictions, it is invalid.
To ensure validity of a model, it is hence crucial to determine the
features that impact its decision and verify they are relevant.

Utilization of Attention by itself improves the performance and
accuracy of the energy oracle. ACETON takes advantage of Atten-
tion layer’s product, i.e., Attention Weight vector to identify a set of
features that ACETON’s model has focused on to predict a label.
This set can be used for two purposes: (1) verify validity of the
learned model, and (2) enhance energy fault localization.

Algorithm 1 presents ACETON’s approach for Attention Anal-
ysis. For a given failing test, 𝑡𝑖 , it takes the sequence of SVs,
»
𝑆𝑒𝑞𝑖 = ⟨𝑆𝑉0, 𝑆𝑉1, . . . , 𝑆𝑉𝑚⟩, Attention Weight vector, # »

𝐴𝑊𝑖 , and pre-
dicted label, 𝑙𝑖 , as input, and produces a list of features that were
involved in the decision, i.e., attended features, as output. The algo-
rithm starts by identifying a subset of SVs in # »

𝑆𝑒𝑞𝑖 that the oracle has
attended to decide the label,

»

𝑆𝑒𝑞′
𝑖
= ⟨𝑆𝑉𝑛, , 𝑆𝑉𝑘 ⟩, 0 < 𝑛 ≤ 𝑘 < 𝑚

(Line 2), and determines the features that are common between SVs
in

»

𝑆𝑒𝑞′
𝑖
to construct 𝐶𝑜𝑚𝑚𝑜𝑛𝑠𝑖 (Line 3). Next, the Algorithm takes

the predecessor to the first element in
»

𝑆𝑒𝑞′
𝑖
, 𝑃𝑟𝑒𝑑𝑖 = 𝑆𝑉𝑛−1 (Line 4),

and compares the values of features in 𝐶𝑜𝑚𝑚𝑜𝑛𝑠𝑖 with that of in
𝑃𝑟𝑒𝑑𝑖 ’s features to identify attended features, 𝐹𝑒𝑎𝑡𝑢𝑟𝑒𝑠𝑖 (Lines 5-8).

Finally, Algorithm 1 extracts the SV category corresponding to
the attended features, 𝑐𝑖 (Line 9). If 𝑙𝑖 matches the attended category,
𝑐𝑖 , Algorithm 1 verifies that the model attended to the features
relevant to the type of defect and returns 𝐹𝑒𝑎𝑡𝑢𝑟𝑒𝑠𝑖 (Lines 10-11).
Otherwise, it returns an empty set, as the model has attended to
the incorrect SVs and might be invalid (Lines 12-13).

To explain the intuition behind Algorithm 1, consider Figure 4,
which visualizes # »

𝐴𝑊 for four samples of our dataset, related to
energy defects that engage CPU, Display, Location, and Network.
Figure 4-a is for an energy defect related to the CPU, which uti-
lizes CPU when the app is paused, i.e., goes in the background.
In this example, the spike in the attention weights that remains
for some time corresponds to when the test puts an app in the
background. Figure 4-b is for an energy defect related to the Dis-
play that increases the display brightness to the max during app
execution. The spike in this Figure is where the app increases the
screen brightness by setting the screen flag. As the app terminates,

Algorithm 1: Attention Analysis Algorithm
Input: SV sequence of a failing test # »

𝑆𝑒𝑞𝑖 , Predicted label 𝑙𝑖 ,
Attention Weight vector # »

𝐴𝑊𝑖

Output: Attended Features 𝐹𝑒𝑎𝑡𝑢𝑟𝑒𝑠𝑖
1 𝐹𝑒𝑎𝑡𝑢𝑟𝑒𝑠𝑖 ← ∅
2

»

𝑆𝑒𝑞′
𝑖
← 𝑔𝑒𝑡𝐴𝑡𝑡𝑒𝑛𝑑𝑒𝑑𝑆𝑉𝑠 (𝑆𝑒𝑞𝑖 , 𝐴𝑊𝑖)

3 𝐶𝑜𝑚𝑚𝑜𝑛𝑠𝑖 = 𝑔𝑒𝑡𝐶𝑜𝑚𝑚𝑜𝑛𝐴𝑡𝑡𝑒𝑛𝑑𝑒𝑑𝐹𝑒𝑎𝑡𝑢𝑟𝑒𝑠 (𝑆𝑒𝑞′
𝑖
)

4 𝑃𝑟𝑒𝑑𝑖 ← 𝑔𝑒𝑡𝑃𝑟𝑒𝑑𝑒𝑐𝑒𝑠𝑠𝑜𝑟 (𝑆𝑒𝑞′
𝑖
)

5 foreach ⟨𝑓𝑥 , 𝑣𝑥 ⟩ ∈ 𝐶𝑜𝑚𝑚𝑜𝑛𝑠𝑖 do

6 𝑣′𝑥 ← 𝑔𝑒𝑡𝐹𝑒𝑎𝑡𝑢𝑟𝑒𝑉𝑎𝑙𝑢𝑒 (𝑓𝑥 , 𝑃𝑟𝑒𝑑𝑖)
7 if 𝑣′𝑥 ≠ 𝑣𝑥 then

8 𝐹𝑒𝑎𝑡𝑢𝑟𝑒𝑠𝑖 ← 𝐹𝑒𝑎𝑡𝑢𝑟𝑒𝑠𝑖 ∪ 𝑓𝑥

9 𝑐𝑖 ← 𝑔𝑒𝑡𝐴𝑡𝑡𝑒𝑛𝑑𝑒𝑑𝐶𝑎𝑡𝑒𝑔𝑜𝑟𝑦 (𝐹𝑒𝑎𝑡𝑢𝑟𝑒𝑠𝑖)
10 if 𝑐𝑖 matches 𝑙𝑖 then

11 return 𝐹𝑒𝑎𝑡𝑢𝑟𝑒𝑠𝑖

12 else

13 return ∅

Android clears the flag and the brightness goes back to normal,
thereby, the attention of the model also fades. Figure 4-c is for an
energy defect related to the Location, where the developer registers
a listener for receiving location updates with high frequency and
forgets to unregister the listener when the app terminates. In this
case, attention of the model goes up at the SV index in which the
app registers the listener and does not drop even when the test
terminates. Finally, Figure 4-d is for a Network energy defect, where
the app fails to check for connectivity before performing a network
task. When there is no network connection available, the app still
performs a signal search, which consumes an unnecessary battery
consumption. In Figure 4-d, the attention of model lasts shorter
compared to other examples, as searching for the signal is effective
for a short period of time, compared to the length of test. Thereby,
it appears in few sampled SVs.

