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Abstract—Android is the most popular platform for mobile devices. It facilitates sharing of data and services among applications

using a rich inter-app communication system. While access to resources can be controlled by the Android permission system,

enforcing permissions is not sufficient to prevent security violations, as permissions may be mismanaged, intentionally or

unintentionally. Android’s enforcement of the permissions is at the level of individual apps, allowing multiple malicious apps to collude

and combine their permissions or to trick vulnerable apps to perform actions on their behalf that are beyond their individual privileges.

In this paper, we present COVERT, a tool for compositional analysis of Android inter-app vulnerabilities. COVERT’s analysis is modular

to enable incremental analysis of applications as they are installed, updated, and removed. It statically analyzes the reverse

engineered source code of each individual app, and extracts relevant security specifications in a format suitable for formal verification.

Given a collection of specifications extracted in this way, a formal analysis engine (e.g., model checker) is then used to verify whether it

is safe for a combination of applications—holding certain permissions and potentially interacting with each other—to be installed

together. Our experience with using COVERT to examine over 500 real-world apps corroborates its ability to find inter-app

vulnerabilities in bundles of some of the most popular apps on the market.

Index Terms—Formal verification, static analysis, Android, Inter-App vulnerabilities
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1 INTRODUCTION

MOBILE app markets are creating a fundamental para-
digm shift in the way software is delivered to the end

users. The benefits of this software supply model are plenty,
including the ability to rapidly and effectively acquire,
introduce, maintain, and enhance software used by the con-
sumers. By providing a medium for reaching a large con-
sumer market at a nominal cost, app markets have leveled
the software development industry, allowing small entre-
preneurs to compete with prominent software development
companies. Application frameworks are the key enablers of
these markets. An application framework, such as the one
provided by Android, ensures apps developed by a wide
variety of suppliers can interoperate and coexist together
in a single system (e.g., a phone) as long as they conform to
the rules and constraints imposed by the framework.

This paradigm shift, however, has given rise to a new set
of security challenges. In parallel with the emergence of
app markets, we are witnessing an increase in the security
threats targeted at mobile platforms. This is nowhere more
evident than in the Androidmarket (i.e., Google Play), where
many cases of apps infected with malwares and spywares
have been reported [1]. Numerous culprits are at play here,
and some are not even technical, such as the general lack of

an overseeing authority in the case of open markets and
inconsequential implication for those caught provisioning
applications with vulnerabilities or malicious capabilities.

In this context, Android’s security has been a thriving
subject of research in the past few years. Leveraging
program analysis techniques, these research efforts have
investigated weaknesses from various perspectives, includ-
ing detection of information leaks [2], [3], [4], analysis of
the least-privilege principle [5], [6], and enhancements to
Android protection mechanisms [7], [8], [9]. The majority of
these approaches, however, are subject to a common limita-
tion: they are intended to detect and mitigate vulnerabilities
in a single app, but fail to identify vulnerabilities that arise
due to the interaction of multiple apps. Vulnerabilities due
to the interaction of multiple apps, such as collusion attacks
and privilege escalation chaining [5], cannot be detected
by techniques that analyze a single app in isolation. Thus,
security analysis techniques in such domains need to
become compositional in nature.

This paper contributes a novel approach, called COVERT,
for compositional analysis of Android inter-app permission
leakage vulnerabilities. Unlike all prior techniques that
focus on assessing the security of an individual app in isola-
tion, our approach has the potential to greatly increase the
scope of application analysis by inferring the security prop-
erties from individual apps and checking them as a whole
by means of formal analysis. This, in turn, enables reasoning
about the overall security posture of a system (e.g., a phone
device) in terms of the security properties inferred from the
individual apps.

COVERT combines static analysis with formal methods. At
the heart of our approach is a modular static analysis tech-
nique for Android apps, designed to enable incremental and
automated checking of apps as they are installed, removed,
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or updated on an Android device. Through static analysis of
each app, our approach extracts essential information and
captures them in an analyzable formal specification lan-
guage. These formal specifications are intentionally at the
architectural level to ensure the technique remains scalable,
yet represent the true behavior of the implemented software,
as they are automatically extracted from the installation
artifacts. The set of models extracted in this way are then
checked as a whole for vulnerabilities that occur due to the
interaction of apps comprising a system. COVERT uses Alloy
as a specification language [10], and the Alloy Analyzer as the
analysis engine. Alloy is a formal specification language
based on first order logic, optimized for automated analysis.

Since COVERT’s analysis is compositional, it provides the
analysts with information that is significantly more useful
than what is provided by prior techniques. Our experiences
with a prototype implementation of the approach and its
evaluation against one of the most prominent inter-app vul-
nerabilities, i.e. privilege escalation, in the context of hun-
dreds of real-world Android apps collected from variety of
repositories have been very positive. The results, among
other things, corroborate its ability to find vulnerabilities in
bundles of some of the most popular apps on the market.

Contributions. This paper makes the following
contributions:

� Formal model of Android framework. We develop a for-
mal specification representing the behavior of
Android apps that is relevant for the detection of
inter-app permission leakage vulnerabilities. We
construct this formal specification as a reusable
Alloy module to which all extracted app models
conform.

� Modular analysis. We show how to exploit the power
of our formal abstractions by building a modular
model extractor that uses static analysis techniques
to automatically extract formal specifications (mod-
els) of apps form their installation artifacts.

� Implementation.We develop a prototype implementa-
tion on top of our formal framework for composi-
tional security analysis of Android apps.

� Experiments. We present results from experiments
run on over 500 real-world apps, corroborating
COVERT’s ability in effective compositional analysis of
Android inter-app permission leakage vulnerabil-
ities in the order of minutes.

Outline. The remainder of this paper is organized as
follows. Section 2 provides the background knowledge
required to understand the contributions of our work.
Section 3 motivates our research through an illustrative
example. Section 4 provides an overview of COVERT. Sec-
tions 5 and 6 describe the details of model extraction and for-
mal analysis, respectively. Section 7 presents the evaluation
of the research. Finally, the paper concludes with a discus-
sion of limitations, and an outline of the related research and
future work.

2 ANDROID OVERVIEW

This section provides an overview of the Android applica-
tion framework to help the reader follow the discussions
that ensue.

Application components. Components are basic logical
building blocks of Android applications. Each component
can be run individually, either by its embodying applica-
tion or by system upon permitted requests from other
applications. Android applications can comprise four
types of components: (1) Activity components provide the
basis of the Android user interface. Each Application may
have multiple Activities representing different screens of
the application to the user. (2) Service components provide
background processing capabilities, and do not provide
any user interface. Playing a music and downloading a
file while a user interacts with another application are
examples of operations that may run as a Service. (3)
Broadcast Receiver components respond asynchronously to
system-wide message broadcasts. A receiver component
typically acts as a gateway to other components, and
passes on messages to Activities or Services to handle
them. (4) Content Provider components provide database
capabilities to other components. Such databases can be
used for both intra-app data persistence as well as sharing
data across applications.

Inter-process communication (IPC). As part of its protec-
tion mechanism, Android insulates applications from each
other and system resources from applications via a sand-
boxing mechanism. Such application insulation that
Android depends on to protect applications requires inter-
actions to occur through a message passing mechanism,
called inter-process communication. IPC is conducted by
means of Intent messages. An Intent message is an event
for an action to be performed along with the data that
supports that action. Component invocations come in dif-
ferent flavors, e.g., explicit or implicit, intra- or inter-apps,
etc. Android’s IPC allows for late run-time binding
between components in the same or different applications,
where the calls are not explicit in the code, rather made
possible through event messaging, a key property of
event-driven systems.

Application configuration. Each Android application must
declare upfront its configuration. Among other things, it
describes the principal components that constitute the
application, along with their types and capabilities. Compo-
nent capabilities are specified as a set of Intent Filters that
represent the kinds of requests a given component can
respond to. Such high-level application descriptions are
documented in a separate XML file, called manifest, that
accompanies the application.

Permissions. Enforcing permissions is the other mecha-
nism, besides sandboxing, provided by the Android frame-
work to protect applications, by which restrictions are
placed on the specific operations that an application can
perform, such as interacting with the system APIs and
databases, as well as cross-application interactions. Each
application must declare upfront as part of its manifest the
permissions it requires, and the Android system prompts
the user for consent during the application installation.
Should the user refuse granting the requested permissions
to an application, the application installation is canceled.
No dynamic mechanism is provided by Android for grant-
ing permissions after application installation. The manifest
file also declares permissions enforced by the application
or by any of its components; the other applications thus
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must have those permissions in order to interact with such
protected components. Android platform provides over
130 pre-defined permissions, and applications can also
define their own permissions. Each permission is specified
by a unique label, typically indicating the protected action.
For instance, the permission label of android.permis-

sion.SET_WALLPAPER is required for an application to
change the wallpaper. The Android permission mechanism
has proved insufficient to prevent security violations, since
permissions may be misused, intentionally or unintention-
ally, as illustrated in the next section.

3 MOTIVATING EXAMPLE

To motivate the research and illustrate our approach, we
provide an example of a vulnerability pattern having to do
with inter-process communication among Android apps.
Android provides a flexible model of IPC using a type of
application-level message known as Intent (cf. Section 2).
A typical app is comprised of multiple processes (e.g.,
Activity, Service) that communicate using Intent messages.
In addition, under certain circumstances, an app’s pro-
cesses could send Intent messages to another app’s pro-
cesses to perform actions (e.g., take picture, send text
message, etc.). As an example, Listing 1 shows CallerActiv-
ity belonging to a malicious app sending an Intent message
to PhoneActivity (Listing 2) belonging to a vulnerable app
for placing a call to a premium-rate telephone number.

