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Abstract—In parallel with the meteoric rise of mobile software, we are witnessing an alarming escalation in the number and

sophistication of the security threats targeted at mobile platforms, particularly Android, as the dominant platform. While existing

research has made significant progress towards detection and mitigation of Android security, gaps and challenges remain. This paper

contributes a comprehensive taxonomy to classify and characterize the state-of-the-art research in this area. We have carefully

followed the systematic literature review process, and analyzed the results of more than 300 research papers, resulting in the most

comprehensive and elaborate investigation of the literature in this area of research. The systematic analysis of the research literature

has revealed patterns, trends, and gaps in the existing literature, and underlined key challenges and opportunities that will shape the

focus of future research efforts.
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1 INTRODUCTION

ANDROID, with well over a million apps, has become one
of the dominant mobile platforms [1]. Mobile app mar-

kets, such as Android Google Play, have created a funda-
mental shift in the way software is delivered to consumers,
with thousands of apps added and updated on a daily basis.
The rapid growth of app markets and the pervasiveness of
apps provisioned on such repositories have paralleled with
an increase in the number and sophistication of the security
threats targeted at mobile platforms. Recent studies have
indicated mobile markets are harboring apps that are either
malicious or vulnerable, leading to compromises of millions
of devices.

This is nowhere more evident than in the Android mar-
kets, where many cases of apps infected with malwares and
spywares have been reported [2]. Numerous culprits are in
play here, and some are not even technical, such as the gen-
eral lack of an overseeing authority in the case of open mar-
kets and inconsequential implication to those caught
provisioning applications with vulnerabilities or malicious
capabilities. The situation is even likely to exacerbate given
that mobile apps are poised to become more complex and
ubiquitous, as mobile computing is still in its infancy.

In this context, Android’s security has been a thriving sub-
ject of research in the past few years, since its inception in

2008. These research efforts have investigated the Android
security threats from various perspectives and are scattered
across several research communities, which has resulted in a
body of literature that is spread over a wide variety of
domains andpublication venues. Themajority of surveyed lit-
erature has been published in the software engineering and
security domains. However, the Android’s security literature
also overlaps with those of mobile computing and program-
ming language analysis. Yet, there is a lack of a broad study
that connects the knowledge and provides a comprehensive
overview of the current state-of-the-art about what has
already been investigated andwhat are still the open issues.

This paper presents a comprehensive review of the exist-
ing approaches for Android security analysis. The review is
carried out to achieve the following objectives:

� To provide a basis taxonomy for consistently and
comprehensively classifying Android security
assessment mechanisms and research approaches;

� To provide a systematic literature review of the state-
of-the-art research in this area using the proposed
taxonomy;

� To identify trends, patterns, and gaps through obser-
vations and comparative analysis across Android
security assessment systems; and

� To provide a set of recommendations for deriving a
research agenda for future developments.

We have carefully followed the systematic literature
review process, and analyzed the results of 336 research
papers published in diverse journals and conferences.
Specifically, we constructed a comprehensive taxonomy by
performing a “survey of surveys” on related taxonomies and
conducting an iterative content analysis over a set of papers
collected using reputable literature search engines. We
then applied the taxonomy to classify and characterize the
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state-of-the-art research in the field of Android security. We
finally conducted a cross analysis of different concepts in the
taxonomy to derive current trends and gaps in the existing lit-
erature, and underline key challenges and opportunities that
will shape the focus of future research efforts. To the best of
our knowledge, this study is the most comprehensive and
elaborate investigation of the literature in this area of research.

The rest of the paper is organized as follows: Section 2
overviews the Android framework to help the reader follow
the discussions that ensue. Section 3 lists the existing sur-
veys that are directly or indirectly related to the Android
security analysis. Section 4 presents the research method
and the underlying protocol for the systematic literature
review. Section 5 presents a comprehensive taxonomy for
the Android security analysis derived from the existing
research literature. Section 6 presents a classification of the
state-of-the-art research into the proposed taxonomy as well
as a cross analysis of different concepts in the taxonomy.
Section 7 provides a trend analysis of surveyed research,
discusses the observed gaps in the studied literature, and
identifies future research directions based on the survey
results. Section 8 presents the conclusions.

2 ANDROID OVERVIEW

This section provides a brief overview of the Android
platform and its incorporated security mechanisms and pro-
tection measures to help the reader follow the discussions
that ensue.

Android Platform. Android is a platform for mobile devi-
ces that includes a Linux OS, system libraries, middleware,
and a suite of pre-installed applications. Android applica-
tions (apps) are mainly written in the Java programming
language by using a rich collection of APIs provided by the
Android Software Development Kit (SDK). An app’s com-
piled code alongside data and resources are packed into an
archive file, known as an Android application package
(APK). Once an APK is installed on an Android device, it
runs by using the Android runtime (ART) environment.1

Application Components.Android defines four types of com-
ponents: Activity components that provide a user interface,
Service components that execute processes in the background
without user interaction, Content Provider components that
provide the capability of data sharing across applications, and
Broadcast Receiver components that respond asynchronously
to system-wide announcementmessages.

Application Configuration. Themanifest is a mandatory con-
figuration file (AndroidManifest.xml) that accompanies each
Android app. It specifies, among other things, the principal
components that constitute the application, including their
types and capabilities, as well as required and enforced per-
missions. The manifest file values are bound to the Android
app at compile-time, and cannot bemodified at run-time.

Inter-Component Communication. As part of its protection
mechanism, Android insulates applications from each other
and system resources from applications via a sandboxing
mechanism. Such application insulation that Android
depends on to protect applications requires interactions to
occur through a message passing mechanism, called inter-

component communication (ICC). ICC in Android is mainly
conducted by means of Intent messages. Component capa-
bilities are specified as a set of Intent-Filters that represent
the kinds of requests a given component can respond to. An
Intent message is an event for an action to be performed
along with the data that supports that action. Component
invocations come in different flavors, e.g., explicit or
implicit, intra- or inter-app, etc. Android’s ICC allows for
late run-time binding between components in the same or
different applications, where the calls are not explicit in the
code, rather made possible through event messaging, a key
property of event-driven systems. It has been shown that
the Android ICC interaction mechanism introduces several
security issues [3]. For example, Intent event messages
exchanged among components, among other things, can be
intercepted or even tampered, since no encryption or
authentication is typically applied upon them [4]. Moreover,
no mechanism exists for preventing an ICC callee from mis-
representing the intentions of its caller to a third party [5].

Permissions. Enforcing permissions is the other mecha-
nism, besides sandboxing, provided by the Android frame-
work to protect applications. In fact, permissions are the
cornerstone for the Android security model. The permis-
sions stated in the app manifest enable secure access to sen-
sitive resources as well as cross-application interactions.
When a user installs an app, the Android system prompts
the user for consent to requested permissions prior to instal-
lation. Should the user refuse to grant the requested permis-
sions to an app, the app installation is canceled. Until
recently, no dynamic mechanism was provided by Android
for managing permissions after app installation. In the latest
release of Android2, however, Google introduced dynamic
permission management that allows users to revoke or
grant app permissions at runtime.

Besides required permissions, the app manifest may also
include enforced permissions that other apps must have in
order to interact with this app. In addition to built-in per-
missions provided by the Android system to protect various
system resources, any Android app can also define its own
permissions for the purpose of self-protection.

The current permission model of Android suffers from
shortcomings widely discussed in the literature [6], [7], [8].
Some examples of such defects include coarse-grained per-
missions that violate the principle of least privilege [9], [10],
[11], enforcing access control policies at the level of individ-
ual apps that causes delegation attacks [4], [12], [13], [14],
and the lack of permission awareness that leads to unin-
formed decisions by end users [15], [16], [17], [18].

3 RELATED SURVEYS

Identifying, categorizing and examining mobile malware
have been an interesting field of research since the emer-
gence of mobile platforms. Several years before the advent of
modern mobile platforms, such as iOS and Android, Dagon
et al. [19] provided a taxonomy ofmobilemalware. Although
the threat models were described for old mobile devices,
such as PDAs, our article draws certain attributes from this
study for the Android security taxonomy that will be

1. ART is the successor of the Dalvik VM, which was Android’s run-
time environment until version 4.4 KitKat. 2. Android 6 or Marshmallow.
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introduced in Section 5. More recently, Felt et al. [20] ana-
lyzed the behavior of a set of malware spread over iOS,
Android, and Symbian platforms. They also evaluated the
effectiveness of techniques applied by the official app mar-
kets, such as Apple’s App Store and Google’s Android Mar-
ket (now called Google Play), for preventing and identifying
such malware. Along the same lines, Suarez-Tangil et al. [21]
presented a comprehensive survey on the evolution of mal-
ware for smart devices and provided an analysis of 20
research efforts that detect and analyze mobile malware.
Amamra et al. [22] surveyed malware detection techniques
for smartphones and classified them as signature-based or
anomaly-based. Haris et al. [23] surveyed the mobile com-
puting research addressing the privacy issues, including 13
privacy leak detection tools and 16 user studies inmobile pri-
vacy. Enck [24] reviewed some of the efforts in smartphone
research, including OS protection mechanisms and security
analysis techniques. He also discussed the limitations as well
as directions for future research.

While the focus of these surveys is mainly on malware
for diverse mobile platforms, the area of Android security
analysis has not been investigated in detail.

They do not analyze the techniques for Android vulnera-
bility detection. Moreover, they categorize malware detec-
tion techniques based only on limited comparison criteria,
and several rather important aspects—such as approach
positioning, characteristics, and assessment—are ignored.
These comparison areas are fully discussed in our proposed
taxonomy (see Section 5).

Besides these general, platform-independent malware
surveys, we have found quite a number of relevant surveys
that describe subareas of Android security, mainly con-
cerned with specific types of security issues in the Android
platform. For instance, Chin et al. [3] studied security chal-
lenges in Android inter-application communication, and
presented several classes of potential attacks on applications.
Another example is the survey of Shabtai et al. [2], [25],
which provides a comprehensive assessment of the security
mechanisms provided by the Android framework, but does
not thoroughly study other research efforts for detection and
mitigation of security issues in the Android platform. The
survey of Zhou et al. [26] analyzes and characterizes a set of
1,260 Android malware. This collection of malware, called
Malware Genome, are then used by many other researchers
to evaluate their proposedmalware detection techniques.

Each of these surveys overview specific domains (e.g.,
inter-app vulnerabilities [3] or families of Android mal-
ware [26], [27]), or certain types of approaches (e.g., techni-
ques relying on dynamic analysis [28], static analysis [29], or
machine learning [30] as well as mechanisms targeting the
enhancement of the Android security platform [31], [32]).
However, none of them provide a comprehensive overview
of the existing research in the area of Android security,
including but not limited to empirical and case studies, as
well as proposed approaches and techniques to identify, ana-
lyze, characterize, and mitigate the various security issues in
either the Android framework or apps built on top it. More-
over, since a systematic literature review (SLR) is not lever-
aged, there are always some important approaches missing
in the existing surveys. Having compared over 330 related
research publications through the proposed taxonomy, this

survey, to the best of our knowledge, is themost comprehen-
sive study in this line of research.

4 RESEARCH METHOD

Our survey follows the general guidelines for systematic lit-
erature review process proposed by Kitchenham [33]. We
have also taken into account the lessons from Brereton
et al. [34] on applying SLR to the software engineering
domain. The process includes three main phases: planning,
conducting, and reporting the review. Based on the guide-
lines, we have formulated the following research questions,
which serve as the basis for the systematic literature review.

� RQ1: How can existing research on Android app
security analysis be classified?

� RQ2: What is the current state of Android security
analysis research with respect to this classification?