As shown in Figure 4, depending on where the energy defects in
these energy-greedy apps occur, how much they last, and whether
their impact remains when a test terminates or not, attention of
the model to the sampled SVs varies. However, there is one pattern
common among them. There is always a sharp jump in the atten-
tion weights, which indicates where the model starts to notice the
pattern. The spike of attention either remains until end or sharply
drops after some time. To that end, Algorithm 1 sets 𝑆𝑉𝑛 as the start
of the biggest jump in the weights in # »

𝐴𝑊𝑖 , and 𝑆𝑉𝑘 as the end of
biggest drop following the sharpest jump. If there is no sharp drop
until the end of # »

𝐴𝑊𝑖 , Algorithm 1 sets 𝑆𝑉𝑘 to the last SV in 𝑆𝑒𝑞𝑖 ,
i.e., 𝑆𝑉𝑚 . The SVs between 𝑆𝑉𝑛 and 𝑆𝑉𝑘 construct 𝑆𝑒𝑞′

𝑖
.

Automated Construction of Energy Test Oracles for Android ESEC/FSE ’20, November 8–13, 2020, Virtual Event, USA

The next step after identifying the attended SVs is to determine
the attended features. To that end, Algorithm 1 first collects
the features that are common (i.e., have the same value) among
all SVs in

»

𝑆𝑒𝑞′
𝑖
to construct 𝐶𝑜𝑚𝑚𝑜𝑛𝑠𝑖 . Formally speaking,

𝐶𝑜𝑚𝑚𝑜𝑛𝑠𝑖 B { ⟨𝑓𝑥 , 𝑣𝑥 ⟩ | ∀𝑆𝑉𝑗 ∈
»

𝑆𝑒𝑞′
𝑖
, 𝑓𝑥 .𝑣𝑥 = 1 ∨ 𝑓𝑥 .𝑣𝑥 = 0 }.

That is, 𝐶𝑜𝑚𝑚𝑜𝑛𝑠𝑖 is a set of pairs ⟨𝑓𝑥 , 𝑣𝑥 ⟩, where the value 𝑣𝑥 of
each feature 𝑓𝑥 among all the SVs in

»

𝑆𝑒𝑞′
𝑖
is always 0 or always 1.

While these features are common among the attended SVs, not all
of them are relevant to the final decision of the oracle. For example,
𝐶𝑜𝑚𝑚𝑜𝑛𝑠𝑖 is very likely to contain Display On feature in most
cases, as test execution happens when the display is on. However,
this feature should not appear in the attended features if a test that
fails due to a Network misuse.

To exclude the irrelevant features, Algorithm 1 refers to 𝑆𝑉𝑛−1,
which is the predecessor to the first SV in

»

𝑆𝑒𝑞′
𝑖
. The intuition here

is that 𝑆𝑉𝑛 ∈
»

𝑆𝑒𝑞′
𝑖
is where the model starts to attend, indicating a

change in the state of lifecycle and hardware elements that cause the
energy defect. Hence, 𝑆𝑉𝑛−1 indicates a safe state with no energy
defect. For each 𝑓𝑥 in 𝐶𝑜𝑚𝑚𝑜𝑛𝑠𝑖 , Algorithm 1 finds the value of its
corresponding feature in 𝑆𝑉𝑛−1. If that value is different from 𝑣𝑥 ,
Algorithm 1 adds it to the attended features 𝐹𝑒𝑎𝑡𝑢𝑟𝑒𝑠𝑖 .

Once the list of attended features is extracted, Algorithm 1 iden-
tifies the category corresponding to those features by referring
to the high-level structure of SV (recall Figure 2). For example, if
𝐹𝑒𝑎𝑡𝑢𝑟𝑒𝑠𝑖 contains Enabled, Connected/Connecting, and Bonded/-

Paired features, category 𝑐𝑖 is set to Bluetooth. If the predicted
category for the given test, 𝑙𝑖 , matches 𝑐𝑖 , we determine that the
model has attended to the right features to decide the label.

Attended features can be viewed as the footprint of energy de-
fects on the app’s lifecycle and hardware states, i.e.,Defect Signature.
Thereby, in addition to verifying the validity of the oracle, they can
be used by developers to enhance the fault localization process. In
fact, knowing the fine-grained properties of the app lifecycle and
hardware elements that are involved in the manifestation of an en-
ergy defect can focus the developers effort on parts of the code that
utilizes Android APIs related to them, making the identification
of the root cause easier. For example, if the defect signature con-
tains GPS Registered and High Frequency features from the Location
category, developers are provided with strong hints that parts of
the program that register location listeners for GPS and adjust the
frequency of receiving location updates are culpable for the energy
defect.

7 EVALUATION

We investigate the following five research questions in the evalua-
tion of ACETON:
RQ1. Effectiveness: How effective is the generated test oracle for

detection of energy defects in Android apps?
RQ2. Usage of Attention Mechanism: To what extent usage of

Attention Mechanism improves the performance of the
model? What features impact the oracle’s decision?

RQ3. Detection of Unseen Energy Defects: To what extent can
ACETON detect unseen energy defect types, i.e., those that
are not in the training dataset?

RQ4. Reusability of the Oracle: Can the generated oracle be used to
detect energy issues on different apps and mobile devices?

Av
er

ag
e R

ec
all

Average #Samples Per Test

Figure 5: Sensitivity of the oracle’s accuracy to sampling rate

RQ5. Performance: How long does it take for ACETON to train
and test a model?