Listing 1: Malicious app: sends an Intent to call a premium-
rate phone number

The vulnerability occurs on line 30 of Listing 2, where
PhoneActivity initiates a system Intent of type ACTION_-

CALL, resulting in a phone call. This is a reserved Android
action that requires special access permissions to the
system’s telephony service. Although PhoneActivity has
that permission, it also needs to ensure that the sender of
the original Intent message has the required permission to
use the telephony service. An example of such a check is
shown in hasPermission method of Listing 2, but in this par-
ticular example it does not get called (line 15 is commented)
to illustrate the vulnerability. If CallerActivity does not have
the permission to make phone calls (i.e., it is not specified in
the corresponding app’s manifest file), it is able to make
PhoneActivity perform that action on its behalf. This is a
privilege escalation vulnerability and has been shown to be
quite common in the apps on the market [2]. It could be

exploited by a malware running on the same phone to call
premium-rate numbers.

Listing 2: Vulnerable app: receives an Intent and makes a
phone call.

The above example points to one of the most prominent
inter-app vulnerabilities, i.e. privilege escalation, that we
take as a running example from a class of vulnerabilities
that require compositional analysis to be able to detect
effectively.

4 APPROACH OVERVIEW

This section overviews our approach to automatically iden-
tify such vulnerabilities that occur due to the interaction
of apps comprising a system, and determine whether it is
safe for a bundle of apps, requiring certain permissions
and potentially interacting with each other, to be installed
together. As depicted in Fig. 1, COVERT consists of two parts:
(1) Model Extractor that uses static code analysis techniques
to elicit formal specifications (models) of the apps com-
prising a system as well as the phone configuration; and
(2) Formal Analyzer that is intended to use lightweight
formal analysis techniques to verify certain properties (e.g.,
known security vulnerability patterns) in the extracted
specifications.

COVERT relies on two types of models: 1) app model that
Model Extractor generates automatically for each Android
app; 2) Android framework spec. that defines a set of rules to
lay the foundation of Android apps, how they behave (e.g.,
application, component, messages, etc.), and how they
interact with each other. The framework specification is con-
structed once for a given platform (e.g., version of Android)
as a reusable model to which all extracted app models must
conform. It can be considered as an abstract specification of
how a given platform behaves.
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Model Extractor takes as input a set of Android applica-
tion package archives (APK files1). To generate the app
models, it first examines the application manifest file to
determine its architectural information. Besides such high-
level, architectural information collected from the manifest
file, Model Extractor utilizes static analysis techniques to
extract other essential information from the application
bytecode. We have built a prototype implementation of the
model extractor component on top of Soot [11] for static
analysis and Dexpler [12] for reverse engineering Android
APK files. As a result, our prototype implementation of the
approach only requires the availability of Android execut-
able files, and not the original source code. COVERT, thus,
can be used not only by developers, but also by end-users
as well as third-party reviewers to assess the trustworthi-
ness of their mobile devices.

The set of app models extracted in this way are then com-
bined together with a formal specification of the application
framework, and checked as a whole for vulnerabilities that
occur due to the interaction of apps comprising a system.
Finally, a report is returned to the user describing the list of
detected vulnerabilities. Upon reviewing the report, end-
users and third-party reviewers may choose to protect their
devices in a variety of ways, e.g., by disallowing the installa-
tion of certain combination of apps, or dynamically restrict-
ing certain inter-app communications.

In this research work, we rely on lightweight formal analy-
sis techniques [13] for modeling and verification purposes.
Such lightweight, yet formally-precise methods, bring fully
automated analysis techniques to partial models that repre-
sent the key aspects of a system [14]. The analysis is
accordingly conducted by exhaustive enumeration over a
bounded scope of model instances. These methods thus
facilitate application of formal analyzers in development of
software-intensive systems. In our prototype tool imple-
mentation, we use Alloy [10], as the specification language,
and the Alloy Analyzer as the analysis engine. Alloy is a for-
mal specification language based on first order logic, opti-
mized for automated analysis.

Our approach can be applied in an offline setting to
determine if a particular configuration for a system com-
prised of several apps harbors security vulnerabilities.
Although not the focus of this paper, we believe the
approach could also be applied at runtime to continuously
verify the security properties of an evolving system as new
apps are installed, and old ones are updated and removed.

In the following two sections, we describe the details of
static analysis used to capture essential application informa-
tion and formal analysis for verification.

5 MODEL EXTRACTOR

In order to automatically analyze vulnerabilities, we first
need a model of each application that would allow us to
determine the potential inter-process communications
and to also reason about the security properties. In our
approach, an app model is composed of the information
extracted from two sources: manifest file and bytecode. This
section first formally defines the model we extract for each
app, and then describes the extraction process.

Definition 1. A model for an Android application is a tuple
A ¼ <C; I; F; P; S>, where

� C is a set of components, where each component c 2 C
has a set of Intent messages intentsðcÞ � I, a set
of Intent filters ifiltersðcÞ � F , a set of permissions
permsðcÞ � P required to access the component c,
and a set of sensitive (i.e., security relevant) paths
pathsðcÞ � S. Each component is defined as one of the
four Android pre-defined component types: Activity,
Service, Broadcast Receiver, andContent Provider.

� I is a set of event messages that can be used for both
inter- and intra-app communications. Each Intent i 2 I
has a sender component senderðiÞ 2 C, may have a
recipient component, and three sets of actionðiÞ,
dataðiÞ and categoriesðiÞ, specifying the general action
to be performed in the recipient component, additional
information about the data to be processed by the action,
and the kind of component that should handle i, respec-
tively. If the set componentðiÞ is non-empty, the Intent
i is called an explicit Intent, as the recipient component
is given explicitly.

� F is a set of Intent Filters, where each filter ifilter 2 F is
attached to a component c 2 C, and describes an inter-
face (capability) of c in terms of Intents that it can handle.
Each ifilter has a non-empty set of actionsðifilterÞ and
two sets of dataðifilterÞ and categoriesðifilterÞ.

� P is a union of required and enforced permissions,
P ¼ PReq [ PEnf , where PReq specifies the permissions
to which the application needs to have access to run
properly and PEnf specifies the permissions required to
access components of the application under consider-
ation. We let the set of permissions actually used
within a component c as permUsedðcÞ � PReq.

� S is a finite set of vulnerable paths; each path belongs
to a component c 2 C, and is represented as a tuple

Fig. 1. Overview of COVERT.

1. APKs are Java bytecode packages used to distribute and install
Android applications.
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<Entry;Destination>, where Entry andDestination
represent either permission-required APIs or IPC calls.

As shown in Algorithm 1, the Model Extractor performs
three major steps to obtain a model of Android app: Entity
Extraction and Resolution (lines 4-13), Control Flow Augmenta-
tion (lines 14-16), and Vulnerable Paths Identification (line 17).
In the first step, the entities are extracted from either the
manifest file or the bytecode. Second, COVERT builds an
inter-procedural control-flow graph (ICFG) augmented to
account for implicit invocations. The generated inter-proce-
dural control-flow graph is further annotated with permis-
sions required to enact Android API calls and Intents.
Finally, in the last step, a reachability analysis is performed
over the generated graph to determine the exposed compo-
nents that contain unguarded execution paths reaching per-
mission-required functionalities.

Details of each step, elaborated by Algorithms 2 and 3,
are discussed in the rest of this section. To help explain the
approach, Fig. 2 illustrates the steps of applying our model
extraction to the motivating example (cf. Section 3).

Algorithm 1.Model Extractor

Input: app: Android App
Output: A: App’s Extracted Model

1 A <fg; fg; fg; fg; fg>
2 ICFG fg
3 summaries fg

//" Entity Extraction - cf. Sec. 5.1

4 A:C  extractManifestComponentsðappÞ
5 A:P  extractManifestPermissionsðappÞ
6 A:F  extractManifestFiltersðappÞ
7 IFEntities fg
8 foreachmethod 2 app do
9 IFEntities identifyIFEntityðmethod; summariesÞ
10 end
11 resolveIFEntityAttrðIFEntitiesÞ
12 A:I  getIntentsðIFEntitiesÞ
13 A:F  getIntentFiltersðIFEntitiesÞ [A:F

//" ICFG Augmentation - cf. Sec. 5.2

14 G constructICFGðappÞ
15 E  extractImplicitCallBacksðappÞ
16 ICFG augmentICFGðG;EÞ

//" Vul. Paths Identification - cf. Sec. 5.3

17 A:S  findVulPathsðA:C; ICFGÞ

5.1 Entity Extraction and Resolution

As part of the entity extraction process, the Model Extrac-
tor first identifies the entities comprising the app by pars-
ing and examining the app’s manifest files. As shown in
Algorithm 1 (lines 4-6), it can readily obtain information
such as the app’s components (C) and their types, permis-
sions that the app requires (PReq), and the enforced per-
missions (PermsEnf ) that the other apps must have in
order to interact with the app components. It also identi-
fies some of the public interfaces exposed by each applica-
tion, which are essentially entry points defined in the
manifest file through Intent Filters (F ) of components.
However, not all entry points can be extracted from the
manifest file, as discussed further below. Fig. 2a shows the
entities extracted at this stage of analysis corresponding to

our running example from Section 3. Although the figure
depicts the entities extracted for both apps, the reader
should note that in practice COVERT’s program analysis
runs separately on each app, the results of which are then
transformed into separate formal specification modules, as
detailed in Section 6.

After collecting these entities through examining the
application manifest file, the Model Extractor identifies
complementary information latent in the application byte-
code. In particular, we also need to extract Intents and
Intent Filters, which may be defined programmatically
in the bytecode, rather than in the manifest file. Intent Filters
for components of type Service and Activity must be

Fig. 2. Extracted models for the apps described in Listings 1 and 2 at dif-
ferent steps of analysis.
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declared in their manifest, but for Broadcast Receivers,
though, either in the manifest or at runtime.

For each method in an app’s component, the algorithm
detects and extracts Intents and Intent Filters, as shown in
lines 8-10. Android API reference documentation [15] is
used in this step to associate specific entities to framework-
provided APIs defining or manipulating these entities.
In the motivating example (Section 3), samples of entities
are identifiable: an Intent entity is created in line 12 of
Listing 1; the framework API getIntent is called in line
13 of Listing 2.

