
SIG-Droid: Automated System Input Generation for
Android Applications

Nariman Mirzaei∗, Hamid Bagheri†, Riyadh Mahmood∗ and Sam Malek†
∗Department of Computer Science, George Mason University, {nmirzaei, rmahmoo2}@gmu.edu

†Department of Informatics, University of California, Irvine, {hamidb, malek}@uci.edu

Abstract—Pervasiveness of smartphones and the vast number
of corresponding apps have underlined the need for applicable
automated software testing techniques. A wealth of research has
been focused on either unit or GUI testing of smartphone apps,
but little on automated support for end-to-end system testing.
This paper presents SIG-Droid, a framework for system testing
of Android apps, backed with automated program analysis to
extract app models and symbolic execution of source code guided
by such models for obtaining test inputs that ensure covering
each reachable branch in the program. SIG-Droid leverages two
automatically extracted models: Interface Model and Behavior
Model. The Interface Model is used to find values that an app can
receive through its interfaces. Those values are then exchanged
with symbolic values to deal with constraints with the help of a
symbolic execution engine. The Behavior Model is used to drive
the apps for symbolic execution and generate sequences of events.
We provide an efficient implementation of SIG-Droid based in
part on Symbolic PathFinder, extended in this work to support
automatic testing of Android apps. Our experiments show SIG-
Droid is able to achieve significantly higher code coverage than
existing automated testing tools targeted for Android.

Index Terms—Android, Automated Testing, Input Generation

I. INTRODUCTION

Android is a platform for mobile communication devices,
including smartphones and PDAs. It has had a meteoric rise
since its inception partly due to its vibrant app market that
currently provisions nearly a million apps, with thousands
added and updated on a daily basis. Not surprisingly there
is an increasing demand by developers, consumers, and app
market operators for automated testing techniques applicable
to Android apps. One of the key obstacles is the lack of
practical techniques for generating test inputs.

Android apps are built using a common application devel-
opment framework (ADF) that ensures apps developed by a
wide variety of suppliers can interoperate and coexist together
in a single system (e.g., a phone) as long as they conform
to the rules and constraints imposed by the framework. An
ADF exposes well-defined extension points for building the
application-specific logic, setting it apart from traditional
desktop software that is often implemented as a monolithic
independent piece of code. Android also provides a container
to manage the lifecycle of components comprising an app
and facilitates the communication among them. As a result,
unlike a traditional monolithic software system, an Android
app consists of code snippets that engage one another using
the ADFs sophisticated event delivery facilities. This poses
a challenge to test automation, as the app’s control flow
frequently interleaves with the ADF. On the other hand, the
knowledge of ADF along with the metadata associated with

each app can be used to automate many of the software testing
activities, in particular test input generation, as illustrated in
this paper.

The main focus of this paper is on the problem of system-
level input generation for Android applications. While there
has been tremendous progress in Android testing at both unit-
level and GUI testing, random testing still remains the major
player in automated system testing of Android apps [24]. Mon-
key [2], a popular fuzzing tool provided by Google generates
random touchscreen presses, gestures, and other system-level
inputs. Dynodroid [23] performs more effective event-aware
random testing, through inferring representative set of events
and employing certain heuristics. Other techniques [12], [14],
[17], [20], [33] mainly focus on testing the program through
GUI elements. System behaviors dependent on data values,
though, have not been adequately considered to a large extent,
as data widgets are abstracted away, which may cause shallow
code coverage.

Hence, system testing of interactive applications, such as
Android apps, can be broken down into two distinct, yet
interwoven problems. The first is to generate sequences of
unique events, where each sequence represents a particular
app use and causes a change in the state of the app. Here,
the whole set of sequences exhaustively cover all possible
use scenarios. The second is to generate proper values for
GUI data widgets that take user inputs, such as textboxes.
Here, the input domain can be quite large. For example, in a
numeric textbox that accepts 5 unsigned digits and involves a
conditional statement satisfied when the input value equals a
certain integer, random input generation has only 1

105 chance
to reach the state satisfying that condition.

In this paper, we present SIG-Droid, an automated System
Input Generation framework for Android apps that tackles
these challenges. SIG-Droid combines program analysis tech-
niques with symbolic execution [22] to systematically generate
inputs for Android apps that achieve high code coverage. SIG-
Droid leverages the knowledge of Android’s ADF specification
to automatically extract two models from an app’s source
code. These models are used to guide the generation of event
sequences aimed at simulating actual user behaviors. The
Behavior Model (BM) captures the event-driven behavior of
the app, including the relationships among the event generators
and handlers, and the Interface Model (IM), represents all of
the input interfaces in the app and the widgets they contain,
including buttons, input boxes, etc.

To prune the domain of data inputs, SIG-Droid employs
symbolic execution, a promising automated testing technique
that can effectively deal with constraints. Symbolic execution

uses symbolic values, rather than actual values, as program
inputs. It gathers the constraints on input values along each
path of a program execution, and with the help of a constraint
solver generates actual inputs for all reachable paths. While
symbolic execution has proven to be effective for unit level
testing, our goal is to utilize symbolic execution for end-to-end
system testing of Android apps.

Symbolic execution of programs that are developed on
the top of an ADF, however, has always been challenging
due to problems such as path-divergence that occurs when a
symbolic value flows outside the context of the program to the
context of the underlying ADF [13]. In addition, Android is an
event-driven system, which makes symbolic execution highly
dependent on sequence of events; the symbolic execution
engine has to wait for the user to interact with the system
and tap on a button or initiate some other type of event
for the program to continue the execution of a certain path.
Furthermore, although Android apps are developed in Java,
they run on Dalvik Virtual Machine (DVM) [4], instead of the
traditional Java Virtual Machine (JVM). This is problematic,
as current symbolic execution engines that are targeted at Java
cannot be used for Android apps.

SIG-Droid uses the extracted models to exhaustively pin-
point possible ways an app can receive inputs. It then ex-
changes all concrete inputs with symbolic values, and gathers
the constraints around those inputs. To determine the execution
paths that should be symbolically analyzed, it automatically
generates sequences of event handler methods from the in-
ferred BM. We call these sequences Drivers. Furthermore, to
enable our symbolic execution engine to run the apps on JVM,
and to resolve any possible external method calls resulting in
path-divergence, models of Android library classes are created.
After symbolically executing the app using the drivers, the
solved values are used along with the corresponding events to
create test inputs. Our experiments corroborate SIG-Droid’s
ability to systematically generate test cases for end-to-end
testing of Android apps that achieve high code coverage.

This paper is organized as follows. Section II provides the
background on Android and Symbolic Execution. Section III
presents an Android app that is used for illustrating the
approach. Section IV outlines an overview of our approach.
Section V provides the details of our approach in extracting
the models used in SIG-Droid. Sections VI describes SIG-
Droid’s symbolic execution engine. Section VII goes through
the details of test case generation. The paper concludes with
the presentation of our experimental results in Section VIII,
an overview of the related research in Section IX, and a
discussion of the limitations and our future work in Section X.

II. BACKGROUND

In this section, we first provide an overview of Android,
followed by a brief background on Symbolic Execution.

A. Android
The Google Android framework includes a full Linux op-

erating system based on the ARM processor, system libraries,
middleware, and a suite of pre-installed applications. 88% of
the Android users still use older versions of Android 1 which

1http://developer.android.com/about/dashboards/index.html

rely on Dalvik Virtual Machine (DVM) [4] for executing pro-
grams written in Java. Android also comes with an application
development framework (ADF), which provides an API for
application development and includes services for building
GUI applications, data access, and other component types. The
framework is designed to simplify the reuse and integration of
components. Applications publish their capabilities and others
can use them subject to certain constraints.