� RQ3: What patterns, gaps, and challenges could be
inferred from the current research efforts that will
inform future research?

The remainder of this section describes the details of our
review process, including the methodology and tasks that we
used to answer the research questions (Section 4.1), the
detailed SLR protocol including keywords, sources, and selec-
tion criteria (Section 4.2), statistics on selected papers based on
the protocol (Section 4.3), and finally a short discussion on the
threats to validity of our research approach (Section 4.4).

4.1 Research Tasks

To answer the three research questions introduced above,
we organized our tasks into a process flow tailored to our
specific objectives, yet still adhering to the three-phase SLR
process including: planning the review, conducting the
review, and reporting the review. The overall process flow
is outlined in Fig. 1 and briefly described here.

Fig. 1. Research process flow and tasks.
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First, in the planning phase, we defined the review proto-
col that includes selection of the search engines, the initial
selection of the keywords pertaining to Android security
analysis, and the selection criteria for the candidate papers.
The protocol is described in detail in Section 4.2.

The initial keyword-based selection of the papers is an iter-
ative process that involves exporting the candidate papers to
a “research catalog” and applying the pre-defined inclusion/
exclusion criteria on them. In the process, the keyword search
expressions and the inclusion/exclusion criteria themselves
may also need to be fine-tuned, which would in turn trigger
new searches. Once the review protocol and the resulting
paper collection were stabilized, our research team also con-
ducted peer-reviews to validate the selections.

For RQ1, in order to define a comprehensive taxonomy
suitable for classifying Android security analysis research,
we first started with a quick “survey of surveys” on related
taxonomies. After an initial taxonomy was formulated, we
then used the initial paper review process (focusing on
abstract, introduction, contribution, and conclusion sec-
tions) to identify new concepts and approaches to augment
and refine our taxonomy. The resulting taxonomy is pre-
sented in Section 5.

For the second research question (RQ2), we used the vali-
dated paper collection and the consolidated taxonomy to con-
duct a more detailed review of the papers. Each paper was
classified using every dimension in the taxonomy, and the
results were captured in a research catalog. The catalog, con-
sisting of a set of spreadsheets, allowed us to perform qualita-
tive and quantitative analysis not only in a single dimension,
but also across different dimensions in the taxonomy. The
analysis and findings are documented in Section 6.3

To answer the third research question (RQ3), we ana-
lyzed the results from RQ2 and attempted to identify the
gaps and trends, again using the taxonomy as a critical aid.
The possible research directions are henceforth identified
and presented in Section 7.

4.2 Literature Review Protocol

This section provides the details of the review protocol,
including our search strategy and inclusion/exclusion
criteria.

4.2.1 Search Method

We used reputable literature search engines and databases
in our review protocol with the goal of finding high-quality

refereed research papers, including journal articles, confer-
ence papers, tool demo papers, as well as short papers from
respectable venues. The selected search engines consist of
IEEE Explore, ACM Digital Library, Springer Link, and
ScienceDirect.

Given the scope of our literature review, we focused on
selected keywords to perform the search on the papers’
titles, abstracts, and meta-data, such as keywords and
tags. Our search query is formed as a conjunction of three
research domains, described in Section 4.2.2 as inclusion
criteria, namely, D1: Program Analysis, D2: Security Assess-
ment, and D3: Android Platform. These research domains
appear in the literature under different forms and using
synonymous words. To retrieve all related papers, each
research domain in our search string is represented as a
disjunction of corresponding keywords summarized in
Table 1. These keywords were continuously refined and
extended during the search process. For instance, regard-
ing the security assessment domain, we considered key-
words such as, “security”, “vulnerability”, “malware”,
“privacy”, etc. In summary, our search query is defined as
the following formula:

query ¼
^

d2fD1;D2;D3g

_

keyword2Kd

keyword

 !
:

WhereDis are the three research domains, andKd is the set
of corresponding keywords specified for domain d in Table 1.

Finally, to eliminate irrelevant publications and also
make our search process repeatable, we added a time filter
to limit the scope of the search for the papers published
from 20084 to 2016.5

4.2.2 Selection Criteria

Not all the retrieved papers based on the search query fit
within the scope of this paper. Therefore, we used the fol-
lowing inclusion and exclusion criteria to further filter the
candidate papers.

Inclusion Criteria. As illustrated in Fig. 2, the scope of sur-
veyed research in this study falls at the intersection of three
domains:

1) Program Analysis domain that includes the techni-
ques used for extracting the models of individual
Android apps and/or the Android platform.

TABLE 1
Refined Search Keywords

Research Domain (D) Keywords (K)

Program Analysis Static (Analysis)*, Dynamic (Analysis)*,
Control Flow, Data Flow, Taint,
Monitoring, Feature Selection

Security Assessment Security, Vulnerability/Vulnerable,
Malware/Malicious, Virus, Privacy

Android Platform Android, Mobile, Smartphone, App

Fig. 2. Scope of this survey.

3. The research artifacts, including the survey catalog, are available
to the public and can be accessed at http://www.ics.uci.edu/�seal/
projects/droid-sec-taxonomy

4. The release year of the first version of Android framework.
5. The papers published after January 2016 are not included in this

survey.
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2) Security Assessment domain that covers the analysis
methods applied on the extracted models to identify
the potential security issues among them.

3) Android Platform domain that takes into account the
special features and challenges involved in the
Android platform, its architecture, and securitymodel.

Papers that fall at the intersection of these three domains
are included in our review.

Exclusion Criteria.Moreover, we excluded papers that:

1) exclusively developed for platforms other than
Android, such as iOS, Windows Mobile, BlackBerry,
and Sybmbian (e.g., [35], [36], [37], [38], [39], [40],
[41], [42], [43]). However, approaches that cover mul-
tiple platforms, including Android, fall within the
scope of this survey.

2) focused only on techniques for mitigation of security
threats, but not on any security analysis technique.
Such techniques attempt to enhance security mecha-
nisms either at the application-level or the level of
the Android platform by means of different
approaches, such as isolation and sandboxing [44],
[45], [46], [47], [48], [49], [50], [51], [52], [53], enhanc-
ing permission management [54], [55], [56], [57], [58],
[59], anonymity [60], [61], fine-grained or dynamic
policy enforcement [10], [62], [63], [64], anti-repack-
aging [65], [66], [67], [68], [69], security-enhanced
communication [70], [71], database and storage [72],
[73], [74], cryptography [75], [76], etc. Approaches
that consider both detection and protection (e.g.,
[13], [77], [78], [79]), are included in the survey.

3) performed the analysis only on apps meta-data, such
as description [80], [81], category [82], signature [83],
ranking and reviews [84], [85], resources [86], apk fil-
e’s meta-data [87], or a combination of these attrib-
utes [88], [89], [90]. The analyses running on an
app’s code, but at opcode level [91], [92], [93], [94],
[95] are also excluded.

4) focused only on expanding and enhancing Java pro-
gram analysis techniques, either static [96], [97], [98],
[99], [100], [101] or dynamic [102], [103], for the
Android framework. In this survey, however, we
included general program-analysis research that, at
least, provide a case study or experiment related to
security analysis (e.g, [104], [105], [106]).

5) focused solely on low-level monitoring and profiling
techniques for identifying security-related anomalies
or malware. Such research includes intrusion detec-
tion, which performs analysis using hardware

signals (e.g., CPU utilization [107], [108], power con-
sumption [109], [110], memory usage [111], [112],
network traffic [113], [114], [115], [116], [117], [118],
[119], [120], [121], [122], or a combination of multiple
sensors [123], [124], [125], [126], [127]). These
approaches use mechanisms at a lower level than the
Android framework, making them out of scope for
this survey.

6) elaborated on a particular attack on the Android
framework [14], [128], [129], [130], [131] or
apps [132], [133], [134], [135], [136], [137], [138], [139],
[140], without describing detection techniques to
identify the vulnerabilities that lead to the described
security breach.

In addition, the analysis tools that are not accompanied by
any peer-reviewed paperwere excluded, asmost of the taxon-
omy dimensions are not applicable to such tools. Dexter [141]
and DroidBox [142] are two examples that respectively lever-
age static and dynamic analysis techniques, but lack any peer-
reviewed paper, thuswere excluded from this survey.

4.3 Selected Papers

Table 2 provides statistics on each phase of paper collection,
illustrated in Fig. 1, for each database.

The first row shows the size of the initial set of papers,
selected by keyword-based search over the full paper for each
database. Since the search engine of the four databases treat
our search query differently, we performed another verifica-
tion over the initially collected papers, in a consistent manner,
based on the same keywords (Row 2). After initial filtering,
we merged the search results of all databases into a single
repository for further review and filtering (Row 3).

In the fourth row, the number of filtered papers after
applying selection criteria is shown. In this stage we applied
inclusion and exclusion criteria, enumerated in Section 4.2.2,
on the title, abstract and conclusion of the papers selected in
the first phase to remove out-of-scope publications. This pro-
cess led to the selection of 336 papers for this survey—whose
titles are illustrated in the form of aword cloud in Fig. 3.

Fig. 4 shows the number of selected papers by publica-
tion year. As illustrated in this figure, the number of publi-
cations have increased gradually between 2009 and 2011,
more than doubled between 2011 and 2012, and hit its peak
in 2014.

TABLE 2
Number of Collected Papers at Each Phase of Paper Selection

Database

Selection phase IEEE ACM Springer ScienceDirect All

Keyword-based 1,374 938 8,605 2,830 —
search
Initial filtering 852 721 520 240 —

Merging 2,023
Applying criteria 336

Fig. 3. Word cloud of the titles of the selected papers.
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As shown in Fig. 2, this study covers multidisciplinary
research conducted in various domains, such as software
engineering (including programming languages), security,
and mobility. Consequently, as depicted in Fig. 5, selected
papers are also published in different venues related to
such domains.

4.4 Threats to Validity

By carefully following the SLR process in conducting this
study, we have tried to minimize the threats to the validity
of the results and conclusions made in this article. Never-
theless, there are three possible threats that deserve addi-
tional discussion.

One important threat is the completeness of this study,
that is, whether all of the appropriate papers in the litera-
ture were identified and included. This threat could be due
to two reasons: (1) some relevant papers were not picked up
by the search engines or did not match our keyword search,
(2) some relevant papers that were mistakenly omitted, and
vice-versa, some irrelevant papers that were mistakenly
included. To address these threats, we used multiple search
engines, including both scientific and general-purpose
search engines. We also adopted an iterative approach for
our keyword-list construction. Since different research com-
munities (particularly, software engineering and security)
refer to the same concepts using different words, the itera-
tive process allowed us to ensure that a proper list of key-
words were used in our search process.

Another threat is the validity of the proposed taxonomy,
that is, whether the taxonomy is sufficiently rich to enable
proper classification and analysis of the literature in this
area. To mitigate this threat, we adopted an iterative content
analysis method, whereby the taxonomy was continuously
evolved to account for every new concept encountered in
the papers. This gives us confidence that the taxonomy pro-
vides a good coverage for the variations and concepts that
are encountered in this area of research.

Another threat is the objectiveness of the study, which
may lead to biased or flawed results. Tomitigate this risk, we
have tackled the individual reviewer’s bias by crosschecking
the papers, such that no paper received a single reviewer.
We have also tried to base the conclusions on the collective
numbers obtained from the classification of papers, rather
than individual reviewer’s interpretation or general observa-
tions, thusminimizing the individual reviewer’s bias.

5 TAXONOMY

To define an Android security analysis taxonomy for RQ1,
we started with selecting suitable dimensions and proper-
ties found in existing surveys. The aforementioned studies
described in Section 3, though relevant and useful, are not
sufficiently specific and systematic enough for classifying
the Android security analysis approaches in that they either
focus on mobile malware in general, or focus on certain
sub-areas, such as Android inter-application vulnerabilities
or families of Android malware software, but not on the
Android security analysis as a whole.

