
µDroid: An Energy-Aware Mutation Testing Framework for
Android

Reyhaneh Jabbarvand and Sam Malek
School of Information and Computer Sciences

University of California, Irvine, USA
{jabbarvr,malek}@uci.edu

ABSTRACT
The rising popularity ofmobile apps deployed on battery-constrained
devices underlines the need for effectively evaluating their energy
properties. However, currently there is a lack of testing tools for
evaluating the energy properties of apps. As a result, for energy
testing, developers are relying on tests intended for evaluating the
functional correctness of apps. Such tests may not be adequate
for revealing energy defects and inefficiencies in apps. This pa-
per presents an energy-aware mutation testing framework, called
µDroid, that can be used by developers to assess the adequacy of
their test suite for revealing energy-related defects. µDroid imple-
ments fifty energy-aware mutation operators and relies on a novel,
automatic oracle to determine if a mutant can be killed by a test.
Our evaluation on real-world Android apps shows the ability of
proposed mutation operators for evaluating the utility of tests in
revealing energy defects. Moreover, our automated oracle can de-
tect whether tests kill the energy mutants with an overall accuracy
of 94%, thereby making it possible to apply µDroid automatically.

CCS CONCEPTS
• Software and its engineering → Software testing and de-
bugging;

KEYWORDS
Software Testing, Mutation Testing, Energy Testing, Android
ACM Reference format:
Reyhaneh Jabbarvand and Sam Malek. 2017. µDroid: An Energy-Aware
Mutation Testing Framework for Android. In Proceedings of 2017 11th Joint
Meeting of the European Software Engineering Conference and the ACM
SIGSOFT Symposium on the Foundations of Software Engineering, Paderborn,
Germany, September 4–8, 2017 (ESEC/FSE’17), 12 pages.
https://doi.org/10.1145/3106237.3106244

1 INTRODUCTION
Energy is a demanding but limited resource on mobile and wearable
devices. Improper usage of energy consuming hardware compo-
nents, such as GPS, WiFi, radio, Bluetooth, and display, can drasti-
cally discharge the battery. Recent studies have shown energy to
be a major concern for both users [73] and developers [65]. In spite
of that, many mobile apps are abound with energy defects.

The majority of apps are developed by start-up companies and
individual developers that lack the resources to properly test their
programs. The resources they have are typically spent on testing

Permission to make digital or hard copies of all or part of this work for personal or
classroom use is granted without fee provided that copies are not made or distributed
for profit or commercial advantage and that copies bear this notice and the full citation
on the first page. Copyrights for components of this work owned by others than ACM
must be honored. Abstracting with credit is permitted. To copy otherwise, or republish,
to post on servers or to redistribute to lists, requires prior specific permission and/or a
fee. Request permissions from permissions@acm.org.
ESEC/FSE’17, September 4–8, 2017, Paderborn, Germany
© 2017 Association for Computing Machinery.
ACM ISBN 978-1-4503-5105-8/17/09. . . $15.00
https://doi.org/10.1145/3106237.3106244

the functional aspects of apps. However, tests designed for testing
functional correctness of a program may not be suitable for reveal-
ing energy defects. In fact, even in settings where developers have
the resources to test the energy properties of their apps, there is
generally a lack of tools and methodologies for energy testing [65].
Thus, there is an increasing demand for solutions that can assist
the developers in identifying and removing energy defects from
apps prior to their release.

One step toward this goal is to help the developers with evaluat-
ing the quality of their tests for revealing energy defects. Mutation
testing is an approach for evaluating fault detection ability of a
test suite by seeding the program under test with artificial defects,
a.k.a, mutation operators [50, 55]. Mutation operators can be de-
signed based on a defect model, where mutation operators create
instances of known defects, or by mutating the syntactic elements
of the programming language. The latter creates enormously large
number of mutants and makes energy-aware mutation testing in-
feasible, as energy testing should be performed on a real device
to obtain accurate measurements of battery discharge. Addition-
ally, energy defects tend to be complex (e.g., manifest themselves
through special user interactions or peculiar sequence of external
events). As Rene et al. [57] showed complex faults are not highly
coupled to syntactic mutants, energy-aware mutation operators
should be designed based on a defect model.

In this paper, we present µDroid, an energy-aware mutation
testing framework for Android. In the design of µDroid, we had to
overcome two challenges:

(1) An effective approach for energy-aware mutation testing
needs an extensive list of energy anti-patterns in Android to guide
the development of mutation operators. An energy anti-pattern
is a commonly encountered development practice (e.g., misuse
of Android API) that results in unnecessary energy inefficiencies.
While a few energy anti-patterns, such as resource leakage and sub-
optimal binding [63, 75], have been documented in the literature,
they do not cover the entire spectrum of energy defects that arise
in practice. To that end, we first conducted a systematic study
of various sources of information, which allowed us to construct
the most comprehensive energy defect model for Android to date.
Using this defect model, we designed and implemented a total of
fifty mutation operators that can be applied automatically to apps
under test.

(2) An important challenge with mutation testing is the oracle
problem, i.e., determining whether the execution of a test case kills
the mutants or not. This is particularly a challenge with energy
testing, since the state-of-the-practice is mostly a manual process,
where the engineer examines the power trace of running a test
to determine the energy inefficiencies that might lead to finding
defects. To address this challenge, we present a novel, and fully
automated oracle that is capable of determining whether an energy
mutant is killed by comparing the power traces of tests executed
on the original and mutant versions of an app.

https://doi.org/10.1145/3106237.3106244
https://doi.org/10.1145/3106237.3106244

ESEC/FSE’17, September 4–8, 2017, Paderborn, Germany Reyhaneh Jabbarvand and Sam Malek

We have extensively evaluated µDroid using open-source An-
droid apps. Our experiments show that µDroid is capable of ef-
fectively and efficiently evaluating the adequacy of test suites for
revealing energy defects. We found statistically significant correla-
tion between mutation scores produced by µDroid and test suites’
ability in revealing energy defects. Furthermore, µDroid’s auto-
mated oracle showed an average accuracy of 94%, making it possible
to apply the mutation testing techniques described in this paper in
a fully automated fashion. Finally, using µDroid, we identified 15
previously unknown energy defects in the subject apps. Reporting
these defects to developers, 11 of them were verified as bugs and 7
are fixed to date, using the patches we provided to developers. This
paper makes the following contributions:
• A comprehensive list of energy anti-patterns collected from issue
trackers, Android developers guide, and Android API reference.
• Design of fifty energy-aware mutation operators based on the en-
ergy anti-patterns and their implementation in an Eclipse plugin,
which is publicly available [21].
• A novel automatic oracle for mutation analysis to identify if an
energy mutant can be killed by a test suite.
• Experimental results demonstrating the utility of mutation test-
ing for evaluating the quality of test suites in revealing energy
defects.
The remainder of this paper is organized as follows. Section 2

provides an overview of our framework. Sections 3 describes our ex-
tensive study to collect energy anti-patterns from variety of sources
and presents the details of our mutation operators with several cod-
ing examples. Section 4 introduces our automated approach for
energy-aware mutation analysis. Section 5 presents the implemen-
tation and evaluation of the research. Finally, the paper outlines
related research and concludes with a discussion of our future work.

2 FRAMEWORK OVERVIEW
Figure 1 depicts our framework, µDroid, for energy-aware muta-
tion testing of Android apps, consisting of three major components:
(1) Eclipse Plugin that implements the mutation operators and cre-
ates a mutant from the original app; (2) Runner/Profiler component
that runs the test suite over both the mutated and original ver-
sions of the program, profiles the power consumption of the device
during execution of tests, and generates the corresponding power
traces (i.e., time series of profiled power values); and (3) Analysis
Engine that compares the power traces of tests in the original and
mutated versions to determine if a mutant can be killed by tests or
not.

Our Eclipse plugin implements fifty energy-aware mutation op-
erators derived from an extensive list of energy anti-patterns in
Android. To generate mutants, our plugin takes the source code of
an app and extracts the Abstract Syntax Tree (AST) representation
of it. It then searches for anti-patterns encoded by mutation opera-
tors in AST, transforms the AST according to the anti-patterns, and
generates the implementation of the mutants from the revised AST.

After generating a mutant, the Runner/Profiler component runs
the test suite over the original and mutant versions, while profiling
the actual power consumption of the device during execution of
test cases. This component creates the power trace for each test
case that is then fed to the Analysis Engine.

Analysis engine employs a novel algorithm to decide whether
each mutant is killed or lived. At a high-level, it measures the simi-
larity between time series generated by each test after execution on
the original and mutated versions of an app. In doing so, it accounts
for distortions in the collected data. If the temporal sequences of
power values for a test executed on the original and mutated app

Figure 1: Energy-aware mutation testing framework

are not similar, Analysis Engine marks the test as killed. A mutant
lives if none of the tests in the test suite can kill it.

The implementation of our framework is extensible to allow for
inclusion of new mutation operators, Android devices, and analysis
algorithms. In the following two sections, we describe the details
of our energy-aware mutation operators and mutation Analysis
Engine.

3 MUTATION OPERATORS
To design the mutation operators, we first conducted an extensive
study to identify the commonly encountered energy defects in
Android apps, which we call energy anti-patterns. To that end, we
explored bug repositories of open-source projects, documents from
Google and others describing best practices of avoiding energy
inefficiencies, and published literature in the area of green software
engineering.

3.1 Defect Model and Derivation of Operators
Our methodology to collect the energy anti-patterns was a keyword-
based search approach. We started by crawling the Android Open
Source Project issue tracker [3] and XDADevelopers forum [36] and
searched for posts that have at least one of the following keywords:
energy, power, battery, drain, and consumption. We then manually
inspected these posts to find energy-related issues as reported by
users and developers. The outcome of this step was a list of energy-
related issues and 295 apps that possibly had instances of those
issues. We excluded commercial apps from the list, since our study
requires the availability of source code. That left us with 130 open-
source apps for further investigation.

