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ABSTRACT
Like any other software engineering activity, assessing the security
of a software system entails prioritizing the resources and minimiz-
ing the risks. Techniques ranging from the manual inspection to
automated static and dynamic analyses are commonly employed to
identify security vulnerabilities prior to the release of the software.
However, none of these techniques is perfect, as static analysis is
prone to producing lots of false positives and negatives, while dy-
namic analysis and manual inspection are unwieldy, both in terms
of required time and cost. This research aims to improve these tech-
niques by mining relevant information from vulnerabilities found
in the app markets. The approach relies on the fact that many mod-
ern software systems, in particular mobile software, are developed
using rich application development frameworks (ADF), allowing us
to raise the level of abstraction for detecting vulnerabilities and
thereby making it possible to classify the types of vulnerabilities
that are encountered in a given category of application. By coupling
this type of information with severity of the vulnerabilities, we are
able to improve the efficiency of static and dynamic analyses, and
target the manual effort on the riskiest vulnerabilities.

CCS CONCEPTS
• Security and privacy → Mobile platform security; Access
control; • Software and its engineering → Software testing
and debugging; Automated static analysis;
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1 INTRODUCTION
One of the most exciting developments in the delivery and de-
ployment of software has been the emergence of app markets. By
providing a medium for reaching a large consumer market at a nom-
inal cost, app markets have leveled the software industry, allowing
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small entrepreneurs to compete head-to-head against prominent
software development companies. The result has been a highly
vibrant ecosystem of mobile application software, but the paradigm
shift has also given rise to a whole host of security issues [21].

In light of the increasing security threats, the state-of-the-practice
needs to move away from the reactive model of patching the se-
curity vulnerabilities to proactive model of catching them prior
to product release [14]. One approach is to manually inspect the
security of application software prior to its release, which is an
expensive and error-prone process. Alternatively, as a step toward
addressing the above issues, static analysis is gaining popularity
for automatically finding security problems in application soft-
ware [15]. Although this technique is more cost effective compared
to manual inspection, it has its own shortcomings. Static analysis
usually generates an unordered wide-ranging list of potential vul-
nerabilities, varying from hazardous easily-exploitable vulnerabili-
ties to uncommon and/or non-severe risks and even false positives,
i.e., detected vulnerabilities that are not really exploitable. Thus,
static analysis has not been able to completely remove the need
for manual inspection, and instead has helped target such effort to
seemingly problematic parts of the code.

An approach to eliminate the false positives from a static analyzer
is to employ dynamic analysis techniques. For instance, find test
cases that execute the suspected parts of the code flagged by the
static analyzer to make an unequivocal determination as to the
dangers they pose [4]. However, this approach has its own technical
challenges. In particular, as the software under test gets larger and
more complicated, list of potential exploits becomes longer and
hence, checking all possible exploits in a reasonable time becomes
more difficult. As a result, some prioritization mechanisms are
necessary to focus the manual inspection and dynamic analysis
effort on the vulnerabilities that are likely to materialize in the form
of dangerous exploits.

Categorization of apps on the app markets presents us with a
unique opportunity to tackle these issues. App categories, such as
game, travel, communication, are intended to help the users with
finding relevant applications. Some examples of app markets with
categories are F-Droid for open source and Google Play for An-
droid applications. Other than facilitating the users in searching
and browsing, categories of apps have shown to be good predic-
tors of the common features found within software of a particular
category [12, 17].

In this paper, we explore the utility of app markets in informing
the security inspection and analysis of software applications. The
fact that the majority of apps provisioned on such markets is built
using a common application development framework (ADF) presents
us with an additional opportunity. Since many of the security issues
encountered in modern software are due to the wrong usage of
ADF [21], we are able to develop highly effective predictors as
to the types of security vulnerabilities one may find in different
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categories of apps. In our prior research [17], we have shown the
existence of strong correlations between the types of vulnerabilities
and categories of apps. This paper shows how such correlations can
be used to improve the efficiency of static, dynamic, and manual
analysis techniques for security assessment of software.