We thus have defined our own taxonomy to help clas-
sify existing work in this area. Nonetheless, the proposed
taxonomy is inspired by existing work described in
Section 3. The highest level of the taxonomy hierarchy
classifies the surveyed research based on the following
three questions:

1) What are the problems in the Android security being
addressed?

2) How and with which techniques the problems are
solved?

3) How is the validity of the proposed solutions
evaluated?

For each question, we derive the sub-dimensions of the
taxonomy related to the question, and enumerate the possi-
ble values that characterize the studied approaches. The
resulting taxonomy hierarchy consists of 21 dimensions and
sub-dimensions, which are depicted in Figs. 6, 7, and 8, and
explained in the following.

5.1 Approach Positioning (Problem)

The first part of the taxonomy, approach positioning, helps
characterize the “WHAT” aspects, that is, the objectives and
intent of Android security analysis research. It includes five
dimensions, as depicted in Fig. 6.

5.1.1 Analysis Objectives (T1.1)

This dimension classifies the approaches with respect to the
goal of their analysis. Thwarting malware apps that com-
promise the security of Android devices is a thriving

Fig. 4. Distribution of surveyed papers by publication year.

Fig. 5. Distribution of surveyed papers by publication venue.
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research area. In addition to detecting malware apps, identi-
fying potential security threats posed by benign Android
apps, that legitimately process user’s private data (e.g., loca-
tion information, IMEI, browsing history, installed apps,
etc.), has also received a lot of attention in the area of
Android security.

Since malware authors exploit the existing vulnerabil-
ities of other apps or the underlying Android framework
to breach system security, malware detection techniques
and vulnerability identification methods are complemen-
tary to each other. In addition to these two kinds of
approaches, there exists a third category of techniques
intended to detect and mitigate the risk of grayware. Gray-
ware, such as advertisement apps and libraries, are not
fully malicious but they could violate users’ privacy by
collecting sensitive information for dubious purposes [20],
[21], [143].

5.1.2 Type of Security Threats (T1.2)

This dimension classifies the security threats being addressed
in the surveyed research along the Microsoft’s threat model,
called STRIDE [144].

Among existing attack models, we selected STRIDE, as it
provides a design-centric model that helps us investigate
the security properties of Android system, irrespective of
known security attacks, thus allowing us to identify gaps in
the literature (e.g., security attacks that have not been
observed in Android yet, security attacks that have not
received much attention in the literature). Moreover, it rec-
ognizes a separate category for each type of security prop-
erty that is widely referred to in the literature.

Spoofing. Violates the authentication security property,
where an adversary pretends to be a legitimate entity by
properly altering some features that allows it to be recog-
nized as a legitimate entity by the user. An example of this
threat in the Android platform is Intent Spoofing, where a
forged Intent is sent to an exported component, exposing
the component to components from other applications (e.g.,
a malicious application) [3].

App Cloning, Repackaging or Piggybacking are classified
under Spoofing, where malware authors attach malicious
code to legitimate apps and advertise them as original apps in
app markets to infect users. This technique is quite popular
amongmobile malware developers; it is used by 86 percent of
the Androidmalware, according to a recent study [26].

Tampering. Affects the integrity property and involves a
malicious modification of data. Content Pollution is an
instance of this threat, where an app’s internal database is
manipulated by other apps [145].

Repudiation. Is in contrast to non-repudiation property,
which refers to the situation in which entities deny their role
or action in a transaction. An example of this security threat
occurswhen an application tries to hide itsmalicious behavior
bymanipulating log data tomislead a security assessment.

Information Disclosure. Compromises the confidentiality by
releasing the protected or confidential data to an untrusted
environment. In mobile devices, sensitive or private infor-
mation such as device ID (IMEI), device location (GPS data),
contact list, etc., might, intentionally or unintentionally, be
leaked to an untrusted environment, via different channels
as SMS, Internet, Bluetooth, etc.

Denial of Service. (DoS) affects availability by denying ser-
vice to valid users. A common vulnerability in Android
apps occurs when a payload of an Intent is used without
checking against the null value, resulting in a null dereference
exception to be thrown, possibly crashing the Android pro-
cess in which it occurs. This kind of vulnerability has shown
to be readily discoverable by an adversary through reverse
engineering of the apps [146], which in turn enables launch-
ing a denial of service attack. Unauthorized Intent
receipt [3], duplicating content provider authorities and
permission names [147], battery exhaustion [148], and ran-
somware [149], [150], are some other examples of DoS
attacks targeted at Android apps.

Elevation of Privilege. Subverts the authorization and hap-
pens when an unprivileged user gains privileged access. An
example of the privilege escalation,which is shown to be quite
common in the apps on the Android markets [151], happens

Fig. 6. Proposed taxonomy of android security analysis, problem category.
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when an application with less permissions (a non-privileged
caller) is not restricted from accessing components of a more
privileged application (a privileged callee) [4].

Over-privileged apps are particularly vulnerable to privi-
lege escalation attack, due to the possibility of an attacker
successfully injecting malicious code, exploiting the unnec-
essary permissions [152], [153]. Therefore, we categorize
this type of security threat under elevation of privilege.

5.1.3 Granularity of Security Threats (T1.3)

This dimension classifies the approaches based on the gran-
ularity of identifiable security threats. In the basic form, a
security issue, either vulnerability or malicious behavior,
occurs by the execution of a single (vulnerable and/or mali-
cious) component. However, more complicated scenarios
are possible, where a security issue may arise from the inter-
action of multiple components. Accordingly, the existing
techniques are classified into two categories: intra-compo-
nent approaches that only consider security issues in a sin-
gle component, and inter-component approaches that are
able to identify security issues in multiple components. We
further classify the inter-component class into subclasses
based on two sub-dimensions described below.

Level of Security Threat (T1.3.1). It is possible that interact-
ing vulnerable or malicious components belong to different
applications. For example, in an instance of the app collusion
attack, multiple applications can collude to compromise a
security property, such as the user’s privacy [4], [154].
Accordingly, security assessment techniques that consider
the combination of apps in their analysis (i.e., inter-app) are
able to reveal more complicated issues compared to non-
compositional approaches (i.e., intra-app).

Type of Vulnerable Communication (T1.3.2). Android plat-
form provides a variety of Inter-Process Communication
(IPC) mechanisms for app components to communicate
among each other, while achieving low levels of coupling.
However, due to intrinsic differences with pure Java pro-
gramming, such communication mechanisms could be
easily misimplemented, leading to security issues. From a
program analysis perspective, Android communication
mechanisms need to be treated carefully, to avoid missing
security issues. Our taxonomy showcases three major
types of IPC mechanisms that may lead to vulnerable
communication:

� As described in Section 2, Intents provide a flexible
IPC model for communication among Android com-
ponents. However, Intents are the root of many secu-
rity vulnerabilities and malicious behaviors.

� Android Interface Definition Language (AIDL) is
another IPC mechanism in Android that allows cli-
ent-server RPC-based communication. The imple-
mentation of an AIDL interface must be thread-safe
to prevent security issues resulting from concur-
rency problems (e.g., race conditions) [155].

� Data Sharing is another mechanism that allows app
components to communicate with each other.
Among the other methods, using Content Providers
is the main technique for sharing data between two
applications. However, misusage of such compo-
nents may lead to security issues, such as passive

content leaks (i.e., leaking private data), and content
pollution (i.e., manipulating critical data) [145].

5.1.4 Depth of Security Threats (T1.4)

The depth of security threats category reflects if the approach
addresses a problem at the application level or the frame-
work level. The former aims at solely analyzing the applica-
tion software. Third party apps, especially those from an
unknown or untrustworthy provenance, pose a security
challenge. However, there are some issues, such as overarch-
ing design flaws, that require system-wide reasoning, and
are not easily attainable by simply analyzing individual parts
of the system. Approaches at the framework level include
research that focuses on modeling and analyzing the
Android platform (e.g., for potential system-level design
flaws and issues encountered in the underlying framework).

Source of App (T1.4.1). An application’s level of security
threat varies based on the source from which its installation
package (i.e., apk file) is obtained. As a result, it is important
to include a sub-dimension representing the source of the
app in our taxonomy, which indicates whether the app is
obtained from the official Android repository:

� Official Repository: Due to the continuous vetting of
the official Android repository (i.e., Google Play),
apps installed from that repository are safer than
third-party apps.

� Sideloaded App: Sideloading, which refers to instal-
ling apps from sources other than the official
Android repository, exposes a new attack surface for
malware. Hence, it is critical for security research to
expand their analysis beyond the existing apps in
Google Play.

5.1.5 Type of Artifact (T1.5)

Android apps are realized by different kinds of software
artifacts at different levels of abstraction, from high-level
configuration files (e.g., Manifest) to low-level Java source
code or native libraries implemented with C or C++. From
the security perspective, each artifact captures some aspects
essential for security analysis. For instance, while permis-
sions are defined in the manifest file, inter-component mes-
sages (i.e., Intents) are implemented at the source code level.
This dimension of the taxonomy indicates the abstraction
level(s) of the extracted models that could lead to identifica-
tion of a security vulnerability or malicious behavior.

Type of Configuration (T1.5.1). Among different configura-
tion files contributing to the structure of Android app pack-
ages (APKs), a few artifacts encode significant security
information, most notably, the manifest file that contains
high-level information such as app components and permis-
sions, as well as the layout file that defines the structure of
app’s user interfaces.

Type of Unconventional Code (T1.5.2). For different rea-
sons, from legitimate to adversarial, developers may incor-
porate special types of code in their apps. A security
assessment technique needs to tackle several challenges for
analyzing such unconventional kinds of code. Thus, we fur-
ther distinguish the approaches based on the special types
of code they support, which includes the following:
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� Obfuscated Code: Benign app developers tend to
obfuscate their application to protect the source code
from being understood and/or reverse engineered
by others. Malware app developers also use obfusca-
tion techniques to hide malicious behaviors and
avoid detection by antivirus products. Depending
on the complexity of obfuscation, which varies from
simple renaming to invoking behavior using reflec-
tion, security assessment approaches should tackle
the challenges in analyzing the obfuscated apps
[138], [156], [157], [158], [159], [160].

� Native Code: Beside Java code, Android apps may
also consist of native C or C++ code, which is usually
used for performance or portability requirements.
An analysis designed for Java is not able to support
these kinds of apps. To accurately and precisely ana-
lyze such apps, they need to be treated differently
from non-native apps.

� Dynamically Loaded Code: Applications may dynami-
cally load code that is not included in the original
application package (i.e., apk file) loaded at installa-
tion time. This mechanism allows an app to be
updated with new desirable features or fixes.
Despite the benefits, this mechanism poses signifi-
cant challenges to analysis techniques and tools, par-
ticularly static approaches, for assessing security
threats of Android applications.

� Reflective Code: Using Java reflection allows apps to
instantiate new objects and invoke methods by their
names. If this mechanism is ignored or not handled
carefully, it may cause incomplete and/or unsound
static analysis. Supporting reflection is a challenging
task for a static analysis tool, as it requires precise
string and points-to analysis [161].

5.2 Approach Characteristics (Solution)

The second group of the taxonomy dimensions is concerned
with classifying the “HOW” aspects of Android security
analysis research. It includes three dimensions, as shown in
Fig. 7.

5.2.1 Type of Program Analysis (T2.1)

This dimension classifies the surveyed research based on
the type of program analysis employed for security assess-
ment. The type of program analysis leveraged in security
domain could be static or dynamic. Static analysis examines
the program structure to reason about its potential behav-
iors. Dynamic analysis executes the program to observe its
actual behaviors at runtime.

