
2

Ensuring the Consistency of Adaptation through Inter-
and Intra-Component Dependency Analysis

ALIREZA SADEGHI, University of California, Irvine
NAEEM ESFAHANI, Google Inc.
SAM MALEK, University of California, Irvine

Dynamic adaptation should not leave a software system in an inconsistent state, as it could lead to failure.
Prior research has used inter-component dependency models of a system to determine a safe interval for the
adaptation of its components, where the most important tradeoff is between disruption in the operations of
the system and reachability of safe intervals. This article presents Savasana, which automatically analyzes
a software system’s code to extract both inter- and intra-component dependencies. In this way, Savasana
is able to obtain more fine-grained models compared to previous approaches. Savasana then uses the
detailed models to find safe adaptation intervals that cannot be determined using techniques from prior
research. This allows Savasana to achieve a better tradeoff between disruption and reachability. The article
demonstrates how Savasana infers safe adaptation intervals for components of a software system under
various use cases and conditions.

CCS Concepts: � Software and its engineering → Software architectures; Maintaining software;
Automated static analysis

Additional Key Words and Phrases: Adaptive software, component-based software, update criteria

ACM Reference Format:
Alireza Sadeghi, Naeem Esfahani, and Sam Malek. 2017. Ensuring the consistency of adaptation through
inter- and intra-component dependency analysis. ACM Trans. Softw. Eng. Methodol. 26, 1, Article 2 (May
2017), 27 pages.
DOI: http://dx.doi.org/10.1145/3063385

1. INTRODUCTION

An increasingly important requirement for modern software systems is the ability to
dynamically adapt, that is, change parts of the software as it executes. The construction
of dynamically adaptive software is significantly more challenging than traditional
software systems [Cheng et al. 2009; Lemos et al. 2011]. One important challenge
is the management of runtime changes to avoid inconsistencies during and after the
adaptation.

An inconsistent application state is one from which the system progresses toward an
error state [Kramer and Magee 1990]. A classical example used to illustrate this issue
is the evolving philosophers problem, a variant of the well-known dining philosophers

This work was supported in part by awards CCF-1252644, CNS-1629771, and CCF-1618132 from the Na-
tional Science Foundation; D11AP00282 from the Defense Advanced Research Projects Agency; W911NF-09-
1-0273 from the Army Research Office; HSHQDC-14-C-B0040 from the Department of Homeland Security;
and FA95501610030 from the Air Force Office of Scientific Research.
Authors’ addresses: A. Sadeghi and S. Malek, Department of Informatics, School of Information and Com-
puter Sciences, University of California, Irvine, CA 92697; emails: {alirezs1, malek}@uci.edu; N. Esfahani,
Google Inc., 1600 Amphitheatre Parkway Mountain View, CA 94043; email: naeeem@google.com.
Permission to make digital or hard copies of part or all of this work for personal or classroom use is granted
without fee provided that copies are not made or distributed for profit or commercial advantage and that
copies show this notice on the first page or initial screen of a display along with the full citation. Copyrights for
components of this work owned by others than ACM must be honored. Abstracting with credit is permitted.
To copy otherwise, to republish, to post on servers, to redistribute to lists, or to use any component of this
work in other works requires prior specific permission and/or a fee. Permissions may be requested from
Publications Dept., ACM, Inc., 2 Penn Plaza, Suite 701, New York, NY 10121-0701 USA, fax +1 (212)
869-0481, or permissions@acm.org.
c© 2017 ACM 1049-331X/2017/05-ART2 $15.00
DOI: http://dx.doi.org/10.1145/3063385

ACM Transactions on Software Engineering and Methodology, Vol. 26, No. 1, Article 2, Publication date: May 2017.

http://dx.doi.org/10.1145/3063385
http://dx.doi.org/10.1145/3063385

2:2 A. Sadeghi et al.

Fig. 1. (a) Dining Philosophers Problem: (b) a consistent situation and (c) an inconsistent (deadlock) situa-
tion after replacing P5 with P5′.

problem. As shown in Figure 1(a), philosophers wait on their neighbors to obtain the
two forks needed to be able to eat. Here, philosopher is a metaphor for a software
component and a wait-for-fork relationship is a metaphor for component dependency.
In the context of this problem, a consistent application state requires there to be no cycle
in the dependency relationship among the philosophers, indicating that at any given
point in time at least one philosopher is eating, as shown in Figure 1(b). The important
observation is that while philosophers are eating, their internal state may be mutually
inconsistent [Kramer and Magee 1990]. Dynamic replacement of a philosopher could
lead to an inconsistent state. Figure 1(c) demonstrates the case, where the philosophers
are deadlocked (i.e., there is a cycle) after replacing P5 with P5′.

Quiescence [Kramer and Magee 1990] solved this problem using a static inter-
component dependency model of a system (e.g., UML Component Diagram) by de-
termining the components that have to be halted (passivated) before a component can
be safely adapted. Reliance on the static inter-component dependency model, however,
makes quiescence rather pessimistic in its analysis and leads to significant disruptions.

Tranquility [Vandewoude et al. 2007] and Version-Consistency [Ma et al. 2011]
showed that by leveraging a dynamic inter-component dependency model of a system
(e.g., UML Sequence Diagram), it is possible to become more refined in the analysis
and thus increase the speed with which adaptations are effected.

All of these approaches, however, share a common trait: They have adopted a black-
box approach, that is, they have abstracted the analysis to the system’s software com-
ponents and their dependencies on one another. We found that since the black-box
approaches have abstracted from the state of the application logic, they are susceptible
to miss opportunities for consistent adaptation of software and thus enact changes
later than needed.

This article presents Savasana, the first white-box approach for ensuring consistency
during dynamic adaptation of software.1 Unlike the black-box approaches, Savasana
determines when a component can be adapted by considering both its internal behavior
as well as its interactions with other components. To that end, Savasana statically
analyzes the implementation of a component to derive a detailed model of its behavior,
referred to as intra-component dependency model. At runtime, Savasana uses both
intra- and inter-component dependency models to ensure the changes do not place the
system in an inconsistent state.

Since Savasana is white-box, it has more information at its disposal, including how
internal elements of components are defined and used. It leverages this information to
identify more opportunities for consistent adaptation of software than what is possible
with prior techniques. In other words, Savasana enacts the changes in the software

1Savasana is a yoga pose in which the body is completely relaxed.

ACM Transactions on Software Engineering and Methodology, Vol. 26, No. 1, Article 2, Publication date: May 2017.

Savasana: Ensuring the Consistency of Adaptation 2:3

Fig. 2. Subset of the Emergency Deployment System’s software architecture.

faster than prior approaches. In addition, Savasana overcomes the complexity of manu-
ally sifting through the implementation logic to determine the dependencies in the soft-
ware through a fully automated static program analysis capability. This way, Savasana
is able to automatically derive up-to-date models for consistent adaptation of software
and update the models as the software evolves.

We have developed an implementation of Savasana for applications built on top of
the Spring framework—a widely used commercial technology for the development of
component-based software in Java. Our experiences with thorough evaluation of this
approach in the context of a large software system have been very positive. The results
corroborate our ability to infer precise models that can be used to effect changes in the
running software faster than prior research.

The remainder of the article is organized as follows. Section 2 describes a software
system used to illustrate and evaluate the research. Section 3 provides an intuitive
overview of the approach. Section 4 presents the theoretical details of Savasana, while
Section 5 describes its implementation for Java programs. Section 6 presents the eval-
uation of the research. Finally, the article concludes with an outline of the related
research and the future work.

2. ILLUSTRATIVE EXAMPLE

For illustrating the concepts in this article, we use a software system called the Emer-
gency Deployment System (EDS) [Malek et al. 2005; Malek 2007]. EDS is intended
for the deployment and management of personnel in emergency response scenarios.
Figure 2 depicts a subset of EDS’s software architecture and in particular shows the
dependency relationships among its components.

EDS is used to accomplish three main tasks: Strategy Analysis (SA) determines the
tradeoffs among different deployment strategies using the Strategy Analyzer compo-
nent, Deployment Advising (DA) recommends alternative deployments of resources
and crew using the Deployment Advisor component, and Resource Estimation (RE)

ACM Transactions on Software Engineering and Methodology, Vol. 26, No. 1, Article 2, Publication date: May 2017.

2:4 A. Sadeghi et al.

Listing 1. Map component’s implementation in Java: (a) partial interface description, (b) old implementation
of updateTimeToTarget interface, and (c) new implementation of updateTimeToTarget interface.

incrementally simulates the effect of allocating resources to rescue teams on the per-
formance of rescue operations using the Simulation Agent component. The interested
reader may find a more detailed description of EDS in Malek et al. [2005] and Malek
[2007]. It suffices to say that EDS is representative of a large component-based software
system. EDS could be deployed as either a distributed system on multiple machines
or a centralized system on a single machine. While the focus of this article, including
the examples and implementation prototype, is on a centralized (local) deployment, the
theoretical contribution of our work is also applicable in a distributed setting.