Android apps are built using a mandatory XML manifest
file. The manifest file values are bound to the application at
compile time and cannot be changed afterwards unless the ap-
plication is recompiled. This file provides essential information
for managing the life cycle of an application to the Android
ADF. Examples of the kinds of information included in a
manifest file are descriptions of the application’s components
among other architectural and configuration properties.

Components can be one of the following types: Activities,
Services, Broadcast Receivers, or Content Providers. An Ac-
tivity is a screen that is presented to the user and contains a
set of layouts (e.g., LinearLayout that organizes items within
the screen horizontally or vertically). The layouts contain
GUI controls, known as view widgets (e.g., TextView for
viewing text and EditText for text inputs). The layouts and
their controls are typically described in a configuration XML
file with each layout and control having a unique identifier.
A Service is a component that runs in the background and
performs long running tasks, such as playing music. Unlike
an Activity, a Service does not present the user with a screen
for interaction.

All Android components are activated via Intent messages.
An Intent message is an event for an action to be performed
along with the data that supports that action. Intent messaging
allows for late run-time binding between components, where
the calls are not explicit in the code, rather handled through
event messaging, a key property of event driven systems.

All major components, including Activity and Service, fol-
low pre-specified lifecycles [1] managed by Android. The life-
cycle event handlers (e.g., onCreate() and onStart())
are called by Android and play an important role in our
research as explained later.

B. Symbolic Execution

Symbolic Execution [22] is a program analysis technique
that uses symbolic values, rather than actual values as pro-
gram inputs. Consequently, the outputs of the program are
transformed to a function of the symbolic inputs. The path
condition is a Boolean formula over the symbolic values
representing the constraints which must be satisfied in order
for an execution to follow a specific path. Using the path
conditions around symbolic values, a decision tree, called
symbolic execution tree, is created.

For illustration of this technique, we use a simple Java
program depicted in Figure 1b, where S0, S1, S2, and S3
denote statements that can be invoked in different paths of the
program. Clearly, random testing is not likely to result in good
coverage for this program. Consider that the input value for y
has to be exactly three times the value of variable x to cover
statement S0. This is precisely where the symbolic execution is
shown to be fruitful. Figure 2b shows the symbolic execution

Fig. 1: Symbolic execution: (a) sample code, and (b) the
corresponding symbolic execution tree, where X and Y are
the symbolic representations of variables x and y

tree for this program. With the help of an off-the-shelf SAT
solver, actual input values that result in paths shown in Figure
2b can be generated. These inputs can be used to generate test
cases that cover different paths.

As an example, let X and Y be the symbolic representation
of variables x and y, respectively. By solving the following
constraint “X > 0 & X ≤ 3 & Y = X × 3”, we obtain
two values “X = 3” and “Y = 9”, which result in taking the
bold path in Figure 1b and executing S0 and S2. Similarly,
using symbolic execution, we can generate all possible inputs
for test method in such a way that all feasible paths in the
program are explored. Moreover, symbolic execution can de-
termine infeasible or unreachable paths and report an assertion
violation (path 3).

Symbolic Pathfinder (SPF) [11] is a symbolic execution
engine for Java programs. It is built on top of Java Pathfinder
(JPF) [7], an open source general-purpose model checker for
Java programs. Unlike other symbolic execution engines, SPF
does not work with code instrumentation. It works with a
non-standard interpretation of Java byte-code using a modied
JVM [7]. SPF analyzes Java byte-code and handles mixed
integer and real constraints, as well as complex mathematical
constraints through heuristic solving. SPF can be used for
test input generation and finding counterexamples to safety
properties [11]. We have extended SPF to support Android
apps. By addressing SPF limitations in dealing with event
driven nature of Android, we are able to generate inputs and
test cases for Android programs. Furthermore, symbolic exe-
cution is conventionally used for unit level testing, while our
approach presents a novel approach for leveraging symbolic
reasoning in generating system level test cases for Android
apps.

III. ILLUSTRATIVE EXAMPLE

For illustrating the approach, we will use a mobile
banking app as a running example. Figure 2a shows two
of the screens comprising this app: MainActivity and
TransferActivity. The MainActivity is the first
screen that the user sees when the app is launched. It allows
the user to work with her checking or savings account (e.g.,

see the details of transactions occurring in each account).
The TransferActivity screen allows the user to transfer
money between the checking and savings accounts.

Figure 2b shows code snippets realizing one of the func-
tionalities provided by this app. When the Transfer button
(see Figure 2a) is clicked, the onClick method is called
by the ADF. Subsequently, if the transfer amount is less than
$5,000, an Intent is sent to the MainActivity including as
payload the transfer amount, source and destination accounts.
Finally, MainActivity updates the balance in each account
to reflect the transfer amount, and displays the updated result
to the user.

As mentioned in the previous section, the widgets on each
activity are defined in an XML layout file. Figure 2c presents
a snippet of the layout file for TransferActivity.

One conceivable test case generated using one of the exist-
ing techniques is clicking on the Transfers tab (thus bringing
up the screen corresponding to TransferActivity), en-
tering a random value as the amount to be transferred, and
clicking on Transfer button. But considering the constraint in
the code that the transfer amount cannot be more than $5,000,
there is no systematic way of generating tests that cover
both possible paths following the constraint. Our approach
symbolically executes the parts of the code corresponding to
the sequences of events and generates test cases that cover
both paths.

IV. OVERVIEW OF SIG-DROID

Figure 3 depicts a high level overview of SIG-Droid, which
is comprised of three major components. The first component
is the Model Generator that takes an app’s source code and
outputs two models:

• The Behavior Model (BM) represents the event-driven
behavior of the app, including the relationships among
the event generators and handlers. SIG-Droid uses the BM
to generate possible use cases of the system (sequence
of events), known as Drivers in the symbolic execution
literature [11].

• The Interface Model (IM) provides a representation of
an app’s external interfaces and in particular ways in
which it can be exercised, e.g., the inputs and events that
are available on various screens to generate test cases
that are valid for those screens. SIG-Droid uses the IM
to determine the candidate input values that should be
exchanged with symbolic values.

The second component of SIG-Droid is the Symbolic Ex-
ecution Engine. As mentioned in Section II-B, SIG-Droid is
built on top of JPF, which uses the byte-code interpretation of
the program under test. Hence, the app’s source code has to be
compiled with Java compiler, instead of Android’s Software
Development Kit. This task is achieved by replacing platform-
specific parts of the Android libraries that are needed for each
app with stubs. These stubs are created in a way that each
component’s composition and callback behavior is preserved.
This allows SIG-Droid to execute an Android app on JPF
virtual machine without modifying the app’s implementation.

The symbolic execution engine heavily utilizes the two
generated models. The BM is used to generate the app
Drivers (i.e., use cases), while the IM is used to mark the

Fig. 2: Banking App: (a) Screenshots, (b) code snippet from TransferActivity, and (c) snippet from Transfer.xml layout.

input values that have to be exchanged with symbolic values.
Furthermore, prior to running the symbolic analysis, the code
is instrumented in order to track the sequence of events that
occur in each path. The results are stored in the symbolic
execution report that is used later in generating test cases.

Finally, the third component of SIG-Droid is the Test Case
Generator. It takes the IM along with the symbolic execution
report as inputs and generates test cases that can be executed
on top of Robotium [10], which is an Android test bed.
The focus of this paper is on generating test cases that
achieve high code coverage, not on whether the test cases have
passed/failed. We acknowledge that automatically generating
test oracles is a significant challenge, if not infeasible in many
cases. This has been and continues to be the focus of many
research efforts. Currently, we collect two types of results
from the execution of tests: any exceptions that may indicate
certain software faults as well as code coverage information.
We use EMMA [5], an open source toolkit, for obtaining code
coverage information. The next three sections describe the
three components of SIG-Droid in more detail.