Each approach has its own strengths and weaknesses.
While static analysis is considered to be conservative and
sound, dynamic analysis is unsound yet precise [162].
Dynamic analysis requires a set of input data (including
events, in event-based systems like Android) to run the
application. Since the provided test cases are often likely to
be incomplete, parts of the app’s code, and thereby its
behaviors, are not covered. This could lead to false nega-
tives, i.e., missed vulnerabilities or malicious behaviors in
security analysis. Moreover, it has been shown that dynamic
approaches could be recognized and deceived by advanced
malware, such as what anti-taint tracking techniques do to
bypass dynamic taint analyses [163], [164], [165], [166],
[167], [168], [169], [170].

On the other hand, by abstracting from the actual behav-
ior of the software, static analysis could derive certain
approximations about all possible behaviors of the software.
Such an analysis is, however, susceptible to false positives,
e.g., a warning that points to a vulnerability in the code
which is not executable at runtime.

To better distinguish different approaches with respect to
the program analysis techniques they rely on, we suggest
sub-dimensions that further classify those two categories
(i.e., static and dynamic analyses). Five sub-dimensions are
presented below, where the first three (i.e., T2.1.1, T2.1.2, and
T2.1.3) classify static analysis techniques and the next two
(i.e., T2.1.4, and T2.1.5) are applied to dynamic analyses.

Analysis Data Structures (T2.1.1). In addition to light-
weight static analyses that only employ text-mining techni-
ques, heavyweight but more accurate static approaches
usually leverage a few well-known data structures to

Fig. 7. Proposed taxonomy of android security analysis, solution category.
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abstract the underlying programs. The most frequently
encountered data structures are as follows:

� Control Flow Graph (CFG) is a directed graph that
represents program statements by its nodes, and
the flow of control among the statements by the
graph’s edges.

� Call Graph (CG) is a directed graph, in which each
node represents a method, and an edge indicates the
call of (or return from) a method.

� Inter-procedural Control Flow Graph (ICFG) is a combi-
nation of CFG and CG that connects separated CFGs
using call and return edges.

In addition, variation of these canonical data structures
are used for special-purpose analyses. The goal of this
dimension is to characterize the analysis based on the usage
of these data structures.

Sensitivity of Analysis (T2.1.2). The sensitivities of the
analyses vary for different algorithms used by a static
analysis technique, leading to tradeoffs among analysis
precision and scalability. Thus, this dimension classifies
the static approaches based on their sensitivity to the fol-
lowing properties.

� Flow Sensitive techniques consider the order of state-
ments and compute separate information for each
statement.

� Context Sensitive approaches keep track of the calling
context of a method call and compute separate infor-
mation for different calls of the same procedure.

� Path Sensitive analyses take the execution path into
account, and distinguish information obtained from
different paths.

There also exist other levels of sensitivity, such as field-
and object-sensitivity, which are discussed less often in the
surveyed literature.

Code Representation (T2.1.3). Static analysis algorithms
and methods are often implemented on top of off-the-shelf
frameworks that perform the analysis on their own interme-
diate representation (IR) of program code. This dimension
classifies the analysis tools based on the used IR (if any),
which is translated from apps Dalvik bytecode prior to the
analysis.

� Java Source Code may be analyzed since Android apps
are mostly written in the Java language. This assump-
tion, however, limits the applicability of the analysis to
either open-source apps or the developers of an app.

� Java Bytecode may be analyzed, which widely broad-
ens the applicability of an approach compared to the
first group. Distinct from Java, Android has its own
Dalvik bytecode format called Dex, which is execut-
able by the Android virtual machine. As a result, this
class of tools needs to retarget Dalvik to Java byte-
code prior to the analysis, using APK-to-JAR trans-
formers, such as dex2jar [171], ded [172], and its
successor Dare[173].

� Jimple is a simplified version of Java bytecode that
has a maximum of three components per statement.
It is used by the popular static analysis framework
Soot [174]. Dexpler [175] is a plugin for the Soot
framework that translates Dalvik bytecode to Jimple.

� Smali is another intermediate representation, which
is used by the popular Android reverse engineering
tool, Apktool [176].

Inspection Level (T2.1.4). To capture dynamic behavior of
Android apps, analysis techniques monitor the running
apps at different levels. This dimension categorizes
dynamic analyses based on their inspection level, including:

� App-level monitoring approaches trace Java method
invocation by weaving the bytecode and injecting
log statements inside the original app code or the
Android framework. A few approaches achieve this
in a more fine-grained manner through instruction-
level dynamic analysis, such as data-flow tracking.

� Kernel-level monitoring techniques collect system
calls, using kernel modules and features such as
strace, or ltrace.

� Virtual Machine (VM)-level tools intercept events that
occur within emulators. This group of approaches
can support several versions of Android. The more
recent work in this area supports the interception
of Dalvik VM’s successor, Android Runtime
(ART) [177]. However, they are all prone to emulator
evasion [28], [164], [178].

Input Generation Technique (T2.1.5). The techniques that
employ dynamic analysis for security assessment need to
run mobile applications in order to perform the analysis.
For this purpose, they require test input data and events
that trigger the application under experiment. Security test-
ing is, however, a notoriously difficult task. This is in part
because unlike functional testing that aims to show a soft-
ware system complies with its specification, security testing
is a form of negative testing, i.e., showing that a certain
(often a priori unknown) behavior does not exist.

In addition to manually providing the inputs, which is
neither systematic nor scalable, two approaches are often
leveraged by the surveyed research: fuzzing and symbolic
execution.

� Fuzz testing or fuzzing [179] executes the app with ran-
dom input data. Running apps using inputs generated
by Monkey [180], the state-of-the-practice tool for the
Android system testing, is an example of fuzz testing.

� Symbolic execution [181] uses symbolic values, rather
than actual values, as program inputs. It gathers the
constraints on those values along each path of the
program and with the help of a solver generates
inputs for all reachable paths.

5.2.2 Supplementary Techniques (T2.2)

Besides various program analysis techniques, which are
the key elements employed by approaches in the sur-
veyed research, other supplementary techniques have
also been leveraged to complement the analysis. Among
the surveyed research, Machine Learning and Formal Anal-
ysis are the most widely used techniques. In fact, the pro-
gram analysis either provides the input for, or consumes
the output of, the other supplementary techniques. This
dimension of the taxonomy determines the techniques
other than program analysis (if any) that are employed in
the surveyed research.
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5.2.3 Automation Level (T2.3)

The automation level of a security analysis method also
directly affects the usability of such techniques. Hence, we
characterize the surveyed research with respect to the man-
ual efforts required for applying the proposed techniques.
According to this dimension, existing techniques are classi-
fied as either automatic or semi-automatic.

5.3 Assessment (Validation)

The third and last section of the taxonomy is about the eval-
uation of Android security research. Dimensions in this
group, depicted in Fig. 8, provide the means to assess the
quality of research efforts included in the survey.

The first dimension, evaluation method, captures how,
i.e., with which evaluation method, a paper validates the
effectiveness of the proposed approach, such as empirical
experimentation, formal proof, case studies, user studies, or
other methods. Moreover, we further classify the empirical
evaluations according to the source of apps they selected
for the experiments, including the official Google Play
repository, third-party and local repositories, collections of
malware, and benchmark apps handcrafted by research
groups for the purpose of evaluation.

The other dimension captures the extent to which sur-
veyed research efforts enable a third party to reproduce the
results reported by the authors. This dimension classifies
replicability of research approaches by considering the
availability of research artifacts. For example, whether the
approach’s underlying platform, tools and/or case studies
are publicly available.

6 SURVEY RESULTS AND ANALYSIS

This section presents the results of our literature review to
answer the second research question. By using the proposed
taxonomy as a consistent point of reference, many insightful
observations surface from the survey results. The number of
the research papers surveyed will not allow elaboration on

each one of them. Rather, we highlight some of them as
examples in the observations and analyses below.6

6.1 Approach Positioning (Problem)

Tables 3 and 4 provide a summary of the problem-specific
aspects that are extracted from our collection of papers
included in the survey. Note that the classifications are meant
to indicate the primary focus of a research paper. For example,
if a certain approach is not mentioned in the Spoofing column
under the Type of Security Threat, it does not necessarily indi-
cate that it absolutely cannot mitigate such threat. Rather, it
simply means spoofing is not its primary focus. Furthermore,
for some taxonomy categories, such asDepth of Threat, a paper
may havemultiple goals and thus listed several times. On the
other hand, several dimensions only apply to a subset of
papers surveyed, e.g., Test Input Generation only applies to
dynamic or hybrid approaches. As a result, percentages pre-
sented in the last column of the table may sum up to more or
less than 100 percent. In the following, we present the main
results for each dimension in the problem category.

6.1.1 Analysis Objective

Security assessment techniques proposed by a number of
previous studies could be directly used or extended for vari-
ous purposes (e.g., detection of malware, grayware, or vul-
nerabilities). In this survey, to distinguish the main
objective(s) of each approach, we consulted the threat
model (or adversary model) and also the evaluation goals
and results (if any) described in the surveyed papers.

Based on the analysis of the research studies in the litera-
ture, it is evident that the majority of Android security
approaches have been applied to detection of malicious
behaviors, comprising 61 percent of the overall set of papers
collected for this literature review. However, sometimes the
analysis techniques are not able to determine unequivocally if
an application is malicious or benign. Therefore, a number of
studied approaches [182], [403], [404], [405], [409], [474] use
risk-based analysis to assign each app a level of security risk
according to the analysis results (Denoted byR in Table 3).

Four percent of efforts in this area are devoted to the analy-
sis of grayware that are less disruptive thanmalware, but still
worrying, particularly from a privacy perspective. Most
research efforts on grayware detection target the analysis of
advertisement (ad) libraries that are linked and shipped
together with the host apps. In fact, a variety of private user
data, including a user’s call logs, phone numbers, browser
bookmarks, and the list of apps installed on a device are col-
lected by ad libraries. Since the required permissions of ad
libraries are merged into a hosting app’s permissions, it is
challenging for users to distinguish, at installation time, the
permissions requested by the embedded ad libraries from
those actually used by the app [77]. For this reason,
AdRisk [436] decouples the embedded ad libraries from the
host apps and examines the potential unsafe behavior of each
library that could result in privacy issues. Other techniques,
such as AdDroid [77], AFrame [477], AdSplit [450], and Layer-
Cake [439], introduce advertising frameworks with dedicated

Fig. 8. Proposed taxonomy of android security analysis, assessment
category.

6. Throughout this survey (including tables and figures), the
approaches without name are shown in the form of “first author’s
surname_”.
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permissions and APIs that separate privileged advertising
functionality from host applications. Also, as a more generic
solution, Compac [445] provides fine-grained access control
tominimize the privilege of all third-party components.

Android vulnerability analysis has also received atten-
tion from a significant portion of existing research efforts
(26 percent of the studied papers). Since techniques and
methods used for one of the above goals are often applicable
to other goals, the target of many surveyed research papers
falls in both categories. However, there are some
approaches that only target vulnerability detection. Among
such approaches, Woodpecker [151] tries to identify vulner-
abilities in the standard configurations of Android smart-
phones, i.e., pre-loaded apps in such devices, that may lead
to capability leaks. A capability (or permission) leak is an
instance of a privilege-escalation threat, where some privi-
leged functions (e.g., sending of a text message) is left
exposed to apps lacking the required permissions to access
those functions.

