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Abstract—Java is one of the most widely used program-
ming languages. However, the absence of explicit support for
architectural constructs, such as software components, in the
programming language itself has prevented software developers
from achieving the many benefits that come with architecture-
based development. To address this issue, Java 9 has introduced
the Java Platform Module System (JPMS), resulting in the
first instance of encapsulation of modules with rich software
architectural interfaces added to a mainstream programming
language. The primary goal of JPMS is to construct and
maintain large applications efficiently—as well as improve the
encapsulation, security, and maintainability of Java applications
in general and the JDK itself. A challenge, however, is that
module declarations do not necessarily reflect actual usage of
modules in an application, allowing developers to mistakenly
specify inconsistent dependencies among the modules. In this
paper, we formally define 8 inconsistent modular dependencies
that may arise in Java-9 applications. We also present DARCY,
an approach that leverages these definitions and static program
analyses to automatically (1) detect the specified inconsistent
dependencies within Java applications and (2) repair those
identified inconsistencies. The results of our experiments, con-
ducted over 38 open-source Java-9 applications, indicate that
architectural inconsistencies are widespread and demonstrate the
benefits of DARCY in automated detection and repair of these
inconsistencies.

I. INTRODUCTION

A software system’s architecture comprises the principal

design decisions employed in the system’s construction [1].

Although every system has an architecture, the architecture

of many systems is not explicitly documented, for instance in

the form of UML models. Ensuring that the architecture as

documented or intended, known as the prescriptive architecture,

matches the architecture reflected in the system’s implementa-

tion, known as the descriptive architecture, remains a major

challenge [1]. Architecture of a system is often conceptualized

in terms of high-level constructs, such as software components,

connectors, and their interfaces, while programming languages

provide low-level constructs, such as classes, methods, and

variables, making it a non-trivial task to map one to the other.

Inconsistencies between prescriptive and descriptive ar-

chitectures are of utmost concern in any software project,

since architecture is the primary determinant of a software

system’s key properties. One promising approach for abating

the occurrence of architectural inconsistencies is to make it

easier to bridge the gap between architectural abstractions and

their implementation counterparts. To that end, the software-

engineering research community has previously advocated

for architecture-based development, whereby a programming

language (e.g., ArchJava [2]) or a framework (e.g., C2 [3])

provides the implementation constructs for realizing the archi-

tectural abstractions.

In spite of this prior work in the academic community,

until recently, Java—arguably the most popular programming

languages over the past two decades—lacked extensive support

for architecture-based development. This all changed with the

introduction of Java Platform Module Systems (JPMS) in Java

9. Modules are intended to make it easier for developers to

construct large applications, and improve the encapsulation,

security, and maintainability of Java applications in general as

well as the JDK itself [4].

Using Java’s module system, the developer explicitly spec-

ifies the system’s components (i.e., modules in Java) as

well as the specific nature of their dependencies in a file

called module-info. However, Java 9 does not provide any

mechanism to ensure the prescriptive architecture specified in

the module-info file is in fact consistent with the descriptive

architecture of the implemented software, i.e., whether the

declared dependencies in the module-info file are accurately

reflecting the implemented dependencies among the system’s

components. Inconsistencies between the prescriptive and

descriptive architectures in Java 9 matter. The Java platform

uses the module-info file to determine the level of access

granted to each module, and to determine which modules

should be packaged together for deployment. As a result, in-

consistencies between prescriptive and descriptive architecture

in Java have severe security and performance consequences.

These inconsistencies also affect the engineers ability to use

the prescriptive architecture for understanding the system’s

properties or to make maintenance decisions.

In this paper, we formally define 8 modular inconsistencies

that may occur in Java-9 applications. We present DARCY, an

approach that leverages these definitions and static analyses

to automatically (1) detect the specified inconsistencies within

Java applications and (2) repair them. DARCY is also publicly

available [5].

The results of our experiments, conducted over 38 open-

source Java-9 applications, indicate that architectural inconsis-

tencies are widespread, and demonstrate the benefits of DARCY

in automated detection and repair of these inconsistencies.

DARCY found 124 instances of inconsistencies among 38

Java applications in our data set. By automatically fixing

these inconsistencies, DARCY was able to measurably improve
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various attributes of the subject applications’ architectures

by reducing the attack surface of applications by 60.33%,

improving their encapsulation by 23.03%, and producing

deployable applications that consume 14.02% less memory.

The remainder of this paper is organized as follows. Section

II introduces the module system of Java 9 and its design goals.

Section III formally specifies the architectural inconsistencies

in the context of Java 9. Section IV provides details of

our approach and its implementation. Section V presents the

experimental evaluation of the research. Section VI includes

the threats to validity of our approach. The paper concludes

with an outline of related research and future work.

II. JAVA PLATFORM MODULE SYSTEM

To aid the reader with understanding architectural specifica-

tion in Java 9, we introduce the new module system for Java

9, called Java Platform Module System (JPMS). We overview

JPMS’s goals and the architectural risks that arise from its

misuse. We then discuss the details of modules in Java 9—

including module declarations and module directives.

A. JPMS Goals and Potential Misuse

JPMS enables specification of a prescriptive architecture in

terms of key architectural elements—specifically components

in the form of Java-9 modules, architectural interfaces, and

resulting dependencies among components. JPMS aims to

enable reliable configuration, stronger encapsulation, modu-

larity of the Java Development Kit (JDK) and Java Runtime

Environment (JRE) to solve the problems faced by engineers

when developing and deploying Java applications [6].

Software designers and developers can achieve strong

encapsulation in their Java-9 systems by modularizing them and

allowing explicit specification of interfaces and dependencies.

Encapsulation in Java 9 is achieved by allowing architects

or developers to specify which of a Java-9 module’s public

types are accessible or inaccessible to other modules [7]. A

module must explicitly declare which of its public types are

accessible to other modules. A module cannot access public

types in another module unless those modules explicitly make

their public types accessible. As a result, JPMS has added

more refined accessibility control—allowing architects and

developers to decrease accessibility to packages, reduce the

points at which a Java application may be susceptible to security

attacks, and design more elegant and logical architectures [8].