Intents and Intent Filters extracted this way need to be
further analyzed to obtain additional information about
their attributes. To that end, Model Extractor iterates over
each method of the app and calls identifyIFEntity,
which applies a summary-based iterative data-flow analysis
[16] to detect entities and their attributes. This analysis is
inspired by previous work for identifying messages in
event-driven systems [57]. Recall that Android is such a sys-
tem. For each Intent message, for example, it tracks the
message’s sender, the target component, the type of action
it has (if any), data to be processed by the action, and cate-
gories of components that should handle the Intent. Note,
however, that the values of attributes are resolved through
an additional analysis described later in this section.

identifyIFEntity computes a method summary for
each analyzed method, which describes information about
entities that can be inferred from amethod [16]. Method sum-
maries make entity resolution inter-procedural and are per-
formed in reverse topological order (RTO) with respect to the
app’s call graph. Performing this analysis in RTO ensures that
the summary of a method is computed only once, improving
analysis efficiency. Cycles in the call graph are represented as
a singlemethod (e.g., in the case of recursion).

The details of identifyIFEntity are shown in Algo-
rithm 2. identifyIFEntity outputs the set IFEntities,
which contains identified Intents and Intent Filters that are
defined and utilized in the Android app’s source code.
There are four types of statements that need to be consid-
ered to retrieve entity properties: (1) statements that create
an entity, (2) statements that set the attributes of an entity,
(3) statements that consume an entity, and (4) statements
that invoke non-Android API methods.

The first type of statement, handled in lines 10-15 of
Algorithm 2, correspond to the APIs creating an entity (e.g.,
through the constructors). In this case, the newly-created
entity is added to the gen set in order to be used in the other
cases; any entities that are reassigned are added to the kill
set to prevent further propagation of such entities; and
IFEntities is updated with the new entity.

The second type of statement, handled by the case of
lines 16-19, are the ones that set the attributes of the entity
under consideration (i.e., the action, category, data, and tar-
get attributes). For example, Intent.setClassName()

sets the target component for the given Intent.
The third type of statement, handled in lines 20-23 ofAlgo-

rithm 2, correspond to theAPIs that consume entities. Entities
are consumed in different ways. An Intent, for example, is
consumed when it is sent to a component: startActivity
(Intent) launches a newActivity by sending an Intent that
carries the Activity’s description. An Intent Filter, however,

is consumed when it is used in registering a Broadcast
Receiver. Since the attributes of an entity cannot be set after
consumption, the consumed entity is added to the kill set.

Algorithm 2. identifyIFEntity

Input:method; summaries
Output: IFEntities

1 IFEntities fg
2 gen½entry�  entities passed as parameters to methodf g
3 workList all statements of methodf g
4 repeat
5 stmt workList:head
6 foreach stmt0 2 predðstmtÞ do
7 in½stmt�  in½stmt� [ out½stmt0�
8 end
9 switch stmt.type do
10 case Intent or Intent Filter Constructors
11 entity corresponding entity of statement
12 gen½s�  fentityg
13 kill½s�  set of reassigned entities
14 IFEntities fentityg [ IFEntities
15 end
16 case Entity Attribute Assignment
17 entity corresponding entity of statement
18 updateAttrðentityÞ
19 end
20 case Intent Sender or Intent Filter Registration
21 entity corresponding entity of statement
22 kill½s�  fentityg
23 end
24 case Non-Android API Method Call
25 updateFromSummary(gen, kill, IFEntities,

summaries)
26 end
27 endsw
28 prevOut out½stmt�
29 out½stmt�  ðin½stmt� n kill½stmtÞ [ gen½stmt�
30 if prevOut 6¼ out½stmt� then
31 workList workList [ succðstmtÞ
32 until workList ¼ ;;
33 summarize(gen, kill, IFEntities, summaries)

Finally, for method calls that are not part of the Android
API, identifyIFEntity utilizes the summary of an
invokedmethod to determine the entities and their attributes
that are computed in themethod (lines 24-26 of Algorithm 2).
In particular, identifyIFEntity utilizes the summary of
the method invoked in the program statement stmt under
analysis to update the gen, kill, and IFEntities sets. For exam-
ple, in line 16 of Listing 2, the non-Android API method
makePhoneCall is invoked, where a new Intent is created
with action anddata attributes.identifyIFEntityutilizes
themethod summary for makePhoneCall to determine that
the invocation of that method results in the creation of a new
Intent with action ACTION_CALL and a data attribute. In
this case, updateFromSummary adds this new Intent to the
gen and IFEntities sets so that the new Intent is recorded and
will be propagated by the data-flow analysis. The kill set is
not modified in this case since the new Intent is not assigned
to an already-defined Intent reference.

For aliasing in the case of entities and their attributes,
we utilize class hierarchy analysis [16], which produces
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accurate results for our purposes (as shown in Section 7).
However, our algorithm can subsitute the class hierarchy
analysis for a more precise analysis (e.g., a points-to analy-
sis), possibly trading off efficiency for precision.

The overall algorithm (line 11 of Algorithm 1) then
calls resolveEntityAttr to resolve the values associ-
ated with the retrieved entity attributes (e.g., the action,
categories, and data types of Intents). The algorithm uses
string constant propagation [16] to determine string
values at statements. In cases where a string variable’s
value cannot be determined statically, we take a conserva-
tive approach and assume the value to be any string.
Despite this conservative approach, our evaluation results
(see Section 7) show our technique to be significantly pre-
cise, while remaining scalable.

It is also possible that a property is disambiguated tomore
than one value. For instance, consider our running example,
the Intent action could be assigned to two different values at
runtime, namely “PHONE_CALL” and “PHONE_TEXT_MSG”
defined on lines 6 and 8 of Listing 1, respectively. We take a
conservative approach to handle such an issue and generate
a separate entity for each of these values, as they contribute
different exposure surfaces or event messages in the case of
Intent Filters and Intents, respectively.

Fig. 2b shows the extracted model corresponding to our
running example (recall Section 3) at this stage of analysis.
In this particular example, Intents, as well as their proper-
ties (not depicted), are the only additional entities extracted
from the bytecode. For clarity of presentation, Fig. 2b only
depicts the Intents relevant to the vulnerability in our
example.

5.2 Control Flow Augmentation

Subsequent to extracting entities, Model Extractor needs to
determine control flow between methods in order to detect
vulnerabilities for privilege escalation. To that end, Model
Extractor constructs an inter-procedural control-flow graph
of the entire application. An ICFG is a collection of control-
flow graphs (CFGs) connected to each other at call sites.

However, due to the event-driven structure of the
Android platform, the traditional ICFG generation methods
do not connect CFGs at call sites corresponding to implicit
invocations. To generate an ICFG that takes implicit invoca-
tion into account, we need to include call-backs of an app.
These are Android-API methods that no other part of the
application explicitly invokes.

To connect the CFGs over implicit calls, we traverse the
nodes of each CFG in a depth-first manner, and connect all
implicit invocation nodes with the corresponding call-back
nodes. For example, in lines 11-15 of Listing 1, an anony-
mous inner-class is defined within the onCreate method
to handle the Click events triggered by the btnOk button.
Thus, an edge is added to the app’s ICFG from the setOn-

ClickListener invocation to the entry point of onClick.
Fig. 2c shows some parts of ICFGs extracted for each of

the apps from Section 3. Here, the dashed line between
nodes�M and�N indicates an implicit invocation.

5.3 Vulnerable Paths Identification

The last step is to determine if there is a path from
each component’s IPC entry point to an invocation of a

permission-required functionality that is either inappropri-
ately-guarded or unguarded, which may lead to IPC vulner-
abilities. For this purpose, COVERT leverages the
reachability analysis described in Algorithm 3.

Algorithm 3. findVulPaths

Input: C: set of Components, ICFG
Output: Vulnerable Paths

1 Entry fg
2 Dest fg
3 foreach c 2 C do
4 if isPublic(c) then
5 Entry Entry [ getEntryPointsðcÞ
6 end
7 foreach n 2 ICFG do
8 tagCheckedPermðnÞ
9 if n:hasTagðReqprmÞ ^ !n:hasTagðCheckprmÞ then

10 Dest Dest [ n
11 end
12 return pathFinderðEntry;Dest; ICFGÞ

Here, the entry nodes are IPC calls, which represent
methods in a component that handle Intents generated by
other components or the Android framework itself. Specifi-
cally, all app components, including Activities and Services,
are required to follow pre-specified lifecycles [17] managed
by the framework in an event-driven manner. Each compo-
nent, thus, registers event handlers that serve as the IPC
entry points through which the framework starts or acti-
vates the component once handled events occur. An Activ-
ity, for example, generates a StartActivity event that
results in another Activity’s onCreate() method to be
called. Moreover, for each entry node, the corresponding
component definition in the manifest file is also examined
to ensure the component is public (line 5 of Algorithm 3).
Recall from Section 2, a component is public, if its specifica-
tion sets the EXPORTED flag or declares Intent filter(s).

The destination nodes are defined as permission-req-
uired API calls or Intent messages that are not properly
checked. As shown in lines 7-11, to determine destination
nodes, for each node in ICFG, tagCheckedPerm marks it
with two tags: (1) Reqprm tag denotes that a statement is
called at the node under consideration that requires a partic-
ular permission of “prm”; and (2) Checkprm tag shows the
node is guarded by permission “prm” checking. Thus, a vul-
nerable destination node is a node tagged with Reqprm but
not with the corresponding Checkprm tag.

To identify Reqprm tags, tagCheckedPerm uses API per-
mission maps available in the literature, and in particular
the PScout permission map [18], one of the most recently
updated and comprehensive permission maps available
for the Android framework. PScout specifies mappings
between Android API calls/Intents and the permissions
required to perform those calls. The nodes tagged as per-
mission-required are distinguishable in Fig. 2d by ~! sign.
For example, node �F is a tagged node as it uses Telephony
API that requires CALL_PHONE permission.