We then searched the issue tracker of the 130 apps for the afore-
mentioned keywords, and narrowed down to 91 open source apps
that had at least one issue (open or closed) related to energy, as
reported in their issue tracker. We considered apps whose energy
issues were reproducible by the developers—whether confirmed
or fixed—or had an explanation as to how to reproduce the issue,
which left us with 41 apps. Moreover, we studied the related litera-
ture [38, 48, 63, 75] and found 18 additional open-source apps with
energy issues. In the end, we were able to identify 59 open-source
apps with confirmed energy defects.

We manually investigated the source code of these 59 apps to
find misuse of Android APIs utilizing energy-expensive hardware
components (e.g., CPU, WiFi, radio, display, GPS, Bluetooth, and
sensors) as reported in the corresponding bug trackers. For example,
Omim [13] issue 780 states ”App is using GPS all the time, or at least
trying to use”. As a result, we investigated usage of APIs belonging
to LocationManager package in Android. As another example, Sip-
Droid [30] issue 847 states ”after using the app, display brightness
is increased almost full and its stays that way”. Thereby, we inves-
tigated the source code for APIs dealing with the adjustment of
screen brightness, e.g., getWindow().addFlag(FLAG_KEEP_SCREEN_ON)
and getWindow().getAttributes().screenBrightness.

µDroid: An Energy-Aware Mutation Testing Framework for Android ESEC/FSE’17, September 4–8, 2017, Paderborn, Germany

Table 1: List of proposed energy-aware mutation operators.

Category Description of Class Mutation Operators Hardware Type

Location
Increase Location Update Frequency LUF_T, LUF_D

GPS/WiFi/Radio
R

Change Location Request Provider LRP_C, LRP_A R,I
Redundant Location Update RLU, RLU_P, RLU_D D
Voiding Last Known Location LKL R

Connectivity

Fail to Check for Connectivity FCC_R, FCC_A

WiFi/Radio/Bluetooth

R,I
Frequently Scan for WiFi FSW_H, FSW_S R
Redundant WiFi Scan RWS D
Use Cellular over WiFi UCW_C, UCW_W I

Long Timeout for Corrupted Connection LTC R,I
Downloading Redundant Data DRD D
Unnecessary Active Bluetooth UAB R

Frequently Discover Bluetooth Devices FDB_H, FDB_S R
Redundant Bluetooth Discovery RBD D

Wakelock
Wakelock Release Deletion for CPU WRDC, WRDC_P, WRDC_D

CPU/WiFi
D

Keep WakwfulBroadcastReceiver Active WBR D
Wakelock Release Deletion for WiFi WRDW, WRDW_P, WRDW_D D

Acquire High Performance WiFi Wakelock HPW R

Display
Enable Maximum Screen Timeout MST

Display
I

Set Screen Flags SSF I
Use Light Background Color LBC R

Enable Maximum Screen Brightness MSB I

Recurring Callback
and Loop

High Frequency Recurring Callback HFC_T, HFC_S, HFC_A, HFC_H
WiFi/Radio/CPU/Memory/

Bluetooth/Display

R
Redundant Recurring Callback RRC D
Running an Alarm Forever RAF D

Battery-related Frequency Adjustment BFA_T_L,BFA_T_F, BFA_S_L, BFA_S_F,
BFA_A_L, BFA_A_F, BFA_H_L, BFA_H_F I

Increasing Loop Iterations ILI I
Sensor Sensor Listener Unregister Deletion SLUD Sensors D

Fast Delivery Sensor Listener FDSL R

Investigating the source code of energy-inefficient apps provided
us with common mistakes that developers make or mistakes that
have severe impact on the energy consumption of apps. In addition,
we crawled Android Developers Guide [2] and Android API Refer-
ence [1] for best practices related to energy consumption using the
aforementioned keywords. This way we found additional energy
issues that either happen in specific use-cases that are uncommon
among apps, or their impact cannot be readily observed by end
users. In total, we identified 28 types of energy anti-patterns from
our investigation, which were used to design our energy-aware
mutation operators for the purpose of this work.

Table 1 lists our energy-aware mutation operators. We designed
and implemented 50 mutation operators (column 3 in Table 1)—
corresponding to the identified energy defect patterns, grouped into
28 classes (column 2 in Table 1). We also categorized these classes
of mutation operators into 6 categories, which further capture the
commonality among the different classes of operators. Each row
of the table presents one class of mutation operators, providing
(1) a brief description of the operators in the class, (2) the ID of
mutation operators that belong to the class, (3) list of the hard-
ware components that the mutation operators might engage, and
(4) modification types made by the operators (R: Replacement, I:
Insertion, D: Deletion).

Due to space constraints, in the following sections, we describe
a subset of our mutation operators. Details about all mutation op-
erators can be found on the project website [21].

3.2 Location Mutation Operators
When developing location-aware apps, developers should use a
location update strategy that achieves the proper tradeoff be-
tween accuracy and energy consumption [11]. User location can
be obtained by registering a LocationListener, implementing sev-
eral callbacks, and then calling requestLocationUpdates method
of LocationManager to receive location updates. When the app
no longer requires the location information, it needs to stop lis-
tening to updates and preserve battery by calling removeUpdates

1 public class TrackActivity extends Activity {
2 private LocationManager manager;
3 private LocationListener listener;
4 protected void onCreate (){
5 manager = getSystemService("LOCATION_SERVICE");
6 listener = new LocationListener (){
7 public void onLocationChanged (){
8 // Use location information to update activity
9 }
10 };
11 manager.requestLocationUpdates("NETWORK", 2*60*1000 , 20,

listener);
12 }
13 protected void onPause (){super.onPause ();}
14 protected void onDestroy (){
15 super.onDestroy ();
16 manager.removeUpdates(listener);
17 }
18 }

Figure 2: Example of obtaining user location in Android

of LocationManager. Though seemingly simple, working with An-
droid LocationManager APIs could be challenging for developers
and cause serious energy defects.

Figure 2 shows a code snippet inspired by real-world apps that
employs this type of API. When TrackActivity is launched, it ac-
quires a reference to LocationManager (line 5), creates a location
listener (lines 6-10), and registers the listener to request location
updates from available providers every 2 minutes (i.e., 2 ∗ 60 ∗ 1000)
or every 20 meters change in location (line 11). Listening for lo-
cation updates continues until the TrackActivity is destroyed and
the listener is unregistered (line 16).

We provide multiple mutation operators that manipulate the
usage of LocationManager APIs. LUF operators increase the fre-
quency of location updates by replacing the second (LUF_T) or
third (LUF_D) parameters of requestLocationUpdates method with
0, such that the app requests location notifications more frequently.
If LUF mutant is killed (more details in Section 4), it shows the
presence of at least one test in the test suite that exercises location
update frequency of the app. Such tests, however, are not easy to
write. For instance, testing the impact of location update by distance

ESEC/FSE’17, September 4–8, 2017, Paderborn, Germany Reyhaneh Jabbarvand and Sam Malek

1 protected void downloadFiles(String link){
2 WifiLock lock = getSystemService ().createWifiLock ();
3 lock.acquire ();
4 URL url = new URL(link);
5 ConnectivityManager manager = getSystemService(
6 "CONNECTIVITY_SERVICE");
7 NetworkInfo nets = manager.getActiveNetworkInfo ();
8 if(nets.isConnected ()){
9 HttpURLConnection conn = url.openConnection ();
10 conn.connect ();
11 // Code for downloading file from the url
12 }
13 lock.release ();
14 }

Figure 3: Example of downloading a file in Android

requires tests that mock the location. To our knowledge, none of
the state-of-the-art Android testing tools are able to generate tests
with mocked object. Thereby, developers should manually write
such test cases.

Failing to unregister the location listener and listening for a long
time consumes a lot of battery power and might lead to location
data underutilization [63]. For example in Figure 2, listener keeps
listening for updates, even if TrackActivity is paused in the back-
ground. Such location updates are redundant, as the activity is not
visible. RLU mutants delete the listener deactivation by comment-
ing the invocation of removeUpdates method. This class of mutants
can be performed in onPause method (RLU_P), onDestroy method
(RLU_D), or anywhere else in the code (RLU). Killing RLU mutants,
specially RLU_D and RLU_P, requires test cases that instigate tran-
sitions between activity lifecycle and service lifecycle to ensure
that registering/unregistering of location listeners are performed
properly under different use cases.

3.3 Connectivity Mutation Operators
Connectivity-related mutation operators can be divided to network-
related, which engage the WiFi or radio, and Bluetooth-related. Mu-
tation operators in both sub-categories mimic energy anti-patterns
that unnecessarily utilize WiFi, radio, and Bluetooth hardware com-
ponents, which can have a significant impact on the battery dis-
charge rate.

3.3.1 Network Mutation Operators. Searching for a network
signal is one of the most power-draining operations on mobile
devices [22]. As a result, an app needs to first check for connectivity
before performing any network operation to save battery, i.e., not
forcing the mobile radio or WiFi to search for a signal, if there is
none available. For instance, the code snippet of Figure 3 shows
an Android program that checks for connectivity first, and then
connects to a server at a particular URL and downloads a file. This
can be performed by calling themethod isConnected of NetworkInfo.
FCC operator mutates the code by replacing the return value of
isConnected with true (FCC_R), or adds a conditional statement to
check connectivity before performing a network task, if it is not
already implemented by the app (FCC_A).