Prior to Java 9, the Java platform was a monolith consisting

of a massive number of packages, making it challenging to

develop, maintain, and evolve. Software developers could not

easily choose a subset of the JDK as a platform for their

applications. This results in software bloat and more potential

points of attack for malicious agents. With the introduction of

JPMS in Java 9, the Java platform is now modularized into

95 modules. Furthermore, many internal APIs are hidden from

apps using the platform [7], potentially reducing problems

involving software bloat and security.

Using JPMS in Java 9, Java developers can now create

lightweight custom JREs consisting of only modules they need

for their application or the devices they are targeting. As a

result, the Java platform can more easily scale down to small

devices, which is important for microservices or IoT devices

[9]. For example, if a device does not support GUIs, developers

could use JPMS to create a runtime environment that does not

include the GUI modules, significantly reducing the runtime

memory size [8].

Although JPMS allows for specification of prescriptive

architectures, the descriptive architecture of a Java application

may be inconsistent with the prescriptive architecture. Such

inconsistencies may arise due to architects or developers

misunderstanding of a software systems’ architectures (e.g.,

an architect mistakenly specifies a more accessible interface

than he intended), or simply due to mistaken implementations

(e.g., a developer neglects to use a module’s interface, even

though the architect intended such a use). This can result in

(1) a poorly encapsulated architecture, making an application

harder to understand and maintain; (2) bloated software; or

(3) insecure software. In terms of security, for instance, one

of the potential problems is the granting of unnecessary

access to internal classes and packages, potentially resulting in

security vulnerabilities. In terms of software bloat, inconsistent

dependencies can compromise scalability and performance of

Java software (e.g., requiring many unnecessary modules from

the JDK).

B. Understanding Java 9 JPMS Modules

In JPMS, a module is a uniquely named, reusable group

of related packages, as well as resources (such as images

and XML files) [4]. Each module has a descriptor file,

module-info.java, which contains meta-data, including the

declaration of a named module. A named module should specify

(1) its dependencies on other modules, i.e., the classes and

interfaces that the module needs or expects, and should specify

(2) which of its own packages, classes, and interfaces are

exposed to other modules.

A module can be a normal module or an open module. A

normal module allows access from other modules at compile

time and run time to only explicitly exported packages; an

open module allows access from other modules (1) at compile

time to only explicitly exported packages and (2) at run time

to all its packages [10].

The module declaration file consists of a unique module

name and a module body. Any module body can be empty

or contain one or more module directives, which specifies a

module’s exposure to other modules or the modules it needs

access to.

Figure 1 shows an example of a project with three modules:

bar, foo, and service. The declarations of each module

provided in its module-info.java file is described in Figure

1a. Figure 1b is a diagram that depicts the relationship between

the same modules based on dependencies in their declarations.

A module body can utilize combinations of the following

five module directives [10], which specify module interfaces

and their usage: the requires directive specifies the packages

that a module needs access to, the exports and opens directives
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make packages of a module available to other modules, the

provides directive specifies the services a module provides, and

the uses directive specifies the services a package consumes.

These directives can be declared as described below:

1 module bar {
2 requires java.desktop;
3 requires service;
4
5 exports com.example.bar.lang;
6 exports com.example.bar.http to foo;
7
8 provides com.example.service.Srv with com.example.

bar.impl.ImplService; }
9

10 module foo {
11 requires service;
12 requires java.logging;
13 requires transitive bar;
14
15 exports com.example.foo.utils;
16 exports com.example.foo.internal to bar;
17
18 opens com.example.foo.network;
19 opens com.example.foo.exnet to bar;
20
21 uses com.example.service.Srv;}
22
23 module service {
24 exports com.example.service;}

(a) Module declarations and their directives provided in their module-
info.java files.

(b) Specified dependencies between modules based on their directives

Fig. 1: Three example modules with their inter-dependencies

• The requires directive with declaration requires m2 of

a module m1 specifies the name of a module m2 that m1

depends on. m2 can be a user-defined module or a module

within the JDK. For example, in Figure 1, module bar
requires module java.desktop. The requires declaration of

a module m1 may be followed by the transitive modifier,

which ensures that any module m3 that requires m1 also

implicitly requires module m2. As an example, in Figure

1, module foo requires module bar and any module that

requires foo also implicitly requires bar.

• The exports directive with declaration exports p of a

module m1 specifies that m1 exposes package p’s public

and protected types, and their nested public and protected

types, to all other modules at both runtime and compile

time. For example, in Figure 1, the module bar exports

the package com.example.bar.lang. We can also export a

package specifically to one or more modules by using the

exports p to m2,m3, ...,mn declaration. In this case, the

public and protected types of the exported package are only

accessible to the modules specified in the to clause.

As an example, in Figure 1, module foo exports

com.example.foo.internal to the module bar.

• The opens directive with declaration opens p specifies that

package p’s nested public and protected types, and the

public and protected members of those types, are accessible

by other modules at runtime but not compile time. This

directive also grants reflective access to all types in p,

including the private types, and all its members, from

other modules. For example, in Figure 1, module foo
makes package com.example.foo.network available to

other modules only at runtime, including through reflection.

This directive may also be followed by the to modifier,

resulting in the opens p to m2,m3, ...,mn declaration. In this

case, the public and protected types of p are only accessible to

the modules specified in the to clause. For instance, in Figure

1, module foo makes package com.example.foo.exnet
available only at runtime, including through reflection, to

the module bar. Unlike the other directives that can only be

used in the body of a module’s specification, open can be

used in both the body of a module’s specification and in its

header (i.e., before the module’s name). The latter usage is

a shorthand way of denoting all packages in the module are

open.

• The provides with directive with declaration

provides c1 with c2,c3, ...,cn of module m1 specifies that a

class c1 is an abstract class or interface that is provided as a

service by m1. The with clause specifies one or more service

provider classes for use with java.util.ServiceLoader. A

service is a well-known set of interfaces and (usually abstract)

classes. A service provider is a specific implementation of a

service. java.util.ServiceLoader<S> is a simple service-

provider loading facility. It loads a provider implementing

the service type S [11]. For instance in Figure 1, module bar
provides the abstract class com.example.service.Srv as

a service using the com.example.bar.impl.ImplService
class as the service’s implementation.