It is often desirable to be able to adapt systems such as EDS at runtime to deal
with changes that may affect the system’s (non-)functional properties. For example,
consider the following hypothetical scenario involving a fault in the implementation of
a Map component that is discovered after the system has been deployed. Listing 1(a)
shows the component’s interfaces. As shown in Listing 1(b), the implementation of
updateTimeToTarget interface, which estimates the required time to reach a target
with a given speed, is susceptible to division by zero fault when speed is equal to zero.
Dynamic adaptation provides the ability to deal with such problems by replacing the
Map component with a new version that has the correct implementation of this inter-
face as shown in Listing 1(c). Consistent with prior research, we assume two versions
of the Map component provide the same interchangeable functionalities. This change,
however, should occur in a manner that does not lead to inconsistency or significant

ACM Transactions on Software Engineering and Methodology, Vol. 26, No. 1, Article 2, Publication date: May 2017.

Savasana: Ensuring the Consistency of Adaptation 2:5

Fig. 3. Sequence of transactions comprising the RE scenario in EDS (i.e., DeT(RE)).

disruption in the services provided to the users. The following section provides an
overview of the prior solutions to this problem, followed by an intuitive overview of
Savasana’s approach.

3. RESEARCH OVERVIEW

A system is generally viewed as moving from one consistent state to the next. Ap-
plication transactions modify the state of the application, and while in progress, have
transient state distributed in the system. In a component-based software, a transaction
is exchange of information between two components by which the state of a component
is affected. A dependent transaction is in turn a transaction whose completion depends
on the completion of consequent transactions. A root transaction is a type of dependent
transaction that corresponds to the functionalities (use cases) of the software. Figure 3
shows the root transaction corresponding to the Resource Estimation functionality
of EDS. Applications are often encoded with a particular sequence of transactions to
ensure the components are in a proper state for use. Consider, for example, a Map
component that is first requested to load a proper geographical location or a Camera
component that is first requested to point at a proper angle before use.

The goal of consistent adaptation is to ensure that changes do not lead to an un-
stable state of components participating in a transaction. Three general approachesto
prevent inconsistency during adaptation have been proposed: Quiescence, Tranquility,
and Version-Consistency. In this section, we provide a comparative analysis of these
techniques as well as Savasana. Table I summarizes their key differences.

Quiescence [Kramer and Magee 1990] prevents inconsistency by ensuring that
changes do not occur in the middle of an active transaction. To that end, Quiescence uses
a static inter-component dependency model of a system, such as the model depicted in

ACM Transactions on Software Engineering and Methodology, Vol. 26, No. 1, Article 2, Publication date: May 2017.

2:6 A. Sadeghi et al.

Table I. Comparison between Four Adaptation Approaches

Quiescence Tranquility Version-Consistency Savasana

Adaptation Add/Remove/Replace Replace Add/Remove/Replace Replace

Model Type Static Dynamic Dynamic Dynamic

Model
Manual Manual Manual Automatic

Extraction
Model

Inter-Component Inter-Component Inter-Component
Inter- and

Analysis Intra-Component
Root

No Identifier No Identifier Unique Identifier No Identifier
Transaction

Figure 2, to determine the components that should be passivated (halted). For instance,
to dynamically replace the Map component, Quiescence requires all components that
depend on the Map, and thus that may initiate transactions requiring its participation,
to be passivated. From Figure 2, we can see that HQ UI, Simulation Agent, Strategy
Analysis KB, Weather Analyzer, and Resource Manager would need to be passivated.
Quiescence is pessimistic in its analysis and, hence, very disruptive. The reason for
this is that a static inter-component dependency model (e.g., Figure 2) includes all
possible dependencies among the system’s components, while at any point in the ex-
ecution of a software system only some of those dependencies take effect. Quiescence
can be used to avoid inconsistency when replacing a component with another function-
ally equivalent component, as well as when adding a new or permanently removing a
component.

To provide a less disruptive adaptation, another approach, Version-Consistency [Ma
et al. 2011], assumes the existence of a unique identifier to distinguish among the
different root transactions. It then uses the identifier to guarantee that all dependent
transactions belonging to the same root transaction are served by either the old version
or the new version of a component. Moreover, to realize version-consistency approach,
Ma et al. proposed a management framework for distributed transactions to ensure
the safe dynamic reconfiguration of component-based distributed systems.

Tranquility [Vandewoude et al. 2007] also aims to reduce the disruptions caused by
adaptation. However, unlike Quiescence and Version-Consistency, the focus of Tran-
quility is only on the dynamic replacement of a component. Tranquility uses a dynamic
inter-component dependency model of a system, such as that shown in Figure 3 for the
Resource Estimation scenario of EDS. Under Tranquility, a component can be safely
replaced, unless it has already participated in an active transaction that it may par-
ticipate in again [Vandewoude et al. 2007].2 For instance, in the scenario of Figure 3,
Tranquility does not allow changing Map from the first time it is used (i.e., t2) until the
last time it is used (i.e., t8). According to Tranquility, the only safe update intervals to
change Map component are ©a and ©e .

Similarly to Tranquility, Savasana uses the dynamic inter-component dependency
model and focuses on dynamic replacement of components. But, unlike the other ap-
proaches, it also takes advantage of latent intra-component dependencies that can
be extracted from a component’s implementation. In contrast to other approaches
that rely on manually constructed models, Savasana statically analyzes a component’s
implementation to derive a detailed model of its internal behavior. It then uses both
inter- and intra-component models to identify safe update intervals.

2A more formal definition of Tranquility is provided in Section 4.2, Definition 2.

ACM Transactions on Software Engineering and Methodology, Vol. 26, No. 1, Article 2, Publication date: May 2017.

Savasana: Ensuring the Consistency of Adaptation 2:7

Fig. 4. A subset of the RE scenario: (a) Sequence of transactions defined on Map (i.e., DeT(RE, Map)); (b)
the source code of Map’s interface corresponding to the transactions; and (c) Define Use Graph (DUG) of
each transaction; (d) Safety of update intervals for Tranquility vs. Savasana.

Figure 4 intuitively illustrates Savasana’s intra-component dependency analysis us-
ing the Resource Estimation scenario of EDS. Savasana extracts the define and use
relationships among the state constructs comprising a component from its implemen-
tation. Under Savasana, a component can be safely replaced if (1) it satisfies Tranquility
or (2) it is in the middle of a transaction that it has already participated and is going to
participate again, but the state constructs that are used in its future participation are
redefined (reset) prior to use. In the case of a Resource Estimation scenario in Figure 4,
Savasana determines that update interval ©b is safe for the adaptation of the Map com-
ponent, since the three state constructs (latitude, longitude, and timeToTarget) that
are used in its future participation in the root transaction (i.e., t1) are all defined again
prior to use. Using more information allows Savasana to detect safe update intervals
that otherwise would be missed. In the next section, we formally define Savasana and
prove its ability to safely replace components at runtime.

4. SAVASANA

Savasana aims to identify the set of intervals in which the components comprising
the system can be safely adapted. This section first formally defines the concepts used
throughout the article and subsequently introduces Savasana’s criteria for identifying
the safe intervals.

ACM Transactions on Software Engineering and Methodology, Vol. 26, No. 1, Article 2, Publication date: May 2017.

2:8 A. Sadeghi et al.

4.1. Definitions

A transaction t ∈ T is defined as a triple tuple t = <s, e, c>, where s and e, respectively,
represent the start and end of t, while c ∈ C is the component that hosts t. In different
systems, s and e can be realized by different concepts (e.g., events, method calls, etc.).
For each transaction in Figure 3, s is depicted by a solid arrow, and e is depicted by a
dotted arrow.

To facilitate the understanding of formalism provided in this section, we define three
functions applied to transactions t ∈ T , namely DependentTransactions or DeT(),
StateConstructs or StC(), and DefUseGraph or DuG().

For any given transaction t ∈ T , a component c ∈ C, and a positive integer number
i ∈ IN, we define three variations of function DeT() as follows:

DeT :

⎧⎨
⎩

T → P(T), in function DeT(t)

T × C → P(T), in function DeT(t,c)

T × C × IN → T , in function DeT(t,c,i)

.

As shown in the function signature, the second and third parameters of DeT() are
optional, and the presence of those parameters could change the output domain of
the function. In the following, we describe the variations of DeT() through several
examples.

For a given transaction t ∈ T , DeT(t) returns a sequence of transactions that t directly
or indirectly depends on to complete execution. The returned results of DeT(t) are sorted
transactions according to their start time. When t is an independent transaction (e.g.,
t2, and t5–t8 in Figure 3), DeT(t) returns t as its only element; otherwise, when t is a
dependent transaction (e.g., t1, t3, and t4 in Figure 3), it returns more elements (i.e.,
|DeT(t)| > 1).

A root transaction t is a kind of transaction where there is no other transaction x in the
system such that t ∈ DeT(x). In other words, the occurrence of a root transaction is not
tied to other transactions in the system. Root transactions correspond to the system’s
use cases (functional capabilities). For instance, t1 in Figure 3 is a root transaction,
initiated in response to a request by the user. We let R ⊆ T to be the set of all root
transactions.

For a given root transaction r ∈ R and a component c ∈ C, we use function DeT(r, c)
to return the sequence of transactions involving component c in the root transaction r.
For instance, Figure 4(a) depicts the sequence of transactions defined on the Map
component in the context of the RE scenario (i.e., DeT(RE, Map) = <t2, t6, t7, t8>).

Moreover, we use the third parameter i of function DeT(t, c, i) to retrieve the ith ele-
ment of the transaction sequence that t depends on to complete execution and involving
component c. For instance, in the example shown in Figure 4(a), DeT(RE, Map,2) = t6.