Our research result is useful for prioritizing the order in which
vulnerabilities flagged by static analyzer are manually inspected
or dynamically analyzed. We use a combination of the frequency
with which vulnerabilities occur in a given category of apps and the
severity of such vulnerabilities to prioritize the effort that follows
the static analysis phase in vetting the vulnerabilities. Thus, given
a limited amount of time and resources, the approach enables the
maximization of the likelihood with which the most severe exploits
are detected and corroborated prior to system release.

Our experimental results for Android apps that make extensive
use of a particular ADF have been very positive. Our approach
improved the efficiency of static analysis of Android apps by 68%,
while keeping the vulnerability detection rate at 100%. Moreover,
our suggested ranking mechanism, which prioritizes vulnerabilities
based on risk, could inform the manual inspection of vulnerabilities.
For instance, our experiments show that when due to time limita-
tions the security inspector is forced to only investigate half of the
potential security threats, our ranking system suggests vulnerabili-
ties that constitute 80% of total risk, while uniformed inspection
would have covered only 50% of total risk.

The remainder of this paper is organized as follows. Section 2
provides examples of Android vulnerabilities and possible tech-
niques for detecting them. Section 3 outlines the overview of our
approach, while Sections 4 to 6 describe the details. Sections 7 and 8
describe the research experimental setup, results, and analysis. Fi-
nally, the paper concludes with a discussion of related research and
our future work.

2 MOTIVATION
To motivate the research and illustrate our approach, we provide ex-
amples of two vulnerability patterns having to dowith Inter-Process
Communication (IPC) among Android apps. Android provides a
flexible model of IPC mechanism using application-level message
known as Intent.

The first vulnerability occurs on line 5 of Figure 1. Without
checking to ensure areaCode is not null, equals method is used
to compare its value, resulting in a null pointer exception when
areaCode is null. Amalware canmake this app crash by intentionally
not including the area code payload. This is a null dereference
vulnerability [6, 7] that an adversary could discover by simply

1public class MessageSender extends Service {
2 public void onStartCommand (Intent intent, int flags, int startId) {
3 String areaCode = intent.getStringExtra ("AREA_CODE");
4 String number = intent.getStringExtra ("PHONE_NUM");
5 if (areaCode.equals("911") || areaCode.equals ("703")) //null pointer

dereference vulnerability
6 //if (hasPermission())
7 SmsManager.getDefault().sendTextMessage(number, null, msg, null, null);
8 }
9 boolean hasPermission () {
10 if(checkCallingPermission(SEMD_SMS) == PERMISSION_GRANTED)
11 return true;
12 return false;
13 }
14}

Figure 1: Vulnerable app: receives an Intent and sends a text mes-
sage to the provided number. Bold statements represent potentially
exploitable vulnerabilities.

reverse engineering any of the apps on the market, and exploiting
it to launch a denial of service attack.

The second, perhaps more interesting, vulnerability occurs on
lines 7 of Figure 1, where MessageSender service sends a text mes-
sage. This is a sensitive Android action that requires a special access
permission to the system’s SMS service. Although MessageSender
has that permission, it also needs to ensure that the sender of the
original Intent message has the required permission to use the SMS
service. An example of such a check is shown in hasPermission
method of Figure 1, but in this particular example it does not get
called (line 6 is commented) to illustrate the vulnerability. If another,
potentially malware, app does not have the permission to send text
message, it is able to make this app perform that action on its behalf.
This is a privilege escalation vulnerability and has been shown to
be quite common in the apps on the market [6].

The above two vulnerabilities are just examples we have selected
from a large collection of well-known Android vulnerabilities [6, 7].
A common technique to detect such vulnerabilities is to employ
static analysis tools. An example of a rule (i.e., a vulnerable code
pattern) a static analysis tool may be configured, to check for in
the source code, is operations performed on objects that may be
null (similar to the one shown on line 5 of Figure 1).

An important shortcoming of most static analysis tools is that
they produce a high-rate of false positives, i.e., alarms for un-
exploitable vulnerabilities. For instance, with inclusion of Line 6
in the code of Figure 1 the privilege escalation vulnerability on
line 7 is not exploitable. But many static analysis tools, particularly
branch-insensitive analyses, would still flag line 7 as a vulnerability.
Finding the root cause of an error and determining whether it is
truly a vulnerability is an extremely time consuming and unwieldy
task. Additionally, many practitioners often avoid further investi-
gation of reports generated by static analysis tools, as determining
real vulnerabilities requires significant security expertise.