• The uses directive with declaration uses c1 of a module

m1 specifies that m1 uses a service object of an abstract

class or interface, c1, provided by another module. For

this purpose, the module should discover providers of the

specified service via java.util.ServiceLoader. As an

example from Figure 1, module foo uses the service object

of class com.example.service.Srv, which is provided by

module bar.

Note that, as depicted in Figure 1, both provides with and

uses directives need the module being declared to require
the service module as well.

III. INCONSISTENT MODULE DEPENDENCIES

Based on the module directives described in the previous

section, inconsistencies may arise when using modules. Insuf-

ficiently specified dependencies (e.g., a module that attempts

to use a package it does not have a requires directive for)
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are already checked by the Java platform. However, excess
dependencies, where a module either (1) exposes more of

its internals than are used or (2) requires internals of other

modules that it never uses, are not handled by Java. These

inconsistencies can affect various architectural attributes:

A1: Encapsulation and Maintenance—Requiring unneeded

functionalities of other modules increases the complexity of

the module unnecessarily, compromises its encapsulation, and

decreases its maintainability.

A2: Software Bloat and Scalability—Requiring unneeded

modules, especially from JDK, can result in bloated software,

which compromises scalability of the application.

A3: Security—Excessively exposing the internals of a module

can result in errors or security issues arising in the module.

To achieve a systematic and comprehensive coverage of

all types of inconsistent module dependencies, we studied all

potential inconsistencies resulting from developers’ misuse of

each type of module directive. In the remainder of this section,

we focus on specifying eight types of inconsistent dependencies

that may arise when using JPMS and the functions needed to

specify those dependencies.

Table I includes 11 functions that directly model different

variations of the five module directives in JPMS. To describe

a class loading a service using java.util.ServiceLoader
API, we define the LoadsService function. For actual code

usage among packages, as opposed to those specified through

module directives, we define the Dep function.

TABLE I: Functions describing dependencies based on module

directives of JPMS

Function Description

Req(m1,m2) Module m1 requires module m2.

ReqJDK(m1,mjdk) Module m1 requires the JDK module
mjdk .

ReqTransitive(m1,m2) Module m1 requires transitive module
m2.

Exp(m, p) Module m exports package p.

ExpTo(m1, p1,{m2,m3, . . .}) Module m1 exports package p1 to the
set of modules {m2,m3, . . .}.

Open(m) Module m is open.

Opens(m, p) Module m opens package p.

OpensTo(m1, p,{m2,m3, . . .}) Module m1 opens package p to the set
of modules {m2, m3, . . .}.

Uses(m,s) Module m uses Service s.

ProvidesWith(m,s,{c1,c2, . . .}) Module m provides service s with the
set of classes {c1, c2, . . .}.

LoadsService(c,s) Class c loads Service s via the
java.util.ServiceLoader API.

Dep(p1, p2) Source code in package p1 uses classes
of package p2.

Re f lDep(p1, p2) Source codes in package p1 uses classes
of package p2 via reflection.

By leveraging the functions in Table I, we introduce

eight types of excess inconsistent dependencies: requires,

JDK requires, requires transitive, exports(to), provides with,

uses, open, and opens(to) modifiers. For each inconsistent

dependency type, there is a dependency explicitly defined in

a module-info file which is not actually used in the source

code of the module. Using these formal definitions, Section IV

detects and repairs the following inconsistent dependencies.

Inconsistent Requires Dependency: This scenario de-

scribes an inconsistent requires dependency in which (1)

module m1 explicitly declares that it requires another module

m2 and (2) no class of m1 actually uses any class inside exported

packages of m2. As a result, this inconsistency mostly affects

attribute A1. It can also affect attribute A2.

Req(m1,m2)∧ (� p1 ∈ m1, p2 ∈ m2 : Dep (p1, p2)) (1)

Inconsistent JDK Requires Dependency: This scenario de-

scribes an inconsistent requires dependency in which module

m1 explicitly declares that it requires a module inside the

Java JDK, m jdk. However, none of the classes inside m1

uses any class inside exported packages of m jdk. Hence, it

affects attribute A1, and more importantly A2. We distinguish

this scenario from the previous one because an inconsistency

involving JDK modules has a greater effect on portability than

the previous more generic scenario.

Req(m1,m jdk)∧ (�p1 ∈ m1, p2 ∈ m jdk : Dep(p1, p2)) (2)

Inconsistent Requires Transitive Dependency: An excess

transitive modifier in a requires dependency consists of

the following (1) a module m1 explicitly declares in its

module-info file that it transitively requires another module

m2—which means any module that requires m1 also implicitly

requires m2; and (2) no class of a module that requires m1

actually uses any class in m2. This type of inconsistency mostly

affects attribute A1, but also affects A2.

ReqTransitive(m1,m2)∧ (∀ m : Req(m,m1),

∀ p ∈ m,∀ p2 ∈ m2 : ¬Dep(p, p2))
(3)

Inconsistent Exports/Exports to Dependency: An inconsis-

tent exports dependency occurs when a module m1 explicitly

exports a package p1 to all other modules, while no package

in those other modules use p1.

Exp(m1, p1)∧ (∀ p /∈ m1 : ¬Dep(p, p1)) (4)

For an exports to directive, this inconsistency occurs when m1

exports the package p1 to a specific list of modules M, while

no class outside m1, or inside module list M, uses any class

inside p1.

ExpTo(m1, p1,M)∧ (∀ p ∈ M : ¬Dep(p, p1)) (5)

These inconsistencies mostly affect attribute A3 by granting

unnecessary access to classes and packages. They also affect

attribute A1 due to complicating the architecture.

Inconsistent Provides With Dependency: An inconsistent

provides with dependency has two key parts: (1) a module

m explicitly declares that it provides a service s, which is an

abstract class or interface that is extended or implemented

by a set of classes E = {c1,c2, ...,ck} inside m; and (2) none

of the classes inside other modules uses service s via the

java.util.ServiceLoader API. Consequently, this incon-

sistency type—similar to inconsistent requires dependency—

affects attribute A1 and A2 because the provides with depen-
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dency necessitates a requires directive as well. Additionally,

this inconsistency type grants unnecessary access to a subset

of the application’s classes via the ServiceLoader API which

affects attribute A3.