7.1 Experimental Setup

Dataset: 𝜇Droid dataset contains 413 mutants from various cat-
egories of energy defects and comes with 329 high quality tests
generated by Android developers, making it suitable to generate
our dataset. Each pair of ⟨𝑚𝑢𝑡𝑎𝑛𝑡, 𝑡𝑒𝑠𝑡⟩ from 𝜇Droid serves as a
data point in our Labeled Database (Figure 1). 𝜇Droid provides only
passed or killed labels for its tests. We transformed the killed label
into a more fine-grained label in our approach (ref. Section 5.3),
based on the high-level categories related to the hardware compo-
nents that the mutants misuse. That is, if the killed mutant belongs
to Bluetooth category in 𝜇Droid, we change its label to 𝐹𝑎𝑖𝑙𝐵𝑙𝑢𝑒𝑡𝑜𝑜𝑡ℎ .
In addition, we removed the mutants that were reported as equiv-
alent by 𝜇Droid, as well as mutants which could not be killed by
test suites, leaving us with 295 mutants containing 22 types of en-
ergy defect. The first six columns of Table 1 show details about
the properties of the Labeled Database. Overall, the Labeled Dataset
contains 16, 347 instances of ⟨𝑚𝑢𝑡𝑎𝑛𝑡, 𝑡𝑒𝑠𝑡⟩, where 9, 266 of them
are passing and 7, 081 are failing.2 We executed each instance using
Sequence Collector component and collected corresponding SVs for
each instance to generate our final dataset. Table 1 shows the details
of 𝜇Droid’s dataset.
DL Engine Configuration: We implemented our learning model
using PyTorch [39], an open-source ML library for Python. There
are multiple parameters in the implementation that impact the per-
formance of a DL model. One of them is the loss function, which
determines how well the algorithm approaches to learn a model.
While Cross-Entropy is the most commonly used loss function for
classification problems [47], it was not the best option in this prob-
lem due to the imbalanced nature of our dataset, i.e., the number
of passing instances in our database is higher than failing ones.
Thereby, we used Weighted Cross-Entropy [34] loss function to en-
force model focus on minority classes. To enhance the performance,
we utilize Adam optimizer [33] to update the network weights and
minimize this loss function iteratively. Overfitting can also have a
negative impact on the performance of a model. To overcome Over-
fitting and ensure the generalization of the model on new data, we
use early stopping technique [40]. That is, we track the performance
of the trained model on the validation dataset at each epoch and
2The actual size of Labeled Dataset in the context of DL is 1, 961, 640 = 16, 347 × 120,
as each ⟨𝑚𝑢𝑡𝑎𝑛𝑡, 𝑡𝑒𝑠𝑡 ⟩ consists of 120 SVs, where the model should consider each of
them to generate a correct label. For the sake of simplicity, we only report the size of
⟨𝑚𝑢𝑡𝑎𝑛𝑡, 𝑡𝑒𝑠𝑡 ⟩ pairs.

ESEC/FSE ’20, November 8–13, 2020, Virtual Event, USA Reyhaneh Jabbarvand and Forough Mehralian and Sam Malek

Table 1: Properties of Labeled Database, learned defect signatures, and ACETON’s performance on unseen defects.

Hardware
Category

Subcategory
ID Defect Description #Mutants #Instances Defect

Signature
Unseen
RecallFailing Passing

Bluetooth
B1 Unnecessary active Bluetooth connections

5 83 110
BE = 0, BC = 1,

(AP ∨ AD ∨ SS) = 1 93.04

B2 Frequently scan for discoverable device BS = 1,
BTI = 1 82.54

B3 Keep discovering for devices when not interacting BE = 1, BS = 1,
AP = 1 83.33

CPU
C1 High CPU utilization

51 1704 2022

CPUA = 1, PE = 1, CPUU = 1,
Charging = 0, BTI = 1, BO = 1,

(AP ∨ AD ∨ SR) = 1
99.64

C2 High CPU utilization when battery is low
CPUA = 1, PE = 1, CPUU = 1,

Charging = 0, BVL = 1, BTI = 1, BO= 1
(AP ∨ AD ∨ SR) = 1

99.12

C3 High CPU utilization when not interacting
CPUA = 1, PE = 0, CPUU = 1,
Charging = 0, BTI = 1, BO = 1,

(AP ∨ AD ∨ SR) = 1
98.85

C4 Active CPU wakelock while not interacting AD = 1, CPUW = 1 6.7*

Display D1 Failing to restore long screen timeout 90 1506 2458 DLT = 1, (AP ∨ AD) = 1 -
D2 Maximum screen brightness set by app DSBB = 1, AR = 1 -

Location
L1 High frequency Location update

91 2632 3195

(GL ∨ NL) = 1, HFLU = 1, GO = 1,
LKLA = 1, (US ∨ UW) = 1 97.62

L2 Unnecessary accurate Location Listener GL = 1, NL = 1, LKLA = 1, GO = 1,
(US ∨ UW) = 1, UD = 0 99.53

L3 Active GPS when not interacting (GL ∨ NL) = 1, LKLA = 1, GO = 1,
(AP ∨ AD) = 1, UD = 0 82.01

L4 Neglecting Last Known Location GL = 1, LKLA= 1, HFLU = 1,
GO = 1, UD = 0 100

Network

N1 Fail to check for connectivity

46 824 1321

WS = 1, WA = 0, WC = 0 5.21*
N2 Frequently scan for WiFi WS = 1, WC = 1, BTI = 0, AP = 1 100
N3 Scanning for WiFi while not interacting WS = 1, WA = 1, (AP ∨ AD) = 1 33.33*
N4 Using cellular over WiFi is available WA = 1, WC = 0, RA = 1, RC = 1,

(SGo ∨ SGr) = 1 97.37

N5 Long Timeout for Corrupted Connection WA = 1, WC = 1, ICW = 1,
(AP ∨ AD) = 1 96.15

N6 Active WiFi wakelock while not interacting
WA = 1, WC = 1, NAB = 1,

(WLS ∨WLHP) = 1,
(AP ∨ AD) = 1

98.08

N7 Improper High Performance WiFilock WA = 1, WC = 1, SP = 1, WLHP = 1,
(AP ∨ AD) = 1 100