V. MODEL GENERATION

Model Generator extracts two models for each app: Behav-
ior Model (BM) and Interface Model (IM). In this section, we
describe the details of each.

Fig. 3: High level overview of SIG-Droid.

A. Behavior Model
The BM represents a high-level behavior of the app in terms

of the interactions among the event generators and handlers.
This model is obtained in three steps: (1) reverse engineering
of the app’s call graph, which only contains the explicit method
calls, (2) using knowledge of the ADF specification to augment
the call graph with implicit calls (i.e., event exchange), and (3)
pruning the call graph from nodes irrelevant to understanding
the event-driven behavior of the app.

The first step of our approach entails using MoDisco [8],
an open source program analysis tool, to extract the app’s call
graph. Unlike traditional Java programs, Android apps do not
contain a main class that becomes the root node of the call
graph, where the program is always initiated. Android apps are
event driven, meaning that the thread of execution constantly
changes context between the application logic, ADF, and user
interface. Therefore, instead of a connected call graph that
represents the connected set of possible method calls, an
Android app is composed of a set of disconnected sub-call
graphs that collectively represent the app’s logic. These sub-
call graphs correspond to all the ways in which an app can be
initiated and accessed by the user or the Android platform.

Figure 4a shows a subset of the Banking app’s call graph
obtained from its source code (as described later in this
section, the red dashed lines are inferred to create a fully
connected graph by extending MoDisco). Boxes in Figure 4a
represent the methods, and the lines represent the sequence of
invocations.

The second step of our approach is to relate the reverse
engineered sub-call graphs to one another, and thus discover
the dotted red arrows shown Figure 4a. Note that the links
between the subcall graphs are implicit (i.e., these calls are
initiated by the Android ADF itself) and not recoverable
through simple source code analysis tools, such as MoDisco.

We observe that the root node of each sub-call graph is a
method call never explicitly invoked from other parts of the

Fig. 4: (a) Examples of two sub-call graphs automatically inferred for the banking app; augmented red lines represent implicit
calls used to connect sub-graphs; (b) the BM for the banking app automatically generated after pruning sub-graphs.

application. There are two types of root nodes:
1. Inter-component root nodes represent methods in a com-

ponent that handle events generated by other components
or Android framework itself. For instance, in the example
of Figure 4b, TransferActivity component sends a
startActivity event that results in MainActivity’s
onCreate() method to be called.

2. Intra-component root nodes correspond to events that
are internal to a component. For instance, in the example of
Figure 4b, when a Button belonging to TransferActivity
is clicked, the event is handled by the Transfer class within
the same activity that implements the OnClickListener
interface and overrides the onClick() method.

In order to resolve all of the implicit links in the app, we
traverse the call graph starting with the onCreate() root
node of the main activity (the starting point of the app). To
link the different sub-call graphs, we continue down the graph
and identify the leaf nodes where implicit method calls are
initiated. These nodes would have to be method calls that
either set an event handler, start other activities, send Intent
messages, or handle system events. System event handlers
deal with notification events, such as when a call is received,
network is disconnected, or the battery is running low. Based
on Android’s specification, we know that the links would have
to be from leaf nodes to other root nodes. For example, in
Figure 2b there is an implicit call from startActivity in
TransferActivity to MainActivity’s onCreate().
Algorithm 1 shows how implicit calls are extracted, given a set
of disconnected call-graphs and the set of caller methods that
initiate implicit calls. These methods are defined by Android’s
specification. As new sub-call graphs are linked and connected,
they are traversed in a similar fashion. By doing so, we are
able to connect the entire call graph of the application, from
beginning to end. The call graph model is updated with the
newly found information.

Finally, the third step of our approach in deriving the BM

is to remove all of the non-root nodes from the call-graph of
an app and connecting the remaining nodes. The BM for the
Banking app is depicted in Figure 4b. The BM only captures a
high level behavior of the app in terms of the event interactions
and does not include unnecessary details about the sequences
of explicit method calls within the Android components.

It must be noted that the obtained call graph and hence
the BM only represent the chain of possible method calls
regardless of constraints, i.e., the call graph of an app does
not include any information about conditions and the control
flow of an app. As will be explained in detail later, the BM is
only used to generate the Drivers for symbolic execution and
not directly to generate the sequences in test cases. In other
words, it is used to navigate within the app to determine all
the ways in which it receives user inputs, system notifications,
starts/stops/resumes activities and services, interacts using
Intents, etc.

B. Interface Model
The IM provides information about all of the input interfaces

of an app, such as the widgets and input fields belonging to
an Activity. It also includes information about the application-
level and system-level Intent events handled by each Activity.

Algorithm 1: Implicit Call Extraction

Input: CG : set of sub-call graphs, ψ : set of implicit callers
Output: Υ : implicit calls

1 foreach c ∈ CG do
2 rootNodes ← c.getRoot()

3 foreach c ∈ CG do
4 lNodes ← c.getLeafNodes()
5 foreach l ∈ lNodes do
6 if l ∈ ψ then
7 d ← l.getDestinationNode()
8 if d ∈ rootNodes then
9 Υ.Add(l, d)

The IM is obtained by combining and correlating the informa-
tion contained in the configuration files and meta-data included
in Android APK (such as Android Manifest and layout XML
files). In order to do so, first we list all the activities of the
app with the help of information that can be found in the
Android Manifest file. Then for each activity we parse the
corresponding layout file (recall Figure 2c) and obtain all
information on each widget such as name, id, input type and so
on. As described in the next section, we use the information
provided by IM to identify possible symbolic values in the
program. Subsequently, the information is used by the test
case generator to construct the final test cases.

VI. SYMBOLIC EXECUTION FOR ANDROID

To build a symbolic execution engine for Android we need
to address three major challenges, since Android apps are (1)
event-driven, (2) prone to path-divergence, and (3) compiled
into Dalvik byte-code. In this section, we explain how SIG-
Droid’s symbolic execution engine addresses these challenges.

A. Handling Event-Driven Challenge
As Android is an event driven system, symbolic execution

is highly dependent on events and their sequencing; meaning
that the symbolic execution engine has to wait for the user to
interact with the system and tap on a button or initiate some
other type of event for the program to continue the execution
of a certain path. Furthermore, the system itself or another
application can initiate an event and cause the app to behave
in a certain way.

To address this issue, symbolic execution engines, such as
SPF [11], provide a mechanism to specify a Driver, which in
the case of SPF is a Java program with a main method that
contains the sequence of methods (event handlers) that should
be used in a single run of the engine for determining the parts
of the code that should be analyzed for gathering constraints.
To generate the Drivers for Android apps, we use the BM as
a finite state machine and traverse all the unique paths that do
not contain a loop using a depth first search algorithm. This
results in generating many possible sequences of events that
represent possible use cases for the app.

As an example, using the BM in Figure 4b, if
we start at MainActivity.onCreate() and fol-
low through with TransferAtivity.onCreate() and
Transfer.onClick(), we arrive at a plausible sequence.
Clearly, if the app is comprised of more than one Activity and
many events, the generated Driver would be more complex.
Listing 1 illustrates a sample Driver for banking app generated
in this way using the sample BM of Figure 4b. It contains
two sequence of events, i.e., creates a TransferActivity
object by calling its constructor following by calling the
onCreate method that triggers the start of the activity.
Consequently, it simulates the action of user tapping on the
Transfer button by calling onClick method.

Note that since the BM does not model the program’s
constraints, not all generated Drivers are necessarily valid
sequences of events (i.e., can actually occur when the program
executes). As will be detailed in Section VII, we do not use
the Drivers for the purpose of generating the test cases, but
only for the purpose of guiding the symbolic execution and
solving the constraints on input values.