FCC operators are hard to kill, as they require tests that exercise
an app both when it is connected to and disconnected from a net-
work. To that end, tests need to either mock the network connection
or programmatically enable/disable network connections.
FCC_R
if(true){

HttpURLConnection conn = url.openConnection ();
conn.connect ();
// Code for downloading file from the url

}

Another aspect of network connections related to energy is that
energy cost of communication over cellular network is substantially

1 public void discover(int scan_interval){
2 BluetoothAdapter blue = BluetoothAdapter.getDefaultAdapter ()

;
3 private Runnable discovery = new Runnable () {
4 public void run() {
5 blue.startDiscovery ();
6 handler.postDelayed(this , scan_interval);
7 }
8 };
9 handler.postDelayed(discovery , 0);
10 connectToPairedDevice ();
11 TransferData ();
12 handler.removeCallbacks(blue);
13 }

Figure 4: Example of searching for Bluetooth devices in Android

higher than WiFi. Therefore, developers should adjust the behavior
of their apps depending on the type of network connection. For
example, downloads of significant size should be suspended until
there is a WiFi connection.

UCW operator forces the app to perform network operations
only if the device is connected to cellular network (UCW_C) orWiFi
(UCW_W) by adding a conditional statement. For UCW_W, network
task is performed only when there is a WiFi connection available.
For UCW_C, on the other hand, the mutation operator disables
the WiFi connection and checks if a cellular network connection
is available to perform the network task. Therefore, killing both
mutants requires testing an app using both types of connections.
UCW_W

WifiManager manager = getSystemService("WIFI_SERVICE");
if(manager.isWifiEnabled ()){

HttpURLConnection conn = url.openConnection ();
conn.connect ();
// Code for downloading file from the url

}

3.3.2 Bluetooth Mutation Operators. Figure 4 illustrates a code
snippet that searches for paired Bluetooth devices in Android. De-
vice discovery is a periodic task and since it is a heavyweight
procedure, frequent execution of discovery process for Bluetooth
pairs can consume high amounts of energy. Therefore, developers
should test the impact of discovery process on the battery life.

FBD mutation operator increases the frequency of discovery
process by changing the period of triggering the callback that per-
forms Bluetooth discovery to 0, e.g., replacing scan_interval with
0 in line 6 of Figure 4. Apps can repeatedly search for Bluetooth
pairs using Handlers (realized in FBD_H), as shown in Figure 4, or
ScheduledThreadPoolExecuter (realized in FBD_S), an example of
which is available at [21]. Killing FBD mutants requires test cases
not only covering the mutated code, but also running long enough
to show the impact of frequency on power consumption.

Failing to stop the discovery process when the Bluetooth con-
nections are no longer required by the app keeps the Bluetooth
awake and consumes energy. RBD operator deletes the method call
removeCallbacks for a task that is responsible to discover Bluetooth
devices, causing redundant Bluetooth discovery. Killing RBD mu-
tants may require tests that transit between Android’s activity or
service lifecycle states, e.g., trigger termination of an activity/ser-
vice without stopping the Bluetooth discovery task.

3.4 Wakelock Mutation Operators
Wakelocks are mechanisms in Android to indicate that an app needs
to keep the device (or part of the device such as CPU orWiFi) awake.
Inappropriate usage of wakelocks can cause no-sleep bugs [71]
and seriously impact battery life and consequently user experience.
Developers should test their apps under different use-case scenarios

µDroid: An Energy-Aware Mutation Testing Framework for Android ESEC/FSE’17, September 4–8, 2017, Paderborn, Germany

to ensure that their strategy of acquiring/releasing wakelocks does
not unnecessarily keep the device awake.

Wakelock-related mutation operators delete the statements re-
sponsible to release the acquired wakelock. Depending on the com-
ponent that acquires a wakelock (e.g., CPU or WiFi), the type of
defining wakelock (e.g., PowerManager, WakefulBroadcastReceiver),
and the point of releasing wakelock. We identified and developed
support for 8 wakelock-related mutation operators (details and
examples can be found at [21]).

3.5 Display Mutation Operators
Some apps, such as games and video players, need to keep the
screen on during execution. There are two ways of keeping the
screen awake during execution of an app, namely using screen
flags (e.g., FLAG_KEEP_SCREEN_ON) to force the screen to stay on, or
increasing the timeout of the screen.

Screen flags should only be used in the activities, not in services
and other types of components [10]. In addition, if an app modifies
the screen timeout setting, these modifications should be restored
after the app exits. As an example of display-related mutation oper-
ators, MST adds statements to activity classes to increase the screen
timeout to the maximum possible value. For MST, there is also a
need to modify the manifest file in order to add the permission to
modify settings.
MST changes to source code and manifest file

Settings.System.putInt(getContentResolver (),
"SCREEN_OFF_TIMEOUT", Integer.MAX_VALUE);

<uses -permission android:name="permission.WRITE_SETTINGS"/>

3.6 Recurring Callback and Loop Mutation
Operators

Recurring callbacks, e.g., Timer, AlarmManager, Handler, and
ScheduledThreadPoolExecuter, are frequently used in Android apps
to implement repeating tasks. Poorly designed strategy to perform
a repeating task may have serious implications on the energy usage
of an app [12, 23]. Similarly, loop bugs occur when energy greedy
APIs are repeatedly, but unnecessarily, executed in a loop [38, 71].

One of the best practices of scheduling repeating tasks is to ad-
just the frequency of invocation depending on the battery status.
For example, if the battery level drops below 10%, an app should de-
crease the frequency of repeating tasks to conserve the battery for
a longer time. While HFC class of mutation operators uncondition-
ally increases the frequency of recurring callbacks, BFA operators
do this only when the battery is discharging. Therefore, the BFA
mutants can be killed only when tests are run on a device with low
battery or the battery status is mocked. Depending on the APIs
that are used in an app for scheduling periodic tasks, we imple-
mented 8 mutation operators of type BFA. As with some of the
other operators, details and examples can be found at [21].

3.7 Sensor Mutation Operators
Sensor events, such as those produced by accelerometer and gy-
roscope, can be queued in the hardware before delivery. Setting
delivery trigger of sensor listener to low values interrupts the main
processor at highest frequency possible and prevents it to switch
to lower power state. This is particularly so, if the sensor is a wake-
up sensor [29]. The events generated by wake-up sensors cause
the main processor to wake up and can prevent the device from
becoming idle.

In the apps that make use of sensors, tests are needed to en-
sure that the usage of sensors is implemented in an efficient way.

1 private SensorEventListener listener;
2 private SensorManager manager;
3 protected void onCreate (){
4 listener = new SensorEventListener ();
5 manager = getSystemService("SENSOR_SERVICE");
6 Sensor acm = manager.getDefaultSensor("ACCELEROMETER");
7 manager.registerListener(listener , acm , "DELAY_NORMAL",

5*60*1 e6);
8 }
9 protected void onPause (){
10 super.onPause ();
11 manager.unregisterListener(listener);
12 }

Figure 5: Example of utilizing sensors in Android

FDSL operator replaces the trigger delay—last parameter in method
registerListener in line 7 of Figure 5—to 0, and changes the wake-
up property of the sensor in line 6.

In addition, apps should unregister the sensors properly, as the
systemwill not disable sensors automatically when the screen turns
off. A thread continues to listen and update the sensor informa-
tion in the background, which can drain the battery in just a few
hours[29]. SLUD operator deletes the statements responsible for
unregistering sensor listeners in an app. For a test to kill a SLUDmu-
tant, it needs to trigger a change in the state of app (e.g., terminate
or pause the app) without unregistering the sensor listener.
FDSL
Sensor acm = manager.getDefaultSensor("ACCELEROMETER", true);
manager.registerListener(listener , acm , "DELAY_NORMAL", 0);

4 ANALYZING MUTANTS
Mutation testing is known to effectively assess the quality of a test
suite in its ability to find real faults [37, 57]. However, it suffers
from the cost of executing a large number of mutants against the
test suite. This problem is exacerbated by considering the amount
of human effort required for analysis of the results, i.e., whether
the mutants are killed or not, as well as identifying the equivalent
mutants [55]. To streamline usage of mutation testing for energy
purposes, we propose a generally applicable, scalable, and fully
automatic approach for analyzing the mutants, which relies on
a novel algorithm for comparing the power traces obtained from
execution of test cases.

4.1 Killed Mutants
During the execution of a test, power usage can be measured by a
power monitoring tool, and represented as a power trace—a tempo-
ral sequence of power values. A power trace consists of hundreds or
more spikes, depending on the sampling rate of the measurement,
and can have different shapes, based on the energy consumption
behavior.

Figure 6 shows the impact of a subset of our mutation operators
on the power trace of Sensorium [24]—an app that collects sensor
values of a device (e.g., radio, GPS, andWiFi) and reports them to the
user. Figure 6a is the power trace of executing a test on the original
version of this app. Figures 6b-d show power traces of the same
test after the app is mutated by RLU, FSW_H, and MSB operators,
respectively. We can observe that these mutation operators have
different impacts on the power trace of the test case.

We have developed a fully-automatic oracle, that based on the
differences in the power traces of a test executed on the original and
mutant versions of an app, is able to determine whether the mutant
was killed or not. Algorithm 1 shows the steps in our approach.

The algorithm first runs each test, ti , 30 times on the original
version of an app, A, and collects a set of power traces, PA (line 3).

ESEC/FSE’17, September 4–8, 2017, Paderborn, Germany Reyhaneh Jabbarvand and Sam Malek

Figure 6: (a) Baseline power trace for Sensorium [24], and the impact of (b) RLU, (c) FSW_H and (d) MSB mutation operators on the power
trace

The repetition allows us to account for the noise in profiling. Since
our analysis to identify a threshold is based on a statistical approach,
we repeat the execution 30 times to ensure a reasonable confidence
interval1.

The algorithm then runs each test ti on the mutant, A′, and col-
lects its power trace p⃗A′ (line 4). Alternatively, for higher accuracy,
the test could be executed multiple times on the mutant. However,
our experiments showed that due to the substantial overlap be-
tween the implementation of the original and mutant versions of
the app, repetitive execution of a test on the original version of the
app already accounts for majority of the noise in profiling.