Our research aims to address the aforementioned challenges
by eliminating the unnecessary checks and prioritizing the efforts
involved in static, dynamic, and manual analysis of the software.

3 APPROACH OVERVIEW
Figure 2 depicts an overview of our approach. Our approach takes
App Market as an input, where each application is labeled with a
predefined class or category. Even if the apps are not categorized by
the input repository, a machine learning techniques could be used
to cluster similar apps within the same category. The other input

Figure 2: Overview of the approach.
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to the framework is Vulnerability Detection Rules (VDRs), which is
a list of known vulnerability patterns in Android.

For each application on the repository, Static Analyzer compo-
nent inspects the code for patterns that match VDRs. The output of
this analysis is an Analysis Report, which consists of all the vulner-
ability patterns detected in the code along with the corresponding
locations. The generated list of latent vulnerabilities for a cate-
gorized repository of applications serves as our training data set.
Given this data, the Probabilistic Rule Classifier component ranks
each vulnerability pattern based on its frequency of occurrence in
the Analysis Report. To that end, Probabilistic Rule Classifier applies
conditional probability technique to find the likelihood of occur-
rence of each vulnerability pattern on each category to produce
Rule Ranking. The higher is the position of a vulnerability pattern
in the ranking of a category (higher frequency score), it is more
likely for its corresponding VDR to detect that vulnerability in the
given category.

The other thrust of our approach is the Vulnerability Impact
Calculator, which ranks each VDR based on its threats to various
security aspects of the system (i.e, Confidentiality, Integrity, and
Availability). The result is Criticality Ranking, in which an impact
score is assigned to each Vulnerability Detection Rule based on the
severity of damage caused by exploitation of the corresponding
vulnerabilities, regardless of the application categories. Thereby,
the higher impact score implies the severity of consequences an
exploit causes.

Finally, Risk Assessor combines the two previous scores (i.e., fre-
quency score and impact score) and provides a new two-dimensional
score. The Risk Ranking provides an assessment of the VDRs in
each software category based on the severity and likelihood of
vulnerabilities it can detect.

Our proposed approach enhances the state of practice in static,
dynamic, and manual analysis of the app’s security as follows.

• Rule Ranking information is used to determine the set of rele-
vant VDRs for a given category of application, thus increasing
the speed at which static analyzer can execute and produce
feedback.
• Criticality Ranking information is used to determine which
vulnerabilities detected by static analysis should be dynamically
analyzed first.
• Risk Ranking information is used by a security analyst to deter-
mine the risks that are likely to be posed by an application of a
given category, thus informing the manual inspection process

4 PROBABILISTIC RULE CLASSIFICATION
As depicted in Figure 2, the output of Static Analyzer component
is the Analysis Report. This report contains the app’s source code
locations that match the predefined vulnerability patterns specified
in Vulnerability Detection Rules. Static Analyzer tries all the rules
and finds all matches in the source code. However, some of the
rules may not match at all. We depict the set of all Vulnerability
Detection Rules as R and the set of rules where at least one match has
been found for them asM . If we know these rules upfront, we can
improve the efficiency of Static Analyzer by removing the irrelevant
rules (i.e.,M = R −M). We refer to this task as rule reduction.

This definition can be further extended by considering the cat-
egorical information as follows: Mc is the set of rules that are
matched to at least one vulnerability in the apps with category

c . The intuition behind this formulation is that applications cate-
gorized in the same class share features implemented by similar
source code patterns and API usage pattern [8]. Thereby, it is more
likely for a set of applications in the same category c ∈ C (where C
is the set of all categories) to have common vulnerabilities.

It takes only one false positive to include the corresponding
rule r in Mc . As the number of projects in the category and the
number of files in the projects increases, it becomes more likely
for all the rules to be included inMc due to false positives, hence
Mc converges to R. In other words, for each rule some kind of
matching (which may be a false positive) is found. This is the
problem with simply checking the membership of rule r inMc as
the binary measure of relevance of rule r to category c . We need
a measure that expresses the likelihood of rule r being relevant to
a given category c . This is the classical definition of conditional
probability of P (r |c ). Calculating this value helps us to confine the
static analysis rules for each application category to the rules that
detect widespread vulnerabilities in that category.