6.1.2 Type of Security Threat

The Android security approaches studied in this literature
review have covered diverse types of security threats. It can
be observed from Table 3 that among the STRIDE security
threats (cf. Section 5.1.2), information disclosure is the most
considered threat in Android, comprising 35 percent of the
papers. This is not a surprising result, since mobile devices
are particularly vulnerable to data leakage [478]. Elevation
of privilege (including over-privilege issue marked as O in
Table 3) is the second class of threats addressed by 17 per-
cent of the overall studied papers. Examples of this class of
threats, such as confused deputy vulnerability [479], are shown
to be quite common in the Android apps on the market [4],
[12], [153].

Spoofing has received substantial attention (13 percent),
particularly because Android’s flexible Intent routing model
can be abused in multiple ways, resulting in numerous pos-
sible attacks, including Broadcast injection and Activity/Ser-
vice launch [3]. Cloning or repackaging, which is a kind of

TABLE 3
Problem Specific Categorization of the Reviewed Research, Part 1
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spoofing threat, is a common security issue in Android app
markets, and hence is addressed by several techniques,
including [270], [278], [312], [326]. Note that these techni-
ques are marked as Cl in Table 3. Moreover, misusing cryp-
tography techniques, such as failure in the SSL/TLS
validation process, might result in man in the middle attacks
that violate system authentication. Thus, we categorized the
techniques attempting to identify cryptography misuse,
such as [232], [252], under spoofing. We distinguished these
techniques by label Cr in Table 3.

Tampering and denial of service issues are also consid-
ered in the literature, comprising 4 and 1 percent of the
papers, respectively. Among the STRIDE’s threats, repudia-
tion is not explicitly studied in the surveyed research. We
will revisit this gap in Section 7.

6.1.3 Granularity of Threat

We can observe from Table 4 that the majority of the
Android security approaches are intended to detect and
mitigate security issues in a single component, comprising
79 percent of the overall papers studied in this literature
review, while a comparatively low number of approaches
(21 percent) have been applied to inter-component analysis.

The compositional approaches take into account inter-
component and/or inter-app communication during the
analysis to identify a broader range of security threats

that cannot be detected by techniques that analyze a sin-
gle component in isolation. Among others, IccTA [225],
[490] performs data leak analysis over a bundle of apps.
It first merges multiple apps into a single app, which ena-
bles context propagation among components in different
apps, and thereby facilitates a precise inter-component
taint analysis.

The main challenge with such approaches for composi-
tional analysis is the scalability issue. Because as the num-
ber of apps increases, the cost of program analysis grows
exponentially. To address the scalability issue intrinsic to
compositional analysis, some hybrid approaches are more
recently proposed that combine program analysis with
other reasoning techniques [205], [280], [491]. For example,
COVERT [205], [206] combines static analysis with light-
weight formal methods. Through static analysis of each
individual app, it first extracts relevant security specifica-
tions in an analyzable formal specification language (i.e.,
Alloy). These app specifications are then combined together
and checked as a whole with the aid of a SAT solver for
inter-app vulnerabilities.

Intent is the main inter-component communication
mechanism in Android and thus, it has been studied and
focused more than other ICC mechanism (18 percent com-
pared to 2 and 1 percent). Epicc [218] and its successor
IC3 [98] try to precisely infer Intent values, which are

TABLE 4
Problem Specific Categorization of the Reviewed Research, Part 2
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necessary information for identifying vulnerable commu-
nications. BlueSeal [291] and Woodpecker [151] briefly dis-
cuss AIDL, as another ICC mechanism, and how to
incorporate it in control flow graph. Finally, Content-
Scope [145] examines the security threats of using shared
data as the third way of achieving ICC.

6.1.4 Depth of Threat

We observe that most approaches perform the analysis at
the application-level (88 percent), but about ten percent of
the approaches consider the underlying Android frame-
work for analysis (12 percent). The results of analyses car-
ried out at the framework-level are also beneficial in
analysis of individual apps, or even revealing the root
causes of the vulnerabilities found at the application-level.
For example, PScout [244] and Stowaway [153], through the
analysis of the Android framework, obtained permission-
API mappings that specify the permissions required to
invoke each Android API call. However, due to intrinsic
limitations of static and dynamic analyses adopted by
PScout and Stowaway, respectively, the generated map-
pings are incomplete or inaccurate. Addressing this short-
coming, more recent approaches [152], [257] have
attempted to enrich the extracted permission mappings.
Such permission mappings have then been used by many
other approaches, among others, for detecting over-privi-
leged apps that violate the “Principle of Least Priv-
ilege” [492] (cf. Section 5.1.2).

Among the approaches performing analysis at the frame-
work level, some look into the vulnerabilities of the Android
framework that could lead to security breaches of the system,
such as design flaws in the permission model [195], security
hazards in push-messaging services [255], or security vulner-
abilities of theWebView component [197], [235], [236].

Apps installed from arbitrary sources pose a higher secu-
rity risk than apps downloaded from Google Play. How-
ever, regardless of the source of the app, it must be installed
using the same mechanism for importing the app’s code
into the Android platform, i.e., by installing APK files. Nev-
ertheless, to measure the effectiveness of a technique for
identifying security threats, researchers need to evaluate the
proposed technique using both Google Play and sideloaded
apps. We discuss, in detail, the sources of apps used to eval-
uate Android security analysis techniques in Section 6.3.1.

6.1.5 Type of Artifact

As discussed in Section 5, Android apps are composed of
several artifacts at different levels of abstraction, such as
high-level configuration files and code implementation. We
can observe from Table 4 that most of the studied
approaches analyze multiple types of artifacts.

Type of Configuration. Manifest is an XML configuration
file, shipped with all Android apps, and includes some
high-level architectural information, such as the apps’ com-
ponents, their types, permissions they require, etc. Since a
large portion of security-related information are encoded
in the apps’ manifest files (e.g., required or defined permis-
sions), some techniques only focus on the analysis of this
file. Kirin [364], for instance, is among the techniques that
only performs the analysis on the app manifest files. By
extracting the requested permissions defined in the

manifest file and comparing their combination against a
set of high-level, blacklist security rules, Kirin is able to
identify the apps with potential dangerous functionality,
such as information leakage. However, the security policies
in Kirin, or similar techniques that are limited to the
abstract level of configuration files, may increase the rate
of false warnings. For instance, a Kirin’s security rule, for
mitigating mobile bots that send SMS spam, is stated as
“An application must not have SEND_SMS and WRITE_SMS
permission labels [364]”. As a result, an application request-
ing these two permissions is flagged as malware, even if
there are no data-flow between the parts of code corre-
sponding to these two permissions.

In addition to the manifest file, there are some other
resources in the Android application package (a.k.a., apk
file) that also do not require complicated techniques to be
analyzed. One example is the layout file that represents the
user interface structure of the apps in an xml format.
The layout file can be parsed, among other things, to iden-
tify the callback methods registered for GUI widget, which
in turn improves the precision of generated call graphs.
CHEX [456] and BlueSeal [291], [493] are among the techni-
ques that leverage layout files for this purpose.

Moreover, the layout file contains information that is crit-
ical for security analysis. Password fields, which usually
contain sensitive data, are an example of security-critical
information embedded in layout files [104]. An example of
a technique that leverages this information is AsDroid [282].
It examines the layout file to detect stealthy malicious
behavior through identifying any contradiction between the
actual app behavior and the user interface text initiating
that behavior (e.g., the name of a button that was clicked),
which denotes the user’s expectation of program behavior.
Another example is MassVet [374] that captures the user
interface of apps by encoding layouts in a graph structure
called a view graph and then detects repackaged malware
by calculating the similarity of view graphs.

Besides manifest and layout files, a few other types of
configuration files are processed by a number of analyses.
For instance, string resources (i.e., String.xml) are parsed to
capture predefined URL strings [234] and to identify the
label of sensitive fields [488], or style definition files, among
other resources, are leveraged to detect repackaged mal-
ware apps [402].

Type of Unconventional Code. In addition to the configura-
tion files, most of the surveyed research perform analysis on
apps’ code. However, due to analysis challenges, the majority
of those techniques (over 80 percent) neglect special types of
code, such as obfuscated, native, dynamically loaded, or
reflective code, existing inmany apps, includingmalware.

Obfuscation challenges security analysis of application
code. For this reason, nearly all of the surveyed static analy-
ses cannot handle heavily obfuscated code. An example of a
technique that handles certain obfuscations is Appo-
scopy [280]. It is a static approach that defines a high-level
language for semantically specifying malware signatures.
Apposcopy is evaluated against renaming, string encryption,
and control-flow obfuscation.

Besides the type of obfuscations that Apposcopy is resil-
ient to, more sophisticated obfuscations include hiding
behaviors through native code, reflection, and dynamic
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class loading. These types of obfuscation have highly lim-
ited support among Android security analysis techniques.

Among the static analysis techniques studied in our sur-
vey, none are able to perform analysis directly on native
code, which is written in languages other than Java, such as
C or C++. However, some approaches [243], [329], [405] can
only identify the usage of native code, particularly if it is
used in an abnormal way. For instance, RiskRanker [405]
raises red flags if it finds encrypted native code, or if a
native library is stored in a non-standardized place.

Few approaches consider dynamically loaded code, which
occurs after app installation. Some static approaches, such as
the tool developed by Poeplau et al. [243], are able to identify
the attempts to load external code that might be malicious.
Nevertheless, more advanced techniques are required to dis-
tinguish the legitimate usages of dynamically loaded code
from malicious ones. For example, handling of dynamically
loaded code that considers an Android component’s life-
cycle, where a component can execute from multiple entry
points, is not considered. As another example, dynamically
loaded code that is additionally encrypted poses another chal-
lenge to static or hybrid analyses.

Approaches that consider Java reflection can be classified
into two categories. One category, adopts a conservative,
black-box approach and simply marks all reflective calls as
suspicious. An example of such an approach is AdRisk [436].
The other thrust of research attempts to resolve reflection
using more advanced analysis. For example, DroidSafe [331]
employs string and points-to analysis to replace reflective
calls with direct calls. As another example, Pegasus [391]
rewrites an app by injecting dynamic checks when reflective
calls are made.

As mentioned above, a significant portion of surveyed
research that are trying to address special types of code,
adopt a conservative approach. That is, instead of ana-
lyzing the content of challenging parts of the app code,
e.g., called native library or dynamically loaded class,
they flag any usage of such code as suspicious. To distin-
guish those techniques that partially analyze native,
obfuscated, dynamic, or reflective code, we marked them
with P in Table 4.

6.2 Approach Characteristics (Solution)

Tables 5 and 6 present a summary of the solution-specific
aspects that are extracted from the collection of papers
included in the literature review. In the following, we
summarize the main results for each dimension in the
solution category.

6.2.1 Type of Program Analysis

Table 5 separates the approaches with respect to the type of
program analysis they leverage. As discussed in Section 5,
dynamic analysis is unsound but precise, while static analysis
is sound yet imprecise. According to their intrinsic properties,
each type of analysis has its ownmerits and ismore appropri-
ate for specific objectives. In particular, for security analysis,
soundness is considered to be more important than precision,
since it is preferred to not miss any potential security threat,
even at the cost of generating false warnings. This could
explain why the percentage of static analysis techniques (65

percent) surpasses the percentage of approaches that rely on
dynamic analysis techniques (49 percent).

SCanDroid [247] and TaintDroid [423] are among the first
to explore the use of static and dynamic analysis techniques
respectively for Android security assessment. SCanDroid
employs static analysis to detect data flows that violate the
security policies specified within an app’s configuration.
TaintDroid leverages dynamic taint analysis to track the
data leakage from privacy-sensitive sources to possibly
malicious sinks.