Following the collection of these traces, the algorithm needs
to determine how different is the power trace of mutant, p⃗A′ , in
comparison to the set of power traces collected from the original
version of the app, PA. To that end, the algorithm first has to deter-
mine the extent of variation, α , in the 30 energy traces of PA that
could be considered “normal” due to the noise in profiling.

One possible solution to compute this variation is to take their
Euclidean distances. However, Euclidean distance is very sensitive
to warping in time series [58]. We observed that power traces of
a given test on the same version of the app could be similar in
the shape, but locally out of phase. For example, depending on the
available bandwidth, quality of the network signal, and response
time of the server, downloading a file can take 1 to 4 seconds.
Thereby, the power trace of the test after downloading the file
might be in the same shape, but shifted and warped in different
repetitions of the test case. To account for inevitable distortion
in our power measurement over time, we measure the similarity
between power traces by computing the Dynamic Time Warping
(DTW) distance between them. DTW is an approach to measure the
similarity between two time series, independent of their possible
non-linear variations in the time dimension [41]. More specifically,
DTW distance is the optimal amount of alignment one time series
requires to match another time series.

Given two power traces P⃗1 [1 . . .n] and P⃗2 [1 . . .m], DTW lever-
ages a dynamic programming algorithm to compute the minimum
amount of alignments required to transform one power trace into
the other. It constructs an n × m matrix D, where D[i, j] is the
distance between P⃗1 [1 . . . i] and P⃗2 [1 . . . j]. The value of D[i, j] is
calculated as follows:

D[i, j] = | P1[i] − P2[j] | +min

D[i − 1, j]
D[i, j − 1]
D[i − 1, j − 1]

(1)

The DTW distance between P⃗1 and P⃗2 is D[n,m]. The lower is
the DTW distance between two power traces, the more similar in
shape they are.
1 According to Central Limit Theorem, by running the experiments at least
thirty times, we are able to report the statistical values within a reasonable
confidence interval [72].

Algorithm 1: Energy-Aware Mutation Analysis
Input: T Test suite, A Original app, A′ Mutant
Output: Determine if a mutant is killed or lived

1 foreach ti ∈ T do
2 isKilledi = f alse ;
3 PA = дetT race (A, ti , 30);
4 p⃗A′ = дetT race (A′, ti , 1);
5 r⃗A = f indRepresentativeT race (PA);
6 α = computeThreshold (r⃗A, PA \ r⃗A);
7 distance = computeDistance (r⃗A, p⃗A′);
8 if distance > α then
9 isKilledi = true ;

To determine α , the algorithm first uses DTW to find a represen-
tative trace forA, denoted as r⃗A (line 5). It does so by computing the
mutual similarity between 30 instances of power trace and choos-
ing the one that has the highest average similarity to the other
instances.

Once Algorithm 1 has derived a representative power trace, it
lets α to be the upper bound of the 95% confidence interval of the
mean distances between the representative power trace and the
remaining 29 in PA (line 6). This means that if we run ti onA again,
the DTW distance between its power trace and representative trace
has a 95% likelihood of being less than α different.

Finally, Algorithm 1 computes the DTW distance between r⃗A
and p⃗A′ (line 7). If distance is higher than α , the variation is higher
than that typically caused by noise for test ti , and the mutant is
killed; Otherwise, the mutant lives (lines 8- 9).

4.2 Equivalent and Stillborn Mutants
An equivalent mutant is created when a mutation operator does
not impact the observable behavior of the program. To determine
if a program and one of its mutants are equivalent is an undecid-
able problem [42]. However, well-designed mutation operators can
moderately prevent creation of equivalent mutants. Our mutation
operators are designed based on the defect model derived from
issue trackers and best practices related to energy. Therefore, they
are generally expected to impact the power consumption of the
device.

In rare cases, however, mutation operators can change the pro-
gram without changing its energy behavior. For example, the ar-
guments of a recurring callback that identifies the frequency of
invocation may be specified as a parameter, rather than a specific
value, e.g., scan_interval at line 6 of Figure 4. If this parameter
is initialized to 0, replacing it with 0 by µDroid’s FBD operator
creates an equivalent mutant. As another example, LRP_C can gen-
erate equivalent mutants. LRP_C mutants change the provider of
location data (e.g., first parameter of requestLocationUpdates at
line 11 in Figure 2) to "GPS". Although location listeners can be
shared among different providers, each listener can be registered
for specific provider once. As a result, if the app already registers a
listener for "GPS", LRP_C would create an equivalent mutant.

µDroid: An Energy-Aware Mutation Testing Framework for Android ESEC/FSE’17, September 4–8, 2017, Paderborn, Germany

To avoid generation of equivalent mutants, µDroid employs
several heuristics and performs an analysis on the source code to
identify the equivalent mutants. For example, µDroid performs
an analysis to resolve the parameter’s value and compares it with
the value that mutation operator wants to replace. If the parameter
is initialized in the program and its value is different from the
replacement value, µDroid generates the mutant. Otherwise, it
identifies the mutant as equivalent and does not generate it.

The Eclipse plugin realizing µDroid is able to recognize still-
born mutants—those that make the program syntactically incorrect
and do not compile. µDroid does so by using Eclipse JDT APIs to
find syntax errors in the working copy of source code, and upon
detecting such errors, it rolls back the changes.

5 EVALUATION
In this section, we present experimental evaluation of µDroid for
energy-aware mutation testing. Specifically, we investigate the
following five research questions:
RQ1. Prevalence, Quality, and Contribution: How prevalent are

energy-aware mutation operators in real-world Android
apps? What is the quality of energy-aware mutation opera-
tors? What is the contribution of each mutant type to the
overall mutants generated by µDroid?

RQ2. Effectiveness: Does µDroid help developers with creating
better tests for revealing energy defects?

RQ3. Association to Real Faults: Are mutation scores correlated
with test suites’ ability in revealing energy faults?

RQ4. Accuracy: How accurate is µDroid’s oracle in determining
whether tests kill the energy mutants or not?

RQ5. Performance: How long does it take for µDroid to create
and analyze the mutants?

5.1 Experimental Setup and Implementation
Subject Apps: To evaluate µDroid in practice, we randomly col-
lected 100 apps from seventeen categories of F-Droid open-source
repository. We then selected a subset of the subject apps that satis-
fied the following criteria: (1) We selected apps for which µDroid
was able to generate at least 25 mutants and the generated mutants
belonged to at least 3 different categories identified in Table 1. (2)
We further reduced the apps to a subset for which we were able
to find at least one commit related to fixing an energy defect in
their commit history. (3) Finally, to prevent biasing our results, we
removed apps that were among the 59 apps we studied to derive
the energy defect model, and eventually our operators. At the end,
we ended up with a total of 9 apps suitable for our experiments.
µDroid injected a total of 413 energy-aware mutation operators in
these apps, distributed among them as shown in Table 2.
Mutant Generation: We used µDroid to generate energy mutants.
Our Eclipse plugin is publicly available [21] and supports both first-
order and higher-order mutation testing [54]. It takes the source
code of the original app, parses it to an AST, traverses the AST to
find the patterns specified by mutation operators, and creates a
mutant for each pattern found in the source code. For an efficient
traversal of the AST, the plugin implements mutation operators
based on the visitor pattern. For example, instead of traversing all
nodes of the AST to mutate one argument of a specific API call
mentioned in the pattern, we only traverse AST nodes of type
MethodInvocation to find the API call in the code and mutate its
argument. In addition to changes that are applied to the source
code, some mutation operators require modification in the XML
files of the app. For instance, mutation operators MST and UCW_C

add statements to the source code to change phone or WiFi settings,
requiring the proper access permissions to be added to the app’s
manifest file.

Additionally, we compare energy mutants generated by µDroid
with mutants generated by Major [56] and the Android mutation
framework developed by Deng et al. [45].2

Power Measurement: The mobile device used in our experiments
was Google Nexus 6, running Android version 6.0.1. To profile
power consumption of the device during execution of test cases,
we used Trepn [40]. Trepn is a profiling tool developed by Qual-
comm that collects the exact power consumption data from sensors
embedded in the chipset. Trepn is reported to be highly accurate,
with an average of 2.1% error in measurement [32].
Test Suites: We used two set of reproducible tests to evaluate
µDroid. The first set includes tests in Robotium [33] and Espresso [4]
format written by mobile app developers, and the second set in-
cludes random tests generated by Android Monkey [35]. Both set
of tests are reproducible to ensure we are running identical tests
on both original and mutant versions of the app.
Faults: To evaluate the association between mutation score and
fault detection ability of test suites, we searched the issue tracker
and commit history of the subject apps to find the commits related
to fixing energy-related faults. As shown in Table 2, we were able
to isolate and reproduce 18 energy-related faults for the subject
apps.

5.2 RQ1: Prevalence, Quality, and Contribution
To understand the prevalence of energy-aware mutation operators,
we first applied µDroid on the 100 subject apps described in Sec-
tion 5.1. We found that µDroid is able to produce energy mutants
for all programs, no matter how small, ranging from 5 to 110, with
an average of 28 mutants. This shows that all apps can potentially
benefit from such a testing tool.

Table 2 provides a more detailed presentation of results for 9
of the subject apps, selected according to the criteria described in
Section 5.1. Here, we also compare the prevalence of energy-aware
operators with prior mutation testing tools, namely Major [56],
and Android mutation testing tool of Deng et al. [45]. The result
of this comparison is shown in Table 2. Overall, µDroid generates
much fewer mutants compared to other tools, which is important
given the cost of energy mutation testing, e.g., the need to run and
collect energy measurements on resource-constrained devices. In
total, µDroid generates 413 mutants for the subject apps, thereby
producing 99% and 92% less mutants than Major and Deng et al.,
respectively. Spearman’s Rank Correlation between the prevalence
of energy-aware mutants and mutants produced by other tools
suggests that there is no significantmonotonic relationship between
them: Major (ρ = −0.28) and Deng et al. (ρ = 0.2) with significance
level p < 0.01. This is mainly due to the fact that µDroid targets
specific APIs, Android-specific constructs, and other resources,
such as layout XML files, that are not considered in the design of
mutation operators in other tools.