Identifying and applying Checkprm is trickier, since per-
mission enforcement for a component could be defined at
two levels. While the coarse-grained permissions specified
in the manifest file are enforced over a whole component, a
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developer can also add permission checks throughout the
code controlling access to particular aspects of a component.
The former can be readily checked using the information
extracted from the manifest file (recall Section 5.1), but the
latter requires further program analysis.

To determine permission-check API invocations that act
as guards in code, tagCheckedPerm leverages a context-
sensitive analysis (i.e., it considers the calling context of a
method call) that handles the two most common cases. The
first case occurs when a permission-check API is called
directly. For the second case, tagCheckedPerm determines
if a statement invokes a method that results in a call to a per-
mission-check API (e.g., the commented permission check
on line 15 of Listing 2). To handle aliasing in this case,
tagCheckedPerm utilizes class hierarchy analysis, which
has proven sufficiently precise for our purposes.

Once entry and destination nodes are identified, find-
VulPaths determines the paths between them (line 12 of
Algorithm 3). To achieve high precision in determining
paths between entry and destination nodes, our approach is
context-sensitive. In the interest of scalability, COVERT’s anal-
ysis, however, is not path-sensitive (i.e., the analysis does
not distinguish information obtained from different paths).
The results (see Section 7) indicate no significant impreci-
sion caused by path-insensitivity in the context of Android
vulnerability analysis.

Components that contain an entry! destination path,
returned by findVulPaths, are vulnerable to various inter-
app attacks. For instance, in Fig. 2d the red-colored path of
<�A , �B , �D , �F > is vulnerable, as there is a path from an
entry node A to an invocation of a permission-required API
(i.e., Telephony API). As shown in Listing 1, a malicious
app can exploit this vulnerability and call the Telephony
API without having the proper privilege.

To achieve scalable, yet precise alias analysis for identify-
ing vulnerable paths, we perform an on-demand alias analy-
sis [19]. More specifically, instead of applying the analysis
to all variables, only the variables utilized at statements
invoking source or sink methods are considered for analysis
during vulnerable-path identification.

The Model Extractor produces an extended-manifest file
for each Android application. This extended-manifest, docu-
mented in an XML format, encompasses all information
extracted from both the app bytecode as well as the app
manifest file. Once an app model is extracted, it can then be
reused for analysis within several bundles of apps. Given a
set of extended-manifest files corresponding to a bundle of
apps, COVERT generates a package of Alloy modules, which
in turn enables their compositional analysis. The next section
details the structure of generated Alloy models.

6 FORMAL ANALYZER

In this section we show that our ideas for compositional,
formal, and automated analysis of Android apps can be
reduced to practice. Our approach automatically transforms
the models derived through static analysis into an analyz-
able specification language, and verifies them against cer-
tain properties using the automated analyzers associated
with such languages. As an enabling technology, we use the
Alloy language [10], to represent a model of Android frame-
work, application models, and to-be-analyzed properties.

There are four main reasons that motivate our choice of
Alloy for this work. First, its comprehensible, object-ori-
ented-like syntax, backed with logical and relational opera-
tors, makes Alloy an appropriate language for declarative
specification of both applications and properties to be
checked (i.e., assertions). Second, its ability to automatically
analyze specifications with no custom programming is use-
ful as an automation mechanism.

Third, and more importantly, its effective module system
allows us to split the overall, complicated system model
among several tractable modules. A simple module system
is not only convenient, but is an important part of our
approach, as it enables effective compositional analysis of,
among other things, impenetrable scenarios, where for
example a malicious app can leverage a chain of vulnerable
components to leak sensitive data or to perform actions that
are beyond its individual privileges. Android apps and
properties to be checked are strictly separated and modular-
ized in different specifications, which further facilitates
reusability of such specifications, and this is clearly where
much of the power of our work comes from. Specifically,
Android framework specification, application specifica-
tions, and specifications of vulnerabilities to be analyzed are
all reusable, and this paper shows the promise of paying a
one-time cost to formally specify them to enable composi-
tional analysis of Android vulnerabilities.

Lastly, the extraction approach we take in COVERT to
generate bundle specifications is incremental. More specifi-
cally, the Model Extractor produces a separate extraction-
output file for each Android application, independent of
other apps in the bundle. The set of extracted app models
are then combined together to check for inter-app vulner-
abilities. Hence, once an app model is extracted, it can then
be reused for analysis within several bundles of apps. That
means to add, update or remove an app from the bundle,
we only need to add, update, or remove information for
that particular app.

To appreciate COVERT’s approach, consider that an alter-
native approach is to detect the inter-app vulnerabilities by
performing the program analysis on a whole set of apps
simultaneously. But such an approach suffers from two
shortcomings. First, it would face serious scalability issues,
as a typical mobile device may have tens or hundreds of
apps installed on it, and the analysis space grows exponen-
tially with the number of apps to-be-analyzed. Second, it
would require such a complex analysis to be performed
every time any of the apps are updated, added, and
removed. COVERT does not suffer from the same shortcom-
ings because it analyzes the apps in isolation, and relies on
the declarative power of formal specification languages
(namely Alloy) to separate the various models needed for
the analysis, thereby facilitating reuse of the models as well
as the results.

In the rest of this section, we first provide a brief over-
view of Alloy, and then describe how we use it in modeling
and thereby analysis of Android applications.

6.1 Alloy Overview

Alloy is a formal modeling language with a compre-
hensible syntax that stems from notations ubiquitous in
object orientation, and semantics based on the first-order
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relational logic [10]. The Alloy Analyzer is a constraint
solver that supports automatic analysis of models written
in Alloy. The analysis process is based on a translation of
Alloy specifications into a Boolean formula in conjunctive
normal form (CNF), which is then analyzed using off-the-
shelf SAT solvers.

The analyzer provides two types of analysis: Simulation,
in which the analyzer demonstrates consistency of model
specifications by generating a satisfying model instance;
and Model Checking, which involves finding a counterexam-
ple—a model instance that violates a particular assertion.
We use the former to compute model instances, represented
as satisfying solutions to the combination of models cap-
tured from app implementations. This shows the validity of
such extracted models, confirming that the captured models
are self-consistent, mutually compatible and consistent with
the Android specifications modeled in a separate module.
The latter is used to verify security properties of interest
within the models.

The Alloy Analyzer is a bounded checker, so a certain
scope of instances needs to be specified. The scope, for
example, states the number of app components. The anal-
ysis is thus performed through exhaustive search for satis-
fying instances within the specified scopes. As a result,
the analyzer is sound and complete within such scopes.
To take advantage of partial models, the latest version of
the analyzer uses KodKod [20] as its constraint solver so
that it can support incremental analysis of models as they
are constructed. The generated instances are then visual-
ized in different formats such as graph, tree representa-
tion or XML.

The essential constructs of the Alloy modeling language
include: Signatures, Facts, Predicates, Functions and Asser-
tions. Signatures provide the vocabulary of a model by
defining the basic types of elements and the relationships
between them. Facts are formulas that take no arguments,
and define constraints that any instance of a model must
satisfy. Predicates are parameterized and reusable con-
straints that are always evaluated to be either true or false.
Functions are parameterized expressions. A function similar
to a predicate can be invoked by instantiating its parameter,
but what it returns is either a true/false or a relational value
instead. An assertion is a formula required to be proved. It
can be used to check a certain property of a model.

6.2 Formal Model of Android Framework

To carry out the verification analysis, we begin by defining
a common Alloy module, androidDeclaration, that models
the Android application fundamentals (e.g., application,
component, intent, etc.) and the constraints that every
application must obey. Technically speaking, this module
can be considered as a meta-model for Android app-
lications. It is manually constructed once and does not
change, unless there are substantial changes in the way
Android operates.

Listing 3 partially outlines androidDeclaration module,
representing Android application fundamentals in Alloy.
The essential element types (cf. Definition 1) are defined as
top-level Alloy signatures. As mentioned earlier, a signature
introduces a basic element type and a set of its relations,
called fields, accompanied by the type of each field.

Listing 3: Alloy specifications of essential Android applica-
tion elements.

There are six top-level signatures to model the basic ele-
ment types: Application, Component, IntentFilter,
Intent, Path, and Permission. Note that these signa-
tures are defined as abstract, meaning that they cannot have
an instance object without explicitly extending them. Con-
tainment relations (e.g., between Applications and Per-

missions) are defined as Alloy relations.
According to lines 4-5, the Application signature con-

tains two fields of usesPermissions and appPermis-

sions that identify two sets of permissions, representing
PReq and PEnf , respectively (cf. Definition 1).

The app field within the Component signature (line 8)
identifies the parent application that a component belongs
to. The keyword one states that every Component object
is mapped to exactly one Application object. Signature
declarations of four core component types, namely Activity,
Service, Receiver and Provider, extend the Component signa-
ture. In the interest of space, their specifications are omitted
from Listing 3. A component may have any number of fil-
ters, each one describing a different interface of the compo-
nent. Such filters are captured by the intentFilters field
(line 9). The permissions field represents a set of permis-
sions required to access a component. The paths field then
indicates vulnerable paths within a component.

The IntentFilter signature contains three fields of
actions, data and categories. The multiplicity key-
word some in Alloy denotes that the declared actions

relation contains at least one element, and the keyword set
tells Alloy that data and categories map each Intent-

Filter object to zero or more Data and Category objects,
respectively.

Properties of the IntentFilter signature are declared as
a fact paragraph (lines 18-21). The � operator denotes
the relational inverse operation, forming a new relation by
reversing the order of atoms in each tuple of the relation.
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The statement of line 18, thus, states that each IntentFil-

ter belongs to exactly one Component. Out of four core
component types, three of them can define IntentFilters. To
exclude Content Providers from having IntentFilters,
we add a separate fact constraint specification, represented
in line 20.