ProvidesWith(m,s,E)∧ (∀m′ �= m : ¬Uses(m′,s)) (6)

Inconsistent Uses Dependency: An inconsistent uses depen-

dency occurs when (1) a module m explicitly declares in

its module-info.java file that it uses a service s and (2)

none of the classes inside m actually use the service s via

the java.util.ServiceLoader API. This inconsistency type,

similar to the previous type, will affect attribute A1 and A2,

due to adding an additional requires directive.

Uses(m,s)∧ (∀ c ∈ m : ¬ LoadsService(c,s)) (7)

Inconsistent Open Modifier: An excess open modifier occurs

in the following scenario: (1) a module m declares that it opens

all its packages to all other modules—recall from Section II-B

that unlike the other directives, open can be used in the header

of a module’s specification to denote all its packages are open;

and (2) there is at least one package p inside m that no

class outside m reflectively accesses. As a result, any such

package p is potentially open to misuse through reflection, e.g.,

external access to private members of a class that should not

be allowed by any other class. This inconsistency type will

affect attribute A3—and make the architecture inaccurate and

more complicated, affecting attribute A1.

Open(m)∧ (∃p ∈ m : ∀p′ /∈ m : ¬Re f lDep(p′, p) (8)

Inconsistent Opens/Opens To: An inconsistent opens depen-

dency occurs when a module m declares that it opens a package

p to all other modules via reflection, while none of the classes

outside m reflectively accesses any classes of package p.

Opens (m, p)∧∀ p′ /∈ m : ¬Re f lDep(p′, p) (9)

Similarly, for opens to, the to modifier specifies a list of

modules M for which module m opens a package p to access

via reflection, while no package of m reflectively accesses p.

OpensTo(m, p,M)∧∀ p′ ∈ M : ¬Re f lDep(p′, p) (10)

For these inconsistency types, private members of p are open

to dangerous misuse through undesired access and reflection,

affecting attribute A3, and can also affect attribute A1 due to

unnecessarily complicating the architecture.

IV. DARCY

In the previous section, we introduced various types of

inconsistent dependencies. This section describes how we

leverage these definitions to design and implement DARCY.

Figure 2 depicts a high-level overview of DARCY comprised

of two phases, Detection and Repair. DARCY is implemented

in Java and Python.

A. Detection

The detection phase takes a Java application as input and

identifies any instance of the eight inconsistent dependencies

described in Section III.

To identify actual dependencies of an input Java application,

DARCY relies on static analysis, represented as Class Depen-
dency Analysis in Figure 2. In the implementation of DARCY,

Fig. 2: A high-level overview of DARCY

we leveraged Classycle [12] for Class Dependency Analysis.

More precisely, the information about actual dependencies in

the source code of the input application is collected by running

Classycle, which provides a complete report of all dependencies

in source code of a Java application at both the class and

package levels. We only need the extracted dependencies among

packages since the dependencies defined in modules are at the

package level. Class Dependency Analysis’s results are stored

in Actual Dependencies, which is a database component.

A Java application may contain multiple modules, each with

a module-info file describing the module’s dependencies. For

extracting a prescriptive architecture, we developed Module-
Info Scanner which examines all module-info.java files

within the input Java application and extracts all specified

dependencies which are defined at the package level. The

collected information of specified dependencies are stored in

another database component, Specified Dependencies.

Java Reflection Analysis leverages a custom static analysis

[13], which we have implemented using the Soot framework

[14], to identify usage of reflection in the input application. The

traces of any actual usage of reflection in the Java application

is then stored in Actual Dependencies.

Java Reflection Analysis extracts reflective invocations that

occur in cases where non-constant strings, or inputs, are used

as target methods of a reflective call. Reflective invocation of

a method, for both constructor and non-constructor methods,

occurs in three stages: (1) class procurement (i.e., a class with

the method of interest is obtained) (2) method procurement

(i.e., the method of interest to be invoked is identified), and

(3) the method of interest is actually invoked. Java Reflection
Analysis attempts to identify information at each stage.

1 ClassLoader cl = MyClass.getClassLoader();
2 try { Class c = cl.loadClass("NetClass");
3 ...
4 Method m = c.getMethod("getAddress" ,...);
5 ...
6 m.invoke(...); }
7 catch { ... }

Fig. 3: Reflective method invocation example

A simple example, based on those found in real-world apps,

of reflective method invocation, not involving constructors,

is depicted in Figure 3. In this example, a ClassLoader
for MyClass is obtained (line 1), which is responsible

for loading classes. The NetClass class is loaded using
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that ClassLoader (line 2). The getAddress method of

NetClass (line 4)—which performs network operations—is

retrieved and eventually invoked using reflection (line 6).

Our analysis identifies reflectively invoked methods us-

ing a backwards analysis. That analysis begins by identi-

fying all reflective invocations (e.g., line 6 in Figure 3).

Next, the analysis follows the use-def chain of the invoked

java.lang.reflect.Method instance (e.g., m on line

6) to identify all possible definitions of the Method in-

stance (e.g., line 4). Our analysis considers various methods

that return Method instances, i.e., using getMethod or

getDeclaredMethod of java.lang.Class. The anal-

ysis then records each identified method name. If the analysis

cannot resolve the name, this information is also recorded. In

this case, the analysis conservatively indicates that any method

of the package opened for reflection can be accessed.

For constant strings, the analysis attempts to identify the class

name that is being invoked. Similar to the resolution of method

names, the analysis follows the use-def chain of the java.
lang.Class instance from which a java.lang.Class
is retrieved (e.g., following the use-def chain of c on line 4).

We model various means of obtaining a java.lang.Class
instance. For example, the class may be loaded by name using

a ClassLoader’s loadClass(...) method (e.g., line 2),

using java.lang.Class’s forName method, or through a

class constant (e.g., using NetClass.class). The analysis

then records the class name it can find statically, or stores that

it could not resolve that name. Note that our analysis consid-

ers any subclass of ClassLoader. Our reflection analysis

involving constructors works in a similar manner by analyzing

invocations of java.lang.reflect.Constructor and

invocations of its newInstance method.