In addition to pure static or dynamic approaches, there
exist few hybrid approaches that benefit from the advan-
tages of both static and dynamic techniques. These methods
usually first apply static analysis to detect potential security
issues, and then perform dynamic techniques to improve
their precision by eliminating the false warnings. For exam-
ple, SMV-HUNTER [252] first uses static analysis to identify
potentially vulnerable apps to SSL/TLS man-in-the-middle
attack, and then uses dynamic analysis to confirm the vul-
nerability by performing automatic UI exploration.

Despite the fact that Android apps are mainly developed
in Java, conventional Java program analysis methods do not
work properly on Android apps, mainly due to its particu-
lar event-driven programming paradigm. Such techniques,
thus, need to be adapted to address Android-specific chal-
lenges. Here, we briefly discuss these challenges and the
way they have been tackled in the surveyed papers.

Event-Driven Structure. Android is an event-driven plat-
form, meaning that an app’s behavior is formed around the
events caused by wide usage of callback methods that han-
dle user actions, component’s life-cycle, and requests from
other apps or the underlying platform. If an analysis fails to
handle these callback methods correctly, models derived
from Android apps are disconnected and unsound. This
problem has been discussed and addressed in several prior
efforts. Among others, Yang et al. [99] introduced a program
representation, called callback control-flow graph (CCFG),
that supports capturing a rich variety of Android callbacks,
including life-cycle and user interactions methods. To
extract CCFG, a context-sensitive analysis traverses the con-
trol-flow of the program and identifies callback triggers
along the visited paths.

Multiple Entry Points. Another difference between an
Android app and a pure Java program, is the existence of
multiple entry points in Android apps. In fact, unlike con-
ventional Java applications with a single main method,
Android apps comprise several methods that are implicitly
called by the Android framework based on the state of the
application (e.g., onResume to resume a paused app).

The problem of multiple entry points has been consid-
ered by a large body of work in this area [104], [225], [291],
[365], [456], [493]. For instance, FlowDroid [104] models dif-
ferent Android callbacks, including the ones that handle
life-cycle, user interface, and system-based events by creat-
ing a “dummy” main method that resembles the main
method of conventional Java applications. Similar to Flow-
Droid, IccTA [225], [490] also generates dummy main
methods, but rather than a single method for the whole
app, it considers one per component. In addition to han-
dling multiple entry points problem, the way entry points
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are discovered is also crucial for a precise analysis. Some
approaches [145], [151] simply rely on the domain knowl-
edge, including the Android API documentation, to iden-
tify entry points. Some other approaches employ more
systematic methods. For instance, CHEX describes a sound
method to automatically discover different types of app
entry points [456]. It iterates over all uncalled framework
methods overridden by app, and connects those methods
to the corresponding call graph node.

Inter-Component Communication. Android apps are com-
posed of multiple components. The most widely used
mechanism provided by Android to facilitate communica-
tion between components involves Intent, i.e., a specific
type of event message in Android, and Intent Filter. The
Android platform then automatically matches an Intent

with the proper Intent Filters at runtime, which induce dis-
continuities in the statically extracted app models. This
event-based inter-component communication (ICC) should
be treated carefully, otherwise important security issues
could be missed. The ICC challenge has received a lot of
attention in the surveyed research [3], [146], [218], [225],
[311]. Epicc [218], among others, is an approach devoted to
identify inter-component communications by resolving
links between components. It reduces the problem of find-
ing ICCs to an instance of the inter-procedural distributive
environment (IDE) problem [503], and then uses an IDE
algorithm to solve the ICC resolution problem efficiently.

Modeling theUnderlying Framework. In order to reason about
the security properties of an app, the underlying Android
platform should be also considered and included in the

TABLE 5
Solution Specific Categorization of the Reviewed Research, Part 1
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security analysis. However, analyzing the whole Android
framework would result in state explosion and scalability
issues. Therefore, a precise, yet scalablemodel, of theAndroid
framework is crucial for efficient security assessment.

Various methods have been leveraged by the surveyed
approaches to include the Android framework in their anal-
ysis. Woodpecker [151] uses a summary of Android built-in
classes, which are pre-processed ahead of an app analysis to
reduce the analysis costs associated with each app. To
enable a more flexible analysis environment, CHEX [456]
runs in two modes. In one mode, it includes the entire
Android framework code in the analysis, and in the other
only a partial model of the Android’s external behaviors is
used. DroidSafe [331] attempts to achieve a combination of
precision and scalability by generating analysis stubs,
abstractions of underlying implementation, which are
incomplete for runtime, but complete for the analysis.
Finally, to automatically classify Android system APIs as
sources and sinks, SuSi [504] employs machine learning
techniques. Such a list of sources and sinks of sensitive data
is then used in a number of other surveyed approaches,
including, FlowDroid [104], DroidForce [480], IccTA [225],
[490], and DidFail [311].

6.2.2 Supplementary Techniques

We observe that most approaches (over 70 percent) only rely
on program analysis techniques to assess the security of
Android software. Less than 30 percent of the approaches
employ other complementary techniques in their analysis.
Among them, machine learning and formal analysis techni-
ques are themostwidely used, comprising 22 and 7 percent of
the overall set of papers collected for this literature review,
respectively.

These approaches typically first use some type of program
analysis to extract specifications from the Android software
that are input to the analysis performed by other supplemen-
tary techniques. For example, COVERT, combines formal app
models that are extracted through static analysiswith a formal
specification of the Android framework to check the overall
security posture of a system [205].

Machine learning techniques are mainly applied to distin-
guish between benign and malicious apps. The underlying
assumption in this thrust of effort is that abnormal behavior is
a good indicator of maliciousness. Examples of this class of
research are CHABADA [299] and its successor MUD-
FLOW [384], which are both intended to identify abnormal
behavior of apps. The focus of CHABADA is to find anoma-
lies between app descriptions and the way APIs are used
within the app. MUDFLOW tries to detect the outliers with
respect to the sensitive data that flow through the apps.

Natural language processing (NLP) is another supplemen-
tary technique employed by CHABADA and a few other
approaches (e.g., AAPL[262], AutoCog [285], SUPOR [254],
UIPicker [488]), mainly to process apps’ meta-data, such as
app descriptions, which are expressed in natural language
form. Moreover, probabilistic approaches are also leveraged
by a number of machine learning-based tools (e.g., [298],
[393], [410], [453]) to distinguish malware apps from benign
ones, according to the observed probability of extracted fea-
tures. Research using NLP and probabilistic methods are
highlighted byN and P, respectively, in Table 5.

6.2.3 Automation Level

We observe that most approaches (93 percent) are designed
to perform Android security analysis in a completely auto-
mated manner, which is promising as it enables wide-scale
evaluation of such automated techniques, discussed more
in the following section (Section 6.3).

A number of approaches, however, require some manual
effort (7 percent); for example, annotating an app’s code with
labels representing different security concerns. Once the code
is annotatedmanually, an automatic analysis is run to identify
the security breaches or attacks in the source code. For
instance, IFT [353] requires app developers to annotate an
app’s source code with information-flow type qualifiers,
which are fine-grained permission tags, such as INTERNET,
SMS, GPS, etc. Subsequently, app repository auditors can
employ IFT’s type system to check information flows that vio-
late the secure flow policies. Manually applying the annota-
tions affects usability and scalability of such approaches,
however, enables amore precise analysis to ensue.

6.2.4 Analysis Data Structures7

Almost half of static approaches (49 percent) leverage light-
weight analysis that only relies on text-based information
retrieval techniques. Such approaches treat app’s code and
configuration as unstructured texts and try to extract secu-
rity critical keywords and phrases (e.g., permissions, sensi-
tive APIs) for further analysis using supplementary
techniques (cf. Section 5.2.2). For instance, Drebin [314]
extracts sets of strings, such as permissions, app compo-
nents, and intent filters by parsing the manifest, and API
calls, and network addresses from dex code. It then maps
those extracted features to a vector space, which is further
used for learning-based malware detection.

On the other hand, many techniques take the structure of
code into account when extracting the security model of the
apps. For this purpose, various data structures that repre-
sent apps at an abstract level are commonly used by those
analysis techniques. We observe that call graphs (CGs) and
control flow graphs (CFGs) are the most frequently used
data structure in the surveyed papers.

Taint information are propagated through call graph,
among other things, to determine the reachability of various
sinks from specific sources. LeakMiner [365], RiskRanker
[405], TrustDroid [471], ContentScope [145] and IPC Inspec-
tion [12] are some examples that traverse the call graph for
taint analysis. Among others, ContentScope traverses CG to
find paths form public content provider interfaces to the
database function APIs in order to detect database leakage
or pollution.

Moreover, generating and traversing the app’s CG is also
essential in tracking the message (i.e., Intent) transfer
among the app’s components. Epicc [218] and AsDroid [282]
are among the approaches that use call graph for this pur-
pose. In addition, PScout [244] and PermissionFlow [242] per-
form reachability analysis over the CG to map Android
permissions to the corresponding APIs.

Control flow graph is also widely used in the surveyed
analysis methods. ContentScope [145], for example,

7. The percentages reported in Sections 6.2.4, 6.2.5, and 6.2.6 are cal-
culated only for the static techniques.
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extracts an app’s CFG to obtain the constraints corre-
sponding to potentially dangerous paths. The collected
constraints are then fed into a constraint solver to gener-
ate inputs corresponding to candidate path executions.
Enck et al. [146] have also specified security rules over
CFG to enable a control-flow based vulnerability analysis
of Android apps.

More advanced and comprehensive program analyses
rely on a combination of CFG and CG, a data structure
called inter-procedural control flow graph that links the
individual CFGs according to how they call each other.
FlowDroid [104], for example, traverses ICFG to track
tainted variables; Epicc [218] also performs string analysis
over ICFG; IccTA [225], [490] detects inter-component
data leaks by running data-flow analysis over such a
data structure. Since the generated ICFG for the entire
application is massive, complicated, and potentially
unscalable, a number of approaches leverage a reduced
version of ICFG for their analysis. For example, Wood-
pecker [151] locates capability leaks (cf. Section 6.1.1) by
traversing a reduced permission-specific ICFG, rather
than the generic one.

In addition to such canonical, widely-used data struc-
tures, a good portion of existing approaches leverage cus-
tomized data structures for app analysis. One examples is
G*, an ICFG-based graph, in which each call site is repre-
sented by two nodes, one before the procedure call and
the other after returning [218]. CHEX [456] introduces
two customized data structures of split data-flow sum-
mary (SDS) and permutation data-flow summary (PDS)
for its data flow analysis. SDS is a kind of CFG that also
considers the notion of split, “a subset of the app code that
is reachable from a particular entry point method”. PDS is
also similar to ICFG, and links all possible permutations
of SDS sequences. Another data structure commonly
used by app clone detectors, such as AnDarwin [270] and
DNADroid [312], is program dependency graph (PDG).
By capturing control and data dependencies between
code fragments, a PDG is able to compare similarity
between app pairs.

6.2.5 Sensitivity of Analysis

Apart from lightweight, text-based approaches, other
static approaches have adopted a level of sensitivity in
their analysis. According to our survey, flow-sensitive
approaches that consider the program statements
sequence, have the highest frequency (23 percent) among
the static approaches. Following that, 14 percent of static
techniques are context-sensitive, that is, they compute the
calling context of method calls. Finally, 3 percent of static
analyses are path-sensitive, meaning that only a handful
of analysis approaches distinguish information obtained
from different execution paths. Generally, approaches
with higher sensitivity, i.e., considering more program
properties for the analysis, generate more accurate results,
but they are less scalable in practice.

6.2.6 Code Representation

Different approaches analyze various formats of the Java
code, which are broadly distinguishable as source code

versus byte code. The applicability of the former group of
approaches, such as SCanDroid [247], are confined to apps
with available source code.