The Intent signature contains five fields of sender,
component, action, data and categories. The first
one denotes the component sending the intent. The com-

ponent field identifies the recipient component. The key-
word lone indicates that this element is optional, and an
Intent may have one or no declared recipient component.
Recall from Section 5, if it maps to a non-empty set, the
Intent object is called an explicit Intent. The Android
intent-resolver delivers explicit Intents to the designated
component, without considering other information of the
Intent object.

To determine to which component an implicit Intent—one
that does not specify any recipient component—should be
delivered, three elements of action, data, and catego-

ries are consulted. The action filed names the general
action to be performed in the recipient component. The
data field indicates additional information about the data
to be processed by the action, and each Data instance con-
sists of both the URI of the data to be acted on and its MIME
media type. Finally, the categories field indicates the
kind of component that should handle the Intent object.
Each of these elements corresponds to a test, in which the
Intent’s element is matched against that of the IntentFilter.
An IntentFilter may have more actions, data, and categories
than the Intent, but it cannot contain less.

We define the entry and destination fields of the Path sig-
nature based on canonical permission-required resources
identified by Holavanalli et al. for Android applications
[21]. Examples of entry and destination resources are NET-

WORK, IMEI, and SDCARD. Among others, the permission
NETWORK, for example, allows the app to access the Internet,
through either WIFI or cellular network. In addition to per-
mission domains, the IPC mechanism augments both entry
and destination sets, which allows apps to provide services
to one another. Fig. 3 shows a path identified in VicApp
with an IPC as publicly accessible entry point.

Finally, the last top-level signature is Permission.
COVERT captures both the system-defined permissions—
declared within the system’s Android Manifest—and appli-
cation-defined permissions—declared within the applica-
tion manifest file, and documents them as a separate Alloy
model shared between Alloy modules of all apps.

6.3 Formal Model of Apps

Three pieces of Alloy specifications are conjoined in the
process of modeling various parts of Android apps
extracted from their APK files. First, a specification module,
called appDeclaration, that documents basic element types,
such as Action, Category and Permission, shared between
Alloy models of all apps. Second, an app model, comprising
Components that constitute the app, IntentFilters of each
Component, as well as required and enforced Permissions of
the app. This model is represented in a separate Alloy
module for each app. Third, an inter-process communica-
tion module that models all Intent messages created within

the apps under consideration. All these models rely on the
Android framework specification module, presented in the
previous Section.

We use snippets of the running example (cf. Section 3) to
explain each piece of our formal model. Let us begin with
the appDeclarationmodule.

Consider the portion of the appDeclaration module,
shown in Listing 4. At the top, the specification imports the
Alloy module for the Android framework. It then declares
MAIN to be a singleton subset of Action. Typically, one
activity in an app is specified as the “main” activity, declar-
ing it as the main entry point to the app, and presented to
the user when launching the app. In a signature declaration,
the keyword one specifies the declared signature to contain
exactly one atom, thereby restricting the signature to be
unique. This naming scheme allows us to reuse the term
MAIN when we want to declare the main activity of each
application. The next statement represents a permission
example declared in a similar way. For the sake of clarity,
we use the permissions’ shorthand in our Alloy model. For
example, here we use CALL_PHONE to model the particular
permission of android.permission.CALL_PHONE.

Listing 4: Part of the declaration of basic element types auto-
matically extracted from Android apps.

Listing 5 partially delineates the generated specification
for the malicious app shown in Listing 1. It starts by import-
ing the appDeclaration module (line 3), and then the MalApp
is declared as an extension of the Application signature.
This app does not declare any permission neither as
required (usesPermissions) nor as enforced (app-
Permissions). The MalApp has a Component of type
Activity, named CallerActivity, which declares an
IntentFilter with MAIN and LAUNCHER settings, marking it
as the main activity of the app.

Fig. 3. A vulnerability identified by CONVERT for the apps described in
Listings 1 and 2. The red lines and nodes indicate the vulnerable path.
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Listing 5: Part of the generated specification for Malicious
app shown in Listing 1.

The code snippet of Listing 6 represents the generated
specification for the Victim app shown in Listing 2. The Vic-
App has access to the CALL_PHONE permission (line 6), but
declares no permission requirement for other apps to access
its own Components (line 7). This app specification then
declares the PhoneActivity component, exposing a vul-
nerable path (path1) from its entry point to a permission
required resource (PHONECALL), as represented in Fig. 3.

Listing 6: Part of the generated specification for Victim app
shown in Listing 2.

Application interactions in Android occur through Intent
messages. We record the interactions among app Compo-
nents in a separate Alloy module, called IPC. The code snip-
pet shown in Listing 7 represents part of the generated
specification for the IPC module. After importing modules
of the involved apps (lines 3-4), the specification in lines 6-
12 models the Intent of Listing 1, where the CallerActiv-
ity Component sends an explicit Intent (i.e., intent1 as
shown in Fig. 3) to the PhoneActivity Component, with
specified action to be performed and with extra data.

6.4 Checking Android Application Models

The previous sections present a formal model of Android
framework (Section 6.2), developed as a reusable Alloy
module to which extracted app models conform (Section
6.3). Here, we describe the essence of this work: how one
can use the power of proposed formal abstractions to per-
form the compositional analysis of Android apps.

Listing 7: Part of the generated inter-component communi-
cation module.

To that end, we develop assertions that model a set of
security properties required to be checked. These asser-
tions express properties that are expected to hold in the
extracted specifications. Similar to Android specification,
vulnerability assertions are manually constructed once and
do not change, unless there are substantial changes in
Android that resolve or modify the known types of inter-
app vulnerabilities.

Considering the privilege escalation, Davi et al. [22] state
it as follows: “An application with less permissions (a non-
privileged caller) is not restricted to access components of a more
privileged application (a privileged callee).” Listing 8 formally
expresses the privilege escalation assertion in Alloy. In
short, the assertion states that the dst component (victim)
has access to a permission (usesPermission) that is miss-
ing in the src component (malicious), and that permission
is not being enforced in the source code of the victim com-
ponent, nor by the application embodying the victim com-
ponent. Recall from Section 5 that there are two ways of
checking permissions in Android.

Listing 8: privilegeEscalation specification in Alloy.

To address a situation, in which more than two compo-
nents are involved in the privilege escalation, the assertion
relies on the specification of the transitiveIPC function,
shown in Listing 9. The operator “⌃” represents transitive
closure. The expression src.⌃transitiveIPC thus repre-
sents the set of all components reachable from src follow-
ing one or more IPCs. The transitiveIPC itself relies on
the specification of an intentResolver function. The
Component, Intent and IntentFilter signatures are specified
such that they have all the necessary attributes required for
Intent resolution. We thus describe intent-resolver as a func-
tion augmenting the aforementioned androidDeclaration
module. This function takes as input an Intent and returns a
set of Components that may handle the Intent under consid-
eration. Given the Intent is explicit, it should be delivered to
the recipient identified by the component field of the Intent
(line 10). Otherwise, the resolver checks Components’
IntentFilters to find those whose elements are matched
against the given Intent. Specifically, an implicit Intent must
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pass a matching test with respect to each of the action, data,
and categories elements on the IntentFilters bound to a
component (as stated in lines 13-16). Seeing that a compo-
nent can define multiple IntentFilters, an Intent that does
not match one of a component’s IntentFilters may match
another (lines 11-12).

Listing 9: IntentResolver and transitiveIPC specifications
in Alloy.

If an assertion does not hold, the analyzer reports it as a
counterexample, along with the information useful in find-
ing the root cause of the violation. Counterexample is a par-
ticular model instance that makes the assertion false. Given
our running example, the analyzer automatically generates
the following counterexample:

It states that the VicApp/PhoneActivity component
has access to the CALL_PHONE permission, and is resolved
by the formal analyzer as the receiver of intent1 (as shown
by a dashed line in Fig. 3), which is being sent by the Mal-

App/CallerActivity component lacking access to the
CALL_PHONE permission. The generated counterexample
confirms that the composition of Victim and Malicious apps
could result in privilege escalation.

7 EMPIRICAL EVALUATION

To assess the effectiveness of our approach in revealing
Android inter-app vulnerabilities, we have conducted an
evaluation that addresses the following research questions:

RQ1. What is the importance of this research? To what
extent are Android apps overprivileged and unsafe
due to usage of permission-required APIs?

RQ2. How well does COVERT perform? Does it enable
compositional analysis of real-world Android apps?
How much manual effort is involved in the analysis
process?

RQ3. What is the overall accuracy of COVERT in detecting
inter-app vulnerabilities?

RQ4. How does compositional analysis compare to single
app analysis?

RQ5. What is the performance of our prototype tool imple-
mented atop SAT solving technologies and static
analyzers?

Our experimental subjects are a set of Android apps
drawn from four different app repositories. The first sample
set consists of a snapshot of the top 100 popular free apps,
available on the Google Play [23] in late November 2013.
Our second set of test subjects is representative of open
source apps, and includes 300 apps collected from the F-
Droid open source repository [24]. To cover the apps avail-
able in third-party repositories, we also included 50 apps
from Bazaar [25], a local app store, as the third set. The
fourth one is a collection of 50 malicious apps identified by
the MalGenome project [26].

Fig. 4 illustrates the distribution of apps from Google
Play repository that were used in our experiments, showing
that they are sufficiently diverse, from different categories,
and representative of what one can find installed on a typi-
cal device. For brevity, we do not show the distribution of
apps from other repositories that have different set of cate-
gories, but the apps selected from these other repositories
were similarly diverse.

To answer RQ1, we examine all of the aforementioned
subject apps, to obtain some evidence as to the likelihood of
encountering privilege escalation vulnerability in the apps
that are available in such markets (Section 7.1).

To address RQ2, we partition the set of apps under study
into 10 bundles, each containing 50 apps from three reposi-
tories, except the last bundle whose apps are only from the
open source repository to enable manual analysis. These
bundles simulate collections of apps installed on end-user
devices, and we use them to conduct 10 independent experi-
ments. We then report and analyze the experimental results
(Section 7.2).