For a given transaction t ∈ T with the hosting component c ∈ C, and program’s
variables and data structures s ∈ S, we define function StateConstructs or StC() as
follows:

StC : T × C → P(S).

StC() returns c’s state constructs, such as variables and data structures. For example,
timeToTarget, latitude, and longitude are some of the state constructs of the Map
component shown in Listing 1. For a component c, only a subset of its state constructs
may be involved during a transaction t. Thus, we use StC(t, c) to distinguish the subset
of state constructs of c that are used and defined during transaction t.

ACM Transactions on Software Engineering and Methodology, Vol. 26, No. 1, Article 2, Publication date: May 2017.

Savasana: Ensuring the Consistency of Adaptation 2:9

Finally, for a given transaction t ∈ T with the hosting component c ∈ C, and pro-
gram’s control flow graph (CFG), function DuG() is defined as follows:

DuG : T × C → P(CFG).

DuG(t, c) returns the def-use graph for the component c ∈ C that hosts t. Def-use
graph is a subset of the CFG for a transaction t. This subset is defined by only keeping
those vertexes of CFG that deal with the state of component c, either by defining or
using a state construct s ∈ StC(t, c), denoted as defs and uses, respectively. Figure 4(c)
shows the internal behavior of the Map component in the RE scenario by depicting
Define Use Graph (DUG) of all transactions in DeT(RE, Map) sequence. Here, yellow
(light) oval represents define and orange (dark) oval represents use of a state variable in
Map. For example, in DuG(t7, Map) depicted as the third row from the top in Figure 4(c)
(i.e., DeT(RE, Map,3) = t7), latitude and longitude are used, and then timeToTarget
is defined. Note that there are some other variables with limited scope, which are
excluded from DuG(t7, Map), as they do not affect the state of Map. They include method
parameters (e.g., targetLoc, speed) and local variables (e.g., distanceToTarget).

4.2. Savasana Criteria

A safe adaptation does not leave the system in an inconsistent state. As mentioned
in Section 3, Savasana addresses inconsistencies due to dynamic replacement of a
component—a situation where the state of the new instance of a component differs
from the state of the retired instance of component only as a result of adaptation,
which, as described in Section 3, may lead to system failure. In this section, we define
Savasana’s criteria for consistent adaptation of software.

We start by formal definition of replacement inconsistency:

Definition 1 (Replacement Inconsistency). Suppose that, in the context of root trans-
action r, component c ∈ C is replaced with component c′ ∈ C after transaction ti =
DeT(r, c, i), and before transaction tj=DeT(r, c, j), where i ≤ j. If ∃uses′ ∈ DuG(tj, c′),
then any deviation between state constructs s ∈ StC(tj, c) and the corresponding state
constructs s′ ∈ StC(tj, c′) at the time of uses′ is called replacement inconsistency.

According to this definition, the replaced component may create an inconsistency if
a subset of its state constructs, when used in the pending transactions comprising a
root transaction, are in a different state compared to the original component.

Savasana has two criteria in specifying the safe update intervals for a component:
(1) inter-component update criterion and (2) intra-component update criterion.

Savasana relies on Tranquility [Vandewoude et al. 2007] for detecting inter-
component update intervals. The only difference is that Savasana does not assume
the availability of an inter-component dependency model and extracts it through static
program analysis. The inter-component update criterion is defined as follows:

Definition 2 (Inter-Component Update Interval). A component is in an inter-
component update interval (tranquil interval) in the context of a root transaction if
“(1) it is not currently engaged in a transaction that it initiated, (2) it will not initiate
new transactions, (3) it is not actively processing a request, and (4) none of its adjacent
nodes are engaged in a transaction in which it has both already participated and might
still participate in the future” Vandewoude et al. [2007].

LEMMA 1. Replacing a component in an inter-component update interval does not
cause inconsistency.

PROOF. The validity of Lemma 1 is shown in prior work [Vandewoude et al. 2007].

ACM Transactions on Software Engineering and Methodology, Vol. 26, No. 1, Article 2, Publication date: May 2017.

2:10 A. Sadeghi et al.

In Figure 3, inter-component update interval implies that the Map cannot be adapted
after t2 and prior to t8 (i.e., in ©b , ©c , and ©d).

The intuition behind the intra-component update criterion in Savasana is as follows:
It is safe to replace component c with c′ inside root transaction r, if the state of c′ is not
used in the future of r, or it is redefined prior to its usage.

The first part of the intuition suggests that it is safe to adapt if the values of each
and every state construct s ∈ StC(r, c′) is not used in the future of r. In other words, no
uses happens after adaptation and during the remaining execution of root transaction.
The second part of the intuition implies that it is also safe to adapt if the value of state
construct s is redefined before its next usage in r. We know that any change in the
state of s is modeled as defs. Therefore, we can express the second part of the intuition
as follows: If a uses happens after adaptation, there should be a defs that occurs after
adaptation and precedes uses. For instance, in Figure 4(c), intra-component update
criterion holds for latitude at update interval ©b , as the only instance of uselatitude that
happens after ©b is at t7 = DeT(RE, Map,3), but latitude is redefined prior to that at
t6 = DeT(RE, Map,2). The intra-component update criterion also holds for timeToTarget
and longitude at ©b . Therefore, we can say ©b is an intra-component update interval,
since no other state construct of the Map is used after ©b , without first being redefined.

The intra-component update criterion is defined formally as follows:

Definition 3 (Intra-Component Update Interval). In the context of root transaction
r ∈ R, a component c ∈ C is in an intra-component update interval with respect to its
replacement component c′ ∈ C after transaction ti = DeT(r, c, i), if

∀ j : (i < j, s ∈ StC(tj, c′), uses ∈ DuG(tj, c′), ∃k : (i < k < j, defs ∈ DuG(tk, c′))),
where tj = DeT(r, c′, j) and tk = DeT(r, c′, k).

THEOREM 1. Replacing a component in an intra-component update interval does not
cause inconsistency.

PROOF. The proof of Theorem 1 is by contradiction: Let us assume updating com-
ponent c ∈ C with component c′ ∈ C under the update interval of Definition 3 causes
inconsistency. Based on Definition 1, this means that there is at least one state construct
s′ in component c′ that at the time of use has a different state from the corresponding
construct s in component c. Following the guidelines of Definition 3 in Theorem 1, every
state construct of c′ that is used in future transactions (i.e., StC(tj, c′)) are redefined
before usage. Therefore, we can redefine state construct s′ to be equal to s. This results
in a contradiction. and. hence, our assumption is false.

We can now define Savasana’s criterion for safe adaptation:

Definition 4 (Savasana). Component c ∈ C is in a Savasana interval in the context
of root transaction r ∈ R if it is in either an inter-component update interval or an
intra-component update interval.

COROLLARY 1. Replacing a component in Savasana interval does not cause replace-
ment inconsistency.

PROOF. The proof of Corollary 1 trivially follows from Lemma 1 and Theorem 1.

Consistency Model for a component c′ ∈ C is the set of all intervals in which it can
safely replace an old component c ∈ C (i.e., c satisfying the Savasana criteria). For
instance, the Consistency Model of the Map component in the context of transaction
shown in Figure 4 is the set {©a , ©b , and ©e }, as those are the intervals in which the Map
can be safely adapted.

ACM Transactions on Software Engineering and Methodology, Vol. 26, No. 1, Article 2, Publication date: May 2017.

Savasana: Ensuring the Consistency of Adaptation 2:11

The Savasana criteria, particularly the intra-component update interval, is concep-
tually close to the definition of the live variable in the compiler domain. A variable is
defined as live at a program point if “its current value may be read during the remain-
ing execution of the program” [Aho et al. 1986]. Intuitively, at a program statement a
variable is live when satisfying one of these two conditions: (1) it is read in the current
statement or (2) it is read in future statements unless it is written in current statement.
The application of Liveness Analysis in compiler optimization is to eliminate non-live
variables in the compiled target code to reduce the number of required registers.

Despite this conceptual similarity, Savasana criteria and Liveness analysis have
some key differences. Liveness analysis is defined in terms of low-level program struc-
tures, while Savasana criteria are defined in terms of high-level software components.
More specifically, if a class is considered as a component, Savasana only deals with
the class fields, while Liveness analysis takes all variables into account, including
non-fields such as local variables of methods. Moreover, while Savasana criteria are
defined with respect to the combination of all state constructs of a component, Liveness
analysis considers and evaluates each variable independently.

4.3. Non-Determinism Issues

The impact of non-determinism has been largely ignored in the prior literature. This is
attributed to the fact that the black-box approaches do not have access to the informa-
tion necessary for reasoning about such issues. Since Savasana analyzes the code, it can
determine the parallel execution flows that could be executed non-deterministically.

For the sake of simplicity, our formalism assumes deterministic transactions. In
reality, however, DeT(r), defined in Section 4.1, is a regular expression of transactions.
When a dependee transaction is encountered inside a conditional statement, we would
mark it as an optional transaction. For instance, if we assume that t2 in Figure 3 is
optional, then the regular expression for Resource Estimation would be as follows:
DeT(RE) = <t1, t2?, t3, t4, t5, t6, t7, t8>.

A given update interval can be a part of many parallel execution flows. In Savasana,
we adopt a pessimistic approach and require the update interval to be safe in all of those
execution flows to guarantee consistency. In other words, we enforce Savasana’s criteria
on all possible execution flows that result from combining unique paths from the START
vertex to the END vertex of all DUGs in all instances of DeT(r, c′) regular expression.
Note that there is no parallelism or non-determinism inside a given execution flow.
Since in Savasana we only care about define and use state constructs rather than their
actual values, we treat loops as conditional statements as well.