Furthermore, we calculated the number of µDroid mutants
that are duplicate of mutants produced by the other tools. Table 2
presents the percentage of duplicate energy-aware mutants under
the dup columns. Due to the large number of mutants generated
by other tools, we used Trivial Compiler Equivalent (TCE) tech-
nique [70] to identify a lower bound for duplicate mutants. TCE is
2We were not able to use PIT [31], as PIT does not support Android and its
mutants are held only in memory, which prevented us from building the
mutant APKs.

ESEC/FSE’17, September 4–8, 2017, Paderborn, Germany Reyhaneh Jabbarvand and Sam Malek

Table 2: Test suites and mutants generated for subject apps.

Apps LoC Faults
Mutants Test Suites

µDroid Major [56] Deng et al. [45] #Tests Mutant Coverage Mutation Score
[56]-dup [45]-dup # # Ti Te Ti Te Ti Te

DSub 43,032 1 31 10% 0% 19,411 1,539 24 34 63% 83% 19% 71%
Openbmap 31,408 3 46 13% 4% 3,374 460 21 33 79% 97% 32% 93%
aMetro 26,868 1 59 3% 0% 13,419 1,102 26 38 77% 94% 37% 88%
GTalk 17,834 3 42 12% 0% 4,505 336 30 42 73% 95% 28% 95%
Ushahidi 16,470 1 86 2% 5% 4,682 368 26 38 62% 97% 37% 97%
OpenCamera 15,064 1 32 17% 6% 16,717 142 32 44 72% 100% 60% 96%
Jamendo 8,709 1 40 8% 3% 3,599 645 18 29 88% 93% 33% 88%
a2dp.Vol 6,670 4 28 4% 4% 4,682 214 25 34 96% 96% 32% 95%
Sensorium 3,228 3 49 18% 0% 1,589 268 28 35 84% 93% 33% 91%

Table 3: Mutation analysis of each class of mutation operators for subject apps.

Operator ID

LU
F

LR
P

RL
U

LK
L

W
RD

C

W
RD

W

H
PW

FC
C

FS
W

RW
S

U
CW

LT
C

D
RD

M
ST

LB
C

M
SB

UA
B

FD
B

RB
D

H
FC

RR
C

RA
F

BF
A

IL
I

SL
U
D

FD
SL

Total 27 52 28 6 5 3 4 11 1 1 26 11 3 46 44 48 3 1 1 16 13 1 30 20 4 8
Equivalent 0 19 0 0 0 0 0 0 0 0 0 0 0 0 7 0 0 0 0 3 0 0 4 0 0 0

Contribution% 7 12 7 1 1 1 1 3 <1 <1 6 3 1 11 11 12 1 <1 <1 4 3 <1 7 5 1 2

Ti
Killed 12 24 0 3 0 0 0 0 1 0 0 8 0 0 14 34 0 1 0 13 0 0 0 12 0 8
Alive 15 9 28 3 5 3 4 11 0 1 26 3 3 46 23 14 3 0 1 0 13 1 26 8 4 0

Te
Killed 26 33 26 6 4 3 1 11 1 1 20 9 3 46 28 44 3 1 1 11 12 0 24 17 4 8
Alive 1 0 2 0 1 0 0 0 0 0 6 2 0 0 9 4 0 0 0 2 1 1 2 3 0 0

a scalable and effective approach to find equivalent and duplicate
mutants by comparing the machine code of compiled mutants. In
addition to compiled classes, we also considered any difference
in the XML files of the mutants, as µDroid modifies layout and
manifest files to create a subset of mutants. On average, only 9%
and 2% of mutants produced by µDroid are duplicates of the mu-
tants produced by Major and Deng et al., respectively. These results
confirm that µDroid is addressing a real need in this domain, as
other tools are not producing the same mutants.

Table 3 also shows the contribution of each class of energy-aware
mutation operators for subject apps. Display-related mutation op-
erators have the highest contribution (34%), followed by Location-
related (27%), Connectivity-related (16%), and Recurring-related
(16%) mutation operators.Wakelock-related (3%) and Sensor-related
(3%) oeprators have less contribution. These contributions are asso-
ciated to the power consumption of hardware components, since
display, GPS, WiFi, and radio are reported to consume the highest
portion of device battery [5]. Finally, µDroid generates no still-
born mutants, and only 8% of all the mutants were identified to be
equivalent, as shown in Table 3.

To summarize, the results from RQ1 indicate that (1) potentially
all apps can benefit from such a testing tool, as µDroid was able
to generate mutants for all 100 subject apps, (2) the small num-
ber of mutants produced by µDroid makes it a practical tool for
energy-aware mutation testing of Android, (3) the great majority of
energy-aware mutation operators are unique and the correspond-
ing mutants cannot be produced by previous mutation testing tools,
and (4) all operators incorporated in µDroid are useful, as they
were all applied on the subject apps, albeit with different degrees
of frequency.

5.3 RQ2: Effectiveness
To evaluate whether µDroid can help developers to improve the
quality of test suites, we asked two mobile app developers, both
with substantial professional Android development experience at
companies such as Google, to create test suites for validating the
energy behavior of 9 subject apps. These initial test suites, denoted
asTi , contained instrumented tests to exercise the app under various
scenarios. Tables 2 and 3 show the result of runningTi on the subject

apps. As we can see, while the initial test suites are able to execute
the majority of mutants (high mutant coverage values on Table 2),
many of the mutants stay alive (low mutation score on Table 2).

The fact that so many of the mutants could not be killed,
prompted us to explore the deficiencies in initial test suites with
respect to alive mutants. We found lots of opportunities for improv-
ing the initial test suites, such as adding tests with the following
characteristics:

• Exercising sequences of activity lifecycle: Wakelocks and
other resources such as GPS are commonly acquired and released
in lifecycle event handlers. Therefore, the only way to test the
proper management of resources and kill mutants such as RLU,
WRDW, WRDC, and MST, is to exercise particular sequence
of lifecycle callbacks. Tests that pause or tear-down activities
and then resume or relaunch an app can help with killing such
mutant.
• Manipulate network connection: A subset of network-related
mutation operators, namely FCC, UCW, HPW, and RWS, only
change the behavior of the app under peculiar network connec-
tivity. For example, FCC can be killed only when there is no
network connectivity, and HPW can be killed by testing the app
under a poor WiFi signal condition. Tests that programmatically
manipulate network connections are generally effective in killing
such mutants.
• Manipulate Bluetooth or battery status: None of the UAB,
RBD, and BFA mutants were killed by the initial test suites. That
is mainly due to the fact that the impact of such mutants is only
observable under specific status of Bluetooth and battery. For
example, BFAs change the behavior of an app only when the
battery is low, requiring tests that can programmatically change
or emulate the state of such components.
• Effectively mock location: Location-based mutants can be
killed by mocking the location. Although changing the location
once may cover the mutated part, effectively killing the location
mutants, specifically LUF, requires mocking the location several
times and under different speeds of movement.
• Longer tests: Some mutants, namely LBC, LTC, and RAF, can
be killed only if the tests run long enough for their effect to be

µDroid: An Energy-Aware Mutation Testing Framework for Android ESEC/FSE’17, September 4–8, 2017, Paderborn, Germany

Table 4: Accuracy of name’s oracle on the subject apps.

Apps Accuracy Precision Recall F-measure
DSub 95% 95% 97% 96%
Openbmap 91% 94% 91% 92%
aMetro 92% 90% 100% 95%
GTalk 93% 97% 93% 95%
Ushahidi 94% 97% 94% 95%
OpenCamera 95% 100% 94% 97%
Jamendo 100% 100% 100% 100%
a2dp.Vol 91% 100% 98% 94%
Sensorium 93% 91% 100% 95%
Average 94% 96% 96% 95%

observed. For example, if the test tries to download a file and
terminates immediately, the impact of LTC forcing an app to
wait for a connection being established is not observable on the
power trace.
• Repeating tasks: A subset of mutants are not killed unless a task
is repeated to observe the changes. For example, DRD mutants
are only killed if a test tries to download a file multiple times.
We subsequently asked the subject developers to generate new

tests with the aforementioned characteristics, which together with
Ti , resulted in an enhanced test suite Te for each app. As shown in
Tables 2 and 3, Te was able to kill substantially more mutants in
all apps. These results confirm the expected benefits of µDroid in
practice. While Ti achieves a reasonable mutant coverage (80% on
average among all subject apps), it was not able to accomplish high
mutation score (35% on average). This demonstrates that µDroid
produces strong mutants (i.e., hard to kill), thereby effectively chal-
lenging the developers in designing better tests.

Furthermore, running the enhanced test suites on the 9 subject
apps, we were able to find 15 previously unknown energy bugs.
After reporting them to the developers, 11 of them have been con-
firmed as bugs by the developers and 7 of them have been fixed by
the submission date of this paper, as corroborated by their issue
trackers [6–9, 14–20, 25–28].

5.4 RQ3: Association to Real Faults
If mutation score is a good indicator of a test suite’s ability in reveal-
ing energy bugs, one would expect to be able to show a statistical
correlation between the two. Since calculating such a correlation
requires a large number of test suites per fault, we first generated
100 random tests for each app using Android Monkey [35]. For each
app, we randomly selected 20 tests from its test suite (consisting of
both random and developer-written tests mentioned in the previous
section) and repeated the sampling 20 times. That is, in the end, for
each subject app we created 20 test suites, each containing 20 tests
from a pool of random and developer-written tests.