To evaluate the accuracy of warnings reported by COVERT

(RQ3), we randomly select 50 apps from the F-Droid open
source apps and run our prototype tool on them. We then
manually analyze each warning to detect the rate of tool
error, i.e., false positive (Section 7.3).

To address RQ4 (single versus compositional app analy-
sis), we adopt a set of practical security rules, called Kirin
rules, for Android apps from Enck et al. [6], and formally
model each of these rules in such a way that enables their
applications for both “compositional” analysis as well as
analysis of each “single” app in isolation. We then analyze
all the apps in the Malgenome repository against these

Fig. 4. Distribution of apps selected from the Google Play repository.
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rules, and compare the results of single and compositional
app analysis (Section 7.4).

To address RQ5 (performance benchmarks), we measure
the computation time required for both model extraction
and formal analysis activities (Section 7.5).

We use the COVERT apparatus we developed based on the
approach for carrying out the experiments. COVERT is imple-
mented as a publicly available tool.2 We have built a proto-
type implementation of the model extractor component on
top of the Soot [11] static analysis tools. Soot is developed
for analyzing Java bytecode [11]. We thus first use the Dex-
pler transformer [12] to translate Android’s dalvik bytecode
into the Soot’s intermediate representation language, called
Jimple. As a result, our prototype implementation of the
approach only requires the availability of Android execut-
able files, and not the original source code. COVERT, thus,
can be used not only by developers, but also by end-users
as well as third-party reviewers. The translation of captured
app models into the Alloy language is implemented using
the FreeMarker template engine [27].

7.1 Significance of Compositional Analysis

Table 1 outlines the amount of permissions requested by
apps in each repository, along with the fraction of which is
actually used through API calls, as well as enforced—
depicted as checked in Table 1—by the apps. Based on the
permission map provided by Au et al. [18], we analyzed the
fraction of permissions actually needed for API calls per-
formed by the apps under consideration (cf. Section 5). The
result shows that overall 32 percent of acquired permissions
are necessary for API calls. This confirms previous studies
that showed many Android apps on the market are over-
privileged [5], [18]. Applications having extraneous permis-
sions violate the least privilege principle. We also analyzed
what fraction of the obtained permissions are checked either
within the app manifest file or throughout the code. The dif-
ference between the set of used and checked permissions
are important for privilege escalation. The extraneous per-
missions that result in overprivilege are not susceptible to
privilege escalation, unless they are actually used by the

permission holders. On average, each app has about two
unchecked but used permissions that could lead to
exploitable vulnerabilities. Indeed, such an unsafe use of
permission-required APIs may lead to an exploitable vul-
nerability provided that there is a path from the exported
interface of the app component to the API use. This analysis
is the subject of next section.

7.2 Automated Analysis of Applications

The aim of RQ2 is to evaluate the automation level when
using COVERT for compositional analysis of real-world
Android apps, and how much manual effort is involved in
the analysis process. To that end, we evaluate COVERT on
bundles of real-world Android apps to determine its ability
to detect inter-app vulnerabilities for privilege escalation.
Table 2 summarizes the statistical results obtained through
running COVERT on Android app bundles. The total number
of components defined by the apps in each bundle is shown
in the second column. Overall, Activities, Services,
Broadcastreceivers, andContentproviders account
for 73, 11, 12 and 2 percent of components, respectively.

The Intents column delineates the fraction of implicit/
explicit Intents out of total Intents in each bundle; on aver-
age, about 40 percent of Intents are implicit, showing that
developers, by and large, make inter-component communi-
cations explicit. This is promising as there is no guarantee
that the implicit Intent will be received by the intended
recipient. The next column represents the number of
components’ interfaces described in terms of Intent filters.

The Exposed column shows the number of component
surfaces and permissions unsafely exposed to other applica-
tions. On average, COVERT detects five exposed components
in each Bundle. Such components have defined Intent filters
that make the components accept incoming Intents, but do
not properly enforce access permission, neither in the mani-
fest file nor in the source code. The last column then
presents the total number of warnings generated by COVERT

for applications of each bundle, and each one represents a
unique combination of source and destination components
that can lead to a privilege escalation.

Note that reported warnings are about potential security
issues. As with other techniques relying on static analysis,
our approach is subject to false positives, which could be
due to two types of failures in model extraction:

� Strings are used extensively as identifiers in Android
apps. Intent properties such as actions, data types,
and permissions are all constructed from strings, as
shown in our examples. Such strings could also be
altered by stateful operations, such as the append

method, which makes their accurate value elicitation
quite challenging. In case an ambiguous value is
encountered, during the entity resolution step
(Section 5.1), COVERT takes a conservative approach,
and considers all possible assignable values.

� COVERT performs reachability analysis (Section 5.3) to
determine the permissions actually used by each
component, thus ignoring permissions that are
obtained, but not used. Yet, there is a possibility that
at run-time the permission-required API call or Sys-
tem Intent is not actually reached due to some condi-
tional statements, for example.

TABLE 1
Summary of Statistical Information about

Permissions in Subject Systems

Permissions

Repository Used Checked

1,472
GPlay 364 156

(%24.7.1) (%10.6)
1,031

F-Droid 505 77
(%49.0) (%7.5)

499
MalGenome 100 5

(%20.0) (%1.0)
305

Bazaar 105 16
(%34.4) (%5.2)

2. Research artifacts and experimental data are available at http://
www.sdalab.com/projects/covert.
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The conservative approach we take to deal with non-
determinism thus may introduce unnecessary false posi-
tives. Encouragingly, this automated analysis still results
in a substantial reduction in subsequent manual analysis.
Specifically, less than 1 percent of application compo-
nents (cf. Table 2, exposed components versus total com-
ponents) require further analysis by users. Also, the
limitations of the static analysis with respect to, among
other things, dynamically loaded code could lead to false
negatives as well. To facilitate the process of manual
analysis, COVERT provides the location of the potential
vulnerability (i.e., filename and method) within the
source code.

The results also confirm that an approach combining
static analysis and model checking is effective in compo-
sitional analysis of Android apps. In this particular case,
the reported vulnerabilities provide crucial clues to the
security analyst tasked with assessing the security prop-
erties of a complex system. Such analysis is not possible
with state-of-the-practice tools (e.g., Fortify) that analyze
the source code of an application in isolation.

In the next section, we interpret the results through man-
ual analysis of a bundle of open-source applications.

7.3 Manual Analysis

We selected 50 applications from the F-Droid open source
repository, and then manually inspected COVERT’s warnings
for these applications to evaluate how many warnings cor-
respond to real exploitable vulnerabilities. Statistics of the
selected app set are provided as Bundle 10 in the Table 2.
More details about the apps, including their name and

model can be found on the project site.3 In this section, we
present the findings of our manual analysis and discuss
three representative examples in detail.

COVERT generated 30 warnings for the 50 applications. We
manually reviewed all and categorized them according to
the classification provided by Chin et al. [2], where each
warning is classified as a vulnerability, not a vulnerability,
or undetermined. We define a vulnerability to be a compo-
nent lacking a particular permission getting access to a func-
tionality requiring that permission through an interface
exposed by a vulnerable component. In order to detect
vulnerabilities, we reviewed the application source code of
both sides (sender and destination) for each warning.

Among the 30 reported warnings, we discovered 18 defi-
nite vulnerabilities. This represents a 60 percent true posi-
tive rate, which is superior to the prior technique [2], that
aimed to identify inter-app vulnerabilities by analyzing the
source code of each app in isolation, with a true positive
rate of 27.6 percent. More interestingly, of the five applica-
tion components identified as exposing permissions, all con-
tain at least one exploitable vulnerability.

In the rest of this section, we describe a few repres-
entative applications and the vulnerabilities we discovered
in them.

Case 1: Aard Dictionary! Podax.
The first app is Aard Dictionary, a simple dictionary

and an offline Wikipedia reader. It defines a WebViewClient
interface for handling incoming urls, and creates and sends
an implicit Intent with the VIEW action, should the scheme

TABLE 2
Summary of Experimental Results Obtained from Running CONVERT over App Bundles

3. http://www.sdalab.com/projects/covert
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of the given url matches with one of the specified schemes,
such as http, https and ftp.

On the other hand, the app bundle contains the Podax

app, a podcast downloader and player application. This
app accepts Intents with the VIEW action, and http scheme,
which in turn can lead to message passing between the two
apps. While the first app that sends the Intent does not have
the INTERNET permission, the recipient app (Podax) has.
In addition, the Podax app does not check whether the cal-
ler has the appropriate permission. This combination, thus,
gives rise to a privilege escalation vulnerability.

The sender app here is benign, but if it was malicious it
could use the other app’s unprotected capability, which
may lead to some security risks, such as phishing, by bring-
ing up a web page and enticing the user to enter payment
or other private information.

Case 2: Binaural beats therapy! Ermete SMS.
Ermete SMS is a free web-based text messaging applica-

tion that has WRITE_SMS permission. An Activity compo-
nent of this application exposes an unprotected interface
that receives Intents with SEND action. Upon receiving an
Intent, the ComposeActivity component extracts the pay-
load of the given Intent, and sends that data via text mes-
sage to a number specified in the payload, without checking
the permission of Intent sender.

The other app, Binaural beats therapy, is designed
for relaxation, creativity and many other desirable mental
states. This app does not have the WRITE_SMS permission,
but it sends an Intent with SEND action and text/plain pay-
load data, which could be received by the first app. This
case represents a false positive as the Intent sent by the
Binaural beats therapy app does not actually contain
the fields required by Ermete SMS to send a text message,
but points to an important security risk, where a malicious
app could use the exposed messaging service.

Case 3: PurpleDock! RMaps.
RMaps is an on- and off-line navigation tool. In addition

to GPS permissions like ACCESS_FINE_LOCATION, it has
INTERNET permissions to work with online maps such as
Google and Microsoft maps. This application exposes an
activity, which receives VIEW Intents with geo scheme, a
URI scheme for geographic locations. On the other hand,
PurpleDock is a simple app that automatically turns on
when the handset is placed into the car mount, and pro-
vides navigation as one of its features.