By applying Bayes Theorem [5] to the Analysis Reports (recall
Figure 2), we can calculate P (r |c ), indicating the probability of a
given rule matching an application from a category:

P (r |c ) =
P (c |r ) × P (r )

P (c )
(1)

Here, P (c ) is the probability of an application belonging to a
category c , calculated via dividing the number of applications be-
longing to category c by the total number of applications under
study. P (r ) is the probability of a rule r matching, calculated via
dividing the number of matches for rule r by the total number of
matches for all rules on all applications. Finally, P (c |r ) is the proba-
bility that a given application category c have the rule r matching,
calculated via dividing the total number of times applications of
category c were matched with rule r by the total number of matches
for applications of that category.

As we described earlier P (r |c ) is used by the Rule Selector to
reduce the number of rules used by a static analyzer. We can exclude
a rule r from the static analysis of an application belonging to
category c , when P (r |c ) ≤ ϵ , where ϵ is a user-defined threshold
indicating the desired level of rule reduction. We depict the set of
excluded rules for category c as Ec , and in turn, assess the reduction
in the number of rules for category c as following:

Reductionc = ( |Ec |/|R |) × 100 (2)

The value selected for the threshold presents a trade-off between
the reduction of rules (i.e., the improvement in efficiency) and the
coverage of static analysis. As more rules are removed, the static
analyzer executes faster, but the coverage decreases, increasing the
chances of missing a vulnerability in the code. We will discuss the
selection of threshold in Section 8.

5 VULNERABILITY IMPACT CALCULATION
An issue with most static analyses is that many of the flagged vul-
nerabilities are false positives. By definition it is impossible to find
an input that can exploit a given false positive. Exploit generation [4]
is the process of determining whether a vulnerability is exploitable
or not. Triaging [23] is also an alternative approach to eliminate
false positive by auditing source code manually. However, often
the large number of flagged vulnerabilities combined with limited
available resources prevent applying exploit generation or triaging
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on every vulnerability. In our experiments, we found up to 37 vul-
nerabilities in a single Android application. Clearly, a prioritization
mechanism would be useful as it would allow the dynamic or man-
ual analysis to focus on the most critical vulnerabilities first. This
is where Criticality Ranking comes into play.

The criticality of a vulnerability is assessed based on two fac-
tors: exploitability and influence. Exploitability measures how much
work is required or what resources are needed to exploit a vulner-
ability. Influence determines the amount of loss or the total cost
of damage caused by a vulnerability exploitation. Common Vul-
nerability Scoring System (CVSS) [10], which is endorsed by the
National Institute of Standards and Technology (NIST) for use on a
wide range of systems, is a standard method that covers assessment
of both factors.1.

CVSS measures each factor with three metrics, which are called
vectors. Exploitability vectors are Access Vector, Access Complexity,
and Authentication. Access Vector indicates the location from which
an attack is possible (e.g., network, adjacent network, local). Access
Complexity measures the complexity of effort required to attack
(e.g., high, medium, low). Authentication is calculated based on
the number of attempts required for an attacker to accomplish an
attack (e.g., multiple, single, none). Influence vectors measure the
effects of exploited vulnerability on Confidentiality, Integrity, and
Availability. Confidentiality measures prevention of information
access to unauthorized users. Integrity indicates accuracy of data
through its life cycle. Availability represents the ability to access
the information when it is needed.

In addition to the above intrinsic Base scores, which are time and
user-environments invariants, each vulnerability is correlated to
some extrinsic metrics, namely Temporal and Environmental scores.
Temporal scores address the properties of vulnerabilities that vary
over time. Confirmation of the technical details of a vulnerability,
the remediation status of the vulnerability, and the availability of
exploit code are the metrics that measures temporal scores. On the
other hand, the user environment and the organization’s IT infras-
tructure have a great impact on the damage caused by an exploited
vulnerability. Environmental scores assess this by considering col-
lateral damage (including loss of life, physical assets, productivity
or revenue) and percentage of all systems of the organization that
could be affected by the vulnerability.