Similar to our analyses for reflectively invoked meth-

ods, We perform analyses for any set* methods

of java.lang.reflect.Field (e.g., setInt(...))

or get*Field* methods of java.lang.Class (e.g.,

getDeclaredField(String)).

For extracting the actual dependencies of type uses we

implemented ServiceLoader Usage Analysis which leverages

a custom static analysis using the Soot framework to identify

usage of java.util.ServiceLoader in the input appli-

cation. The traces of any actual usage of a service is then

stored in Actual Dependencies.

An application obtains a service loader for a given service

by invoking the static load method of ServiceLoader
API. A service loader can locate and instantiate providers of

the given service using the iterator or stream method

[15], through which an instance of each of the located service

providers can be created. As an example, Figure 4 depicts the

code that obtains a ServiceLoader for MyService (line

1). The ServiceLoader loads providers of MyService
(line 2) and can instantiate any of the located providers of this

service using its iterator—created by the for loop in line 3.

In this example, the service provider with the getService
method is desired (line 4).

Our analysis identifies the usage of the ServiceLoader

1 ServiceLoader <MyService > loader;
2 loader = ServiceLoader.load(MyService.class);
3 for (MyService s : loader) {
4 if (s.getService != null){... } }

Fig. 4: Service loader example

API using a backward analysis by following the use-def chain

of ServiceLoader instances (e.g., s on line 4) to identify

all possible definitions of a ServiceLoader (e.g, line 2 in

Figure 4). The results of the ServiceLoader API usage is

then stored in Actual Dependencies.

Java Inconsistency Analysis’s main goal is to identify all

types of inconsistency scenarios described in Section III. For

each directive in a module-info.java file, Java Inconsistency
Analysis explores actual and specified dependencies, stored in

their respective database components, to identify any occur-

rence of an inconsistent dependency defined in Section III. If a

matching instance is found, Java Inconsistency Analysis reports

the identified architectural inconsistency, the module affected,

and the specific directive involved. The component then stores

the identified inconsistencies in Inconsistent Dependencies,

which are then used in the repair phase.

B. Repair

To repair inconsistent dependencies, Module-Info Trans-
former deletes or modifies the explicit dependencies defined in

the module-info files. Inconsistencies found in the previous

phase are all unnecessarily defined dependencies among an

application’s modules and packages. Therefore, Module-Info
Transformer needs to omit those inconsistent dependencies

specified in the module-info files.

The result of the detection phase includes the type and

details of identified inconsistencies. For instance, in the case

of an inconsistent exports dependency, one result stored in

Inconsistent Dependencies includes the module in which this

dependency is specified, the type of the inconsistent dependency

(exports in this case), and the package that is unnecessarily

exported. The repair phase takes the results of the detection

phase as input. For each module, the repair phase finds the

related records of inconsistent dependencies defined in that

module and modifies the affected lines in module-info.

For this purpose, we leveraged ANTLR [16] to transform

the module-info.java files to repair the inconsistent depen-

dencies. ANTLR is a parser generator for reading, processing,

executing, or translating a structured text. Hence, we generated

a customized parser using Java-9 grammar so that we can

modify it to check the records of inconsistent dependencies

found in the detection phase of DARCY.

More precisely, we have implemented the generated parser so

that, if it finds any match between the tokens of module-info
files and the inconsistent dependencies, it skips or modifies the

specific token with respect to the type of the inconsistency. As a

result, depending on the type of dependency, the corresponding

line in the module-info file is omitted or modified.

Module-Info Transformer repairs each type of inconsistent

dependency. In most cases, Module-Info Transformer deletes
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the entire statement. However, for requires transitive,

Module-Info Transformer only removes the token transitive.

In case of inconsistencies involving open module m (Equa-

tion 8 in Section III), the open modifier is removed from the

header of the module declaration. However, there may be some

packages in m that other modules reflectively access. For each

of these packages, Module-Info Transformer adds an opens to
statement thats make private members of the package accessible

to the modules that reflectively access the package. If there is

no package in m that is reflectively accessed by other modules,

no statement will be added to the module’s body.

In certain situations, the DARCY user may disagree with the

way it repairs and modifies the specified dependencies because

DARCY is not aware of the architect’s or developer’s intentions.

For example, this situation may occur if the user wants to

develop a library and export some packages for further needs

or even allow other modules to reflectively access the internals

of some classes and packages. DARCY warns the developers

and architects about potential threats caused by architectural

inconsistencies in their Java application, and allows them to

override DARCY prior to application of repairs.

V. EVALUATION

To assess the effectiveness of DARCY, we study the following

research questions:

RQ1: How pervasive are inconsistent, architectural dependen-

cies in practice?

RQ2: How accurate is DARCY at detecting inconsistent,

architectural dependencies and repairing them?

RQ3: To what extent does DARCY reduce the attack surface

of Java modules?

RQ4: To what extent does DARCY enhance encapsulation of

Java modules?

RQ5: To what extent does DARCY reduce the size of runtime

memory?

RQ6: What is DARCY’s runtime efficiency in terms of execu-

tion time?

To answer these research questions, we selected a set of

Java applications from GitHub [17], a large and widely used

open-source repository of software projects, all of which are

implemented in Java 9. For this purpose, we searched through

Java applications in GitHub and selected projects that contain a

module-info.java file. Our search covered about a hundred

pages of search results in the GitHub repository. To assess

module dependencies, projects needed to have more than one

module in their respective module-info.java files. Our final

evaluation dataset resulted in 38 Java-9 applications, avoiding

any selection bias toward our approach.

A. RQ1: Pervasiveness

Table II shows, for each application, the total number of

inconsistent dependencies DARCY found, modules, module

directives used, and inconsistent dependencies by type. 74%

of applications in our dataset (28 out of 38) have inconsis-

tent dependencies. Recall that even one existing inconsistent

dependency could cause undesired behaviors, or issues with

encapsulation, security, or memory utilization (see Section III).