B. Handling Path-Divergence and Davlik Byte-Code Chal-
lenges

The second challenge is an Android program’s dependence
on framework libraries that make symbolic execution prone
to path-divergence, and more so than traditional Java pro-
grams. In general, path-divergence occurs when a symbolic
value flows outside the context of the program that is being
symbolically executed and into the bounding framework or
any external library [13]. Path-divergence leads to two major
problems. First, the symbolic execution engine may not be
able to execute the external library, as a result extra effort
may be needed to support those libraries. Second, the external
path may contain its own constraints that result in generating
extra test inputs attempting to execute the diverged path rather
than the program itself. This creates a scalability problem, as it
entails symbolically executing parts of the Android operating
system every time there is a path-divergence.

Indeed, in Android, path-divergence is the norm, rather than
the exception. A typical Android app is composed of multiple
Activities and Services communicating extensively with one
another using Intents. An Intent is used to carry a value to
another Activity/Service and as a result that value leaves the
boundaries of the app and is passed through Android libraries
before it is retrieved in the new Activity/Service.

Furthermore, Android apps depend on a proprietary set of
libraries that are not available outside the device or emulator.
Android code runs on Dalvik Virtual Machine (DVM) [4]
instead of the traditional Java Virtual Machine (JVM). Thus,
Android apps are compiled into Dalvik byte-code rather than
Java byte-code. To symbolically execute an Android app using
SPF , we need to first transform the app into the corresponding
Java byte-code representation.

To tackle the path-divergence problem and compile Android
apps to Java byte-code, SIG-Droid provides its own custom
built stub and mock classes. The stub classes are used to com-
pile Android apps into JVM byte-code, while mock classes are
used to deal with the path-divergence problem. We developed
stubs that return random values within a reasonable range,
when the return type of a method is primitive, and return empty
instances of the object, when the return type is a complex data
type. Dealing with Android platform, not only do we need to
provide stub classes to resolve the byte-code incompatibility
with JVM, but we also need to address the lack of Android
logic outside the phone environment. Android uses its library
classes as nuts and bolts that connect the different pieces of
an app together.

A common instance of path-divergence in Android occurs
when one Activity is initiated from another one and a value
is passed from the source to the destination Activity. This
process is performed by utilizing an Intent message (recall
from Section II-A that in Android inter-component messag-
ing is achieved through Intents). In the case of banking
app, as shown in Figure 2b, TransferActivity uses
the startActivity method of the Android library class
Activity.java to start the app’s AccountActivity
that displays the accounts and their respective balances. It
creates an Intent in which the source and destination activities
along with the values to be carried are specified. In this case,
we provide the appropriate logic for Activity.java mock, such

public static void main(String[] args) {
try {

View v = new View(null);
TransferActivity ta = new TransferActivity();
Transfer t = ta.new Transfer();
ta.onCreate();
t.onClick(v);

}
catch (Exception e) {

e.printStackTrace();
}

}

Listing 1: Sample Driver for banking app.

that when its startActivity method is called, the control
flow moves to the onCreate method of the recipient activity.

Moreover, we create a mock for the Intent.java to ad-
dress the path-divergence problem in cases where the payload
is a symbolic value. As shown in Figure 2b, an instance of In-
tent is passed to startActivity. If this Intent encapsulates
a symbolic value for variable amountValue, it would result
in path-divergence. To deal with this issue, we provided our
own implementation of putExtra and getExtra methods
in the mock implementation of Intent.java, such that the
symbolic value of those variables is preserved. Android uses
a hashMap〈String, Object〉 to store and retrieve the
payload of an Intent, making it difficult to reason about a
value stored as Object symbolically. To solve this problem,
we provide our own implementation of a hash map that
holds primitive values. Consequently, in our implementation
of the putExtra and getExtra methods, we use our hash
map implementation to enable the symbolic execution engine
to reason about values that are exchanged using the Intent
messages.

The last step prior to running symbolic execution of each
app is to identify which values need to be executed sym-
bolically. These are the values that the user can input using
the GUI, e.g., the transfer amount in the banking app. As
an example, for each input box in the IM, the source code
of the corresponding activity is explored and the value of
that input box, retrieved by calling inputBox.getText(),
is exchanged with a symbolic value. It is important to keep
a mapping between each introduced symbolic value and its
corresponding widget on the screen. At the same time, the
code is instrumented to record the sequence of actions taken.
The mapping along with the sequence of actions captured in
the Drivers are used by the test case generator to reproduce
the values and actions in each test case.

VII. TEST CASE GENERATION

Following the extraction of models and symbolic execution
of an app, SIG-Droid automatically generates test inputs that
can be executed on an actual phone or emulator device.
Running symbolic execution with each Driver results in a
symbolic execution report. Each report specifies the concrete
values that are obtained by solving the gathered symbolic
conditions.

Each Driver representing a single path in the BM may
contain several constraints, thus it may result in multiple
execution paths. For instance, if amountValue is a symbolic
value in TransferActivity in Figure 3b, the Driver in
Listing 1 would result in two different execution paths: One

<?xml version="1.0" encoding="utf-8"?>
<Report>
<Path id="1"
<Activity name="TransfersActivity">
<MethodCall name="Transfer.onClick()">
<SoldvedVariable name="amountValue" value="1" />

</MethodCall>
</Activity>

</Path>
<Path id="2"
<Activity name="TransfersActivity"
<MethodCall name="Transfer.onClick()">
<SoldvedVariable name="amountValue" value="5001" />

</MethodCall>
</Activity>

</Path>
</Report>

Listing 2: Symbolic Execution report for Driver in Listing 1.

where the amountValue is less than $5000, and another
where it is greater. Hence, the report for each Driver may
result in several tests.

Moreover, as mentioned in Section V, the call graph of
each app only contains information about the possible chains
of method calls regardless of constraints. As a result, the
Drivers that are generated using the BM may be invalid
sequences of events, meaning that the constraints may prevent
the execution of certain events. In order to make sure that
we only generate valid sequences of events in each test case,
the code is instrumented to track the actual method execution
sequence during the symbolic execution. Thus, the symbolic
execution report contains the sequence of called methods as
well. Listing 2 shows the symbolic execution report for the
Driver of Listing 1.

Since the report contains only the event handlers and not
the actual event generators (e.g., the ID of the buttons on a
screen), to generate test cases we use the IM to determine
the event generator corresponding to each event handler in the
report. For example, Transfer.onClick handler method
in Listing 2 is the handler for the Transfer button on
TransferActivity screen of Figure 2.

Listing 3 illustrates one of the Robotium test cases gener-
ated by SIG-Droid that corresponds to the report shown in
Listing 2. Solo is a Java class provided by Robotium that
executes the test (essentially represents the user of the app).
This test case inputs 5001 in the amount text box, which
has the index of zero, meaning it is the first text box on that
activity, and then clicks on Transfer button.

public class TransferActivityTest_1 extends
ActivityInstrumentationTestCase2<TransferActivity> {

private Solo solo;
...
@smoke
public void testMethod() throws Exception {

solo.enterText(0,5001);
solo.clickOnButton(Transfer);

}
...

}

Listing 3: Code snippet of a Robotium test automatically
generated by SIG-Droid for TransferActivity.

VIII. EVALUATION

To evaluate SIG-Droid, we formulate three research ques-
tions:

• RQ1: Is SIG-Droid capable of generating test cases for
real-world Android apps?

• RQ2: How well does SIG-Droid perform? Can SIG-
Droid achieve a better code coverage than state-of-the-art
Android system testing frameworks?

• RQ3: How scalable is the approach in generating test
cases for complex applications, i.e., apps involving highly
constrained input values?