We then ran each test suite against the 9 subject apps, andmarked
them as Tf ail , if the test suite was able to reveal any of its energy
faults, or Tpass , if the test suite was not able to reveal any of its
energy faults. To avoid bias, in this experiment we did not consider
the energy faults found by us, rather focused on those that had
been found and reported previously. For each Tf ail and Tpass , we
computed themutation score of the corresponding test suite. Finally,
for each fault, we constructed test suite pairs of ⟨Tf ail ,Tpass ⟩ and
computed the difference in their mutation score, which we refer to
as mutation score difference (MSD).

Among a total of 1,257 pairs of ⟨Tf ail ,Tpass ⟩ generated for 18
faults, Tf ail was able to attain a higher mutation score compared
to Tpass in 77% of pairs. Furthermore, to determine the strength of
correlation between mutation kill score and fault detection, we used
one sample t-test, as MSD values were normally distributed and
there were no outliers in the dataset (verified with Grubbs’ test). Our

null hypothesis assumed that the average of the MSD values among
all pairs equals to 0, while the upper tailed alternative hypothesis
assumed that it is greater than 0. The result of one sample t-test
over 1,257 pairs confirmed that there is a statistically significant
difference in the number of mutants killed by Tf ail compared to
Tpass (p-value = 9.87E-50 with significance level p < 0.0001). Small
p-value and large number of samples confirm that the results are
unlikely to occur by chance. Note that we removed equivalent and
subsumed mutants for MSD calculation to avoid Type I error [69].

5.5 RQ4: Accuracy of Oracle
To assess the accuracy of the µDroid’s oracle, we first manually
built the ground-truth by comparing the shape of power traces for
each original app and its mutants. To build the ground truth, we
asked the previously mentioned developers to visually determine
if power traces of the original and mutant versions are similar.
Visually comparing power traces for similarity in their shape, even
if they are out of phase (i.g., shifted, noisy), is an easy, albeit time
consuming, task for humans. In case of disagreement, we asked a
third developer to compare the power traces.

For each mutant, we only considered tests that executed a mu-
tated part of the program, but not necessarily killed the mutant,
and calculated false positive (if the ground-truth identifies a mutant
as alive, while oracle considers it as killed), false negative (if the
ground-truth identifies a mutant as killed, while oracle considers
it as alive), true positive (if both agree a mutant is killed), and true
negative (if both agree a mutant is alive) metrics.

Table 4 shows the accuracy of µDroid’s oracle for the execution
of all tests in Te on all the subject apps. The results demonstrate
an overall accuracy of 94% for all the subject apps. Additionally,
we observed an average precision of 96% and recall of 96% for the
µDroid’s oracle. We believe an oracle with this level of accuracy is
acceptable for use in practice.

5.6 RQ5: Performance
To answer this research question, we evaluated the time required
for µDroid to generate a mutant as well as the time required to
determine if the mutant can be killed. We ran the experiments on a
computer with 2.2 GHz Intel Core i7 processor and 16 GB DDR3
RAM. To evaluate the performance of the Eclipse plugin that creates
the mutants, we measured the required time for analyzing the code,
finding operators that match, and applying the changes to code.
From Table 5, we can see that µDroid takes less than 0.5 second on
average to create a mutant, and 11.7 seconds on average to create
all the mutants for a subject app.

To evaluate the performance of oracle, we measured the time
taken to determine if tests have killed themutants. Table 5 shows the
time taken to analyze the power trace of all tests from Te executed
on all mutant versions of the subject apps. From these results we can
see that the oracle runs fast; it is able to make a determination as to
whether a test is able to kill all of the mutants for one of our subject
apps in less than a few seconds. The analysis time for each test
depends on the size of power trace, which depends on the number
of power measurements sampled during the test’s execution. To
confirm the correlation between analysis time and the size of power
trace, we computed their Pearson Correlation Coefficient, denoted
with PCC in Table 5. From the PCC values, we can see there is
a strong correlation between analysis time and the size of power
trace among all subject apps.

6 RELATEDWORK
Our research is related to prior work on mutation testing as well as
approaches aimed to identify energy inefficiencies in mobile apps.

ESEC/FSE’17, September 4–8, 2017, Paderborn, Germany Reyhaneh Jabbarvand and Sam Malek

Mutation Testing: Mutation testing has been widely used in test-
ing programs written in different languages, such as Fortran [59],
C [43], C# [46], Java [64], and Javascript [68], as well as testing
program specifications [47, 67] and program memory usage [74].
However, there is a dearth of research on mutation testing for
mobile applications, specifically Android apps.

Mutation operators for testing Android apps were first intro-
duced by Deng and colleagues [44, 45], where they proposed eleven
mutation operators specific to Android apps. They designed mu-
tation operators based on the app elements, e.g., Intents, activi-
ties, widgets, and event handlers. Unlike their operators that are
designed for testing functional correctness, our operators are in-
tended for energy testing. Therefore, our mutation operators are
different from those proposed in [45]. In addition, they followed
a manual approach to analyze the generated mutants, rather than
our automatic technique for mutation analysis.
Green Software Engineering: In recent years, automated ap-
proaches for analysis [48, 49, 52, 53, 63, 75], testing [38, 51], re-
factoring [39, 66], and repair [61, 62] of programs have been pro-
posed by researchers to help developers produce more energy effi-
cient apps.

Liu et al. [63] identified missing sensors and wakelock deacti-
vation as two root causes of energy inefficiencies in Android apps.
They proposed a tool, called GreenDroid, that can automatically lo-
cate these two problems in apps. Banerjee and Roychoudhury [39]
proposed a set of energy efficiency guidelines to re-factor Android
apps for better energy consumption. These guidelines include fixing
issues such as sub-optimal binding and nested usage of resources,
as well as resource leakage. A subset of our operators are inspired
by the energy anti-patterns that are described in these works.

In our previous work [52], we presented an energy-aware test
suite minimization approach for Android. To determine the quality
of tests, we used a coverage metric that is calculated based on the
actual energy cost of executing the tests. This work complements
our prior work, as the mutation score produced by µDroid could
be used as an alternative metric for minimization of test suites.

Gupta and colleagues [49] provided a framework to identify com-
mon patterns of energy inefficiencies in power traces, by clustering
power traces of a Windows phone running different programs over
a period of time. Unlike their approach, we compare power traces
of executing a test on two different versions of an app, knowing
one is mutated, to determine whether they are different.

To the best of our knowledge, this paper is the first to propose
an automated energy-aware mutation testing framework for An-
droid. Our research is orthogonal to other energy-aware testing ap-
proaches, such as test generation [38] and regression testing [52, 60],
as it helps them to evaluate the quality of the test suites.

7 THREATS TO VALIDITY
External Validity: Random selection of hundred apps to evaluate
our research may introduce external threats to validity of results, as
they may not be representative of all apps. To mitigate this threat,
we selected apps from various categories of F-Droid to investigate
RQ1. For investigating the other research questions, we applied the
inclusion criteria discussed in Section 5.1. We believe that the re-
sulting 9 apps are sufficient to demonstrate the overall applicability
of the approach, yet small enough to afford a detailed description
for the reader.

Internal Validity: Power measurement is sensitive to the work-
load of the test as well as environmental factors. To control for
the power measurement threats, we used reproducible tests to run
identical tests on both original and mutant versions of an app. We

Table 5: Performance analysis of name on the subject apps.

Apps Time (s) PCCTotal Per Mutant Analysis Per Test
DSub 27.3 1.0 20.74 0.61 0.91
Openbmap 15.9 0.6 28.05 0.85 0.97
aMetro 14.7 0.4 60.08 1.6 0.94
GTalk 18.4 0.8 40.74 0.97 0.92
Ushahidi 8.1 0.2 50.34 1.43 0.95
OpenCamera 5.8 0.3 16.28 0.37 0.96
Jamendo 9.3 0.4 16.24 0.56 0.94
a2dp.Vol 3.5 0.2 19.38 0.57 0.94
Sensorium 3.2 0.1 18.2 0.52 0.9
Average 11.7 0.4 30.5 0.83 -

configured Trepn to read power consumption data at a 100 millisec-
ond interval. As power consumption measurements tend to be less
accurate when the device is plugged into a power source, we ran
the tests on the device over ADB Wireless. Trepn can operate in
two modes, app level and system level. Since we used Intents to
start and stop profiling and Trepn does not provide a mechanism
for profiling a specific app via Intents [34], we measured the power
consumption of the device during execution of tests. To remove
the impact of other apps on the measurements, we disabled and
uninstalled all unnecessary apps on the device.

Construct Validity: To derive anti-patterns, we used a collection
of keywords to find apps with energy defect. Although we make no
claims that this set of keywords is minimal or complete, prior re-
search has shown that they are frequently used in the issue trackers
of apps with energy bugs [63]. We acknowledge that the collection
of energy issues identified through our study may not be complete
due to this reason. However, we believe the presented energy-aware
defect model is the most comprehensive one in the literature to
date.

8 CONCLUDING REMARKS
Energy efficiency is an important quality attribute for mobile apps.
Naturally, prior to releasing apps, developers need to test them for
energy defects. Yet, there is a lack of practical tools and techniques
for energy testing.

In this paper, we presented µDroid, a framework for energy-
awaremutation testing of Android apps. The novel suite ofmutation
operators implemented in µDroid is designed based on an energy
defect model, constructed through an extensive study of various
sources (e.g., issue trackers, API documentations). µDroid provides
an automatic oracle for mutation analysis that compares power
traces collected from execution of tests to determine if mutants
are killed. Our experiences with µDroid on real-world Android
apps corroborate its ability to help the developers evaluate the
quality of their test suites for energy testing. µDroid challenges
the developers to design tests that are more likely to reveal energy
defects.