Most recent approaches, however, support byte-code
analysis. Such approaches typically perform a pre-process-
ing step, in which Dalvik byte code, encapsulated in the
APK file, is transferred to another type of code or intermedi-
ate representation (IR). Fig. 9 shows the distribution of the
approaches based on the target IR of the analysis.

According to the diagram, Smali [507] is the most
popular intermediate representations, used in 17 percent
of those studied approaches that are performing analysis
on a type of IR. Also, 13 percent of such approaches, in
the pre-processing step, retarget Dalvik byte-code to Java
byte-coded JAR files. An advantage of this approach is
the ability to reuse pre-developed, off-the-shelf Java
analysis libraries and tools. In exchange, APK-to-JAR
decompilers suffer from performance overhead and
incomplete code coverage.

6.2.7 Inspection Level8

Dynamic approaches monitor an app’s behavior using dif-
ferent techniques. According to our results, about 35 percent
of dynamic approaches intercept events that occur within the
emulated environments by modifying virtual machines
(VMs). VM-based dynamic analyses are further distinguish-
able by the type of virtual machine they modify: Dalvik VM
(e.g., TaintDroid [423]) or QEMU VM (e.g., Copper-
Droid [303]). While QEMU-based systems work on a lower
level and are able to trace native code, Dalvik-based techni-
ques tend to be more efficient [28]. Therefore, a few tools,
such as [272], take advantage of both techniques.

Around 39 percent of studied dynamic analyses
weave monitoring code into Android apps or framework
APIs to capture app behaviors. Approaches that monitor
the framework are marked with F in Table 6. Different
libraries are developed by the research community to
facilitate app-level monitoring, including: APIMonitor

Fig. 9. Distribution of research based on the type of code or intermediate
representation (IR) used for analysis.

8. The percentages reported in Sections 6.2.7 and 6.2.8 are calculated
only for the dynamic techniques.
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developed and used in DroidBox [142], a Soot-based
library proposed by [102], and SIF [103], a selective
instrumentation framework.

Finally, about 26 percent of surveyed dynamic techni-
ques capture app behavior through monitoring system calls,

using loadable kernel modules (e.g., ANANAS [269]) or
debugging tools such as strace (e.g., Crowdroid [304]).
Most of the kernel-level techniques are able to trace native
code, but they are usually not compatible with multiple ver-
sions of Android [28].

TABLE 6
Solution Specific Categorization of the Reviewed Research, Part 2
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To overcome the shortcomings and limitations pertain-
ing to certain monitoring levels, a number of tools lever-
age a combination of different inspection techniques.
According to our survey, around 22 percent of the stud-
ied dynamic approaches perform monitoring at multiple
levels. For instance, through monitoring both the Linux
kernel and Dalvik VM, DroidScope [332], a dynamic
malware analyzer, is able to identify anomalies in app
behaviors.

6.2.8 Input Generation Technique

The Android security assessment approaches that rely on
dynamic analysis require test input data and events to drive
the execution of apps.

We can observe from Table 6 that most of such
approaches use fuzz testing, comprising 23 percent of the
dynamic approaches studied for this literature review.
Fuzzing is a form of negative testing that feeds malformed
and unexpected input data to a program with the objective
of revealing security vulnerabilities. For example, it has
been shown that an SMS protocol fuzzer is highly effective
in finding severe security vulnerabilities in all three major
smartphone platforms [508]. In the case of Android, fuzzing
found a security vulnerability triggered by simply receiving
a particular type of SMS message, which not only kills the
phone’s telephony process, but also kicks the target device
off the network [508].

Despite the individual success of fuzzing as a general
method of identifying vulnerabilities, fuzzing has tradi-
tionally been used as a brute-force mechanism. Using
fuzzing for testing is generally a time consuming and
computationally expensive process, as the space of possi-
ble inputs to any real-world program is often
unbounded. Existing fuzzing tools, such as Android’s
Monkey [180], generate purely random test case inputs,
and thus are often ineffective in practice.

To improve the efficiency of fuzzing techniques, a
number of approaches [261], [281], [303] have devised
heuristics that guide a fuzzer to cover more segments of
app code in an intelligent manner. For instance, by pro-
viding meaningful inputs for text boxes by using contex-
tual information, AppsPlayground [281] avoids redundant
test paths. This in turn enables a more effective explora-
tion of the app code.

A comparatively low number of dynamic approaches
(4 percent) employ symbolic execution, mainly to
improve the effectiveness of generated test inputs. For
example, AppInspector [277] applies concolic execution,
which is the combination of symbolic and concrete execu-
tion. It switches back and forth between symbolic and
concrete modes to enable analysis of apps that communi-
cate with remote parties. Scalability is, however, a main
concern with symbolic execution techniques. More
recently, some approaches try to improve the scalability
of symbolic execution. For instance, AppIntent [279]
introduces a guided symbolic execution that narrows
down the space of execution paths to be explored by con-
sidering both the app call graph and the Android execu-
tion model. Symbolic execution is also used for feasible
path refinement. Among others, Woodpecker [151] mod-
els each execution path as a set of dependent program

states, and marks a path “feasible” if each program point
follows from the preceding ones.

6.3 Assessment (Validation)

We used reputable sites in our review protocol (cf. Sec-
tion 4), which resulted in the discovery of high-quality
refereed research papers from respectable venues. To
develop better insights into the quality of the research
papers surveyed, here we use Evaluation Method (T 3.1)
and Replicability (T 3.2), which are the two validation
dimensions in the taxonomy.

Table 7 presents a summary of the validation-specific
aspects that are extracted from the collection of papers
included in the literature review. In the following, we
summarize the main results for each dimension in this
category.

6.3.1 Evaluation Method

The first part of Table 7 depicts the share of different evalua-
tion methods in assessing the quality of Android security
analysis approaches. Most of the approaches have used
empirical techniques to assess the validity of their ideas
using a full implementation of their approach (e.g., Cha-
bada [299], CHEX [456], Epicc [218], and COVERT [205]).
Some research efforts (28 percent) have developed a proof-
of-concept prototype to perform limited scale case studies
(e.g., SCanDroid [247] and SmartDroid [419]). A limited
number (2 percent) of approaches (e.g., Chaudhuri
et al. [509]) have provided mathematical proofs to validate
their ideas.

Availability of various Android app repositories, such as
the Google Play Store [510], is a key enabling factor for the
large-scale empirical evaluation witnessed in the Android
security research. Fig. 10 shows the distribution of surveyed
research based on the number of selected apps that are used
in the experiments. We observe that most of the experi-
ments (72 percent) have been conducted over sets of more
than one hundred apps.

Fig. 11 depicts the distribution of app repositories used in
the evaluations of surveyed research. We observe that the
Google Play Store, the official and largest repository of
Android applications, is the most popular app repository,
used by 85 percent of the papers with an empirical evalua-
tion. There are several other third-party repositories, such
as F-Droid open source repository [511], used by 24 percent
of the evaluation methods. A number of malware reposito-
ries (such as [26], [314], [317], [512], [513]) are also widely
used in assessing approaches designed for detecting mali-
cious apps (45 percent). Finally, about 14 percent of the eval-
uations use hand-crafted benchmark suites, such as [514],
[515], in their evaluation. A benefit of apps comprising such
benchmarks is that the ground-truth for them is known,
since they are manually seeded with known vulnerabilities
and malicious behavior, allowing researchers to easily
assess and compare their techniques in terms of the number
of issues that are correctly detected.

Finally, a few papers (2 percent) assess their proposed
approach by conducting controlled experiments on a set of
users, either app developers (e.g., measuring development
overhead in [353]), or app consumers (e.g., studying user
reactions in [444]).
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6.3.2 Replicability

The evaluation of security research is generally known to
be difficult. Making the results of experiments reproduc-
ible is even more difficult. Table 7 shows the availability

of the executable artifacts, as well as the corresponding
source code and documentations in the surveyed papers.
According to Table 7, overall only 17 percent of pub-
lished research have made their artifacts publicly avail-
able. The rest have not made their implementations,
prototypes, tools, and experiments available to other
researchers.

TABLE 7
Assessment Specific Categorization of the Reviewed Research

Fig. 10. Distribution of surveyed research based on the number of apps
used in their experiments. Fig. 11. Distribution of app repositories used in the empirical evaluations.
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Having such artifacts publicly available enables, among
other things, quantitative comparisons of different
approaches. Fig. 12 depicts the comparison relationships
found in the evaluation of the studied papers. In this graph,
the nodes with higher fan-in (i.e., incoming edges) represent
the tools that are widely used in evaluation of other research
efforts. For instance, Enck et al. [423] provided a stable,
well-documented monitoring tool, TaintDroid, which is
widely used in the literature as the state-of-the-art dynamic
analysis for evaluating the effectiveness of the newly pro-
posed techniques.

Similarly, making a research tool available, particularly
in the form of source code, enables other researchers to
expand the tool and build more advanced techniques on
top of it. Fig. 13 illustrates the dependency relationships
found in the implementation of the surveyed papers. In this
graph, the nodes with higher fan-in represent the tools that
are widely used to realize the other research efforts. For
instance, FlowDroid [104], with six incoming edges, has an
active community of developers and a discussion group—
and is widely used in several research papers surveyed in
our study.

6.4 Cross Analysis

In this section, we extend our survey analysis across the dif-
ferent taxonomy dimensions. Given the observations from
the reviewing process, we develop the following cross-anal-
ysis questions (CQs):

� CQ1. What types of program analysis have been
used for each security assessment objectives?

� CQ2. What types of program analysis have been used
for detecting each of the STRIDE’s security threats?

� CQ3. Is there a relationship between the granularity
of security threats and the type of employed pro-
gram analysis techniques?

� CQ4. Is there a relationship between the depth of
security threats, i.e., app-level versus framework-
level, and the type of analysis techniques employed
in the surveyed research?

� CQ5. Which evaluation methods are used for differ-
ent objectives and types of analysis?

� CQ6. How reproducible are the surveyed research
based on the objectives and types of analysis?

� CQ7. Is there a relationship between the availability
of research artifacts and their respective citation
numbers?

CQ1. Analysis Objectives and Types of Program Analysis. As
shown in Fig. 14�a, static and dynamic analyses have been
used for identifying both malicious behavior and vulner-
abilities. However, static approaches are more frequently
leveraged for detecting vulnerable apps rather than mal-
ware (58 versus 50 percent), while dynamic techniques have
more application in malware detection compared to vulner-
ability analysis (36 versus 27 percent). Hybrid approaches,
though at lower scales, have also been used (15-16 percent)
for both purposes.

Fig. 12. Comparison graph: X! Y means research method X has quantitatively compared itself to method Y.

Fig. 13. Dependency graph: X! Y means research method X is built on top of method Y.
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CQ2. STRIDE’s Security Threats and Type of Program Anal-
ysis. According to Fig. 14�b, none of the analysis types
(i.e., static, dynamic, hybrid) are intended to identify the
repudiation security thread (see discussion and gap anal-
ysis in Section 7). Moreover, according to this figure, a
limited number of research efforts have been devoted to
identifying Denial of Service attacks. Finally, the cross
analysis results show that static approaches, compared to
the other types of program analysis, has been widely
used for detecting various security threats, particularly
spoofing, where the number of static techniques is almost
three times higher than the number of dynamic or hybrid
approaches. As discussed before, one reason is that for
security analysis soundness is usually considered to be
more important than precision, since it is preferred to not
miss any security threat, even at the cost of generating
false warnings.