For investigating RQ1, we apply SIG-Droid to several real-
world apps from an open-source repository, called F-Droid [6].
These apps are picked based on the following criteria: (1) the
source code for the applications must be available (2) the app
only uses standard GUI widgets that are included in Android
API and does not use any third party widgets, and (3) the
apps should capture the different application categories, such
as productivity, entertainment, and tools. Moreover, neither
MoDisco nor SPF handle anonymous classes. As a result, we
refactored the source code of the apps to ensure they do not
contain any anonymous classes.

Table I lists these apps. LOC, Activities, and Category
columns report lines of code, number of activities of each
app, and category of each app, respectively. 2

TABLE I: Open-source apps used in the evaluation.

App LOC Activities Category
CalAdder 276 2 Productivity

Tipster 501 1 Tool
MunchLife 631 2 Entertainment

JustSit 849 4 Productivity
AnyCut 1095 4 Tool

TippyTipper 2953 6 Tool

For addressing RQ2, we compare SIG-Droid with two
approaches: Android Monkey [2] and Dynodroid [23]. We also
considered other testing tools for the evaluation, but were not
able to include them for various reasons. Some focus on other
objectives (e.g., A3E [15] focuses on discovering Activities
by covering a model of an app and does not report statement
coverage), while there were practical difficulties with others
(e.g., SwiftHand [17] exits with an exception when used on
our apps).

For answering RQ3, we develop a benchmark-suite that
entails a collection of synthetic apps in different levels of
complexity. To measure apps’ complexity, we use three well-
established complexity metrics from literature, namely Method
Call Sequence Depth, McCabe Cyclomatic Complexity, and
Block Depth per Method. We then measure the impact of input
constraint and complexity on scalability of our technique.

All experiments were conducted on an Apple iMac machine
with 8GB memory and a dual core 2.4GHz processor. We used
Android Virtual Devices (Android emulators) with 1GB RAM
and 2GB SD Card. We used Android 4.4 (KitKat), which at the
time of writing this paper was the latest version of Android.
A fresh emulator was created for each app along with only
default system applications. During the experiments, we used

2Per our study of 100 F-Droid apps, average number of activities for an
app is 4.

EMMA [5] to monitor the statement coverage. The reported
line coverage is gathered by running all of the generated test
cases on each app.

A. Experiment 1: Open-Source Apps
In our first set of experiments, we measured and compared

the source code statement coverage achieved using the test
cases generated by SIG-Droid, Monkey, and Dynodroid. An-
droid Monkey, developed by Google, is essentially a fuzzing
tool that sends random inputs and events to the app under test.
Dynodroid improves on the number of inputs/events Monkey
uses, thus achieves a similar coverage with less generated
events. Since both Dynodroid and Monkey treat both data
widget inputs and events as input events, to achieve a fair
comparison among Android Monkey, Dynodroid, and SIG-
Droid, we ran each tool with the same number of events. To
be more specific, we counted the number of events used in
SIG-Droid generated test cases, and used that number as the
number of inputs for Monkey and Dynodroid. As both Monkey
and Dynodroid are based on random approaches, using the
same low number of events that are generated by SIG-Droid
may not be fair for a comparison. To address that, we also
run both tools with 2,000 input events, which is the maximum
number possible for Dynodroid [23].

The line coverage results are summarized in Table II.3

Column # of Events represents the number of input events
in Robotium test cases generated by SIG-Droid. An event
in a Robotium test case can be either an action, such as a
button click, or entering an input value into a widget like
a text box. The next six columns then represent the line
coverage and the time taken to generate and execute test cases
for SIG-Droid, Monkey, and Dynodroid, given the number of
input events shown in the first column for each app. Columns
Monkey(2000 Events) and Dynodroid(2000 Events) represent
the same information, but when Monkey and Dynodroid are
given 2,000 events.

In terms of the total code covered for each app, SIG-Droid
easily outperforms both Dynodroid and Monkey, achieving
higher coverage for all apps. Given the same number of input
events shown in the first column for each app, SIG-Droid’s
coverage on average outperforms Monkey and Dynodroid by
a 57% and a 41% margin, respectively. Even when the other
tools are allowed to use more events, the code coverage
achieved by them is still clearly outperformed by SIG-Droid’s.
In addition, SIG-Droid runs 2X faster than Dynodroid, and
about 3X slower than Monkey. This is not surprising, given
that Monkey is a completely random testing tool. More specif-
ically, when Monkey traverses a path, it does not backtrack
or use any other systematic way to test the app. Therefore,
Monkey’s test coverage does not considerably improve even
with significantly higher number of input events. In contrast,
SIG-Droid relies on the BM to generate input events, thereby
leads to unique sequences of events that cover nodes captured
in the BM.

Although SIG-Droid performs significantly better than the
two mentioned methods, it fails to achieve complete code
coverage. In some cases this could be due to unreachable

3We could not run Dynodroid on CalAdder and TippyTipper as Dynodroid
runs on Android 2.3 and it does not support apps developed with newer APIs.

TABLE II: Comparison of SIG-Droid with other techniques
App # of SIG-Droid Monkey Dynodroid Monkey(2000 Events) Dynodroid(2000 Events)

Events Coverage Time(sec) Coverage Time(sec) Coverage Time(sec) Coverage Time(sec) Coverage Time(sec)
CalAdder 6 82% 122 10% 37 - - 35% 118 - -

Tipster 35 83% 159 31% 26 53% 462 67% 104 59% 33825
MunchLife 20 74% 186 36% 44 32% 354 49% 75 54% 31421

JustSit 30 75% 137 20% 46 26% 335 35% 163 53% 41252
AnyCut 18 79% 179 6% 58 38% 282 6% 71 66% 21757

TippyTipper 91 78% 484 26% 45 - - 42% 106 - -

code or pieces of code that handle specific events while the
app is running, such as phone unlock. It is also partially
attributed to the fact that the current implementation does
not handle loops in the BM as well as well-known symbolic
execution shortcomings in dealing with non-primitive data-
types. Additionally, our program analysis does not support
all possible ways that Android apps could be developed. For
instance, there are many ways of handing events in Android,
and one of those is through inline class declarations, which we
do not support. In principle by extending the program analysis
and symbolic execution support, we could increase the code
coverage using SIG-Droid. That said, the results show that
SIG-Droid is already significantly more effective than existing
system testing techniques targeted at Android apps.

B. Experiment 2: Benchmark Apps

In practice, symbolic execution is predominantly known to
be suffering from scalability issues caused by problems such
path-explosion [16]. To assess SIG-Droid’s performance and
scalability, we needed a way of selecting benchmark apps that
are nontrivial. Finding real-world apps that fall into a variety
of categories defined by a number of complexity metrics is
nontrivial. As shown previously [30], [31], an effective way
to address this problem is to write benchmark applications
that satisfy the requirements. Similarly, we built an Android
app generator that produces apps with different levels of
complexity for our experiments. These apps provide us with
a controlled environment, i.e., these apps do not contain
features, such as loops in their control flow, that are not
fully supported by symbolic execution tools, including SPF.
By using these apps for benchmarking the performance and
scalability of SIG-Droid, we can remove the impact of such
known limitations and only concentrate on the impact of app
complexity. However, we also needed a way of ensuring the
synthesized apps were representative of real apps.

To that end, we first conducted an empirical study involving
real world apps and analyzed approximately 100 apps chosen
randomly from F-Droid repository [6]. The selected apps
were in various categories, such as education, communication,
gaming, etc. We analyzed these apps according to three
major complexity dimensions that could impact SIG-Droid:
(1) Method Call Sequence Depth — the longest method call
sequence in the app, (2) McCabe Cyclomatic Complexity —
the average number of control flow branches per method,
and (3) Block Depth per Method — the average number of
nested condition statements per method. Figure 5 shows the
distribution of these complexity dimensions among the 100
Android apps from F-Droid. Our app generator is able to
synthesize apps with varying values in these three dimensions.