Sensor S1 Unnecessary active sensors 12 332 160 SA = 1, (AP ∨ AD = 1) 96.47
S2 Fast delivery wakeup sensors SA = 1, WFDS = 1, ASAcc = 1,

ASPre = 1, ASMag = 1 94.07
Total - - 295 7081 9266 - -

Table Legend:

AD: Activity Destroyed, AP: Activity Paused, AR: Activity Running, BE: Bluetooth Enabled, BC: Bluetooth Connected, BS: Bluetooth Scanning,
BTI: Battery Temperature Increasing, BO: Battery Overheat, BVL: Battery Very Low, CPUA: CPU Awake, CPUU: CPU Utilized, CPUW: CPU Wakelock,
DLT: Display Long Timeout, DSBB: Display Screen Brightness Bright, GL: GPS Listener, HFLU: High Frequency Location Update, GO: GPS On, LKLA:
Last Known Location Available, LCT: Long Connection Timeout, NL: Network Listener, NAB: Network Active Background, PE: Process Exists, RA: Radio
Available, RC: Radio Connected, SGo: Signal Good, SGr: Signal Great, SP: Signal Poor, SA: Sensor Active, SS: Service Stopped, WA: WiFi Available,
WC: WiFi Connected, WLS: Wakelock Scanning, WLHP: Wakelock High Performance, WS: WiFi Scanning, UD: User Driving, US: User Still, UW: User
Walking, WFDS: Wakeup Fast Delivery Sensor, ASAcc = Active Accelerometer Sensor, SPre: Active Pressure Sensor, ASMag: Active Magnetic Sensor

stop the training if there is an increasing trend in the validation
loss in 2 consecutive epochs. Thereby, we get a model with the least
validation loss. We have also followed the 10-fold cross validation
methodology in evaluating the performance of oracle.

For hyperparameter tuning, we conducted a guided grid search
strategy to find a configuration for the model that results in the
best performance on the validation data. One of the important
hyperparameters in energy oracle model is the size of sequences.
To illustrate how this hyperparameter impacts performance of the
oracle, consider Figure 5, which depicts the sensitivity of the energy
oracle’s accuracy to the average number of samples per test. As
shown in this Figure, accuracy of the oracle is quite low, 61%, when

we sample SVs only before and after execution of a test (Sample

Per Test = 2). That is because a subset of energy defects, e.g., using
light background, fast delivery sensor listener, and etc., happen
during the execution of a test and their impact disappears when
the test terminates. Therefore, our approach is unable to learn and
later predict such types of energy issues with extremely low sample
rates. While increasing the number of samples per test alleviates
this problem, exceeding certain threshold (past 130 samples per
test in Figure 5) appears to unnecessarily increase the complexity
of DL problem, thereby reducing the accuracy of classifier. Other
detailed configuration of DL Engine are available on ACETON’s
website [7].

Automated Construction of Energy Test Oracles for Android ESEC/FSE ’20, November 8–13, 2020, Virtual Event, USA

Table 2: Comparing ability of ACETON in detecting the category of different energy defects (* indicates the wrong predictions)

ACETON with Attention ACETON without Attention
Pass Bluetooth CPU Display Location Network Sensor Pass Bluetooth CPU Display Location Network Sensor

Pass 916 0 0 0 3* 0 0 903 0 1* 2* 3* 9* 1*
Bluetooth 0 8 0 0 0 0 0 4* 8 0 0 0 0 0
CPU 0 0 168 0 0 0 0 0 0 167 0 0 0 0
Display 0 0 0 150 0 0 0 0 0 0 148 0 0 0
Location 0 0 0 0 258 0 0 1* 0 0 0 258 0 0
Network 0 0 0 0 0 80 0 0 0 0 0 0 71 0
Sensor 0 0 0 0 0 0 32 8 0 0 0 0 0 31
Precision(%) 99.67 100 100 100 100 100 100 98.26 66.67 100 100 99.61 100 79.49
Recall(%) 100 100 100 100 98.85 100 100 98.58 100 99.4 98.67 98.85 88.75 96.88

Table 3: ACETON’s performance on detection of real defects.

Apps a2dp.Vol Gtalk Openbmap Open Camera Sensorium Ushahidi
Version 8624c4f 8231d4d 4767d64 dce8b85 c0f8fa2 5ce2d94 56c3a67 14d166f f72421f 1.0 e153fdf 94c9a8d 94c9a8d 4f20612
Defect Type Location Location Bluetooth CPU Location CPU CPU CPU Network Display CPU CPU CPU Location
Label Location Location Bluetooth CPU Location CPU CPU CPU Network Display CPU CPU CPU Location

7.2 RQ1: Effectiveness

While ACETON builds on top of a high-quality dataset, we per-
formed two experiments to ensure generalizability of our results in
evaluating the ability of ACETON to detect energy defects. In the
first experiment, we used the Labeled Dataset for both training and
testing purposes. In the second experiment, we trained the oracle
based on the Labeled Dataset and used real energy defects (non-
mutant apps with energy defects confirmed by their developers) to
test the oracle.

7.2.1 Effectiveness on detecting mutant defects. For the purpose of
this evaluation, we divided the dataset obtained from Labeled Data-

base into two categories of training set, to train the oracle with it,
and test set, to test the performance of oracle. That is, we downsam-
pled each category of mutants, e.g., Location, by 90% for training,
and used the remaining 10% for testing. While our feature vector
is designed to reflect information that is app independent—not de-
pendent to usage of specific APIs or code constructs—we ensured
that during downsampling, the mutants in the test set belong to
different apps compared to that used in the training set. This strat-
egy accounts for overfitting and potential bias in favor of specific
apps. We select Precision and Recall, and not Accuracy, as metrics
to measure effectiveness of ACETON in predicting correct labels,
since our data is imbalanced. With imbalanced classes, it is easy to
get a high accuracy without actually making useful predictions, as
the majority class impacts true negative values. Table 2 shows the
result for this experiment under ACETON with Attention column.
These results are obtained through a 10-fold cross validation, i.e.,
downsampling repeated 10 times.