Figure 5 depicts the DUG for the new version of the Map component (i.e., recall
Listing 1(c)), which behaves non-deterministically. Here, instead of showing the DUG
for all the members of DeT(RE, Map), we show only the part, which differs from
Figure 4 (i.e., DeT(RE, Map,3) = t7). In this new version, since the code has changed,
the resulting Consistency Model has also changed. The update interval of ©b is not
safe for adaptation anymore. As you may recall from Figure 4, usetimeToTarget happens
at DeT(RE, Map,4) = t8, and, hence, all the execution flows should have at least one
deftimeToTarget that happens after ©b but before the beginning of t8. However, we can-
not find such a definition in the execution flows that take the path that jumps over
deftimeToTarget in t7 (see Figure 5(c)).

Static program analysis is subject to over-approximate the behavior of a software
system, and therefore our approach is subject to have false positives. However, by tak-
ing a conservative approach in our analysis, we eliminate false negatives to guarantee
safe adaptation, as detailed in the next section. Applying a non-deterministic ver-
sion of Savasana increases the false positives and makes the adaptation process more

ACM Transactions on Software Engineering and Methodology, Vol. 26, No. 1, Article 2, Publication date: May 2017.

2:12 A. Sadeghi et al.

Fig. 5. DUG of transaction DeT(RE, Map,3) = t7, where the Map’s implementation of Listing 1(b) has been
replaced by the Map’s implementation of Listing 1(c).

disruptive, that is, changes are not effected out of concern for situations that do not
manifest at runtime. However, in its worst case, when the intra-component criterion is
not satisfied for any component, Savasana performs as efficient as Tranquility.

5. IMPLEMENTATION

This section describes our realization of Savasana for Java programs running on top
of the Spring framework.

5.1. Overview

As depicted in Figure 6, our implementation consists of two parts: Code Analysis that
runs on the system’s implementation logic and Runtime Control that manages the cor-
responding running system. Code Analysis runs once for each system (re)configuration
and provides the required input for Runtime Control, which operates continuously
during the execution of the software system.

Code Analysis comprises two activities: the Dependency Extractor and Model Ana-
lyzer. Dependency Extractor employs static analysis techniques to extract a Dependency
Model of the components from either the system’s source code or its executable code
(e.g., Java bytecode). The Dependency Model consists of two parts: the inter-component
and intra-component dependency models. The inter-component dependency model,
analogously to the UML sequence diagram, represents the relationships among the
interacting components in a transaction. The intra-component dependency model rep-
resents the relationships among the internal constructs (variables and data structures)
constituting a software component’s state, as well as the operations that manipulate
the state. Model Analyzer uses both dependency models to determine the safe update
intervals for all root transactions and represents this information in a Consistency
Model.

Runtime Control also consists of two activities: Adapter and Monitor. Adapter re-
ceives a request for adaptation and waits until the Adaptation Registry corresponding
to the target component indicates that it is safe to adapt. At that point, it swaps the old
component with the new one. Monitor observes the transactions in the running system,

ACM Transactions on Software Engineering and Methodology, Vol. 26, No. 1, Article 2, Publication date: May 2017.

Savasana: Ensuring the Consistency of Adaptation 2:13

Fig. 6. Overview of our implementation.

matches them to the Consistency Model to determine which components are safe to
adapt, and continuously updates the status of components in the Adaptation Registry.
A component that is marked “safe” in the Adaptation Registry can be adapted without
creating inconsistency problems.

In the following two sections, we describe the details of Code Analysis and Runtime
Control.

5.2. Code Analysis

We realized Savasana’s code analysis capabilities on top of Soot [Vallée-Rai et al. 1999].
Soot is a Java optimization framework that can also be used for static analysis of either
source or executable Java code.

Code Analysis consists of two activities: Dependency Extractor and Model Analyzer.
Both of these activities operate on CFG, an abstract representation of the code, where
vertexes represent statements (including implicit statements such as START and END)
and edges represent flow of control in the code. We denote the set of vertexes and edges
in a CFG as V and E, respectively. The details of extracting CFG is beyond the scope of
this article. We rely on existing work [Vallée-Rai et al. 1999] to build this representation.
We use Java source code for the sake of readability in all of our examples. However, our
implemantation can also be applied to executable Java code, since Soot can be used to
extract the CFG from Java bytecode [Vallée-Rai et al. 1999].

Dependency Model is composed of two parts: inter- and intra-component dependency
models. An inter-component dependency model represents the sequence of transactions
comprising a root transaction in the system (we call it Dr, which is a sequence of
transactions returned by function DeT(r), r ∈ R), while an intra-component dependency
model represents the relationship between operations and data structures inside the
component. In the following subsections, we describe how Savasana extracts these
models in more detail.

5.2.1. Inter-Component Dependency Model. An inter-component dependency model is ob-
tained by traversing CFGt, denoting a subset of CFG relevant to transaction t. In
essence, CFGt represents an execution path in the overall CFG of one or more compo-
nents. Figure 7 shows a hypothetical CFGt for a subset of the RE scenario depicted in
Figure 3. The bold vertexes and edges represent the execution path corresponding to

ACM Transactions on Software Engineering and Methodology, Vol. 26, No. 1, Article 2, Publication date: May 2017.

2:14 A. Sadeghi et al.

Fig. 7. Hypothetical CFGt for a subset of the RE scenario of Figure 3, including t2 and a part of t1 and t3.

components’ participation in the RE scenario. Filled vertexes (C and H) show the points
where a transaction starts another (dependent) transaction by invoking another com-
ponent’s interface. For instance, in Figure 7, the component HQ UI, which is running
the root transaction t1, invokes an interface of Map at vertex C and starts transaction t2.

To extract the inter-component dependency model for any given root transaction
r ∈ R, we start from the entry point (i.e., interface) of the host component of r. Recall
from Section 5.1 that an underlying assumption in our research as well as prior work
is that the interfaces responsible for initiating the root transactions are known. We
traverse the CFGt of r and its dependent transactions in a depth first search manner.
This means that when we reach a caller node (filled vertexes in Figure 7), we leave the
current transaction graph and start traversing the first node of the callee transaction.
On the other hand, when we reach the end of a callee transaction, we backtrack
to the next node in the caller graph. For instance, in Figure 7, <START→A→C→
X→Y→T→F→E→H→M→· · ·> is the sequence of traversed nodes. This process is
repeated until we reach the end of CFGt for root transaction.

During the CFGt traversal, the transaction sequence Dr is constructed. At the be-
ginning of the process, Dr is initialized by adding the root transaction. Subsequently,
on reaching any invocation node, we append the callee transaction to Dr. For example,
in the following sequence, the start and end of transactions t1, t2, and t3 are identified
and appended to Dr as follows: <START

t1.s−→A→C
t2.s−→X→Y →T

t2.e−→F→E→H
t3.s−→M→· · ·>.

Note that Figure 7 shows a part of CFGt for the RE scenario. The final extracted inter-
component dependency model (i.e., Dr) following this process would be the same as that
shown in Figure 3.

5.2.2. Intra-Component Dependency Model. For modeling the internal behavior of a com-
ponent c ∈ C in a given root transaction r ∈ R, we first extract the sequence of transac-
tions involving c in the context of r, or DeT(r, c) as defined in Section 4.1. Afterwards,
we leverage Definition-Use Chain analysis [Harrold and Soffa 1994] to generate Define
Use Graph (DuG(t, c)) of each transaction t. In our analysis, distinction between defs
or uses of a state construct s ∈ S is made based on whether it appears on the left-hand
side (LHS) or right-hand side (RHS) of an assignment, respectively.

The inter- and intra-component dependency models extracted in the manner de-
scribed above become inputs to the Model Analyzer component of our implementation

ACM Transactions on Software Engineering and Methodology, Vol. 26, No. 1, Article 2, Publication date: May 2017.

Savasana: Ensuring the Consistency of Adaptation 2:15

(see Figure 6). This component is a Java program that implements the Savasana
criteria, as described in detail in Section 4. The output from Model Analyzer is the
Consistency Model, representing the set of intervals that are safe for adaptation of
each component under each scenario.

5.3. Runtime Control

We implemented Savasana’s runtime control capabilities on top of the Spring frame-
work [Johnson et al. 2005]. For implementing the Monitor component, we used Spring’s
extensive support for aspect-oriented programming, and for the Adapter component,
we relied on Spring’s dynamic (re)configuration facilities.

Runtime Control uses the models derived through Code Analysis to effect and man-
age the adaptation of software, while guaranteeing the consistency. As you may recall
from Figure 6, Runtime Control has two activities: Monitor and Adapter.

Pseudocodes 1 and 2 summarize the activities performed by Monitor and Adapter,
respectively. Monitor is called around (i.e., right before/after) the execution of each
transaction to keep the state of system updated. On the other hand, Adapter runs
continuously, via Adapter thread, and performs the adaptation process. The details of
these functions are described in the remainder of this section.