We then defined complexity classes for generating subject
apps in our experiments. For that, we aggregated the data
collected through our empirical study, as shown in Figure 5,

and produced the overall app complexity classes ranging from
10th to 90th percentile, shown in Table III. For instance, the
10th overall complexity in Table III corresponds to the 10th
percentile in all of the three dimensions shown in Figure 5.
Essentially this means that an app belonging to a lower class
is less complex with respect to all three dimensions compared
to an app from a higher class.

We used SIG-Droid to test one generated app from each
of the nine complexity classes. We evaluated SIG-Droid by
measuring the execution time and the resulting statement
coverage. By conducting this experiment, we were able to
measure the impact of input constraint and complexity on
performance of our technique.

Table III shows the symbolic execution time as well as the
overall execution time, which includes the symbolic execution
time and the time it took to generate and execute the tests. As
one would expect, the increase in the app complexity results
in a modest increase in the symbolic execution time, since
more constraints need to be solved. We also notice an increase
in the overall execution time, due to the higher number of
generated test cases and consequently the time needed for
their execution. The results demonstrate that SIG-Droid is
capable of scaling to even the most complex Android apps.
Although not the focus of this experiment, it corroborates
our earlier assertion that SIG-Droid ’s inability to obtain
complete code coverage in the case of real apps is due to the
existence of unreachable code as well as incomplete model of
app behavior. More advanced program analysis techniques for
obtaining complete model of app behavior could reduce the
gap between SIG-Droid ’s actual code coverage in real apps
and its theoretical potential in synthesized apps.

IX. RELATED WORK

The Android development environment ships with a pow-
erful testing framework [3] that is built on top of JUnit.
Robolectric [9] is another framework that separates the test
cases from the device or emulator and provides the ability to
run the tests directly by referencing the Android library files.
While these frameworks automate the execution of the tests,
the test cases themselves still have to be manually developed.

Prior research [25]–[27], [32], [34] has investigated testing
of traditional event-based systems. These approaches rely on
techniques, such as ripping and crawling, to automatically

TABLE III: Benchmark apps.
App Max Method McCabe Cyclomatic Nested Block Symbolic Exec. Overall Exec.

Call Sequence Complexity/Method Depth/Method Time(sec) Time(sec)
1 15.00 1.6590 1.2929 2 40
2 23.60 1.8506 1.4018 2 37
3 27.10 1.9332 1.4742 4 175
4 32.00 2.0416 1.5216 4 135
5 38.00 2.1945 1.5650 6 30
6 41.40 2.3606 1.6860 5 60
7 50.10 2.5575 1.7761 5 299
8 62.20 2.8956 1.8850 6 596
9 90.80 3.2287 1.9867 6 446

Fig. 5: Android complexity metrics distribution from a random sample of 100 apps.

extract directed graph models. Those models are then used
to generate test sequences. However, data widgets are often
abstracted away in such models. As such, system behaviors
dependent on data values have not been adequately considered.

Barad [19] is perhaps the most closely related work to
ours. It symbolicaly executes a sequence of events to infer
inputs for data components of the GUI. While Barad relies
on a combinatorial technique in generating the sequences of
events, SIG-Droid uses a more efficient algorithm applied to
inferred app models. In addition, Barad does not target An-
droid framework, whose event-driven nature imposes several
research and engineering challenges. More recently, Jensen
et al. [21] proposed an approach that combines symbolic
execution with sequence generation. Their work is concerned
with finding valid sequences and inputs to reach pre-specified
target locations, therefore, does not address the problem that
we address, i.e., the automation of end-to-end system testing
maximizing code coverage, nor is it targeted at Android.

Our research is also related to the approaches described in
[14], [15], [23], [29], [33] for testing Android apps. Among
others, Anand et al. [14] presented an approach based on
concolic testing for generating event sequences for apps. Their
approach only works for testing screen tap events and does
not address the problem of handling user’s input values. A3E
Tool [15] uses static taint analysis capabilities of SCanDroid
[18] to build app models used for test generation, whereas
SIG-Droid analyzes the source code and the associated meta-
data (e.g., Android’s manifest file) to generate such models.
Dynodroid [23], which was used extensively in our evaluation,
uses random values and sequences of events. Dynodroid in-
corporates several heuristics to improve on Android Monkey’s
performance. Another approach, presented in [29] combines
Model-Based testing and Combinatorial Testing. Our work
differs from [29] as we use symbolic execution, which is both
more effective and efficient than combinatorial testing for input
generation, specially in dealing with constraints.

Finally, in our own prior research, we have developed an
evolutionary testing approach, called EvoDroid [24]. Evo-
Droid’s objective is to generate sequences of events using a
genetic algorithm, while SIG-Droid’s objective is to generate
suitable input values for data widgets. Our prior publication
[28] describes the major challenges of symbolically executing
Android apps and provides a high-level sketch of a solution for
solving those challenges. In addition, the solution described
in our prior work was limited to the scope of a particular
Activity, rather than generating system level test inputs. SIG-
Droid extends our prior research by generating system level
inputs using an improved model extraction and subsequently
event sequence generation.

X. CONCLUSION

We have presented SIG-Droid, a novel framework for au-
tomated testing of Android apps. The key contributions of
our work are (1) a fully automated technique for extracting
models of an app’s behavior and interface to support testing,
(2) a symbolic execution engine that supports Android apps,
(3) combining model-based testing with symbolic execution to
systematically generate test inputs for Android apps, and (4)
a supporting framework that generates effective system level
test inputs for Android apps.

Although SIG-Droid has shown to be significantly better
than existing tools for automated testing of Android apps,
there are several avenues of future research and improvement.
Currently we generate the sequence of events through a depth
first search on the BM, which does not guarantee to generate all
possible sequence of events. For instance, consider a situation
in which a particular execution path is taken only when the
same button is clicked several times. Covering such sequences
requires our depth-first search algorithm to include loops in
its search for all unique sequences of events, the space for
which is infinite. In our previous [24], we have developed
an evolutionary testing technique for Android apps to support
generation of more complex sequences. We plan to use both
techniques in tandem to complement the shortcomings of each.
The symbolic execution engine presented in this paper will be
used to solve the constraints in the code, while the proposed
evolutionary algorithm will be used to find sequences that
reach a particular location in code.

SIG-Droid currently only focuses on generating values for
GUI data-input widgets. In our future work, we plan to extend
SIG-Droid for symbolically reasoning about other types of
input, such as system inputs. In addition, expanding support
for Android libraries through the development of additional
stubs and mock classes requires significant manual engineering
effort; hence, we plan to investigate possible techniques to
automate this process. Finally, we are enhancing SIG-Droid’s
program analysis to support inline declaration of event han-
dlers to generate more accurate model of app behavior.

XI. ACKNOWLEDGMENTS

We would like to thank Corina Pasareanu from NASA
Ames Research Center for assisting us with making changes
to the Symbolic PathFinder, as well as Aravind Machiry
and Mayur Naik from Georgia Tech for assisting us with
the setup of Dynodroid. This work was supported in part
by awards D11AP00282 from the US Defense Advanced
Research Projects Agency, H98230-14-C-0140 from the US
National Security Agency, HSHQDC-14-C-B0040 from the
US Department of Homeland Security, and CCF-1550206
from the US National Science Foundation.