Each row in this Table shows the number of test instances in
a predicted class, where each column indicates the instances in
actual class. From this result we observe that: ACETON predicts

correct labels for each category with a very high precision

and recall. In fact, ACETON was able to detect all the defects
related to the Sensor, Network, Display, CPU, and Bluetooth and only
missed 3 Location defects (marked by * in Table 2), i.e., identified

them as passed. The average precision and recall values over all
categories are 99.9% and 99.8%, respectively. Categorical precision
and recall values are listed in the last two rows.

7.2.2 Effectiveness on detecting real defects. While ACETON is able
to effectively detect the outcome of tests in mutants, we also wanted
to see how it performs on Android apps that have real but similar
energy defects. To that end, we referred to a prior work [28], which
provides a dataset of 14 Android apps with real energy defects. Each
app is accompanied by a test generated using their test generation
tool, which is manually confirmed to reproduce the energy defect.
The supplementary information in the artifact of that dataset also
indicates the type of hardware element that is misused by the
defect, which we used to identify if ACETON correctly identifies the
outcome of tests. Table 3 represents the results for this experiment.
As shown in Table 3, ACETON was able to correctly identify the
outcome of tests on all subjects. This observation indicates that
ACETON can effectively detect real energy defects inmobile

apps.

7.3 RQ2: Usage of Attention Mechanism

Recall that we use the Attention mechanism for two purposes: (1)
to enhance performance of the model; and (2) to verify validity of
the model. In this research question, we evaluate to what extent
Attention mechanism affects these objectives.

To evaluate the extent of performance enhancement, we removed
the Attention layer (Section 5.4) of Learning Engine and repeated
the experiment in Section 7.2.1. The result of this experiment is
shown in Table 2 under the ACETON without Attention column.
As corroborated by these results, removing the Attention nega-

tively impacts the precision and recall values. For example in
Network category, the recall drops to 88.75% compared to 100% in
ACETON with Attention, i.e., the model misses 9 out of 71 Network
defects. Removing Attention from ACETON also negatively impacts
training time. That is, it takes longer for the model to learn the
patterns and converge. We discuss this more in RQ5.

ESEC/FSE ’20, November 8–13, 2020, Virtual Event, USA Reyhaneh Jabbarvand and Forough Mehralian and Sam Malek

Attention Analysis produces a set of features as output on which
the oracle has attended more. To visually confirm that ACETON has
attended to relevant features for each category of energy defects, i.e.,
to determine its validity, we created the heatmap shown in Figure 6.
The horizontal axis of heatmap indicates SV, while the vertical axis
indicates subcategories listed in Table 1. To construct the heatmap,
we counted the appearance of each attended feature for all its
instances in a subcategory, and divided it by the occurrence of all
the attended features under that subcategory to define a weight for
it. The weights take a value between (0, 1] and the higher is the
weight for a feature, the model attended to it more under the given
subcategory, thus its corresponding color in heatmap is closer to
yellow.

As the heatmap clearly shows, the hot areas of heatmap for
each subcategory in the vertical axis maps to its corresponding
category in the SV, meaning that the model has attended to relevant
features to decide the output of tests. An interesting observation
from this heatmap is that lifecycle features, specifically Activity

Paused, Activity Destroyed, and Service Stopped, frequently appear in
the attended features. This shows that energy defects are not solely
related to the changes in app or hardware states, but a combination
of both.

Finally, we aggregated the list of attended features for each cate-
gory and formally specified them, as shown in Table 1 under Defect
Signature column. While our intention for deriving defect signa-
tures was to verify the validity of the DL model, we believe that the
ability of ACETON to extract and formalize the signatures can fur-
ther help developers to localize the energy defects, specifically for
new types of energy defects that will emerge as Android framework
evolves. For example, the signature of Unnecessary Active Bluetooth

Connections shows the root cause of this issue is failing to close a
Bluetooth connection (𝐵𝐶 = 1) when the Bluetooth is off or turning
off (𝐵𝐸 = 0), which causes battery consumption even when the app
is paused (𝐴𝑃 = 1) or destroyed (𝐴𝐷 = 1, 𝑆𝑆 = 1).

7.4 RQ3: Detecting Unseen Defect Types

While prior research question evaluated effectiveness of ACETON
in detection of defect types it was trained on, this research question
investigates its ability to detect previously unseen defect types.
Generally speaking, DL models can only predict patterns that they
have been trained on. However, we hypothesize that if our oracle is
trained on a subset of defect types for a specific hardware element, it
may be able to detect unseen defect types related to that hardware as
well. To that end, we excluded one subcategory listed in Table 1 at
a time, trained the model on the energy defects related to all other
subcategories among all hardware categories, and used instances
of the excluded subcategory as test data.

Here, we use recall as an evaluation metric to evaluate effective-
ness of ACETON. Precision is not a proper metric here, since our
test data only belongs to one subcategory (class) in this experiment
and no false positive is generated. Column Unseen Recall in Table 1
shows the result for this experiment. We can see that in the majority
of the cases ACETON is able to effectively detect previously

unseen energy defect types. In fact, the recall value for majority
of the excluded sub-categories is above 93%. However, there are a
few subcategories with lower recall values, which are marked by *

Figure 6: A heatmap representing the attended features of SV for

different subcategories of energy defects

in Table 1. These are the cases in which the attended features, i.e.,
defect signature, is drastically different from that of in the training
dataset. We believe as additional energy defects are included in the
training dataset of ACETON, its ability to detect previously unseen
energy defects can improve too.

7.5 RQ4: Reusability of the Oracle

In answering prior research questions, we showed that the oracle
generated by ACETON is reusable among different apps. Here, we
investigate if the oracle is also reusable across different mobile
devices. Experiments in prior research questions were performed
on a Google Nexus 5X phone, running Android version 7.0 (API
level 24). For this experiment, we used an additional phone, Nexus
6P, running Android version 6.0.1 (API level 23). These two devices
are not only different in terms of Android version, but they also have
different hardware configurations, e.g., different pixel density and
resolution for Display, CPU frequency, RAM size, Battery capacity,
etc.