PSEUDOCODE 1: Monitor (implemented using Spring’s support for aspect-oriented programming)

/* ConsistencyModel is the knowledge-base shown in Figure 6, which can be
queried regarding to the (safe/unsafe) state of transactions. */

/* registry is the ‘‘Adaptation Registry’’ shown in Figure 6 and implemented
as a map. Its key is the pair of < componentid, threadid >, and its value is ‘SAFE’

or ‘UNSAFE’. */
1 Function Monitor.Run(transaction)

// This function is called before/after the execution of transactions
2 loggedTrace ← Monitor.loggedTrace;
3 component ← transaction.hostComponent;
4 thread ← transaction.thread;
5 if ConsistencyModel.isSafe(transaction, loggedTrace) then
6 registry.put(< componentid, threadid > , ‘SAFE’);

7 else
8 registry.put(< componentid, threadid > , ‘UNSAFE’);

9 Monitor.LogTrace(transaction);

10 Function Monitor.ResetRegistry(component)
// Reset the state of the component in the registry to ‘UNSAFE’

11 Function Monitor.LogTrace(transaction)
// Add the transaction to the system execution log (i.e. Monitor.loggedTrace)

5.3.1. Monitor. Monitor observes the execution of all transactions running in the sys-
tem and detects if any component is in a safe update interval for replacement. To that
end, for each transaction and its host component, Monitor retrieves the state of the
transaction (line 2 of Pseudocode 1), which has been previously logged (line 9) and
matches it against the Consistency Model of the component (lines 3–5).

Based on this analysis, Monitor records the status of components in the Adaptation
Registry (lines 5–8). Safe adaptation status (which is depicted as a green switch in
Figure 6) for a component in the context of a particular transaction means that the

ACM Transactions on Software Engineering and Methodology, Vol. 26, No. 1, Article 2, Publication date: May 2017.

2:16 A. Sadeghi et al.

PSEUDOCODE 2: Adapter (implemented using Spring’s support for dynamic (re)configuration)

/* toBeUpdatedComponents is a set that includes all components associated with
an update request. */

/* rootTransactions is a set that includes all root transactions running in
the system. */

/* ConsistencyModel is the knowledge-base shown in Figure 6, which can be
queried regarding the (safe/unsafe) state of transactions. */

/* registry is the ‘‘Adaptation Registry’’ shown in Figure 6 and implemented
as a map. Its key is the pair of < componentid, threadid >, and its value is ‘SAFE’

or ‘UNSAFE’. */
1 Function Adapter.Run()

// This function is called continuously via Adapter thread
2 foreach component ∈ toBeUpdatedComponents do
3 SafeToUpdate ← ‘TRUE’;
4 foreach transaction ∈ rootTransactions do
5 thread ← transaction.thread;
6 if registry.get(< componentid, threadid >) = ‘SAFE’ then
7 Adapter.Suspend(thread);

8 else
9 SafeToUpdate ← ‘FALSE’;

10 if SafeToUpdate then
11 Adapter.Update(component);
12 Adapter.ResumeAll();
13 Monitor.ResetRegistry(component);

14 Function Adapter.Suspend(thread)
// Suspend the thread

15 Function Adapter.ResumeAll()
// Resume all suspended transactions

16 Function Adapter.Update(component)
// Update the component

component satisfies the Savasana criteria at that point in time. Note that our imple-
mentation treats the concurrently running root transactions independently of each
other.

5.3.2. Adapter. Adapter is responsible for two main tasks: (a) effecting changes in the
running software through the Adapter.Run function and (b) suspending root trans-
actions through the Adapter.Suspend function. These tasks are initiated when the
Adapter receives a request for replacement of a component. After receiving the re-
quest, Adapter waits until the corresponding component registry in the Adaptation
Registry switches to the safe mode for all active root transactions involving the compo-
nent (i.e., when the SafeToUpdate flag defined in line 3 of Pseudocode 2 remains True)
and then updates the component (lines 10–13).

When a component participates in multiple concurrently running root transactions,
it is possible that the Adapter may have to wait for a long time before a safe interval is
reached with respect to all root transactions if it is ever reached. To address this issue,
the Adapter takes a proactive approach to steer the system toward a safe interval. Once
the Monitor reports that a component is in a safe interval in the context of a particular
root transaction, Adapter suspends that root transaction (Adapter.Suspend function
called in line 7 of Pseudocode 2). Suspending a root transaction means temporarily

ACM Transactions on Software Engineering and Methodology, Vol. 26, No. 1, Article 2, Publication date: May 2017.

Savasana: Ensuring the Consistency of Adaptation 2:17

stopping the corresponding thread of execution. By gradually suspending the root
transactions in which a component is involved, we are assured to eventually reach a
safe interval with respect to all active root transactions, at which point the Adapter
replaces the component with a new version of it. Finally, after adaptation is finished,
Adapter resumes all the suspended root transactions (Adapter.ResumeAll function
called in line 12).

Note that, in contrast to Tranquility, which takes a passive approach to adaptation
and waits until a safe state is reached, Savasana takes an active approach and forces the
safe state. This significantly decreases the wait time between receiving an adaptation
request and fulfilling it. In fact, while Tranquility cannot provide any guarantees
regarding reachability of safe state, Savasana guarantees the safe state will eventually
be reached and, as shown in the next section, in a fraction of the time it takes to
reach the safe state in Tranquility. In addition, Tranquility (as well as other existing
approaches) locks the software components, such that they would not respond to any
other request for services, making the approach susceptible to deadlock problems.
But Savasana takes an active role without causing deadlocks, as it suspends the root
transactions in the safe interval, instead of locking the components. Indeed, this unique
ability comes from the knowledge obtained through extracting a detailed model of the
components’ internal behavior.

5.4. Assumptions and Limitations

As shown in Section 4.2, satisfying Savasana criteria guarantees safe and consistent
updates of system components. Although from a conceptual standpoint Savasana is
applicable to all kinds of component-based software, there are a few assumptions in
the implementation described in this section that may limit its application.

Our implementation assumes the following:

(1) Components of the system are known, meaning that we know which code files
belong to each component.

(2) Two versions of the component being updated provide the same interchangeable
functionality accessible through the same interfaces.

(3) Component interfaces responsible for initiating root transactions are known; for
example, in reference to Figure 3, we know the interface provided by HQ UI that
is responsible for the initiation of the root transaction depicted there.

(4) Components interact and initiate new transactions synchronously by invoking each
other’s interfaces (e.g., public methods). These assumptions are consistent with
those made in the prior literature [Kramer and Magee 1990; Vandewoude et al.
2007].

(5) Components of the system and the adaptation agent are running on the same
machine. Supporting distributed settings requires a more advanced tool support
to safely update components that are deployed remotely. Most notably, Runtime
Control components would need to keep replicas of Adaptation Registry consistent
across a set of distributed nodes.

The aforementioned assumptions limit the applicability of our current prototype
implementation on top of the Spring framework. However, as alluded to earlier, they
do not affect the conceptual contribution of Savasana as a sufficient criteria for safe
adaptation of component-based software.

6. EVALUATION

We examine Savasana’s behavior by measuring two properties: (1) reachability, the
amount of time it takes for fulfilling the adaptation request, and (2) disruption, the
amount of time that application threads are suspended for adaptation. There are two

ACM Transactions on Software Engineering and Methodology, Vol. 26, No. 1, Article 2, Publication date: May 2017.

2:18 A. Sadeghi et al.

factors that impact these properties: (1) the internal structure of root transactions (i.e.,
scenarios) and (2) the level of concurrency in the system.

In this section, we present the result of analyzing the sensitivity of Savasana to these
factors on top of EDS [Malek et al. 2005; Malek 2007]. As you may recall from Section 2,
EDS is intended for the deployment and management of personnel in emergency re-
sponse scenarios. This software system consists of 13 component types, providing more
than 50 interface types that are realized using over 5.6 KLOC. Additionally, the com-
ponents utilize shared code and utility classes that bring the total size of the system
to over 10.2 KLOC. Table II provides more detailed information about the components
and interfaces of EDS. In Section 2, we described the system’s architecture as well as
its key use-cases.

In addition, we conduct an additional set of experiments on a suite of benchmark
systems, where we control the various parameters (e.g., inter- and intra-component
properties) that may affect Savasana’s behavior. As Savasana is an improvement over
Tranquility, we compare our results against Tranquility.

We have executed our experiments on a MacBook Pro laptop with a 2.66GHz Intel
Core 2 Duo processor and 8GB 1067MHz DDR3 memory. We have handled uncontrol-
lable factors in our experiments by repeating the experiments 33 times and reporting
the results using their 95% confidence intervals, unless otherwise noted.

The interested reader can access our implementation and evaluation artifacts at
Savasana’s homepage.3

6.1. Effect of Scenarios

As you may recall from Section 4, the structure of a root transaction directly impacts the
Consistency Model of components that participate in that transaction. Therefore, the
structure of the root transaction impacts reachability, as Savasana uses Consistency
Models to determine the safe update intervals. We evaluate the sensitivity of Savasana
in three scenarios corresponding to EDS’s three main functionalities, which, as you
may recall from Section 2, are as follows: SA, DA, and RE. Note that the RE scenario
depicted in Figure 3 is only for illustration purposes, as the original scenario is more
complicated. Since we only care about the effect of scenarios in these experiments, we
fix the level of concurrency to two users (concurrently running root transactions) in the
system.

The root transactions corresponding to these scenarios differ from each other in
two ways: (1) number of transactions and (2) number of safe update intervals for
components. We selected Weather, Repository, and Map as the candidate components
that are updated during the execution of root transactions corresponding to the SA, DA,
and RE scenarios, respectively. For each scenario, we conducted the same experiment
for both Tranquility and Savasana. During these experiments, we interrupted the
normal execution of the running system by sending a request for adaptation of the
target component and measured reachability and disruption.