REFERENCES

[1] Android developers guide. http://developer.android.com/guide/topics/
fundamentals.html

[2] Android monkey. http://developer.android.com/guide/developing/tools/
monkey.html

[3] Android testing framework. http://developer.android.com/guide/topics/
testing/index.html

[4] Dalvik - code and documentation from android’s VM team.
http://code.google.com/p/dalvik/

[5] EMMA. http://emma.sourceforge.net/
[6] F-droid. https://f-droid.org/
[7] Java PathFinder. http://babelfish.arc.nasa.gov/trac/jpf/
[8] MoDisco. http://www.eclipse.org/MoDisco/
[9] Robolectric. http://pivotal.github.com/robolectric/

[10] Robotium. http://code.google.com/p/robotium/
[11] Symbolic PathFinder. http://babelfish.arc.nasa.gov/trac/jpf/wiki/projects/

jpf-symbc
[12] D. Amalfitano, A. R. Fasolino, P. Tramontana, S. De Carmine, and

A. M. Memon, “Using gui ripping for automated testing of android
applications,” in Proceedings of the 27th IEEE/ACM International
Conference on Automated Software Engineering, ser. ASE 2012, 2012.

[13] S. Anand, “Techniques to facilitate symbolic execution of real-world
programs,” Ph.D., Georgia Institute of Technology, 2012.

[14] S. Anand, M. Naik, M. J. Harrold, and H. Yang, “Automated concolic
testing of smartphone apps,” in Proceedings of the ACM SIGSOFT 20th
Int. Symp. on the Foundations of Software Eng., ser. FSE ’12, 2012.

[15] T. Azim and I. Neamtiu, “Targeted and depth-first exploration for
systematic testing of android apps,” in Proceedings of the 2013 ACM
SIGPLAN Int. Conf. on Object Oriented Programming Systems Lan-
guages & Apps., ser. OOPSLA ’13, 2013.

[16] C. Cadar et al., “Symbolic execution for software testing in practice:
preliminary assessment,” in Proceedings of the 33rd International Con-
ference on Software Engineering. ACM, 2011.

[17] W. Choi, G. Necula, and K. Sen, “Guided gui testing of android
apps with minimal restart and approximate learning,” in Proceedings of
the 2013 ACM SIGPLAN Int. Conf. on Object Oriented Programming
Systems Languages & Applications, ser. OOPSLA ’13, 2013.

[18] A. P. Fuchs, A. Chaudhuri, and J. S. Foster, “Scandroid: Automated
security certification of android applications,” Dept. of Comp. Science,
University of Maryland, College Park, Tech. Rep. CS-TR-4991, Nov
2009.

[19] S. Ganov, C. Killmar, S. Khurshid, and D. E. Perry, “Event listener anal-
ysis and symbolic execution for testing gui applications,” in Proceedings
of the 11th Int. Conf. on Formal Engineering Methods: Formal Methods
and Software Engineering, ser. ICFEM ’09, 2009.

[20] C. Hu and I. Neamtiu, “Automating gui testing for android applications,”
in Proceedings of the 6th Int. Workshop on Automation of Software Test,
ser. AST ’11, 2011.

[21] C. S. Jensen, M. R. Prasad, and A. Møller, “Automated testing with
targeted event sequence generation,” in Proceedings of the 2013 Int.
Symp. on Software Testing and Analysis, ser. ISSTA 2013, 2013.

[22] J. C. King, “A new approach to program testing,” in Proceedings of the
International Conference on Reliable Software, 1975.

[23] A. Machiry, R. Tahiliani, and M. Naik, “Dynodroid: An input generation
system for android apps,” in Proceedings of the 2013 9th Joint Meeting
on Foundations of Softw. Eng., ser. ESEC/FSE 2013, 2013.

[24] R. Mahmood, N. Mirzaei, and S. Malek, “Evodroid: Segmented evo-
lutionary testing of android apps,” in Proceedings of the 2014 ACM
SIGSOFT International Symposium on Foundations of Software Engi-
neering, ser. FSE ’14, November 2014.

[25] L. Mariani, M. Pezze, O. Riganelli, and M. Santoro, “Autoblacktest:
Automatic black-box testing of interactive applications,” in Software
Testing, Verification and Validation (ICST), 2012 IEEE Fifth Interna-
tional Conference on, April 2012.

[26] A. Memon, I. Banerjee, and A. Nagarajan, “Gui ripping: Reverse
engineering of graphical user interfaces for testing,” in Proceedings of
the 10th Working Conf. on Reverse Eng., ser. WCRE ’03, 2003.

[27] A. M. Memon, M. E. Pollack, and M. L. Soffa, “Automated test oracles
for guis,” in Proceedings of the 8th ACM SIGSOFT Int. Symp. on
Foundations of Software Engineering: Twenty-first Century Applications,
ser. SIGSOFT ’00/FSE-8, 2000.

[28] N. Mirzaei, S. Malek, C. S. Păsăreanu, N. Esfahani, and R. Mahmood,
“Testing android apps through symbolic execution,” SIGSOFT Softw.
Eng. Notes, vol. 37, no. 6, Nov. 2012.

[29] C. D. Nguyen, A. Marchetto, and P. Tonella, “Combining model-
based and combinatorial testing for effective test case generation,” in
Proceedings of the 2012 Int. Symp. on Software Testing and Analysis,
ser. ISSTA 2012, 2012.

[30] S. Park et al., “Carfast: achieving higher statement coverage faster,” in
Proceedings of the ACM SIGSOFT 20th Int. Symp. on the Foundations
of Software Engineering. ACM, 2012.

[31] D. R. Slutz, “Massive stochastic testing of sql,” in VLDB. Citeseer,
1998.

[32] L. White and H. Almezen, “Generating test cases for gui responsibilities
using complete interaction sequences,” in Proceedings of 11th Int. Symp.
on Software Reliability Engineering, (ISSRE) 2000., 2000.

[33] W. Yang, M. R. Prasad, and T. Xie, “A grey-box approach for automated
gui-model generation of mobile applications,” in Proceedings of the 16th
Int. Conf. on Fundamental Approaches to Software Engineering, ser.
FASE’13, 2013.

[34] X. Yuan and A. M. Memon, “Generating event sequence-based test cases
using gui runtime state feedback,” IEEE Trans. Softw. Eng., vol. 36,
no. 1, Jan. 2010.