RMaps’s geo Intents are intended for internal use, and
other applications, including PurpleDock that sends a geo
message via Intent, should not be able to control locations
shown by the app interface. However, with the current
implementation, as it does not check the permission of
Intent senders, the exposed component can be manipulated
by a malicious application for GPS spoofing (i.e., display a
wrong location).

7.4 Compositional versus Single App Analysis

Enck et al. [6] provide a set of practical security rules, called
Kirin rules, to prevent malwares from exploiting Android
applications. Each rule represents undesirable security
properties in terms of the configuration available in mani-
fest files. Kirin rules, thus, decide whether the security con-
figuration bundled with a single app is safe or not, but they

do not consider the case in which malicious apps collude to
combine their permissions, allowing them to perform
actions beyond their individual privileges.

To analyze these rules using our approach, we formal-
ized them in Alloy. Each rule is modeled as an assertion to
be analyzed independently. We also developed a composi-
tional version of each rule, leveraging the privilege escala-
tion predicate. This in turn enabled us to apply the two sets
of rules and compare the results of isolated analysis versus
compositional analysis.

To make the idea concrete, we illustrate one of these rules
along with its formal representations for both compositional
and single app analysis. Consider the following Kirin secu-
rity rule (KSR 6): “An application must not have RECEI-

VE_SMS and WRITE_SMS permission labels [6].”
Listing 10 partially outlines the two Alloy assertions

specified to check the rule against either (a) a single app or
(b) a combination of apps that may collude to combine their
permissions. Assertion (a) states a direct representation of
the aforementioned rule in Alloy, while assertion (b)
restates the same rule against multiple apps. It uses the
isPrivilegeEscalation predicate (line 16) to check the
occurrence of privilege escalation between the two apps
with respect to the p2 permission. The p1 and p2 permis-
sions could be either RECEIVE_SMS or WRITE_SMS (lines
11-12), but they should be distinct as enforced by disj key-
word (line 11). The predicate takes as input two components
c1 and c2, an Intent, and a permission. The c1 component
belongs to the app1 and c2 to the app2, omitted in Listing
10 (b) in the interest of space. The assertion then at the very
end of line 16 checks the case in which one app contains
both permission labels. Note that in practice developing
two different assertions is not necessary as the latter, in
effect, covers the former. Here, we developed the former for
experimental purposes, and to compare the results of single
versus compositional analysis.

Listing 10: Specification of a Kirin rule for (a) single and (b)
compositional app analysis.

We analyzed all the apps in the Malgenome repository
against each of these rules. Table 3 summarizes the results.
Rows represent Kirin security rules that we formally mod-
eled in Alloy to be analyzed using our approach. Columns
represent the analysis type, either single app analysis (as
performed by the Kirin tool [6]) or compositional analysis.
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Each cell indicates the number of vulnerabilities detected.
As we can see, the compositional rule analysis detects more
vulnerabilities, without missing any vulnerability identified
by single app analysis. The experimental results indicate
the overall improvement of 73 percent in detecting vulner-
abilities using a compositional analysis approach.

7.5 Performance and Timing

The final evaluation criteria are the performance bench-
marks of model extraction and formal analysis activities.
We used a PC with an Intel Core i7 2.4 GHz CPU processor
and 8 GB of main memory, and leveraged Sat4J as the SAT
solver during the experiments.

Compositional Analysis of Android apps using our
approach consists of three steps: (1) The app models are col-
lected and documented as Alloy specifications. (2) The
extracted Alloy models are transformed into 3-SAT clauses
using the Alloy Analyzer. (3) An off-the-shelf SAT solver
explores the space to find counterexamples. We measured
the computation time required for each step separately.

The scatter diagram shown in Fig. 5 plots the time taken
to analyze the collected apps for model extraction in sec-
onds. The results show that the analysis time scales almost
linearly with the size of apps in all three repositories. How-
ever, as the set of most popular apps collected from the
Google Play repository—represented by dark blue in the
diagram—are typically larger than apps from the other
two repositories, their model extraction takes more time.
According to the diagram, our approach is able to statically
analyze and infer specifications for the largest apps in

less than three minutes. As our implementation separates
model extraction analysis from Alloy model generation,
and each app bytecode is analyzed independently (cf.
Section 5), the total static analysis time scales linearly with
the total size of apps.

Table 4 shows the time involved in compositional verifi-
cation of Android apps (steps 2 and 3). The first column
represents the time spent on transforming Alloy models
into 3-SAT clauses, and the second the time spent in SAT
solving to find a counterexample for each app bundle. The
timing results show that COVERT is able to analyze bundles
of apps containing hundreds of components in the order of
a few minutes (on an ordinary laptop), confirming that the
proposed technology based on a lightweight formal ana-
lyzer is feasible.

8 DISCUSSION AND LIMITATIONS

There is a growing need for technologies that can support
the security analysis of complex systems in a compositional
manner, whereby the security of a system is reasoned about
in terms of the security properties inferred from its constitu-
ents. We argue this is the holy grail of software security
analysis research. For the security analysis techniques to
scale to ever-increasing complex systems, they need to
become compositional in nature. COVERT takes an important
step towards this overarching objective in the context of
Android apps, but we envision the ideas set forth in this
research to find a broader application in other computing
domains as well.

Note that single app analysis and compositional analysis
have their own technical merits. From an application devel-
oper’s perspective, analyzing each app in isolation may pro-
vide sufficient feedback to fix the issues in the code (i.e.,
remove the vulnerabilities). On the other hand, when the
purpose of analysis is to assess the trustworthiness of a sys-
tem, comprised of multiple proprietary apps that may inter-
act with one another, compositional analysis is needed to
detect vulnerabilities that may exist in the system. One can
imagine an organization may need to use a tool such as
COVERT to analyze the security properties of apps deployed
on phones assigned to its employees. Such an organization
may not be in a position to fix the issues in the apps, as the
apps may be proprietary, but it can control the apps that are
installed on the devices.

TABLE 3
Compositional versus Single App Analysis
of Kirin Rules over the Malgenome App

Repository

Sec.
Rule

Sing. App.
Analysis

Compositional
Analysis

KSR 1 - -
KSR 2 - -
KSR 3 2 2
KSR 4 2 8
KSR 5 2 11
KSR 6 10 14
KSR 7 11 14
KSR 8 3 3
Overall 30 52

Fig. 5. Scatter plot representing analysis time for model extraction of
Android apps.

TABLE 4
Experiments Performance Statistics

Construction
Time (Sec)

Analysis
Time (Sec)

Bundle 1 412 252
Bundle 2 226 123
Bundle 3 441 65
Bundle 4 158 57
Bundle 5 191 239
Bundle 6 88 85
Bundle 7 120 123
Bundle 8 350 374
Bundle 9 295 299
Bundle 10 204 45
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Our analysis indicates that IPC vulnerabilities are ubiqui-
tous, and demonstrates why prior techniques relying only
on single app analysis are insufficient for detecting such
vulnerabilities. Our experiences with a novel approach for
compositional app analysis and its evaluation in the context
of hundreds of real-world Android apps collected from
variety of repositories have been very positive. The experi-
mental data shows that COVERT can effectively detect such
inter-app vulnerabilities in the order of few minutes.

8.1 Development Effort

The framework specification is not expected to be written by
individual users of COVERT, rather by the provider of
the framework or COVERT. The specification for a framework,
such as Android, is developed once and can be reused
by others. Thus, it poses a one-time cost, and the
required effort depends on the level of familiarity with
the framework and the specification language. Using exe-
cutable specification languages, one can also immediately
check the correctness of even partial specifications. In our
own experience, Alloy helped us to find errors early in spec-
ifying formal semantics. More specifically, during the
modeling process, its analyzer performed syntactic checks
to expose, for instance, inaccurate use of signatures (such as
accessing a nonexistent field of a signature). We also used
the analyzer to check the conformance of automatically gen-
erated models of apps derived through static analyzer to
the framework meta-model.

8.2 Other Types of Vulnerabilities

While privilege escalation vulnerability has been the focus
of our research, we believe COVERT can be extended, and
significant components of it reused, for detecting other
types of inter-app vulnerabilities. For instance, an important
class of inter-app vulnerabilities are due to information
leakage. For these types of vulnerabilities, COVERT’s program
analysis needs to be extended to take information flow into
account for Android apps. While not the focus of this paper,
in an alternative configuration, we augmented COVERT’s
reachability analysis described in Section 5.3 with a taint
flow analysis approach (see [28]) to detect possible informa-
tion leaks between apps.

We illustrate the reuse and extension potential of COVERT

through an example of the application collusion vulnerabil-
ity. Consider two applications A and B; B reads data from a
particular folder in SD card and sends the data out through
Internet, and A writes data to the folder that B reads from.
Since B does not expose the sending action through its inter-
face (IntentFilter), it cannot be detected by the privilegeEsca-
lation check, specified in Listing 8.

To extend COVERT for supporting the analysis of this sce-
nario, the only thing required is to model it as an assertion,
expressing properties to be checked in the extracted specifica-
tions. Listing 11 expresses such an assertion for the applica-
tion collusion. The assertion states that there are two
components in different applications; each contains a sensi-
tive data flow path, where the sink of one matches the source
of the other. Recall from Section 6 that the paths field
denotes information paths between permission domains for
each component.

Listing 11: Specification of the application collusion vulner-
ability in Alloy.

Continuing with our example, the apps A and B contain
the flow permissions: IMEI ! SDCARD and SDCARD !
NETWORK, respectively. These two paths will set the match
predicate to be true (line 8), and thus COVERT identifies it as
an instance of the application collusion. Note that since
applications specifications and properties to be checked are
strictly separated, arbitrary vulnerabilities can be detected
with minimal effort.