Based on the scores given to these components, CVSS calculator
allocates a score in the scale of 0-10 to each vulnerability. A higher
score means the vulnerability is more critical and its exploitation is
more costly.

By this definition, Criticality Ranking is orthogonal to Rule Rank-
ing defined in Section 4. The former expresses the actual cost of
exploitation for a given vulnerability, while the latter expresses
the potential for the presence of a given vulnerability in a certain
category. In an effective exploit generation system, flagged vul-
nerabilities are exercised in their criticality order to find the more
critical exploits before the less critical ones. In other words, the
limited resources are invested on more critical vulnerabilities first.

6 RISK ASSESSMENT
As we discussed in Section 5, Rule Ranking and Criticality Ranking
are orthogonal. In the previous sections, we described what is the
meaning and use of each ranking. In this section, we describe how

1In CVSS terminology, influence is referred to as “impact”. We did not use the same
term to avoid confusion with another concept defined in Section 6.

Figure 3: Tusler’s risk classification scheme.

we use techniques from quantitative risk assessment [13] to combine
these two rankings.

According to the quantitative risk assessment literature [13], risk
has two dimensions: Probability and Impact. Probability represents
the likelihood of the risk, while Impact represents the effect of
the risk [13]. In our work, these dimensions are measured by the
Frequency Score and Impact Score, which are values in the scale of
1-5.

In our research, vulnerability is considered as the risk to the
security of the application. In Section 4 we defined Rule Ranking
to be the likelihood of vulnerability in a given category. Therefore,
Rule Ranking maps to Probability in that category. Similarly and
by definition, Criticality Ranking maps to Impact. However, before
using these rankings, we transform them into scores in the scale of
1-5, where the lowest and highest ranks obtain scores of 1 and 5,
respectively.

As a result of considering vulnerability as risk, software security
inspection turns into risk management. The security analyst tries
to detect and mitigate the risks (i.e., vulnerabilities). Just like any
other risk management task, security inspection is subject to time
and budget limitations and a security analyst should focus on riski-
est vulnerabilities first. Figure 3 depicts Tusler’s risk classification
scheme, which is originally proposed for project management [13].
We use this classification to classify the security vulnerabilities.
Based on Tusler’s classification, there are four risk classes for vul-
nerabilities:
• Tiger : Frequent and dangerous vulnerabilities, which have high
Probability and high Impact.
• Alligator : Rare and dangerous vulnerabilities, which have low
Probability and high Impact.
• Puppy: Frequent and harmful vulnerabilities, which have high
Probability and low Impact.
• Kitten: Rare and harmful vulnerabilities, which have low Proba-
bility and low Impact.
The goal of a security analyst is to cover as many high risked

vulnerabilities as possible, while considering time and budget limi-
tations. It is clear that vulnerabilities categorized as Tiger and Kitten
require highest and lowest attention, respectively. However, the
ordering for Alligator and Puppy vulnerabilities depends on the
security expert’s preferences. We define Risk Score as a function of
Frequency Score, Sp , and Impact Score, Si , as follows:

RiskScore = (Sp
wp × Si

wi )
( 1
wp+wi

) (3)

Wherewp andwi are weights of frequency and impact scores, re-
spectively. According to this equation, risk score is calculated as
geometric weighted average of frequency and impact scores, which is
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Figure 4: The overall reduction vs. the overall coverage of
the remaining rules.

an extension of simple risk assessment technique, where the quan-
titative risk is obtained simply as product of frequency (probability)
and impact factors [24]. These weights help us to customize the
value of risk score based on importance of frequency and impact
factors, and rank vulnerabilities based on the risk they pose. This
results in Risk Ranking, which helps the security experts to focus
on high risk vulnerabilities. In a sense, Risk Ranking is informed
by the two dimensions that we discussed earlier: Rule Ranking and
Criticality Ranking.