Given that none of the existing automated Android testing tools
are able to generate tests that are sufficiently sophisticated to kill
many of the mutants produced by µDroid, we believe the next log-
ical step is the development of test generation techniques suitable
for energy testing.

ACKNOWLEDGMENTS
This work was supported in part by awards CCF-1252644, CNS-
1629771, and CCF-1618132 from the National Science Foundation,
HSHQDC-14-C-B0040 from the Department of Homeland Security,
and FA95501610030 from the Air Force Office of Scientific Research.

µDroid: An Energy-Aware Mutation Testing Framework for Android ESEC/FSE’17, September 4–8, 2017, Paderborn, Germany

REFERENCES
[1] 2017. Android API Reference. (2017). https://developer.android.com/reference/

packages.html
[2] 2017. Android Developers Guide. (2017). https://developer.android.com/training/

index.html
[3] 2017. Android Open Source Project issue tracker. (2017). https://code.google.

com/p/android/issues
[4] 2017. Android Testing Support Library : Espresso. (2017). https://google.github.

io/android-testing-support-library/docs/espresso/
[5] 2017. Battery Life. (2017). https://dl.google.com/io/2009/pres/W_0300_

CodingforLife-BatteryLifeThatIs.pdf
[6] 2017. GTalk:issue 279. (2017). https://github.com/Yakoo63/gtalksms/issues/279
[7] 2017. GTalk:issue 280. (2017). https://github.com/Yakoo63/gtalksms/issues/280
[8] 2017. Jamendo:issue 38. (2017). https://github.com/telecapoland/

jamendo-android/issues/38
[9] 2017. Jamendo:issue 39. (2017). https://github.com/telecapoland/

jamendo-android/issues/39
[10] 2017. Keeping the Device Awake. (2017). https://developer.android.com/training/

scheduling/wakelock.html
[11] 2017. Location Manager Strategies. (2017). https://developer.android.com/guide/

topics/location/strategies.html
[12] 2017. Monitoring the Battery Level and Charging State. (2017). https://developer.

android.com/training/monitoring-device-state/battery-monitoring.html
[13] 2017. omim app. (2017). https://github.com/mapsme/omim
[14] 2017. Openbmap:issue 175. (2017). https://github.com/openbmap/

radiocells-scanner-android/issues/175
[15] 2017. Openbmap:issue 176. (2017). https://github.com/openbmap/

radiocells-scanner-android/issues/176
[16] 2017. Openbmap:issue 177. (2017). https://github.com/openbmap/

radiocells-scanner-android/issues/177
[17] 2017. Openbmapissue :178. (2017). https://github.com/openbmap/

radiocells-scanner-android/issues/178
[18] 2017. Openbmap:issue 179. (2017). https://github.com/openbmap/

radiocells-scanner-android/issues/179
[19] 2017. Openbmap:issue 184. (2017). https://github.com/openbmap/

radiocells-scanner-android/issues/184
[20] 2017. OpenCamera:issue 251. (2017). https://sourceforge.net/p/opencamera/

tickets/251/
[21] 2017. Project website. (2017). http://www.ics.uci.edu/~seal/projects/mu_droid/

index.html
[22] 2017. Reducing Network Battery Drain. (2017). https://developer.android.com/

topic/performance/power/network/index.html
[23] 2017. Scheduling Repeating Alarms. (2017). https://developer.android.com/

training/scheduling/alarms.html
[24] 2017. Sensorium Android App. (2017). https://f-droid.org/repository/browse/

?fdid=at.univie.sensorium
[25] 2017. Sensorium:19. (2017). https://github.com/fmetzger/android-sensorium/

issues/
[26] 2017. Sensorium:20. (2017). https://github.com/fmetzger/android-sensorium/

issues/
[27] 2017. Sensorium:issue 17. (2017). https://github.com/fmetzger/

android-sensorium/issues/
[28] 2017. Sensorium:issue 18. (2017). https://github.com/fmetzger/

android-sensorium/issues/
[29] 2017. SensorManager. (2017). https://developer.android.com/reference/android/

hardware/SensorManager.html
[30] 2017. sipdroid app. (2017). https://github.com/i-p-tel/sipdroid
[31] 2017. Trepn Accuracy Report. (2017). http://pitest.org/
[32] 2017. Trepn Accuracy Report. (2017). https://drive.google.com/file/d/

0B0V5MRe1lkP3ZGZwaUlhNVFoZUU/view
[33] 2017. Trepn Accuracy Report. (2017). http://code.google.com/p/robotium/
[34] 2017. Trepn Modes. (2017). https://developer.qualcomm.com/forum/qdn-forums/

increase-app-performance/trepn-profiler/28172
[35] 2017. UI/Application Excersizer Monkey. (2017). http://developer.android.com/

tools/help/monkey.html
[36] 2017. xdadeveloper Android general forum. (2017). http://forum.xda-developers.

com/android/general
[37] James H Andrews, Lionel C Briand, and Yvan Labiche. 2005. Is mutation an

appropriate tool for testing experiments?[software testing]. In Proceedings. 27th
International Conference on Software Engineering, 2005. ICSE 2005. IEEE, 402–411.

[38] Abhijeet Banerjee, Lee Kee Chong, Sudipta Chattopadhyay, and Abhik Roychoud-
hury. 2014. Detecting energy bugs and hotspots in mobile apps. In Proceedings
of the 22nd ACM SIGSOFT International Symposium on Foundations of Software
Engineering. ACM, 588–598.

[39] Abhijeet Banerjee and Abhik Roychoudhury. 2016. Automated Re-factoring of
Android Apps to Enhance Energy-efficiency. (2016).

[40] Liant Ben-Zur. 2017. Using Trepn Profiler for Power-
Efficient Apps. https://developer.qualcomm.com/blog/
developer-tool-spotlight-using-trepn-profiler-power-efficient-apps. (2017).

[41] Donald J Berndt and James Clifford. 1994. Using Dynamic Time Warping to Find
Patterns in Time Series. In KDD workshop, Vol. 10. Seattle, WA, 359–370.

[42] Timothy A Budd and Dana Angluin. 1982. Two notions of correctness and their
relation to testing. Acta Informatica 18, 1 (1982), 31–45.

[43] Marcio Eduardo Delamaro, JC Maidonado, and Aditya P. Mathur. 2001. Interface
mutation: An approach for integration testing. IEEE Transactions on Software
Engineering 27, 3 (2001), 228–247.

[44] Lin Deng, Nariman Mirzaei, Paul Ammann, and Jeff Offutt. 2015. Towards
mutation analysis of android apps. In Software Testing, Verification and Validation
Workshops (ICSTW), 2015 IEEE Eighth International Conference on. IEEE, 1–10.

[45] Lin Deng, Jeff Offutt, Paul Ammann, and Nariman Mirzaei. 2016. Mutation
operators for testing Android apps. Information and Software Technology (2016).

[46] Anna Derezinska and Anna Szustek. 2008. Tool-supported advanced mutation
approach for verification of C# programs. In Dependability of Computer Systems,
2008. DepCos-RELCOMEX’08. Third International Conference on. IEEE, 261–268.

[47] SC Pinto Ferraz Fabbri, Márcio Eduardo Delamaro, José Carlos Maldonado, and
Paulo Cesar Masiero. 1994. Mutation analysis testing for finite state machines. In
Software Reliability Engineering, 1994. Proceedings., 5th International Symposium
on. IEEE, 220–229.

[48] Chaorong Guo, Jian Zhang, Jun Yan, Zhiqiang Zhang, and Yanli Zhang. 2013.
Characterizing and detecting resource leaks in Android applications. In Auto-
mated Software Engineering (ASE), 2013 IEEE/ACM 28th International Conference
on. IEEE, 389–398.

[49] Ashish Gupta, Thomas Zimmermann, Christian Bird, Nachiappan Nagappan,
Thirumalesh Bhat, and Syed Emran. 2014. Mining energy traces to aid in soft-
ware development: An empirical case study. In Proceedings of the 8th ACM/IEEE
International Symposium on Empirical Software Engineering and Measurement.
ACM, 40.

[50] Richard G. Hamlet. 1977. Testing programs with the aid of a compiler. IEEE
Transactions on Software Engineering 4 (1977), 279–290.

[51] Reyhaneh Jabbarvand. 2017. Advancing energy testing of mobile applications. In
Proceedings of the 39th International Conference on Software Engineering Compan-
ion. IEEE Press, 491–492.

[52] Reyhaneh Jabbarvand, Alireza Sadeghi, Hamid Bagheri, and Sam Malek. 2016.
Energy-aware test-suite minimization for Android apps. In Proceedings of the
25th International Symposium on Software Testing and Analysis. ACM, 425–436.

[53] Reyhaneh Jabbarvand, Alireza Sadeghi, Joshua Garcia, Sam Malek, and Paul
Ammann. 2015. Ecodroid: An approach for energy-based ranking of android
apps. In Proceedings of the Fourth International Workshop on Green and Sustainable
Software. IEEE Press, 8–14.

[54] Yue Jia and Mark Harman. 2009. Higher order mutation testing. Information and
Software Technology 51, 10 (2009), 1379–1393.

[55] Yue Jia and Mark Harman. 2011. An analysis and survey of the development of
mutation testing. IEEE transactions on software engineering 37, 5 (2011), 649–678.

[56] René Just. 2014. The Major mutation framework: Efficient and scalable mutation
analysis for Java. In Proceedings of the 2014 international symposium on software
testing and analysis. ACM, 433–436.

[57] René Just, Darioush Jalali, Laura Inozemtseva, Michael D Ernst, Reid Holmes, and
Gordon Fraser. 2014. Are mutants a valid substitute for real faults in software
testing?. In Proceedings of the 22nd ACM SIGSOFT International Symposium on
Foundations of Software Engineering. ACM, 654–665.