CQ3. Granularity of Security Threats and Type of Analysis
Techniques. In Fig. 15�a, we observe a similar distribution
pattern in use of different analysis types (i.e., static,
dynamic, hybrid) for capturing security threats at differ-
ent levels of granularity (i.e, intra-component, inter-com-
ponent, inter-app). In general, for identifying security
threats in a single component, or between multiple com-
ponent in a single or multiple apps, static analysis tech-
niques are the most common methods (about 50 percent)
used by the state-of-the-art approaches, followed by
dynamic analysis (35 percent), and hybrid techniques
(15 percent).

CQ4. Depth of Security Threats and Type of Analysis Techni-
ques. The depth of security threats also exhibit a relation
with the type of analysis techniques (cf., Fig. 15�b). We
observe that the dynamic approaches are employed more
often for analysis at the framework-level (55 percent).
One reason is that dynamic approaches can employ run-
time modules, such as monitors, which are deployed in
the Android framework, thereby enabling tracking other-
wise implicit relations between system API calls and the
Android permissions. Such runtime framework-level
activity monitoring is not possible using static analysis
techniques. Moreover, due to the large size of Android
framework (over ten million lines of code), dynamic tech-
niques are more scalable and less-expensive for frame-
work-level monitoring.

CQ5. Evaluation Method versus the Objectives and Types of
Analysis. We observe a similar distribution pattern in use of
different evaluation methods across various types of analy-
sis and also analysis objectives, except that user study is
more popular in grayware analysis, compared to the other
objectives. One reason is that the privacy concerns of end
users are critical in assessing grayware, such as ad libraries.
In general, empirical evaluation is the most widely used,
followed by the case study and user study methods and for-
mal proofs (cf., Fig. 16).

CQ6. Reproducibility versus the Objectives and Types of Anal-
ysis. As shown in Fig. 17, the research artifacts intended to
identify security vulnerabilities are more likely to be avail-
able in comparison to those designed for malware/

Fig. 14. Types of program analysis that have been used for detecting �a different security assessment objectives (i.e., malware versus vulnerability
detection), and�b different security threats.

Fig. 15. �a Granularity and �b depth (level) of each type of program
analysis.

Fig. 16. Approach validation versus �a research objectives and �b types
of analysis.
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grayware detection (27 versus 20 percent/13 percent).
Moreover, availability ratio of the tools performing different
types of analysis (i.e., static, dynamic, and hybrid) are all
close and under 20 percent, which restricts the other
researchers from reproducing, and potentially adopting,
achievements in this thrust of research.

CQ7. Artifact Availability and Citation Count. To investi-
gate this research question, we ranked the surveyed papers
based on their citation counts. Since older papers have a
higher chance of getting more citations, we also provided
the same ranking for each year, separately, from 2009 to
2015. Afterwards, we checked the artifact availability of
highly cited papers. The summary of our findings are pro-
vided in Table 8, which indicates that papers with publicly
available artifacts get more citations. 100 percent of overall
top-5 cited, and 88 percent of top-cited papers of each year,
have available artifacts.

7 DISCUSSION AND DIRECTIONS FOR FUTURE
RESEARCH

To address the third research question (RQ3), in this section,
we first provide a trend analysis of surveyed research, and
then discuss the observed gaps in the studied literature that
can help to direct future research efforts in this area.

Based on the results of our literature review (cf., Sec-
tion 6), it is evident that Android security has received a
lot of attention in recently published literature, due mainly
to the popularity of Android as a platform of choice for
mobile devices, as well as increasing reports of its vulner-
abilities. We also observe important trends in the past
decade, as reflected by the results of the literature review.
Fig. 18 shows some observed trends in Android security
analysis research.

� According to Fig. 18�a, malicious behavior detection
not only has attracted more attention, compared to
vulnerability identification, but also research in mal-
ware analysis tends to grow at an accelerated rate.

� As illustrated in Fig. 18�b, static analysis techniques
dominate security assessment in the Android
domain. Dynamic and hybrid analysis techniques
are also showing modest growth, as they are increas-
ingly applied to mitigate the limitations of pure static
analysis (e.g., to reason about dynamically loaded
code, and obfuscated code).

� The more recent approaches reviewed in this survey
have used larger collections of apps in their evalua-
tion (cf., Fig. 18�c). Such large-scale empirical evalua-
tion in the Android security research is promising,
and can be attributed to the meteoric rise of the num-
bers of apps provisioned on publicly available app
markets that in some cases provide free or even
open-source apps.

Despite considerable research efforts devoted to miti-
gating security threats in mobile platforms, we are still
witnessing a significant growth in the number of security
attacks targeting these platforms [516]. Therefore, our first
and foremost recommendation is to increase convergence
and collaboration among researchers in this area from
software engineering, security, mobility, and other related

TABLE 8
Artifact Availability of Highly Cited Research Papers

Rank Year Tool # of Citations* Availability

Top cited papers—overall

1 2010 TaintDroid[423] 1,563 @
2 2011 Stowaway[153] 745 @
3 2009 Kirin[364] 625 @
4 2011 Enck_[146] 599 @
5 2011 ComDroid[3] 502 @

Top cited papers—yearly

1 2009 Kirin[364] 625 @
1 2010 TaintDroid[423] 1,563 @
1 2011 Stowaway[153] 745 @
1 2012 DroidRanger[329] 429 �
1 2013 AppsPlayground[281] 129 @
1 2014 Flowdroid[104] 225 @
1 2015 IccTA[225] 21 @

*By the end of 2015.

Fig. 18. Observed trends in Android security analysis research with respect to �a objectives of the analysis, �b type of analysis, and �c number of
apps used in the evaluation (normalized by dividing the number of apps to the number of publications in each year).

Fig. 17. Availability of tools/artifacts based on the �a objective and,
�b type of analysis.
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communities to achieve the common goal of addressing
these mobile security threats and attacks.

More specifically, the survey—through its use of our
proposed taxonomy—has revealed research gaps in need
of further study. To summarize, future research needs to
focus on the following to stay ahead of today’s advancing
security threats:

� Pursue integrated and hybrid approaches that span not
only static and dynamic analyses, but also other supple-
mentary analysis techniques: Recall from Table 5 that
only 29 percent of approaches leverage supplemen-
tary techniques, which are shown to be effective in
identifying modern malicious behaviors or security
vulnerabilities.

� Move beyond fuzzing for security test input generation:
According to Section 6.2.8, only 8 percent of test
input generation techniques use a systematic tech-
nique (i.e., symbolic execution or heuristic-based
fuzzing), as opposed to brute-force fuzzing. Fuzzing
is inherently limited in its abilities to execute vulner-
able code. Furthermore, such brute-force approaches
may fail to identify malicious behavior that may be
hidden behind obfuscated code or code that requires
specific conditions to execute.

� Continue the paradigm shift from basic single app analysis to
overall system monitoring, and exploring compositional vul-
nerabilities: Recall from Sections 6.1.3 and 6.1.4, and
Table 4, that the majority of the existing body of
research is limited to the analysis of single apps in isola-
tion. However, malware exploiting vulnerabilities of
multiple benign apps in tandem on the market are
increasing. Furthermore, identifying some security vul-
nerabilities requires a holistic analysis of the Android
framework. For example, consider the analysis of the
Android permission protocol to check whether it satis-
fies the security requirement of preventing unautho-
rized access [195]. Ensuring that the system achieves
such security goals, however, is a challenging task, inas-
much as it can be difficult to predict all the ways in
which a malicious application may attempt to misuse
the system. Identifying such attacks, indeed, requires
system-wide reasoning, and cannot be easily achieved
by analysis of individual parts of the system in isolation.

� Construct techniques capable of analyzing ICC beyond
Intents:Only 3 percent of papers, as shown in Table 4,
consider ICCs involving data sharing using Content
Providers and AIDL. These mechanisms are, thus,
particularly attractive vectors for attackers to utilize,
due to the limited analyses available. Consequently,
research in that space can help strengthen counter-
measures against such threats.

� Consider dynamically loaded code that is not bundled with
installed packages: Recall from Table 4 that a highly
limited amount of research (4 percent) analyzes the
security implications of externally loaded code. This
Android capability can be easily exploited by mal-
ware developers to evade security inspections at
installation time.

� Analyze code of different forms and from different lan-
guages: Besides analyzing Java and its basic

constructs, future research should analyze other
code constructs and languages used to construct
Android apps, such as native C/C++ code or obfus-
cated code. The usage of complicated obfuscation
techniques and/or native libraries for hiding mali-
cious behavior are continually growing. Recall from
Section 6.1.5 and Table 4 that only 5-6 percent of sur-
veyed approaches consider obfuscated or native
code, where most of those approaches do not per-
form analysis on the content of such code.

� Improve the precision of analysis: Recall from Section 6.2.5
andTable 6 that a lowpercentage (3-23 percent) of static
analysis techniques use high precision sensitivities,
leading to high false positives. Moreover, in parallel to
enhancing precision, a practical analysis is also needed
to scale up to large and complicated apps.

� Consider studying Android repudiation: The SLR pro-
cess returned no results for Android repudiation, as
shown in Table 3. Consequently, there is a need for
studies that target such threats, particularly in terms
of potential weaknesses in the way Android app eco-
system handles digital signatures and certificates.
However, repudiation also has a major legal compo-
nent [517], which may require expertise not held by
researchers in software security, software engineer-
ing, or computer science. Properly addressing this
gap may require inter-disciplinary research.

� Promote collaboration in the research community: To that
end, we recommend making research results more
reproducible. This goal can be achieved through
increased sharing of research artifacts. Recall from
Table 7 that less than 20 percent of surveyed papers
have made their research artifacts available publicly.
At the same time, Fig. 12 shows that few approaches
conduct quantitative comparisons, mainly due to
unavailability of prior research artifacts. Papers that
make their artifacts available publicly are able to
make a bigger impact, as measured by the citation
count (recall Table 8). We hope this will provide
another impetus for the research community to pub-
licly share their tools and artifacts. To further aid in
achieving reproducibility, we also advocate the
development of common evaluation platforms and
benchmarks. Recall from Fig. 11 that only 14 percent
of studied approaches considered benchmarks for
their evaluation. A benchmark of apps with known
set of issues allows the research community to com-
pare strengths and weaknesses of their techniques
using the same dataset, thus fostering progress in
this area of research.

8 CONCLUSION

In parallel with the growth of mobile applications and con-
sequently the rise of security threats in mobile platforms,
considerable research efforts have been devoted to assess
the security of mobile applications. Android, as the domi-
nant mobile platform and also the primary target of mobile
malware threats, has been in the focus of much research.
Existing research has made significant progress towards
detection and mitigation of Android security.
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This article proposed a comprehensive taxonomy to clas-
sify and characterize research efforts in this area. We have
carefully followed the systematic literature review process,
resulting in the most comprehensive and elaborate investiga-
tion of the literature in this area of research, comprised of 336
papers published from 2008 to the beginning of 2016. Based
on the results of our literature review, it is evident that
Android security has receivedmuch attention in recently pub-
lished literature, duemainly to the popularity of Android as a
platform of choice for mobile devices, as well as increasing
reports of its vulnerabilities and malicious apps. The research
has revealed patterns, trends, and gaps in the existing litera-
ture, and underlined key challenges and opportunities that
will shape the focus of future research efforts.

In particular, the survey showed the current research
should advance from focusing primarily on single app assess-
ment to amore broad and deep analysis that considers combi-
nations of multiple apps and Android framework, and also
from pure static or dynamic to hybrid analysis techniques.
We also identified a gap in the current research with respect
to special vulnerable features of the Android platform, such
as native or dynamically loaded code. Finally, we encourage
researchers to publicly share their developed tools, libraries,
and other artifacts to enable the community to compare and
evaluate their techniques and build on prior advancements.
We believe the results of our review will help to advance the
much needed research in this area and hope the taxonomy
itself will become useful in the development and assessment
of new research directions.
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