The results of our experiments are provided in Table III. As we can see, reachability
of Tranquility is proportional to the number of transactions involved in the scenario
(i.e., |Dr|). As the number of transactions in the scenarios increases, the wait time for
updating the component involved in these transactions increases as well. Tranquility
waits until all transactions discontinue using the target component before adapting it.
Therefore, as |Dr| increases, the wait time for reaching the tranquil state increases. In
other words, Tranquility is not able to make use of all possible safe update intervals,
as it only considers two safe update intervals: before the first usage and after the last
usage.

3http://www.ics.uci.edu/∼seal/projects/savasana/.

ACM Transactions on Software Engineering and Methodology, Vol. 26, No. 1, Article 2, Publication date: May 2017.

http://www.ics.uci.edu/protect $
elax sim $seal/projects/savasana/

Savasana: Ensuring the Consistency of Adaptation 2:19

Table II. EDS Components and Their Provided/Required Interfaces

Reachability of Savasana is also affected by |Dr| but not as significantly as Tranquil-
ity. The reason is that the reachability of Savasana is also affected by the number of safe
update intervals that occur during the execution of root transactions. Savasana allows
adapting a component when all root transactions in the system are in the Savasana in-
terval (recall Definition 4) with respect to the new version of the component. More safe
update intervals means less wait time for adaptation and, in turn, faster reachability.

ACM Transactions on Software Engineering and Methodology, Vol. 26, No. 1, Article 2, Publication date: May 2017.

2:20 A. Sadeghi et al.

Table III. Impact of Three EDS Scenarios on Reachability and Disruption

EDS Scenario
Strategy Analysis Resource Deployment Resource Estimation

Number of Dr ’s Transactions 5 6 8
Number of Safe Update Intervals 4 3 5
Reachability Tranquility 24.68 ± 8.4 32.78 ± 13.3 66.32 ± 14.7

(sec) Savasana 6.53 ± 2.31 7.42 ± 1.34 7.92 ± 1.62
Disruption Tranquility 0.07 ± 0.02 0.05 ± 0.01 0.07 ± 0.02

(sec) Savasana 2.26 ± 1.05 2.23 ± 0.72 4.01 ± 1.32

Fig. 8. Reachability of Tranquility vs. Savasana.

Unlike reachability, according to the results of Table III, there is no clear relationship
between disruption and the properties of scenarios for Tranquility or for Savasana. As
we will show later, disruption is instead dependent on the level of concurrency param-
eter, which was fixed in this part of experiment. However, in all scenarios, disruption
caused by Tranquility is less than that by Savasana. This is because Tranquility is
a passive approach that does not suspend the threads, while Savasana is an active
approach that suspends the threads in their safe intervals.

6.2. Effect of Concurrency

Monitor component tracks the active root transactions and keeps the status of compo-
nents up to date in the Adaptation Registry. More concurrency means more root trans-
actions in the system and, in turn, more deliberation in the activities inside Runtime
Control. We designed an experiment to measure the sensitivity of system properties
(i.e., reachability and disruption) to concurrency. In this experiment, we simulated 400
EDS users (which resembles a wide rescue operation in EDS) initiating concurrent root
transactions according to a Poisson distribution [Bertsekas and Tsitsiklis 2008]. We
controlled the level of concurrency by changing the value of the Poisson parameter (i.e.,
λ) from 0.01 to 1. Since in this experiment we only cared about the effect of concurrency
and we wanted the results to be comparable, we only invoked the RE functionality.

Figure 8 plots the reachability of safe update interval for Savasana and Tranquility
in this experiment. As we can see, Savasana always reaches a safe update interval
much faster than Tranquility. Moreover, by taking a look at the slope of the lines, we
can see that the growth rate of Savasana is much slower than that of Tranquility. In
fact, in this experiment, Tranquility was not able to reach a safe update interval for

ACM Transactions on Software Engineering and Methodology, Vol. 26, No. 1, Article 2, Publication date: May 2017.

Savasana: Ensuring the Consistency of Adaptation 2:21

Fig. 9. Disruption of Tranquility vs. Savasana.

λ > 0.3, which accounts for six active users in the system. This large difference is due
to the fact that Savasana takes an active role in adaptation and gradually enforces
Savasana criteria, while Tranquility takes a passive role and waits for the Tranquility
criteria to manifest itself. As the level of concurrency increases, the chance of reaching
a safe update interval drops, and, hence, the tranquil interval becomes unreachable.

There is, however, a slight side effect in taking an active role in adaptation. Figure 9
shows the disruption caused by Savasana and Tranquility in the same set of experi-
ments. Since Tranquility is a passive approach and does not suspend the threads, it has
a negligible disruption caused by buffering the events intended for the new component
during the transition. Therefore, as the level of concurrency increases, Tranquility’s
disruption slightly increases. On the other hand, Savasana gradually suspends all of
the required root transactions in a safe update interval. Therefore, as the number of
concurrent root transactions for the same set of components increases, the chance of
more root transactions being suspended increases and the normal operation of the sys-
tem is further disrupted. However, as we see in Figure 9, this impact is sublinear (e.g.,
with 27 concurrent root transactions in the system, the total suspension time of root
transactions is less than 9s on average).

By looking at Figures 8 and 9 side by side, we conclude that Savasana achieves a
better overall tradeoff in comparison to Tranquility. It creates a little more disruption
in the normal operation of the system and, in turn, attains a large gain in the time it
takes to reach a safe update interval.

6.3. Performance and Timing

We have evaluated the efficiency of both Runtime Control and Code Analysis phases
of Savasana. We exercised two versions of EDS under the same scenarios, with and
without Savasana, and did not trigger any adaptation in either case, to be able to
measure the impact of Savasana’s monitoring and analysis components on the system’s
performance. We conducted these experiments 33 times to be able to report the results
with a 95% confidence. As we can see in Table IV, the overhead of Runtime Control is
negligible in comparison to the normal activity of the system.

We also measured the execution time of the Code Analysis phase, as provided in
Table IV. Unlike Runtime Control, which runs continuously, Code Analysis runs once
per each system (re)configuration. Therefore, the execution time of Code Analysis is
not as crucial as Runtime Control, as the Consistency Models for a newly adapted

ACM Transactions on Software Engineering and Methodology, Vol. 26, No. 1, Article 2, Publication date: May 2017.

2:22 A. Sadeghi et al.

Table IV. Overhead of Runtime Control and Code Analysis Time

EDS Scenario
Strategy Analysis Resource Deployment Resource Estimation

Execution Time without Savasana (sec) 14.16 ± 1.03 12.45 ± 1.01 18.23 ± 0.98
Runtime Control Overhead (%) 0.07% ± 0.03% 0.15% ± 0.03% 0.10% ± 0.05%
Code Analysis Time (sec) 2.17 2.09 2.38

software are not needed until the next adaptation decision, which in most cases should
leave plenty of time for the analysis to complete. If a software system goes through
rapid adaptations, then the Consistency Models for different possible configurations
of the software would have to be derived ahead of time. Since there is only negligible
variability in the execution time of Code Analysis, we do not report it with a confidence
interval.

6.4. Sensitivity Analysis through Benchmarks

To control the characteristics of the subjects (i.e., systems under test), we use a set of
benchmark systems. These systems are handcrafted to help us investigate the efficacy
of applying Savasana for adaptation of software systems with varying characteristics.
Each benchmark system is designed to include one adaptable component c in a root
transaction r. We define a set of variability dimensions (VD1–VD6) to control the char-
acteristics of each benchmark system. We measure the impact of each dimension on
Savasana. These variability dimensions are categorized as either inter-component or
intra-component.

Inter-component dimensions control external properties related to a component’s
interactions:

—VD1: Number of dependent transactions in the root transaction r (|DeT(r)|).
—VD2: Number of dependent transactions in the root transaction r and involving the

component c (|DeT(r,c)|).
Intra-component dimensions control the internal structure of a component:

—VD3: Total number of state constructs belonging to c that are affected by transaction r
(|StC(r,c)|).

—VD4: Number of state constructs defined in c in the context of transaction r, normal-
ized by total number of state constructs of c (|defs|/|StC(r,c)|, where s ∈ StC(r,c)).

—VD5: Number of state constructs used in c in the context of transaction r, normalized
by total number of state constructs of c (|uses|/|StC(r,c)| where s ∈ StC(r,c)).

—VD6: Average cyclomatic complexity [McCabe 1976] of a component.4

For a given component, VD3–VD6 represent the internal structure of that component
with respect to its state construct. VD3 simply counts the total number of state con-
structs, VD4 and VD5 provide the metrics for the definition and usage of those state
constructs, and, finally, VD6 indicates how they are defined or used.

To investigate the effect of aforementioned dimensions on the efficiency of Savasana,
five benchmark systems are devised to represent different values for each dimension.
Table V summarizes the values of each dimension for the benchmark systems. For each
benchmark, we repeated the same experiment that interrupts the normal execution of
the running system by sending a request for adaptation of the target component and
then measured reachability of Savasana.

Our experiment results show that Savasana’s reachability is less sensitive to
inter-component dimensions compared to intra-component dimensions. To observe

4Cyclomatic complexity calculates number of linearly independent paths through a program.