7 EXPERIMENT SETUP
The first step for using our approach is to populate a categorized
repository (as a local App Market) and Vulnerability Detection Rules,
which are depicted as the two inputs in Figure 2, with a set of
application (denoted as set App) and a set of rules (recall R from
Section 4) respectively. In this section, we describe howwe collected
the applications, App, and the set of rules, R, for our evaluation
purposes and set up the experiments.

We considered Android apps with two characteristics in the
evaluation process: categorized and open-source. The first charac-
teristic is the basis of our hypothesis and almost all App repositories
support it. The second characteristic is based on the requirements
of some static analysis tools (e.g., Fortify) and manual inspection.
Among the available repositories, F-Droid [1] supports both require-
ments. Hence, we collected 460 apps belonging to 11 categories
from F-Droid.

We used HP Fortify Static Code Analyzer [2] as our static analysis
tool (recall Static Analyzer from Figure 2). While Fortify provides
a set of built-in rules for various programming languages, it also
supports customized rules, which are composed by third-parties for
specific purposes. For this research, we developed a set of custom
rules for Android based on the rules provided by Enck et al. [7].

8 EVALUATION
The ultimate contribution of our research is to improve the effi-
ciency of various software security analyses. Therefore, evaluation
of our approach entails measuring the efficiency improvement from
using the suggested rankings.

8.1 Rule Ranking
As you may recall from Section 4, the value of ϵ presents a trade-off
between the reduction of rules and the coverage of static analysis. If
ϵ is too low, reduction, and in turn, improvement in efficiency would
be insignificant. On the other hand, if ϵ is too high, the chance of
missing detectable vulnerabilities in static analysis increases. We
already defined how we assess rule reduction for a given category c

Figure 5: Scatter graph of Android vulnerabilities in a 2-
dimensional risk scoring system.

in Equation 2. Similarly, we assess the coverage for a given category
c as follows:

Coveraдec =

∑
r ∈Ec

∑
a∈Appc |Vr,a |∑

r ∈R
∑
a∈Appc |Vr,a |

× 100 (4)

Here, Vr,a is the set of vulnerabilities in the application a, which
are detected by applying rule r .

Figure 4 shows the overall reduction and coverage of all cate-
gories for various ϵ values. We calculated these values using 10-Fold
Cross Validation technique [22].We partitioned the set of apps under
study into 10 subsets with equal size and used them to conduct 10
independent experiments. In each experiment, we treated 9 subsets
as the training set and the remaining subset as the test set. Recall
that our data set comprised of 460 Android applications. We calcu-
lated Reductionc and Coveraдec values for each test set based on
the P (r |c ) values learned from the corresponding training set. Then,
we calculated the intermediate reduction and coverage for each
experiment as the weighted average of Reductionc and Coveraдec
values; the weights were assigned proportional to the number of
applications fallen in category c for that experiment. Finally, we
calculated the overall reduction and coverage as the average of
intermediate reduction and coverage values obtained from the 10
experiments.

According to Figure 4, with ϵ = 0 (i.e., when only the rules
with learned detection probability of 0 are excluded), reduction is
68%, while coverage is at 100%, meaning that all vulnerabilities that
are detectable using all of the rules in our experiment are indeed
detected. In other words, the remaining 32% of the rules are as
powerful as all of the rules in detecting all of the vulnerabilities and
achieving 100% coverage. These results support our hypotheses.
They emphasize the effectiveness of our probabilistic ranking as
we could achieve full coverage of Android vulnerabilities with 68%
reduction of unnecessary rules. In our experiments, no rule was
excluded from all categories. This implies that every rule is useful,
but, may be unnecessary in some categories.

TABLE 1 shows the Frequency Score of the rules for Internet,
Navigation, and Phone, which are representative of three Android
categories in our study. Recall from 6 that Frequency Score is a
transformation of P (r |c ) to the range of 1-5. As we will see in the
remainder of this section, Frequency Score will be used in conjunc-
tion with the Impact Score to calculate risk.

5
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Table 1: Ranking scores for a partial list of Android vulnerabilities.