8.3 Limitations

There are of course limitations in our approach. Similar to
any approach based on static analysis, our approach is sub-
ject to false positives. We believe a fruitful avenue of future
research is to complement COVERT with dynamic analysis
techniques. In principle, it should be possible to leverage
dynamic analysis techniques to automatically confirm
some of the vulnerabilities (e.g., by executing the vulnera-
ble code), further reducing and targeting the manual analy-
sis effort.

Another advantage of dynamic analysis is that it can
be used to address vulnerabilities in native code. Android
Apps may include native code in addition to Java code, in
the form of a Java Native Interface (JNI) library. Although
native code is also obligated to the permission system [5], it
may dynamically load code, which cannot be sufficiently
addressed through static analysis techniques.

Through dynamic analysis it would also be possible to
address upcoming features, such as Google App Ops, which
provides a Permission Manager that allows users to revoke
granted permissions after installation time. This feature was
introduced in Android 4.3, but subsequently removed in
Android 4.4.2 [29]. Given that granular revocation or allow-
ance of permissions after installation time is a dynamic
mechanism, a dynamic analysis would be needed to handle
possible vulnerabilities arising from this feature. For
example, COVERT’s incremental, compositional analysis for
permission leakages can be performed on a permission-
modified app and related apps at runtime, with appropriate
instrumentation or monitoring capabilities added.

In addition to Intent-based event messaging as one type
of IPC mechanism, Android applications can communicate
through remote procedure calls (RPC) by method-invoca-
tion interaction using stubs, which are automatically gener-
ated from the specification of a component’s interfaces in
Android’s Interface Definition Language (AIDL). While the
focus of this paper is on the inter-app vulnerabilities that
arise due to Intent-based event messaging—shown to be
the primary IPC mechanism in Android—supporting other
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IPC mechanisms constitutes an interesting avenue for our
future work.

This paper provides substantial supporting evidence for
analyzing one of the most significant inter-app vulnerabil-
ities, i.e. privilege escalation. It would be interesting to see
how our approach fares when applied to other types of
inter-app vulnerabilities [2], [8], [30], which forms a thrust
of our future work.

9 RELATED WORK

Android security has received a lot of attention in recently
published literature, duemainly to the popularity of Android
as a platform of choice for mobile devices, as well as increas-
ing reports of its vulnerabilities [1], [30]. Here, we provide a
discussion of the related efforts in light of our research.

9.1 Android Program Analysis for Security

A large body of work [2], [3], [31], [32], [33], [34], [35]
focuses on performing program analysis over Android
applications for security, which can be categorized based on
their underlying static or dynamic analysis technique.

Chin et al. [2] studied security challenges of Android
communication, and developed ComDroid to detect those
vulnerabilities through static analysis of each app. Octeau
et al. [33] developed Epicc for analysis of Intent proper-
ties—except data scheme—through inter-procedural data
flow analysis. FlowDroid [28] introduces a precise approach
for static taint flow analysis in the context of each applica-
tion component. CHEX [36] also takes a static method to
detect component hijacking vulnerabilities within an app.
We share with this approach the emphasis on separating
model extraction from vulnerability analysis, enabling
extension/revision of each, independent of the other. How-
ever, these research efforts, like many others we studied,
are mainly focused on Intent and component analysis of
one application. COVERT’s analysis, however, goes far
beyond single application analysis, and enables composi-
tional analysis of the overall security posture of a system,
greatly increasing the scope of vulnerability analysis. Doing
this requires application of verification techniques in a way
scalable to handle analysis of complex systems comprising
multiple apps interacting with each other. COVERT, to our
knowledge, is the first tool with this capability.

DidFail [37] introduces an approach for tracking data
flows between Android components to detect potential data
leaks. However, it does not target the problem we are
addressing, namely detecting the permission leakage. More-
over, similar to many other techniques we studied, DidFail
is a purely program analysis tool, and does not incorporate
a formal verification technique.

Along the same line, AndroidLeak [31] statically ana-
lyzes information leak in Android. Its analysis does not
cover Intents, nor cross-application flows. SCanDroid [38]
statically analyzes data flows to detect permission inconsis-
tencies between applications that could possibly allow mali-
cious access to sensitive information. It requires the source
code of applications, and has never been evaluated over
real-world applications. Mann and Starostin [34] also
developed a framework to detect privacy leaks from the
Android APIs. Similar to ScanDroid, this framework was

never tested against real-world applications. Zhou and
Jiang [35] analyzed vulnerabilities that are due to the exis-
tence of unprotected content provider components. While
this work is concerned with the potential risks of passively
leaking content, it does not consider the problem that we
address, the automation of inter-app vulnerability analysis.

Apart from techniques based on static analysis, several
tools use dynamic analysis to detect vulnerabilities in smart-
phone applications. TaintDroid [3] detects information
leak vulnerabilities using dynamic taint flow analysis at the
system level. IPC Inspection [39] prevents privilege escala-
tion at OS level. Recipients of IPC requests are re-instantiated
according to the privileges of their callers, guaranteeing that
the callee does not have privileges more than that of the cal-
ler. However, maintainingmultiple instances of applications
with modified privileges imposes a notable performance
overhead. Saint [40] analyzes configuration and runtime
behavior of Android apps to enforce security policy and to
allow only legitimate permissions.

These research efforts share our emphasis on leveraging
program analysis to capture some information from appli-
cation implementations. However, our work differs in sev-
eral ways. First, our approach is geared towards the
application of formal techniques to verify certain properties
in Android applications. A novel contribution of our work
is the ability to bridge from application implementations to
formal specifications using static code analysis techniques.
Second, previous studies of Android applications analyze a
single app in isolation. Our modular approach can be used
to greatly increase the scope of application analysis by infer-
ring the security properties from individual apps and
checking them as a whole for vulnerabilities that are due to
the interaction of apps comprising a system. Third, many of
the previously proposed solutions [3], [6], [9], [39], require
changes to one or more components of the Android middle-
ware, such as Application Installer, Reference Monitor, and
Dalvik Virtual Machine. Our approach, in contrast, requires
no platform modifications.

9.2 Android Permissions

The other relevant line of research focuses on Android’s
permissions and their use across applications [6], [21], [41],
[42], [43], [44], [45]. Barrera et al. [41] examined permission
requirements over a set of 1,100 Android applications to
analyze how permissions are used in such applications.
Their result shows that a small fraction of permissions are
extensively used. Kirin [6] extends the application installer
component of Android’s middleware to check the permis-
sions requested by applications against a set of security
rules. These predefined rules are aimed to prevent unsafe
combination of permissions that may lead to insecure data
flows. Whyper [45] is a tool that checks the app’s requested
permissions against its description, thereby enabling the
user to determine if certain requested permissions are suspi-
cious. Vidas et al. [44] have developed a tool that scans the
Android documentation to extract permission specifica-
tions. These techniques typically rely only either on the
Android documentation or permission requests specified
within the application manifest, rather than analyzing the
code to check whether or how such permissions are used by
applications.
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Along the same line, another thrust of research statically
analyzes the apps source code to study their permission
use. Among others, Felt et al. [5] have developed Stowaway,
a tool for performing an over-privilege analysis on applica-
tion source code. Applying automated testing techniques
on the Android API, they developed a set of permission
maps—documenting which APIs require what permis-
sions—used in detecting overprivilege. Similarly, Au et al.
[18] have developed PScout to extract the permission specifi-
cation from the Android OS source code using static analy-
sis, which led to a comprehensive set of permission maps
for Android. We used PSCout’s permission map in our tool
implementation to analyze whether applications under con-
sideration properly check permissions before calling APIs,
thereby reducing false positives in COVERT.

9.3 Formal Approaches

The other relevant thrust of research has focused on formal
modeling and automated verification of software applica-
tions. Fragkaki et al. [7] proposed a formal framework as an
extension to the Android permission mechanism. Chaud-
huri [46] also proposed a formal language to describe appli-
cations and a type system to reason about information
flows. This work, however, does not provide any imple-
mentation for the proposed approach. Martin et al. [47]
developed PQL, which provides a specification language
for querying Java applications to detect errors and security
flaws. PQL does not include mechanisms for handling
Intents, which require a flow-sensitive analysis; the Android
lifecycle; and bundles of applications. Thus, PQL focuses on
single applications, while COVERT focuses on composi-
tional analysis. Alloy also has been widely used for model-
ing and analysis in a variety of contexts, including analysis
of software architecture [51], [52], [58], checking code
against partial specifications [48], [49], [50], analysis and
synthesis of tradeoff spaces [59], [60], specification based
testing [53] and security [54], [56]. In our prior work, we
developed DroidGuard [55], which uses the Alloy analysis
engine to generate specifications of Android security poli-
cies. These policies are then proactively applied as preven-
tive measures to guard against yet unknown malicious
behavior. While DroidGuard targets synthesis and runtime
enforcement of security policies, this work addresses pre-
cise detection of inter-app vulnerabilities. Chen et al. [56]
provided a logical formulation of general security concepts,
and modeled it in Alloy. Their model is very abstract,
and has not been applied in any particular domain or
application. Targeting a real-world banking system,
Ramananandro [54] used Alloy to model and check specifi-
cations of an electronic smart card system. However, unlike
our work, the translation to Alloy is not automated in this
research effort. To the best of our knowledge, COVERT is the
first formally-precise analysis technique leveraging Alloy
for automated compositional verification of Android apps.

10 CONCLUSION

This paper presents a novel approach for compositional
analysis of Android inter-app vulnerabilities. Our approach
employs static analysis to automatically recover models that
reflect Android apps and interactions among them. It is able

to leverage these models to identify vulnerabilities due to
interaction of multiple apps that cannot be detected with
prior techniques relying on a single app analysis. We for-
malized the basic elements of our analysis in an analyzable
specification language based on relational logic, and devel-
oped a prototype implementation, COVERT, on top of our
formal analysis framework. The experimental results of
evaluating COVERT against privilege escalation—one of the
most prominent inter-app vulnerabilities—in the context of
hundreds of real-world Android apps corroborates its abil-
ity to find vulnerabilities in bundles of some of the most
popular apps on the market.
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