As depicted in Table II, most of the inconsistent dependencies

are of types exports or requires because these two types of

directives are used more frequently than others. The high

frequency of inconsistent exports dependencies indicates that

granting unnecessary access to internal packages are quite

common in Java-9 applications, which could cause security

vulnerabilities. Among the inconsistent requires dependencies,

the requires JDK dependency occurred more than others, which

increases the risk of loading unnecessary JDK modules and

compromising portability.

Table II indicates that a few applications have inconsistent

dependencies of type provides with, and only one application

has an inconsistent uses dependency. In fact, these directives

are rare compared to other directives. For provides with and

uses, Java checks most of the requirements for avoiding

inconsistent dependencies at compile time. Therefore, the

possibility of defining an inconsistent provides with and uses
dependencies decreases. Nevertheless, DARCY covers the

inconsistent dependencies corresponding to these two directives

because they are risky and may appear more frequently in future

usage of Java 9.

B. RQ2: Correctness

To answer RQ2 for DARCY’s detection capability, we ran

the detection phase for each of the Java-9 applications in our

evaluation dataset to assess whether DARCY can accurately

detect inconsistent dependencies. To that end, we manually

checked the inconsistent dependencies found by DARCY to

ensure their correctness. More precisely, we compared the cor-

responding record in both Actual Dependencies and Specified
Dependencies to verify the correctness of the inconsistencies

discovered by the detection phase. The result, as described in

Table II, shows that all inconsistent dependencies found by

DARCY are correct.

To evaluate DARCY’s ability to correctly repair inconsisten-

cies, we ran the repair phase of DARCY for each of the Java-9

applications in our evaluation dataset to assess whether DARCY

repairs the detected inconsistencies without introducing any

unexpected behavior. To assess correctness of a repair, we (1)

check if each application compiles successfully after running

the repair phase and (2) if the application contains a test suite,

determine if the application obtains the same test passing rate,

i.e., the ratio of the number of passing test cases to the total

number of test cases, both before and after repairs. We also ran

the detection phase after the repair actions. The result showed

zero inconsistencies within the transformed Java applications.

The results for compilation after repair are shown in Table

II, indicating that all the applications compiled successfully.

This confirms that the inconsistent dependencies have been

repaired robustly in a way that does not prevent compilation of

the applications. Additionally, three applications in our study

contain a test suite. The passing rate for each of these test

suites remains the same both before and after DARCY repairs,

demonstrating that DARCY does not negatively affect expected

behavior of repaired applications.
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TABLE II: Identified Inconsistencies and Robustness Results

No. Application # Modules # Directives # Total Inconsistencies Types % Correct Compiled Test Passing Rate (%)

Name Incons. R R.J. R.T E P U O Incons. (After Repair) Before After

1 sense-nine 6 31 9 2 2 - 2 - - 3 100 � - -
2 number-to-text 3 11 1 - - - 1 - - - 100 � 100 100
3 vstreamer 6 25 4 1 - - - - 3 - 100 � - -
4 jigsaw-resources 2 5 1 - - - 1 - - - 100 � - -
5 JavaUtils 6 36 29 - 14 9 6 - - - 100 � - -
6 BunnyHop 2 28 17 - 1 2 11 - - 3 100 � - -
7 java9-modules 2 5 1 - - - 1 - - - 100 � - -
8 jwtgen 2 13 2 1 - - 1 - - - 100 � - -
9 project-constantin 4 9 5 - - 1 4 - - - 100 � 100 100

10 java-spi-example 6 26 4 - - 1 3 - - - 100 � - -
11 codersonbeer-app 4 13 4 1 - - 2 - - 1 100 � - -
12 rahmnathan-utils 3 14 7 - 1 - 6 - - - 100 � - -
13 auto-sort 3 13 1 - - - 1 - - - 100 � 97 97
14 java9-demo 4 10 1 - - - 1 - - - 100 � - -
15 java9-modules-tlb 5 12 1 - - - 1 - - - 100 � - -
16 java-9-lab 5 15 1 - - - 1 - - - 100 � - -
17 meetup-16 4 14 6 - - - 3 3 - - 100 � - -
18 java-9-bookstore 6 17 3 - - 2 - 1 - - 100 � - -
19 springuni-java9 3 6 3 2 - - 1 - - - 100 � - -
20 java-9-modularity 4 11 1 - - 1 - - - - 100 � - -
21 java-9-spring-mvn 3 18 8 2 - - 6 - - - 100 � - -
22 music-ui-start 3 15 4 - - 1 1 - - 2 100 � - -
23 java9-labs 4 10 4 - - - 4 - - - 100 � - -
24 practical-security 4 20 2 - 1 - 1 - - - 100 � - -
25 java9-junit 3 13 1 - - - 1 - - - 100 � - -
26 the-message 3 16 1 - - - 1 - - - 100 � - -
27 jigsaw-tst 4 11 1 - - - 1 - - - 100 � - -
28 TRPZ 4 19 2 - - - 1 - - 1 100 � - -

C. RQ3: Security

To assess DARCY’s ability to enhance security, we consider

the attack surface of Java-9 applications. The attack surface

of a system is the collection of points at which the system’s

resources are externally visible or accessible to users or external

agents. Manadhata et al. introduced an attack-surface metric

to measure the security of a system in a systematic manner

[18]–[20]. Every externally accessible system resource can

potentially be part of an attack and, hence, contributes to a

system’s attack surface. This contribution reflects the likelihood

of each resource being used in security attacks. Intuitively, the

more actions available to a user or the more resources that

are accessible through these actions, the more exposed an

application is to security attacks [18]–[20].

For a Java-9 application, the main resource under considera-

tion is a Java module. As a result, we define the attack surface

of an application as the number of packages that are accessible

from outside its modules. To measure the attack surface of

Java-9 applications, we count the number of packages exposed

by exports (to) and open(s to) directives. These directives make

internals of packages accessible to other modules.