Android Frequency Score Impact Risk Score
V ID Vulnerability Internet Navigation Phone Score Internet Navigation Phone
v1 IPC Null Check 4.21 4.79 5 4.41 4.31 4.59 4.69
v2 Background Audio/Video 1 1 1 3.81 1.95 1.95 1.95
v3 Retrieves ICC-ID/IMEI/IMSI 2.38 1.42 2.71 2.04 2.2 1.7 2.35
v4 Retrieves Installed Applications 1.46 1.21 1.57 1 1.21 1.1 1.25
v5 Retrieves Location 1.92 5 2.14 2.04 1.98 3.19 2.09
v6 Retrieves Phone Number 2.38 1 2.71 2.04 2.2 1.43 2.35
v7 Sensitive Info to Network 1 1.21 1 5 2.24 2.46 2.24
v8 IPC to Intent Address 1.46 1 1.57 4.85 2.66 2.2 2.76
v9 Unprotected Broadcast Receiver 2.38 2.05 2.71 2.93 2.64 2.45 2.82
v10 Unsafe Pending Intent 3.75 2.05 4.43 3.22 3.48 2.57 3.78
v11 Information Leak to Log 1 1.84 1 2.33 1.53 2.07 1.53
v12 Unprotected Intent Broadcast 2.84 1.42 3.29 2.78 2.81 1.99 3.02
v13 Constant Phone Number for SMS 1 1 1 2.63 1.62 1.62 1.62
v14 Hardcoded Phone Number 2.84 1.21 3.29 2.63 2.73 1.78 2.94
v15 Uses Socket Directly 1.46 1.21 1.57 3.52 2.27 2.06 2.35

8.2 Criticality Ranking
In contrast to Frequency Score of a rule, which is dependent on
the category of a given application, Impact Score of a vulnerability
detected by a rule is constant for all categories. To assess the Impact
Score, we conducted a survey based on the CVSS calculator provided
by National Vulnerability Database (NVD) [3].

To that end, we asked five security analysts with Android devel-
opment experience to evaluate the severity of each vulnerability
using CVSS calculator. We provided the analysts with the detailed
description of each vulnerability and exploitation conditions, along
with the CVSS documentations on scoring factors and tips. The
average Coefficient of Variance of the estimated scores was 0.15,
which is considerably low. In other words, security analysts, more
or less, had similar perceptions about the severity of vulnerabilities.
Therefore, without any further analysis, we assigned the average
score of each vulnerability as an indicator of criticality. TABLE 1
presents the results of our survey as normalized Impact Scores.

As shown in TABLE 1, different vulnerabilities have starkly dif-
ferent impacts. This result is useful for the dynamic analysis phase
of security testing, as it informs the order in which vulnerabilities
detected through static analysis should be explored.

8.3 Risk Ranking
Here we assume that the importance (i.e. weights in Equation 3) of
two dimensions of the risk are same. Therefore, the Risk Score is
calculated as the square root of the product of Frequency Score and
Impact Score. TABLE 1 shows the risk score and its two correspond-
ing factors for several representative Android categories. Figure 5
provides a scatter graph highlighting the risk factor associated with
each part of the graph, using the Tulser classification described
in Figure 3. We can see that Android vulnerabilities exhibit a wide
variety of risk, from severe and frequently encountered to rare and
unimportant. This result is highly useful for automated and manual
analysis of software, as given an application of a given category, we
can infer the most important vulnerabilities that should be checked
first.

As mentioned earlier, prioritized security inspection is essential,
especially in presence of time and budget limitations. Ranking based
mechanism is an informed approach to prioritize vulnerabilities
based on their importance. We evaluated and compared the effec-
tiveness of the different ranking systems devised in our research
(Rule Ranking, Criticality Ranking and Risk Ranking) against No
Ranking, i.e., uninformed security inspection.

Figure 6: Cumulative Covered Risk (CCR) for 4 ranking sys-
tems.

In this regard, we first define the CoveredRiskr to evaluate the
effectiveness of the rule r in detecting the latent vulnerabilities in
application set App, as follows:

CoveredRiskr =
∑

a∈App
( |Vr,a | × Ir ) (5)

Where Vr,a is the set of vulnerabilities of type r in the application
a and Ir is the impact score of vulnerability r as calculated in the
previous subsection. This metric indicates howmuch risk is covered
by vulnerability detection rule r in the set of test applications (i.e.,
App). Therefore, if there is a limitation on the number of rules we
would like to statically match, the most successful ranking system
is the one that picks up the more powerful rules, i.e., rules with the
highest CoveredRisk , first.