ACM Transactions on Software Engineering and Methodology, Vol. 26, No. 1, Article 2, Publication date: May 2017.

Savasana: Ensuring the Consistency of Adaptation 2:23

Table V. Impact of System Variability Dimensions on Reachability of Savasana

Number of Inter-Component Intra-Component Reachability
Components VD1 VD2 VD3 VD4 VD5 VD6 (sec)

system 1 5 10 6 2 3.00 1.00 1.16 2.80
system 2 5 5 3 2 3.00 1.00 1.16 2.58
system 3 5 5 3 6 1.00 1.83 1.16 8.28
system 4 5 13 6 2 3.50 3.00 1.20 6.23
system 5 5 13 6 2 3.50 3.00 3.20 17.43

this difference, consider the results of systems 1 and 2 in Table V. The reachability
times of these two systems are quite close (2.80s vs. 2.58s), despite the considerable
difference in their inter-component dimensions (10 and 6 vs. 5 and 3). On the other
hand, consider systems 2 and 3, where the inter-component VDs are the same (5 and
3), but the intra-component dimensions (VD3–VD6) vary, which leads to significantly
different reachability results. The reason is that Savasana takes internal structures
of components into account to identify safe-to-update intervals.

To observe the effect of system’s internal structure on Savasana’s efficiency more
thoroughly, once again consider the results of systems 2 and 3 shown in Table V.
According to the experiment results, Savasana is more efficient in applying adaptation
for system 2, because of the internal structure of system’s components, namely the
intra-component dimensions VD3–VD5. System 3 has six state constructs, with low
value for VD4 (state construct definition rate) and relatively high value for VD5 (state
construct usage rate), while system 2 has only two state constructs with higher value for
VD4 and lower value for VD5. As a result, the possibility of redefining state constructs
prior to their usage is higher in system 2, which means more safe update intervals and
shorter wait-for-update (reachability) times, when using Savasana.

Finally, to investigate the effect of non-determinism, we designed system 5, which is
a replica of system 4 with added cyclomatic complexity. In this benchmark system, the
def/use of state constructs are gated by IF conditions, thereby increasing the possible
execution paths. Recall that if only one of those added execution paths violates the
safe adaptation criteria for an update interval, Savasana conservatively considers that
interval unsafe for all execution paths. As a result, in a system with high cyclomatic
complexity, the chance of finding safe update intervals is reduced, and, consequently,
the wait time for updating the component is increased, which can be observed by
comparing the results from systems 4 and 5.

7. RELATED WORK

In Section 3, we described the most closely related approaches, namely Quiescence
[Kramer and Magee 1990], Tranquility [Vandewoude et al. 2007], and Version-
Consistency [Ma et al. 2011], including their relationship to this work. Here we focus
on the other related literature.

Gupta and Jalote [1993] provided a restricted condition to ensure the validity of an
update by allowing the old version of program to be replaced by the new one when idle.
To make the approach more applicable, Gupta et al. [1996] provided a more general
solution that a program can be updated when the state of the old version is reachable by
the new version of the updated program. These approaches and Savasana both define
the valid update based on the concept of states. However, their approach operates on
a very low level definition of state that consists of elements such as position on stack
or program counter, while our research targets the consistency of component-based
adaptation.

ACM Transactions on Software Engineering and Methodology, Vol. 26, No. 1, Article 2, Publication date: May 2017.

2:24 A. Sadeghi et al.

Another approach that addresses the problem of consistent update in the domain of
program analysis is the research by Neamtiu et al. [2008], which introduced the concept
of Version-Consistency at the code level. In contrast to our work that a safe update is
defined in the context of system components, they used a contextual effect system to
provide a correctness condition for dynamic software update. In their approach, they
assume there is a unique identifier for root transactions to guarantee a dependent
transaction is served by either the old or new version of a component. This assumption
limits the applicability of the approach only to the systems that provide such a unique
identifier. This work was the basis for the subsequent research [Ma et al. 2011] at the
component level, which is discussed in Section 3.

Among the other research addressing the problem of dynamic update at the code
level, Hicks et al. [2001] and Hicks and Nettles [2005] proposed a general-purpose dy-
namic updating system that provides the patches containing the updated code together
with the code needed to transition from the old version to the new. More recently, this
approach is tailored for specific programming languages, such as C [Hayden et al. 2012]
and Java [Pina and Hicks 2013]. In addition to applying software updates at different
levels (code level vs. component level), this thrust of research focuses on how to im-
plement the updates dynamically, while the goal of our approach, Savasana, is to find
when is a safe time to update. Dynamic patch approach tackles the timing problem by
requiring the program to be coded in a specific way from the outset, and, thus, wait-for-
update time could be negligible. However, since the approach places certain restrictions
on the structure of the program, it cannot be easily applied to legacy systems.

As a step toward specification-driven dynamic update of systems, Ghezzi et al. [2012]
and Manna et al. [2013] presented a technique for determining correct updates with
respect to the changes in the system specification. Unlike our work that considers
the system’s code for deriving safe update, their approach uses the system specifica-
tion or environment properties as the basis to identify correct updates. However, both
approaches use a controller to automatically apply the updates as soon as possible.

In our prior work [Canavera et al. 2012; Yuan et al. 2014; Esfahani et al. 2016], we
used log of events collected from a system to construct its inter-component dependency
model. To that end, we applied data mining techniques to infer a set of probabilistic
rules representing the dynamic component dependencies among the software compo-
nents of a system. Then we used these rules to predict safety of adaptation at any
given interval. Savasana differs from this approach, as it uses static analysis rather
than dynamic analysis. Moreover, Savasana employs both inter- and intra-component
dependency models for its analysis.

Software architecture has been shown to provide an appropriate level of abstrac-
tion and generality to deal with the complexity of dynamically adapting software sys-
tems [Kramer and Magee 2007; Oreizy et al. 1998]. Gomaa and Hussein [2004] de-
veloped the notion of reconfiguration pattern, which is a repeatable sequence of steps
for placing a software component in the Quiescence state. In our prior work [Esfahani
and Malek 2010, 2012], we extended this concept to provide safe adaptation support
on top of a middleware platform. Ramirez and Cheng [2010] also developed a set of
adaptation-oriented design patterns for various adaptation tasks such as monitoring,
decision making, and reconfiguration.

The other related research area to our work is static program analysis. While
static program analysis originated from the compiler community for source code
optimization, in the past decade it has found application in several software engi-
neering activities [Binkley 2007], including security vulnerability detection [Pérez
et al. 2011], fault localization [Agrawal et al. 1995], debugging [Gupta et al. 1997],
and verification [Blanchet et al. 2003]. To the best of our knowledge, this article is the

ACM Transactions on Software Engineering and Methodology, Vol. 26, No. 1, Article 2, Publication date: May 2017.

Savasana: Ensuring the Consistency of Adaptation 2:25

first to apply program analysis techniques in the design and construction of adaptive
systems, particularity to ensure their consistency.

8. CONCLUSION

We presented Savasana, the first white-box approach for reasoning about consistency
of component-based adaptation. Savasana employs program analysis to automatically
recover models that accurately reflect the dependencies in the software. It uses these
models to identify more opportunities for consistent adaptation of software than what
is possible with prior techniques. As a result, Savasana is able to enact the changes
in the software faster than the previously published approach, namely Tranquility.
We have formally proved that Savasana’s criteria for adaptation is sufficient to avoid
inconsistencies caused by replacing a component and empirically evaluated our im-
plementation of Savasana on top of the Spring framework using a system with many
users and under various conditions.

In our future research, we aim to extend our current implementation of Savasana to
distributed settings, where the software components are executing on different com-
puters that may be geographically apart. A distributed deployment of Savasana would
need to overcome timeliness concerns due to communication delay and ambiguities
that may arise due to lack of a shared clock (e.g., not knowing the exact ordering of
running transactions in the system). There are several plausible architectures to ad-
dress challenges posed by distribution, including either a centralized solution, in which
a centralized instance of Savasana orchestrates the adaptation under certain assump-
tions (e.g., maximum network latency), or a decentralized solution, in which multiple
instances of Savasana coordinate their decisions to effect changes in the system.

REFERENCES

Hiralal Agrawal, Joseph R. Horgan, Saul London, and W. Eric Wong. 1995. Fault localization using execution
slices and dataflow tests. In Proceedings of the Sixth International Symposium on Software Reliability
Engineering (ISSRE’95). 143–151.

Alfred V. Aho, Ravi Sethi, and Jeffrey D. Ullman. 1986. Compilers, Principles, Techniques. Addison Wesley.
Dimitri P. Bertsekas and John N. Tsitsiklis. 2008. Introduction to Probability (2nd ed.). Athena Scientific.
David Binkley. 2007. Source code analysis: A road map. In Proceedings of the International Conference on

Software Engineering (ISCE’07) and the Workshop on the Future of Software Engineering (FOSE’07).
104–119.

Bruno Blanchet, Patrick Cousot, Radhia Cousot, Jérôme Feret, Laurent Mauborgne, Antoine Miné, David
Monniaux, and Xavier Rival. 2003. A static analyzer for large safety-critical software. In Proceedings of
the ACM SIGPLAN 2003 Conference on Programming Language Design and Implementation. 196–207.

Kyle R. Canavera, Naeem Esfahani, and Sam Malek. 2012. Mining the execution history of a software system
to infer the best time for its adaptation. In Proceedings of the 20th ACM SIGSOFT Symposium on the
Foundations of Software Engineering (SIGSOFT’12)/(FSE’12). 18.