As shown in Table III, 25 out of 29 applications had an

average attack-surface reduction of about 60%. DARCY was

able to totally eliminate the attack surface in 5 applications.1

Although eliminating the module-based attack surface does not

result in perfect security, DARCY can maximize protection to

the asset (i.e., Java packages) through a module’s interfaces by

eliminating all unnecessary exports and opens directives of the

module—other attack vectors (e.g., IPC over network sockets)

1These applications are essentially software utilities or libraries including
different modules that provide functionalities for different situations, but do
not have any dependency on one another.

TABLE III: Result for Attack-Surface Reduction

Application # exposed # exposed Attack Surface

Name pckg (before) pckg (after) Reduction (%)

sense-nine 6 1 83.33
number-to-text 4 3 25.00
jigsaw-resources 2 1 50.00
JavaUtils 7 1 85.71
BunnyHop 16 2 87.50
java9-modules 2 1 50.00
jwtgen 1 0 100
project-constantin 4 0 100
java-spi-example 6 3 50.00
codersonbeer-app 4 1 75.00
rahmnathan-utils 6 0 100
auto-sort 2 1 50.00
java9-demo 2 1 50.00
java9-modules-tlb 5 4 20.00
java-9-lab 3 2 33.33
meetup-16 4 1 75.00
springuni-java9 1 0 100
java-9-spring-mvn 6 0 100
music-ui-start 5 2 60.00
java9-labs 5 1 80.00
practical-security 4 3 25.00
java9-junit 4 3 25.00
the-message 10 9 10.00
jigsaw-tst 3 2 33.33
TRPZ 5 3 40.00

Avg. Attack Surface Reduction 60.33%

still remain but are out of scope for DARCY. The relatively

large reduction of the attack surface in applications achieved

by DARCY indicates that it can significantly curtail security

risks in Java-9 applications.

D. RQ4: Encapsulation

To evaluate the ability of DARCY to enhance the encapsula-

tion of Java-9 applications, we leveraged two metrics selected

from an extensive investigation by Bouwers et al. [21] about

the quantification of encapsulation for implemented software

architectures. We selected metrics that involve architectural

dependencies and are appropriate for the context of modules
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in JPMS and Java-9 applications.

The first metric we selected is Ratio of Coupling (RoC) [22],

which measures coupling among an application’s modules.

For Java-9 modules, RoC is the ratio of the number of
existing dependencies among modules to the number of all
possible dependencies among modules. Ideally, the value of

RoC would be low, meaning that only a small part of all

possible dependencies among modules is actually utilized—

making it less likely that faults, failures, or errors introduced by

changes or additions to modules will propagate across modules.

The second metric we selected is a variant of Cumulative

Component Dependency (CCD) [23] which is the sum of all

outgoing dependencies for a component. For Java-9 modules,

outgoing dependencies are requires and uses dependencies of

each module. The specific variant we used is Normalized CCD

(NCD), which is the ratio of CCD for each module to the total

number of modules. Ideally, the value of CCD, or NCD, is

low, indicating lower coupling and better encapsulation.

TABLE IV: Results for Encapsulation Improvement

Application # Directives RoC NCD

Name (before) % Change % Change

sense-nine 31 29.03 16.00
number-to-text 11 9.09 -
vstreamer 25 16.00 20.00
jigsaw-resources 5 20.00 -
JavaUtils 36 80.56 79.31
BunnyHop 28 60.71 25.00
java9-modules 5 20.00 -
jwtgen 13 15.38 8.33
project-constantin 9 55.56 20.00
java-spi-example 27 15.38 5.56
codersonbeer-app 13 30.77 12.50
rahmnathan-utils 14 50.00 12.50
auto-sort 13 7.69 -
java9-demo 10 10.00 -
java9-modules-tlb 12 8.33 -
java-9-lab 15 6.67 -
meetup-16 14 42.86 -
java-9-bookstore 17 17.65 16.67
springuni-java9 6 50.00 40.00
java-9-modularity 11 9.09 12.50
java-9-spring-mvn 18 44.44 16.67
music-ui-start 15 26.67 10.00
java9-labs 10 40.00 -
practical-security 20 10.00 7.69
java9-junit 13 7.69 -
the-message 16 6.25 -
jigsaw-tst 11 9.09 -
TRPZ 19 10.53 -

Total # of Affected Systems (RoC) 28
RoC Reduction Avg. 25.34%

Total # of Affected Systems (NCD) 15
NCD Reduction Avg. 20.73%

Table IV presents the amount of RoC and NCD change in 28

Java-9 applications with inconsistent dependencies. Across all

28 applications, the amount of RoC is reduced by an average of

25.34%, and up to 80.56%. The amount of NCD is also reduced

in 15 applications by an average of 20.73%, and up to 79%.

These results indicate that DARCY can successfully enhance the

encapsulation of Java-9 applications by a significant amount.

E. RQ5: Software Bloat

To answer this research question, we measured the runtime

memory needed by each application before and after DARCY’s

repair phase. Recall the fact that in Java 9, with the JDK being

modularized, we are able to create a lightweight custom Java

Runtime Environment (JRE), reducing software bloat. More

specifically, the size of a custom JRE may be reduced after a

repair if the application has inconsistent dependencies of type

requires JDK (Equation 2 of Section III).

TABLE V: Results for Software-Bloat Reduction

Application JRE Size (MB) Runtime Memory

Name (before) (after) Reduction (%)

sense-nine 19.11 18.99 0.63
JavaUtils 39.24 30.66 21.87
BunnyHop 46.23 20.93 54.72
java-spi-example 41.40 38.9 6.04
rahmnathan-utils 15.61 15.60 0.12
practical-security 15.72 15.60 0.76

Avg. Memory Reduction 14.02%

Table V shows reduction of software bloat in terms of

runtime memory size of affected applications after removing

inconsistent requires JDK dependencies. According to the

results, the reduction is about 14% in 6 applications, and up to

55%. Such results are particularly substantial for deployment

and scalability goals in microservices or IoT devices that

contain very little memory.

F. RQ6: Performance

As described in Section IV, DARCY builds on three tools,

Classycle [12], Soot [14], and ANTLR [16]. As a result, to

assess DARCY’s performance we answer RQ5 in terms of these

three underlying tools’ execution time.