To compare the success of the four different ranking systems,
we define the Cumulative Covered Risk, CCR, as follows:

CCRrank,θ =
θ∑
i=1

CoveredRiskr ranki
(6)

where rank denotes the type of ranking (i.e., Rule, Criticality, Risk,
or No Ranking), θ denotes the number of rules included in the
analysis, and r ranki denotes the ith rule from the ranked list. CCR
calculates the total covered risk by applying θ top ranked rules
based on the specified ranking method.

Figure 6 shows the plot of CCR for various number of applied
rules and different ranking systems in Android domain. We can see
that Risk Ranking is always the best ranking and placed over all
other methods, while Random Ranking, as the base line, draws a
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straight line under the others. It is worth noting that Rule Ranking
shows to be almost as effective as Risk Ranking when only the top
most ranked rules are picked, while Criticality Ranking shows to be
almost as good as Risk Ranking only toward the end when most of
the rules have been picked. Thus, while Rule Ranking and Criticality
Ranking are the proper ranking system when the number of applied
rules is low and high, respectively, Risk Ranking seems to be the
best overall choice.

9 RELATEDWORK
Prior research could be classified into two thrusts: (1) security
vulnerability prediction and (2) security assessment of Android
applications. In this section, we review the prior literature in light
of our approach.

The goal of the first thrust of research is to inform the process
of security inspection by helping the security analyst to focus on
the parts of the system that are likely to harbor vulnerabilities. An
Important distinction between our work and the prior research is
the features of application software that are selected for predic-
tion. The majority of the vulnerability prediction approaches are
based on software metrics, such as source code [19] and complex-
ity metrics [20], and coverage and dependency measures [25]. In
our research, however, we took advantage of categorized software
repositories to predict the potential vulnerabilities of an application.
In contrast to the prior work, we have used meta-data of apps (i.e.,
category), which is predefined and does not require any preprocess-
ing techniques, together with the information obtained through
static analysis of the code.

The other thrust of related research focuses on security assess-
ment of Android applications. In fact, Android security has received
a lot of attention in recently published literature, due mainly to
the popularity of Android platform, as well as increasing reports
of its vulnerabilities. Such research efforts employ various tech-
niques, including static and dynamic analysis, machine learning,
and formal verification, among the others, to identify different se-
curity threats in Android applications [16]. Among the large body
of research in this area, most related work are those that assess
the security risk of mobile apps. For instance, RiskMon [11] lever-
ages machine learning techniques to provide a risk assessment
framework helping users understand and mitigate security risks of
mobile applications. RiskRanker [9] applies a two-layer risk analy-
sis technique to identify mobile malware in a scalable way. Similar
to our approach, Sarma et al. [18] use app categories for risk as-
sessment, through combining this information together with the
permissions requested by the apps. Distinct from the aforemen-
tioned approaches, the goal of our technique is to assess the risk
associated with each kind security vulnerability in app categories,
instead of security assessment of each individual apps. Such infor-
mation, however, can be leveraged by security analysts to efficiently
assess the security risk of each app.

10 CONCLUSION
In this paper, we leveraged the unique opportunity provided by app
markets, i.e., availability of the apps and their meta-data, particu-
larly app categories, to improve the state-of-the-art techniques for
risk assessment of Android applications. More specifically, we pre-
sented three ways of ranking the security vulnerabilities, namely
Rule Ranking, Criticality Ranking, and Risk Ranking, to improve the
efficiency and enable prioritization of static, dynamic, and manual
analysis, respectively.

As part of our future work, we are interested to extend the
research to situations in which an app belongs to more than one
category. In addition, in this research we focused on vulnerabilities,
which are unintentional mistakes providing exploitable conditions
that an adversary may use to attack a system. However, another
important factor in security analysis is malicious capabilities, which
are intentionally designed by attackers and embedded in an app.
Hence, as a complement of this research, we plan to mine the
categorized software repositories to improve the malware analysis
techniques.
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