We first repeated the experiments in Section 7.2.1 on the new de-
vice to ensure that the oracle model is still effective in detecting en-
ergy defects. The result of this experiment showed the same level of
precision and recall for the new oracle (average precision = 98.27%,
average recall = 99.48%). Afterwards, we wanted to see if the or-
acle trained on one device can correctly predict the label of tests
executed on the other device.

To that end, we split the instances of Labeled Database into two
subsets, 90% of them to be used for training and the remaining 10%
for testing. Next, we trained two oracles on the mentioned devices,
𝑜𝑟𝑎𝑐𝑙𝑒1 on Nexus 5x device and 𝑜𝑟𝑎𝑐𝑙𝑒2 on the Nexus 6P device,
by executing the instances in the training set and collecting their
sampled SVs on the corresponding device. Similarly, we executed
instances of test dataset on both devices, 𝑡𝑒𝑠𝑡1 on Nexus 5x and
𝑡𝑒𝑠𝑡2 on the Nexus 6P. We then evaluated 𝑡𝑒𝑠𝑡1 using 𝑜𝑟𝑎𝑐𝑙𝑒2 and
𝑡𝑒𝑠𝑡2 using 𝑜𝑟𝑎𝑐𝑙𝑒1. The average precision and recall values for 𝑡𝑒𝑠𝑡1
on 𝑜𝑟𝑎𝑐𝑙𝑒2 are 99.95% and 99.81%, respectively. Similarly, 𝑜𝑟𝑎𝑐𝑙𝑒1
was able to detect the labels for 𝑡𝑒𝑠𝑡2 with an average precision of
99.89% and recall of 99.45%. These results confirm that our energy
oracles are device independent, hence, reusable.

Automated Construction of Energy Test Oracles for Android ESEC/FSE ’20, November 8–13, 2020, Virtual Event, USA

Figure 7: F1 Score of ACETON with and without Attention cap-

tured during the training phase

7.6 RQ5: Performance

To answer this research question, we evaluated the time required
to train and test the oracle. We ran the experiments on a laptop
with 2.2 GHz Intel Core i7 CPU and 16 GB RAM. It took 4.5 minutes
on average for ACETON to train an energy oracle on the whole
dataset, while it took only 37.6 milliseconds on average for the
trained oracle to predict the label of tests in our experiments. In
addition, we examined to what extent Attention Mechanism speeds
up ACETON’s learning. To that end, we disabled the early-stopping
criterion (recall Section 7.1) and tracked the F1 Score of the fol-
lowing two models during their training: ACETON with Attention

and ACETON without Attention. As shown in Figure 7, ACETON
without Attention requires more time to train a model that achieves
a comparable F1 Score as ACETON with Attention. In fact, even
after 14 minutes of training, ACETON without Attention was not
able to match the F1 Score of ACETON with Attention. These results
confirm that ACETON is sufficiently efficient for practical use.

8 RELATEDWORK

Automated test oracle approaches in the literature can be catego-
rized into Specified [16, 17, 20–23, 35, 38, 41, 44],Derived [24, 45, 46],
and Implicit [12, 14, 15, 25, 36, 36, 42] test oracles [11]. Majority
of these technique focus on the functional properties of the pro-
gram to generate test oracles, e.g., generating test oracles for GUI.
Even among those that consider non-functional properties of soft-
ware [12, 15, 25, 36, 42], none has aimed to develop an oracle for
energy testing. ACETON is the first attempt to construct auto-
mated, reusable energy test oracles for mobile apps. To the best of
our knowledge, it is also the first effort of using Deep Learning to
tackle the oracle problem.

The biggest challenge to construction of an energy oracle is
determining the observable patterns during test execution that are
indicators of energy defects. While prior research attempted to
categorize energy defects in mobile apps, the proposed fault models
are either broadly describing a category of energy defects [10],
or identifying specific energy anti-patterns in code that lead to
excessive battery consumption [27, 29–31]. Also, as energy defects
change and new types of defects emerge due to the evolution of
mobile platform, i.e. Android framework, the defect model proposed
by prior work becomes obsolete. ACETON’s contribution is the
ability to automatically learn the changes in the state of hardware

and environmental settings with high precision and recall, even for
unseen patterns.

The closest approaches to ACETON in terms of detecting energy
defects through testing are Jabbarvand et al. [28, 29], and Banerjee
et al. [9, 10]. 𝜇Droid [29] is an energy-aware mutation testing frame-
work for Android. It implements 50 energy mutants and relies on
comparing power traces of original and mutant versions of an app
to construct an oracle, i.e., to determine whether a test kills a mu-
tant or not. The proposed technique for construction of mutation
testing oracle in [29] cannot be generalized to energy test oracles, as
it requires a baseline power trace—that of original app—to identify
anomalous patterns in a given power trace—mutant app.

Cobweb [28] is a search-based energy testing framework for
Android. The proposed approach employs a set of models to take
execution context into account, i.e., lifecycle and hardware state
context, in the generation of tests that can effectively find energy
defects. While Cobweb is effective for generating energy-aware test
inputs, it does not address the automatic construction of oracles
for energy tests.

Banerjee et al. [10] presents a search-based profiling strategy
with the goal of identifying energy defects in an app. They construct
a graph representing an app’s GUI events, extract the event traces
using the generated graph, and explore event traces that may possi-
bly reach energy hotspots, while profiling energy consumption of
the device. In fact, [10] analyzes the power traces using statistical
and anomaly detection techniques to uncover energy-inefficient
behavior. Unlike the automated oracles generated by ACETON,
usage of a power measurement hardware makes their approach
device dependent, expensive, and thereby impractical.

In their subsequent work [9], Banerjee et al. fixed the scalability
issue of the prior work [10] by using abstract interpretation-based
program analysis to detect resource leaks. Similar to the prior work,
they rely on a dynamically constructed model for GUI events to
guide the search for finding paths leading to a resource leak. Unlike
ACETON’s test oracles that are reusable and can detect a wide
range of energy defects, test oracles generated by EnergyPatch are
specifically targeted to detection of resource leaks.