Betty H. C. Cheng, Rogério de Lemos, Holger Giese, Paola Inverardi, Jeff Magee, Jesper Andersson, Basil
Becker, Nelly Bencomo, Yuriy Brun, Bojan Cukic, Giovanna Di Marzo Serugendo, Schahram Dustdar,
Anthony Finkelstein, Cristina Gacek, Kurt Geihs, Vincenzo Grassi, Gabor Karsai, Holger M. Kienle,
Jeff Kramer, Marin Litoiu, Sam Malek, Raffaela Mirandola, Hausi A. Müller, Sooyong Park, Mary Shaw,
Matthias Tichy, Massimo Tivoli, Danny Weyns, and Jon Whittle. 2009. Software engineering for self-
adaptive systems: A research roadmap. In Proceedings of the Software Engineering for Self-Adaptive
Systems [Outcome of a Dagstuhl Seminar]. 1–26.

Naeem Esfahani and Sam Malek. 2010. On the role of architectural styles in improving the adaptation
support of middleware platforms. In Proceedings of the Software Architecture, 4th European Conference
(ECSA’10). 433–440.

Naeem Esfahani and Sam Malek. 2012. Utilizing architectural styles to enhance the adaptation support of
middleware platforms. Inf. Softw. Technol. 54, 7 (2012), 786–801.

Naeem Esfahani, Eric Yuan, Kyle R. Canavera, and Sam Malek. 2016. Inferring software component inter-
action dependencies for adaptation support. Trans. Auton. Adapt. Syst. 10, 4 (2016), 26.

ACM Transactions on Software Engineering and Methodology, Vol. 26, No. 1, Article 2, Publication date: May 2017.

2:26 A. Sadeghi et al.

Carlo Ghezzi, Joel Greenyer, and Valerio Panzica La Manna. 2012. Synthesizing dynamically updating con-
trollers from changes in scenario-based specifications. In Proceedings of the 7th International Symposium
on Software Engineering for Adaptive and Self-Managing Systems (SEAMS’12). 145–154.

Hassan Gomaa and Mohamed Hussein. 2004. Software reconfiguration patterns for dynamic evolution of
software architectures. In Proceedings of the 4th Working IEEE/IFIP Conference on Software Architec-
ture (WICSA’04). 79–88.

Deepak Gupta and Pankaj Jalote. 1993. On-line software version change using state transfer between
processes. Softw. Pract. Exper. 23, 9 (1993), 949–964.

Deepak Gupta, Pankaj Jalote, and Gautam Barua. 1996. A formal framework for on-line software version
change. IEEE Trans. Software Eng. 22, 2 (1996), 120–131.

Rajiv Gupta, Mary Lou Soffa, and John Howard. 1997. Hybrid slicing: Integrating dynamic information with
static analysis. ACM Trans. Softw. Eng. Methodol. 6, 4 (1997), 370–397.

Mary Jean Harrold and Mary Lou Soffa. 1994. Efficient computation of interprocedural definition-use chains.
ACM Trans. Program. Lang. Syst. 16, 2 (1994), 175–204.

Christopher M. Hayden, Edward K. Smith, Michail Denchev, Michael Hicks, and Jeffrey S. Foster. 2012.
Kitsune: Efficient, general-purpose dynamic software updating for C. In Proceedings of the 27th Annual
ACM SIGPLAN Conference on Object-Oriented Programming, Systems, Languages, and Applications
(OOPSLA’12). 249–264.

Michael W. Hicks, Jonathan T. Moore, and Scott Nettles. 2001. Dynamic software updating. In Proceedings of
the 2001 ACM SIGPLAN Conference on Programming Language Design and Implementation (PLDI’01).
13–23.

Michael W. Hicks and Scott Nettles. 2005. Dynamic software updating. ACM Trans. Program. Lang. Syst.
27, 6 (2005), 1049–1096.

Rod Johnson, Juergen Hoeller, Alef Arendsen, Thomas Risberg, and Colin Sampaleanu. 2005. Professional
Java Development with the Spring Framework. John Wiley & Sons.

Jeff Kramer and Jeff Magee. 1990. The evolving philosophers problem: Dynamic change management. IEEE
Trans. Software Eng. 16, 11 (1990), 1293–1306.

Jeff Kramer and Jeff Magee. 2007. Self-managed systems: An architectural challenge. In Proceedings of the
International Conference on Software Engineering (ISCE’07) and the Workshop on the Future of Software
Engineering (FOSE’07). 259–268.

Rogerio de Lemos, Holger Giese, Hausi A. Muller, Mary Shaw, Jesper Andersson, Luciano Baresi, Basil
Becker, Nelly Bencomo, Yuriy Brun, Bojan Cikic, Ron Desmarais, Schahram Dustdar, Gregor Engels,
Kurt Geihs, Karl M. Goeschka, Alessandra Gorla, Vincenzo Grassi, Poala Inverardi, Gabor Karsai,
Jeff Kramer, Marin Litoiu, Antonia Lopes, Jeff Magee, Sam Malek, Serge Mankovskii, Raffaela Miran-
dola, John Mylopoulos, Oscar Nierstrasz, Mauro Pezze, Christian Prehofer, Wilhelm Schafer, Wilhelm
Schlichting, Bradley Schmerl, Dennis B. Smith, Joao P. Sousa, Gabriel Tamura, Ladan Tahvildari, Norha
M. Villegas, Thomas Vogel, Danny Weyns, Kenny Wong, and Jochen Wuttke. 2011. Software engineer-
ing for self-adpaptive systems: A second research roadmap. In Software Engineering for Self-Adaptive
Systems II. Dagstuhl, Germany, 1–32.

Xiaoxing Ma, Luciano Baresi, Carlo Ghezzi, Valerio Panzica La Manna, and Jian Lu. 2011. Version-
consistent dynamic reconfiguration of component-based distributed systems. In Proceedings of the SIG-
SOFT/FSE’11 19th ACM SIGSOFT Symposium on the Foundations of Software Engineering (FSE-19)
and ESEC’11: 13th European Software Engineering Conference (ESEC-13). 245–255.

Sam Malek. 2007. A User-Centric Approach for Improving a Distributed Software System’s Deployment
Architecture. Ph.D. Dissertation. University of Southern California.

Sam Malek, Marija Mikic-Rakic, and Nenad Medvidovic. 2005. A style-aware architectural middleware for
resource-constrained, distributed systems. IEEE Trans. Software Eng. 31, 3 (2005), 256–272.

Valerio Panzica La Manna, Joel Greenyer, Carlo Ghezzi, and Christian Brenner. 2013. Formalizing correct-
ness criteria of dynamic updates derived from specification changes. In Proceedings of the 8th Inter-
national Symposium on Software Engineering for Adaptive and Self-Managing Systems (SEAMS’13).
63–72.

Thomas J. McCabe. 1976. A complexity measure. IEEE Trans. Software Eng. 2, 4 (1976), 308–320.
Iulian Neamtiu, Michael Hicks, Jeffrey S. Foster, and Polyvios Pratikakis. 2008. Contextual effects for

version-consistent dynamic software updating and safe concurrent programming. In ACM SIGPLAN
Notices, Vol. 43. ACM, 37–49.

Peyman Oreizy, Nenad Medvidovic, and Richard N. Taylor. 1998. Architecture-based runtime software evolu-
tion. In Proceedings of the 1998 International Conference on Software Engineering (ICSE’98). 177–186.

Pablo Martı́n Pérez, Joanna Filipiak, and José Marı́a Sierra. 2011. LAPSE+ static analysis security software:
Vulnerabilities detection in java EE applications. In Future Information Technology. Springer, 148–156.

ACM Transactions on Software Engineering and Methodology, Vol. 26, No. 1, Article 2, Publication date: May 2017.

Savasana: Ensuring the Consistency of Adaptation 2:27

Luı́s Pina and Michael Hicks. 2013. Rubah: Efficient, general-purpose dynamic software updating for java.
In Proceedings of the 5th Workshop on Hot Topics in Software Upgrades (HotSWUp’13).

Andres J. Ramirez and Betty H. C. Cheng. 2010. Design patterns for developing dynamically adaptive
systems. In Proceedings of the 2010 ICSE Workshop on Software Engineering for Adaptive and Self-
Managing Systems (SEAMS’10). 49–58.

Raja Vallée-Rai, Phong Co, Etienne Gagnon, Laurie J. Hendren, Patrick Lam, and Vijay Sundaresan. 1999.
Soot - a java bytecode optimization framework. In Proceedings of the 1999 Conference of the Centre for
Advanced Studies on Collaborative Research. 13.

Yves Vandewoude, Peter Ebraert, Yolande Berbers, and Theo D’Hondt. 2007. Tranquility: A low disruptive
alternative to quiescence for ensuring safe dynamic updates. IEEE Trans. Software Eng. 33, 12 (2007),
856–868.

Eric Yuan, Naeem Esfahani, and Sam Malek. 2014. Automated mining of software component interactions
for self-adaptation. In Proceedings of the 9th International Symposium on Software Engineering for
Adaptive and Self-Managing Systems (SEAMS’14). 27–36.

Received March 2015; revised December 2016; accepted February 2017

ACM Transactions on Software Engineering and Methodology, Vol. 26, No. 1, Article 2, Publication date: May 2017.