[58] Eamonn Keogh and Chotirat Ann Ratanamahatana. 2005. Exact indexing of
dynamic time warping. Knowledge and information systems 7, 3 (2005), 358–386.

[59] Kim N King and A Jefferson Offutt. 1991. A fortran language system for mutation-
based software testing. Software: Practice and Experience 21, 7 (1991), 685–718.

[60] Ding Li, Yuchen Jin, Cagri Sahin, James Clause, and William GJ Halfond. 2014.
Integrated energy-directed test suite optimization. In Proceedings of the 2014
International Symposium on Software Testing and Analysis. ACM, 339–350.

[61] Ding Li, Yingjun Lyu, Jiaping Gui, and William GJ Halfond. 2016. Automated
energy optimization of HTTP requests for mobile applications. In Proceedings of
the 38th International Conference on Software Engineering. ACM, 249–260.

[62] Mario Linares-Vásquez, Gabriele Bavota, Carlos Eduardo Bernal Cárdenas, Rocco
Oliveto, Massimiliano Di Penta, and Denys Poshyvanyk. 2015. Optimizing energy
consumption of GUIs in Android apps: a multi-objective approach. In Proceedings
of the 2015 10th Joint Meeting on Foundations of Software Engineering. ACM,
143–154.

[63] Yepang Liu, Chang Xu, Shing-Chi Cheung, and Jian Lü. 2014. Greendroid: Au-
tomated diagnosis of energy inefficiency for smartphone applications. IEEE
Transactions on Software Engineering 40, 9 (2014), 911–940.

[64] Yu-Seung Ma, Jeff Offutt, and Yong Rae Kwon. 2005. MuJava: an automated
class mutation system. Software Testing, Verification and Reliability 15, 2 (2005),
97–133.

[65] Irene Manotas, Christian Bird, Rui Zhang, David Shepherd, Ciera Jaspan, Caitlin
Sadowski, Lori Pollock, and James Clause. 2016. An empirical study of practi-
tioners’ perspectives on green software engineering. In Proceedings of the 38th
International Conference on Software Engineering. ACM, 237–248.

[66] IreneManotas, Lori Pollock, and James Clause. 2014. SEEDS: a software engineer’s
energy-optimization decision support framework. In Proceedings of the 36th
International Conference on Software Engineering. ACM, 503–514.

[67] Evan Martin and Tao Xie. 2007. A fault model and mutation testing of access
control policies. In Proceedings of the 16th international conference on World Wide
Web. ACM, 667–676.

[68] Shabnam Mirshokraie, Ali Mesbah, and Karthik Pattabiraman. 2013. Efficient
JavaScript mutation testing. In 2013 IEEE Sixth International Conference on Soft-
ware Testing, Verification and Validation. IEEE, 74–83.

[69] Mike Papadakis, Christopher Henard, Mark Harman, Yue Jia, and Yves Le Traon.
2016. Threats to the validity of mutation-based test assessment. In Proceedings

https://developer.android.com/reference/packages.html
https://developer.android.com/reference/packages.html
https://developer.android.com/training/index.html
https://developer.android.com/training/index.html
https://code.google.com/p/android/issues
https://code.google.com/p/android/issues
https://google.github.io/android-testing-support-library/docs/espresso/
https://google.github.io/android-testing-support-library/docs/espresso/
https://dl.google.com/io/2009/pres/W_0300_CodingforLife-BatteryLifeThatIs.pdf
https://dl.google.com/io/2009/pres/W_0300_CodingforLife-BatteryLifeThatIs.pdf
https://github.com/Yakoo63/gtalksms/issues/279
https://github.com/Yakoo63/gtalksms/issues/280
https://github.com/telecapoland/jamendo-android/issues/38
https://github.com/telecapoland/jamendo-android/issues/38
https://github.com/telecapoland/jamendo-android/issues/39
https://github.com/telecapoland/jamendo-android/issues/39
https://developer.android.com/training/scheduling/wakelock.html
https://developer.android.com/training/scheduling/wakelock.html
https://developer.android.com/guide/topics/location/strategies.html
https://developer.android.com/guide/topics/location/strategies.html
https://developer.android.com/training/monitoring-device-state/battery-monitoring.html
https://developer.android.com/training/monitoring-device-state/battery-monitoring.html
https://github.com/mapsme/omim
https://github.com/openbmap/radiocells-scanner-android/issues/175
https://github.com/openbmap/radiocells-scanner-android/issues/175
https://github.com/openbmap/radiocells-scanner-android/issues/176
https://github.com/openbmap/radiocells-scanner-android/issues/176
https://github.com/openbmap/radiocells-scanner-android/issues/177
https://github.com/openbmap/radiocells-scanner-android/issues/177
https://github.com/openbmap/radiocells-scanner-android/issues/178
https://github.com/openbmap/radiocells-scanner-android/issues/178
https://github.com/openbmap/radiocells-scanner-android/issues/179
https://github.com/openbmap/radiocells-scanner-android/issues/179
https://github.com/openbmap/radiocells-scanner-android/issues/184
https://github.com/openbmap/radiocells-scanner-android/issues/184
https://sourceforge.net/p/opencamera/tickets/251/
https://sourceforge.net/p/opencamera/tickets/251/
http://www.ics.uci.edu/~seal/projects/mu_droid/index.html
http://www.ics.uci.edu/~seal/projects/mu_droid/index.html
https://developer.android.com/topic/performance/power/network/index.html
https://developer.android.com/topic/performance/power/network/index.html
https://developer.android.com/training/scheduling/alarms.html
https://developer.android.com/training/scheduling/alarms.html
https://f-droid.org/repository/browse/?fdid=at.univie.sensorium
https://f-droid.org/repository/browse/?fdid=at.univie.sensorium
https://github.com/fmetzger/android-sensorium/issues/
https://github.com/fmetzger/android-sensorium/issues/
https://github.com/fmetzger/android-sensorium/issues/
https://github.com/fmetzger/android-sensorium/issues/
https://github.com/fmetzger/android-sensorium/issues/
https://github.com/fmetzger/android-sensorium/issues/
https://github.com/fmetzger/android-sensorium/issues/
https://github.com/fmetzger/android-sensorium/issues/
https://developer.android.com/reference/android/hardware/SensorManager.html
https://developer.android.com/reference/android/hardware/SensorManager.html
https://github.com/i-p-tel/sipdroid
http://pitest.org/
https://drive.google.com/file/d/0B0V5MRe1lkP3ZGZwaUlhNVFoZUU/view
https://drive.google.com/file/d/0B0V5MRe1lkP3ZGZwaUlhNVFoZUU/view
http://code.google.com/p/robotium/
https://developer.qualcomm.com/forum/qdn-forums/increase-app-performance/trepn-profiler/28172
https://developer.qualcomm.com/forum/qdn-forums/increase-app-performance/trepn-profiler/28172
http://developer.android.com/tools/help/monkey.html
http://developer.android.com/tools/help/monkey.html
http://forum.xda-developers.com/android/general
http://forum.xda-developers.com/android/general
https://developer.qualcomm.com/blog/ developer-tool-spotlight-using-trepn-profiler-power-efficient-apps
https://developer.qualcomm.com/blog/ developer-tool-spotlight-using-trepn-profiler-power-efficient-apps

ESEC/FSE’17, September 4–8, 2017, Paderborn, Germany Reyhaneh Jabbarvand and Sam Malek

of the 25th International Symposium on Software Testing and Analysis. ACM,
354–365.

[70] Mike Papadakis, Yue Jia, Mark Harman, and Yves Le Traon. 2015. Trivial compiler
equivalence: A large scale empirical study of a simple, fast and effective equivalent
mutant detection technique. In Software Engineering (ICSE), 2015 IEEE/ACM 37th
IEEE International Conference on, Vol. 1. IEEE, 936–946.

[71] Abhinav Pathak, Y Charlie Hu, and Ming Zhang. 2011. Bootstrapping energy
debugging on smartphones: a first look at energy bugs in mobile devices. In
Proceedings of the 10th ACM Workshop on Hot Topics in Networks. ACM, 5.

[72] John Rice. 2006. Mathematical statistics and data analysis. Nelson Education.

[73] Claas Wilke, Sebastian Richly, Sebastian Gotz, Christian Piechnick, and Uwe
Aßmann. 2013. Energy Consumption and Efficiency in Mobile Applications: A
user Feedback Study. In The Internation Conf. on Green Computing and Commu-
nications.

[74] Fan Wu, Jay Nanavati, Mark Harman, Yue Jia, and Jens Krinke. 2017. Memory
mutation testing. Information and Software Technology 81 (2017), 97–111.

[75] Haowei Wu, Shengqian Yang, and Atanas Rountev. 2016. Static detection of
energy defect patterns in Android applications. In Proceedings of the 25th Inter-
national Conference on Compiler Construction. ACM, 185–195.

	Abstract
	1 Introduction
	2 Framework Overview
	3 Mutation Operators
	3.1 Defect Model and Derivation of Operators
	3.2 Location Mutation Operators
	3.3 Connectivity Mutation Operators
	3.4 Wakelock Mutation Operators
	3.5 Display Mutation Operators
	3.6 Recurring Callback and Loop Mutation Operators
	3.7 Sensor Mutation Operators

	4 Analyzing Mutants
	4.1 Killed Mutants
	4.2 Equivalent and Stillborn Mutants

	5 Evaluation
	5.1 Experimental Setup and Implementation
	5.2 RQ1: Prevalence, Quality, and Contribution
	5.3 RQ2: Effectiveness
	5.4 RQ3: Association to Real Faults
	5.5 RQ4: Accuracy of Oracle
	5.6 RQ5: Performance

	6 Related Work
	7 Threats to Validity
	8 Concluding Remarks
	References