9 CONCLUDING REMARKS

Energy efficiency is an increasingly important quality attribute for
mobile apps that should be properly tested. Recent advancements in
energy testing have in large part focused on test input generation,
and not on the automated construction of test oracles. The key
challenge for the construction of energy test oracles is derivation of
reusable patterns that are indicative of energy defects. We presented
ACETON, the first approach for automated construction of energy
test oracles that leverages Deep Learning techniques to learn such
patterns. Our experimental results show that the energy oracle
constructed using ACETON is highly reusable across mobile apps
and devices, achieves an overall accuracy of 99%, and efficiently
detects the existence of energy defects in only 37 milliseconds on
average.

10 ACKNOWLEDGEMENT

This work was supported in part by awards 1823262 and 1618132
from the National Science Foundation and a Google PhD Fellowship.

ESEC/FSE ’20, November 8–13, 2020, Virtual Event, USA Reyhaneh Jabbarvand and Forough Mehralian and Sam Malek

REFERENCES

[1] 2019. Android Broadcasts Overview. https://developer.android.com/guide/
components/broadcasts

[2] 2019. Android Service Overview. https://developer.android.com/guide/
components/services

[3] 2019. Location Manager Strategies. https://developer.android.com/guide/topics/
location/strategies.html

[4] 2019. Monsoon Power Monitor. https://www.msoon.com/
[5] 2019. Trepn Power Profiler. https://developer.qualcomm.com/software/trepn-

power-profiler
[6] 2019. Understanding Android Activity Lifecycle. https://developer.android.com/

guide/components/activities/activity-lifecycle
[7] 2020. ACETON tool and artifacts. https://seal.ics.uci.edu/projects/aceton/index.

html
[8] Dzmitry Bahdanau et al. 2014. Neural machine translation by jointly learning to

align and translate. arXiv preprint arXiv:1409.0473 (2014).
[9] Abhijeet Banerjee, Lee Kee Chong, Clément Ballabriga, and Abhik Roychoudhury.

2018. Energypatch: Repairing resource leaks to improve energy-efficiency of
android apps. IEEE Transactions on Software Engineering 44, 5 (2018), 470–490.

[10] Abhijeet Banerjee, Lee Kee Chong, Sudipta Chattopadhyay, and Abhik Roychoud-
hury. 2014. Detecting energy bugs and hotspots in mobile apps. In Proceedings

of the 22nd ACM SIGSOFT International Symposium on Foundations of Software

Engineering. ACM, 588–598.
[11] Earl T Barr, Mark Harman, Phil McMinn, Muzammil Shahbaz, and Shin Yoo. 2015.

The oracle problem in software testing: A survey. IEEE transactions on software

engineering 41, 5 (2015), 507–525.
[12] Sofia Bekrar, Chaouki Bekrar, Roland Groz, and Laurent Mounier. 2011. Find-

ing software vulnerabilities by smart fuzzing. In 2011 Fourth IEEE International

Conference on Software Testing, Verification and Validation. IEEE, 427–430.
[13] Yoshua Bengio, Patrice Simard, Paolo Frasconi, et al. 1994. Learning long-term

dependencies with gradient descent is difficult. IEEE transactions on neural

networks 5, 2 (1994), 157–166.
[14] Cristian Cadar, Vijay Ganesh, Peter M Pawlowski, David L Dill, and Dawson R

Engler. 2008. EXE: automatically generating inputs of death. ACM Transactions

on Information and System Security (TISSEC) 12, 2 (2008), 10.
[15] Mariano Ceccato, Cu D Nguyen, Dennis Appelt, and Lionel C Briand. 2016.

SOFIA: An automated security oracle for black-box testing of SQL-injection
vulnerabilities. In Proceedings of the 31st IEEE/ACM International Conference on

Automated Software Engineering. ACM, 167–177.
[16] Yoonsik Cheon. 2007. Abstraction in assertion-based test oracles. In Seventh

International Conference on Quality Software (QSIC 2007). IEEE, 410–414.
[17] Yoonsik Cheon and Gary T Leavens. 2002. A simple and practical approach to

unit testing: The JML and JUnit way. In European Conference on Object-Oriented

Programming. Springer, 231–255.
[18] Kyunghyun Cho, Bart Van Merriënboer, Dzmitry Bahdanau, and Yoshua Ben-

gio. 2014. On the properties of neural machine translation: Encoder-decoder
approaches. arXiv preprint arXiv:1409.1259 (2014).

[19] Shaiful Chowdhury, Stephanie Borle, Stephen Romansky, and AbramHindle. 2019.
Greenscaler: training software energy models with automatic test generation.
Empirical Software Engineering 24, 4 (2019), 1649–1692.

[20] David Coppit and Jennifer M Haddox-Schatz. 2005. On the use of specification-
based assertions as test oracles. In 29th Annual IEEE/NASA Software Engineering

Workshop. IEEE, 305–314.
[21] Marie-Claude Gaudel. 2001. Testing from formal specifications, a generic ap-

proach. In International Conference on Reliable Software Technologies. Springer,
35–48.

[22] Gregory Gay, Sanjai Rayadurgam, and Mats PE Heimdahl. 2014. Improving the
accuracy of oracle verdicts through automated model steering. In Proceedings of

the 29th ACM/IEEE international conference on Automated software engineering.
ACM, 527–538.

[23] Alberto Goffi, Alessandra Gorla, Michael D Ernst, and Mauro Pezzè. [n.d.]. Auto-
matic Generation of Oracles for Exceptional Behaviors. ([n. d.]).

[24] Mary Jean Harrold, Gregg Rothermel, Kent Sayre, Rui Wu, and Liu Yi. 2000.
An empirical investigation of the relationship between spectra differences and
regression faults. Software Testing Verification and Reliability 10, 3 (2000), 171–
194.

[25] David L Heine and Monica S Lam. 2003. A practical flow-sensitive and context-
sensitive C and C++ memory leak detector. In ACM SIGPLAN Notices, Vol. 38.
ACM, 168–181.

[26] Sepp Hochreiter and Jürgen Schmidhuber. 1997. Long short-termmemory. Neural
computation 9, 8 (1997), 1735–1780.