TABLE VI: Results for Execution Time
Component Avg. Execution Time (ms)

Class Dependency Analyzer (Classycle) 7428
Java Reflection Analysis 328
ServiceLoader Usage Analysis 315
Java Inconsistency Analysis 250
Repair 453

Total 8774

Table VI describes the average execution times for DARCY.

Results for Classycle are shown separately from results for

other components since the execution time is dominated by

Classycle. On average, DARCY takes under 9 seconds for any

system to execute, which is highly time efficient for both

detection and repair.

VI. THREATS TO VALIDITY

In terms of accuracy, the main threat to internal validity is

the risk of false positives or negatives of the static analysis

tools used in the implementation. False positives or negatives

in the results of the static analysis tools may cause DARCY

to miss some inconsistencies in the detection phase or report

false inconsistencies, which may lead to compilation errors or

harming functionality of the application after the repair phase.

Since DARCY takes Classycle’s results as an input for the Java

inconsistency analysis, it inherits all of Classycle’s limitations.

The accuracy of detecting the inconsistent dependencies is

affected by the accuracy of the static analysis tool we use.

However, Classycle has been used and in development for

over 11 years and leveraged by other state-of-the-art tools

for software architecture and antipattern analysis [24]–[30]. A

similar threat to internal validity exists for our use of Soot; how-

ever, Soot is a widely used [31], [32] and actively maintained
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framework [33] for static analysis of Java programs. We further

manually determine whether every identified inconsistency is

correct to ensure that any unforeseen issues with underlying

static analyses do not compromise DARCY’s accuracy.

One of the main threats to external validity is the selection

and number of Java applications in the evaluation dataset. To

mitigate this threat, we selected open source Java-9 applications

from many developers and about a hundred pages of search

results on GitHub, one of the largest and most widely used

open-source repositories online. Another threat to external

validity is whether the types of inconsistencies we identify

comprehensively cover those that may exist. To alleviate this

threat, we considered the architectural inconsistencies based

on all types of module directives defined in Java 9.

DARCY’s evaluation on only one programming language,

i.e., Java, is another threat to external validity. This threat is

alleviated by the fact that Java is one of the most widely used

languages in the world [34], [35]. Furthermore, the general

idea behind DARCY can be extended to any other languages

with modular programming constructs that utilize provides and

requires interfaces advocated by software architecture-based

development and design [36]–[38].

VII. RELATED WORK

The most closely related literature to DARCY bridges

the gap between software architecture and implementation.

There are a variety of different types of strategies to address

this issue: focusing only on the descriptive architecture by

reverse engineering it; obtaining the descriptive architecture

and the prescriptive architecture, followed by checking their

conformance; ensuring that early in the software lifecycle

that the descriptive and prescriptive architectures conform by

providing architectural constructs in code; and approaches

that ensure conformance of the descriptive and prescriptive

architecture from the beginning and into maintenance.

Many approaches address the architecture-implementation

mapping issue by ignoring the prescriptive architecture and

simply trying to obtain the most accurate descriptive architec-

tures possible [28], [29], [39]–[46]. A large number of these

approaches rely on software clustering to determine components

from implementations [39], [40], [47]–[49].

A series of approaches detect inconsistencies between

architecture and implementation by reverse engineering the

descriptive architecture from the code and comparing it with

the prescriptive architecture [50]–[63]. Murphy et al. introduced

the software reflexion method which helps an engineer compare

prescriptive and descriptive architectures in a manual manner

[50]. A number of these approaches extend the reflexion method

with automated architecture recovery techniques [60]–[62].

Other approaches provide implementation-level constructs

that represent architectural elements (e.g., customizable

programming-language classes representing components) that

help ensure architectural conformance from a forward-

engineering perspective [2], [64]–[70]. Many of these ap-

proaches support various notions of software architectural

connectors or interfaces, rather than just components.

Certain approaches achieve architecture-implementation map-

ping from both a forward-engineering (e.g., code generation)

and reverse-engineering perspective, i.e., round-trip engineering

[71]–[73]. 1.x-way mapping [71] allows manual changes to

be initiated in the architecture and a separated portion of

the code, with architecture-prescribed code updated solely

through code generation. 1.x-line mapping [72] extends 1.x-

way mapping to product-line development. Song et al. [73]

introduce a runtime approach for architecture-implementation

mapping from a roundtrip-engineering perspective.

DARCY is the first approach that supports architectural-

implementation conformance checking in a mainstream pro-

gramming language using architectural constructs built directly

into the programming language by its creators. Furthermore,

our approach includes repair of non-conforming architectures,

rather than just determining inconsistencies. DARCY is the only

approach for architecture-implementation mapping that focuses

on software bloat and attack-surface reduction.

The module system has been recently introduced in Java,

and the only existing framework similar to JPMS is OSGI

[74]. The major differences between OSGI and JPMS are

as follows. OSGI was not able to modularize the JDK,

preventing the construction of customized runtime images with

a minimized JDK, which JPMS enables. Additionally, OSGI

cannot handle reflective access to modules’ internal packages.

Similar dependency-analysis facilities for OSGI are limited to

removing unused dependencies of type import, which represents

the require dependency, and cannot cover the other 7 types of

inconsistencies in JPMS applications previously introduced in

section III. Therefore, there is no similar facility for OSGI that

repairs all types of inconsistent dependencies as DARCY does.

VIII. CONCLUSION

This paper formally defines 8 types of architectural incon-

sistencies in Java-9 applications and introduces DARCY, an

approach for automatic detection and repair of these types of

inconsistencies. DARCY leverages custom static analysis, state-

of-the art static analysis tools, and a custom parser generator in

its implementation to effectively detect and robustly repair archi-

tectural inconsistencies. The results of our evaluation indicates

a pervasive existence of architectural inconsistencies among

open source Java-9 applications. According to our experiment,

DARCY’s automatic repair results in a significant reduction of

the attack surface, enhancement of encapsulation, and reduction

of memory usage for Java-9 applications. In the future, we aim

to expand DARCY to other programming languages and improve

it to (1) provide architectural visualization and (2) be used as

a plug-in for Java Integrated Development Environments (IDE)

which helps developers avoid architectural inconsistencies when

developing Java applications.
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