[27] Reyhaneh Jabbarvand. 2017. Advancing energy testing of mobile applications. In
Proceedings of the 39th International Conference on Software Engineering Compan-

ion. IEEE Press, 491–492.
[28] Reyhaneh Jabbarvand, Jun-Wei Lin, and Sam Malek. 2019. Search-based energy

testing of Android. In ICSE 2019. IEEE Press, 1119–1130.
[29] Reyhaneh Jabbarvand and Sam Malek. 2017. 𝜇Droid: an energy-aware mutation

testing framework for Android. In Proceedings of the 2017 11th Joint Meeting on

Foundations of Software Engineering. ACM, 208–219.
[30] Reyhaneh Jabbarvand, Alireza Sadeghi, Hamid Bagheri, and Sam Malek. 2016.

Energy-aware test-suite minimization for Android apps. In Proceedings of the

25th International Symposium on Software Testing and Analysis. ACM, 425–436.
[31] Reyhaneh Jabbarvand Behrouz. 2020. Advancing Energy Testing of Mobile Appli-

cations. Ph.D. Dissertation. UC Irvine.
[32] Shachar Kaufman, Saharon Rosset, Claudia Perlich, and Ori Stitelman. 2012.

Leakage in data mining: Formulation, detection, and avoidance. ACMTransactions

on Knowledge Discovery from Data (TKDD) 6, 4 (2012), 15.
[33] Diederik P Kingma and Jimmy Ba. 2014. Adam: A method for stochastic opti-

mization. arXiv preprint arXiv:1412.6980 (2014).
[34] Tsung-Yi Lin, Priya Goyal, Ross Girshick, Kaiming He, and Piotr Dollár. 2017.

Focal loss for dense object detection. In Proceedings of the IEEE international

conference on computer vision.
[35] Ying-Dar Lin, Jose F Rojas, Edward T-H Chu, and Yuan-Cheng Lai. 2014. On the

accuracy, efficiency, and reusability of automated test oracles for android devices.
IEEE Transactions on Software Engineering 40, 10 (2014), 957–970.

[36] HaroonMalik, Hadi Hemmati, and Ahmed EHassan. 2013. Automatic detection of
performance deviations in the load testing of large scale systems. In Proceedings of
the 2013 International Conference on Software Engineering. IEEE Press, 1012–1021.

[37] Irene Manotas, Christian Bird, Rui Zhang, David Shepherd, Ciera Jaspan, Caitlin
Sadowski, Lori Pollock, and James Clause. 2016. An empirical study of practi-
tioners’ perspectives on green software engineering. In Proceedings of the 38th

International Conference on Software Engineering. ACM, 237–248.
[38] Atif M Memon, Martha E Pollack, and Mary Lou Soffa. 2000. Automated test

oracles for GUIs. In ACM SIGSOFT Software Engineering Notes, Vol. 25. ACM,
30–39.

[39] Adam Paszke, Sam Gross, Soumith Chintala, Gregory Chanan, Edward Yang,
Zachary DeVito, Zeming Lin, Alban Desmaison, Luca Antiga, and Adam Lerer.
2017. Automatic differentiation in PyTorch. (2017).

[40] Lutz Prechelt. 1998. Early stopping-but when? In Neural Networks: Tricks of the

trade. Springer, 55–69.
[41] Chunhui Wang, Fabrizio Pastore, and Lionel Briand. 2018. Oracles for Testing

Software Timeliness with Uncertainty. ACM Transactions on Software Engineering

and Methodology (TOSEM) 28, 1 (2018), 1.
[42] Elaine J Weyuker and Filippos I Vokolos. 2000. Experience with performance

testing of software systems: issues, an approach, and case study. IEEE transactions
on software engineering 26, 12 (2000), 1147.

[43] Claas Wilke, Sebastian Richly, Sebastian Gotz, Christian Piechnick, and Uwe
Aßmann. [n.d.]. Energy Consumption and Efficiency in Mobile Applications: A
user Feedback Study. In The Internation Conf. on Green Computing and Commu-

nications.
[44] Qing Xie and Atif M Memon. 2007. Designing and comparing automated test

oracles for GUI-based software applications. ACM Transactions on Software

Engineering and Methodology (TOSEM) 16, 1 (2007), 4.
[45] Tao Xie. 2006. Augmenting automatically generated unit-test suites with regres-

sion oracle checking. In European Conference on Object-Oriented Programming.
Springer, 380–403.

[46] Tao Xie and David Notkin. 2005. Checking inside the black box: Regression
testing by comparing value spectra. IEEE Transactions on Software Engineering

31, 10 (2005), 869–883.
[47] Zhilu Zhang and Mert Sabuncu. 2018. Generalized cross entropy loss for train-

ing deep neural networks with noisy labels. In Advances in neural information

processing systems. 8778–8788.

https://developer.android.com/guide/components/broadcasts
https://developer.android.com/guide/components/broadcasts
https://developer.android.com/guide/components/services
https://developer.android.com/guide/components/services
https://developer.android.com/guide/topics/location/strategies.html
https://developer.android.com/guide/topics/location/strategies.html
https://www.msoon.com/
https://developer.qualcomm.com/software/trepn-power-profiler
https://developer.qualcomm.com/software/trepn-power-profiler
https://developer.android.com/guide/components/activities/activity-lifecycle
https://developer.android.com/guide/components/activities/activity-lifecycle
https://seal.ics.uci.edu/projects/aceton/index.html
https://seal.ics.uci.edu/projects/aceton/index.html

	Abstract
	1 Introduction
	2 Motivating Example
	3 Approach Overview
	4 Sequence Collector
	4.1 State Vector (SV)
	4.2 Collecting Sequences

	5 Learning Engine
	5.1 Model Selection
	5.2 Long Short-Term Memory (LSTM)
	5.3 Dataset Curation
	5.4 Attention Mechanism

	6 Attention Analysis
	7 Evaluation
	7.1 Experimental Setup
	7.2 RQ1: Effectiveness
	7.3 RQ2: Usage of Attention Mechanism
	7.4 RQ3: Detecting Unseen Defect Types
	7.5 RQ4: Reusability of the Oracle
	7.6 RQ5: Performance

	8 Related Work
	9 Concluding Remarks
	10 Acknowledgement
	References