<<
 /ASCII85EncodePages false
 /AllowTransparency false
 /AutoPositionEPSFiles false
 /AutoRotatePages /None
 /Binding /Left
 /CalGrayProfile (Gray Gamma 2.2)
 /CalRGBProfile (sRGB IEC61966-2.1)
 /CalCMYKProfile (U.S. Web Coated \050SWOP\051 v2)
 /sRGBProfile (sRGB IEC61966-2.1)
 /CannotEmbedFontPolicy /Warning
 /CompatibilityLevel 1.4
 /CompressObjects /Off
 /CompressPages true
 /ConvertImagesToIndexed true
 /PassThroughJPEGImages true
 /CreateJobTicket false
 /DefaultRenderingIntent /Default
 /DetectBlends true
 /DetectCurves 0.0000
 /ColorConversionStrategy /LeaveColorUnchanged
 /DoThumbnails false
 /EmbedAllFonts true
 /EmbedOpenType false
 /ParseICCProfilesInComments true
 /EmbedJobOptions true
 /DSCReportingLevel 0
 /EmitDSCWarnings false
 /EndPage -1
 /ImageMemory 1048576
 /LockDistillerParams true
 /MaxSubsetPct 100
 /Optimize false
 /OPM 0
 /ParseDSCComments false
 /ParseDSCCommentsForDocInfo false
 /PreserveCopyPage true
 /PreserveDICMYKValues true
 /PreserveEPSInfo false
 /PreserveFlatness true
 /PreserveHalftoneInfo true
 /PreserveOPIComments false
 /PreserveOverprintSettings true
 /StartPage 1
 /SubsetFonts false
 /TransferFunctionInfo /Remove
 /UCRandBGInfo /Preserve
 /UsePrologue false
 /ColorSettingsFile ()
 /AlwaysEmbed [true
 /Arial-Black
 /Arial-BoldItalicMT
 /Arial-BoldMT
 /Arial-ItalicMT
 /ArialMT
 /ArialNarrow
 /ArialNarrow-Bold
 /ArialNarrow-BoldItalic
 /ArialNarrow-Italic
 /ArialUnicodeMS
 /BookAntiqua
 /BookAntiqua-Bold
 /BookAntiqua-BoldItalic
 /BookAntiqua-Italic
 /BookmanOldStyle
 /BookmanOldStyle-Bold
 /BookmanOldStyle-BoldItalic
 /BookmanOldStyle-Italic
 /BookshelfSymbolSeven
 /Century
 /CenturyGothic
 /CenturyGothic-Bold
 /CenturyGothic-BoldItalic
 /CenturyGothic-Italic
 /CenturySchoolbook
 /CenturySchoolbook-Bold
 /CenturySchoolbook-BoldItalic
 /CenturySchoolbook-Italic
 /ComicSansMS
 /ComicSansMS-Bold
 /CourierNewPS-BoldItalicMT
 /CourierNewPS-BoldMT
 /CourierNewPS-ItalicMT
 /CourierNewPSMT
 /EstrangeloEdessa
 /FranklinGothic-Medium
 /FranklinGothic-MediumItalic
 /Garamond
 /Garamond-Bold
 /Garamond-Italic
 /Gautami
 /Georgia
 /Georgia-Bold
 /Georgia-BoldItalic
 /Georgia-Italic
 /Haettenschweiler
 /Impact
 /Kartika
 /Latha
 /LetterGothicMT
 /LetterGothicMT-Bold
 /LetterGothicMT-BoldOblique
 /LetterGothicMT-Oblique
 /LucidaConsole
 /LucidaSans
 /LucidaSans-Demi
 /LucidaSans-DemiItalic
 /LucidaSans-Italic
 /LucidaSansUnicode
 /Mangal-Regular
 /MicrosoftSansSerif
 /MonotypeCorsiva
 /MSReferenceSansSerif
 /MSReferenceSpecialty
 /MVBoli
 /PalatinoLinotype-Bold
 /PalatinoLinotype-BoldItalic
 /PalatinoLinotype-Italic
 /PalatinoLinotype-Roman
 /Raavi
 /Shruti
 /Sylfaen
 /SymbolMT
 /Tahoma
 /Tahoma-Bold
 /TimesNewRomanMT-ExtraBold
 /TimesNewRomanPS-BoldItalicMT
 /TimesNewRomanPS-BoldMT
 /TimesNewRomanPS-ItalicMT
 /TimesNewRomanPSMT
 /Trebuchet-BoldItalic
 /TrebuchetMS
 /TrebuchetMS-Bold
 /TrebuchetMS-Italic
 /Tunga-Regular
 /Verdana
 /Verdana-Bold
 /Verdana-BoldItalic
 /Verdana-Italic
 /Vrinda
 /Webdings
 /Wingdings2
 /Wingdings3
 /Wingdings-Regular
 /ZWAdobeF
]
 /NeverEmbed [true
]
 /AntiAliasColorImages false
 /CropColorImages true
 /ColorImageMinResolution 200
 /ColorImageMinResolutionPolicy /OK
 /DownsampleColorImages true
 /ColorImageDownsampleType /Bicubic
 /ColorImageResolution 300
 /ColorImageDepth -1
 /ColorImageMinDownsampleDepth 1
 /ColorImageDownsampleThreshold 1.50000
 /EncodeColorImages true
 /ColorImageFilter /DCTEncode
 /AutoFilterColorImages false
 /ColorImageAutoFilterStrategy /JPEG
 /ColorACSImageDict <<
 /QFactor 0.76
 /HSamples [2 1 1 2] /VSamples [2 1 1 2]
 >>
 /ColorImageDict <<
 /QFactor 0.76
 /HSamples [2 1 1 2] /VSamples [2 1 1 2]
 >>
 /JPEG2000ColorACSImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 15
 >>
 /JPEG2000ColorImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 15
 >>
 /AntiAliasGrayImages false
 /CropGrayImages true
 /GrayImageMinResolution 200
 /GrayImageMinResolutionPolicy /OK
 /DownsampleGrayImages true
 /GrayImageDownsampleType /Bicubic
 /GrayImageResolution 300
 /GrayImageDepth -1
 /GrayImageMinDownsampleDepth 2
 /GrayImageDownsampleThreshold 1.50000
 /EncodeGrayImages true
 /GrayImageFilter /DCTEncode
 /AutoFilterGrayImages false
 /GrayImageAutoFilterStrategy /JPEG
 /GrayACSImageDict <<
 /QFactor 0.76
 /HSamples [2 1 1 2] /VSamples [2 1 1 2]
 >>
 /GrayImageDict <<
 /QFactor 0.76
 /HSamples [2 1 1 2] /VSamples [2 1 1 2]
 >>
 /JPEG2000GrayACSImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 15
 >>
 /JPEG2000GrayImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 15
 >>
 /AntiAliasMonoImages false
 /CropMonoImages true
 /MonoImageMinResolution 400
 /MonoImageMinResolutionPolicy /OK
 /DownsampleMonoImages true
 /MonoImageDownsampleType /Bicubic
 /MonoImageResolution 600
 /MonoImageDepth -1
 /MonoImageDownsampleThreshold 1.50000
 /EncodeMonoImages true
 /MonoImageFilter /CCITTFaxEncode
 /MonoImageDict <<
 /K -1
 >>
 /AllowPSXObjects false
 /CheckCompliance [
 /None
]
 /PDFX1aCheck false
 /PDFX3Check false
 /PDFXCompliantPDFOnly false
 /PDFXNoTrimBoxError true
 /PDFXTrimBoxToMediaBoxOffset [
 0.00000
 0.00000
 0.00000
 0.00000
]
 /PDFXSetBleedBoxToMediaBox true
 /PDFXBleedBoxToTrimBoxOffset [
 0.00000
 0.00000
 0.00000
 0.00000
]
 /PDFXOutputIntentProfile (None)
 /PDFXOutputConditionIdentifier ()
 /PDFXOutputCondition ()
 /PDFXRegistryName ()
 /PDFXTrapped /False

 /CreateJDFFile false
 /Description <<
 /CHS <FEFF4f7f75288fd94e9b8bbe5b9a521b5efa7684002000410064006f006200650020005000440046002065876863900275284e8e55464e1a65876863768467e5770b548c62535370300260a853ef4ee54f7f75280020004100630072006f0062006100740020548c002000410064006f00620065002000520065006100640065007200200035002e003000204ee553ca66f49ad87248672c676562535f00521b5efa768400200050004400460020658768633002>
 /CHT <FEFF4f7f752890194e9b8a2d7f6e5efa7acb7684002000410064006f006200650020005000440046002065874ef69069752865bc666e901a554652d965874ef6768467e5770b548c52175370300260a853ef4ee54f7f75280020004100630072006f0062006100740020548c002000410064006f00620065002000520065006100640065007200200035002e003000204ee553ca66f49ad87248672c4f86958b555f5df25efa7acb76840020005000440046002065874ef63002>
 /DAN <FEFF004200720075006700200069006e0064007300740069006c006c0069006e006700650072006e0065002000740069006c0020006100740020006f007000720065007400740065002000410064006f006200650020005000440046002d0064006f006b0075006d0065006e007400650072002c0020006400650072002000650067006e006500720020007300690067002000740069006c00200064006500740061006c006a006500720065007400200073006b00e60072006d007600690073006e0069006e00670020006f00670020007500640073006b007200690076006e0069006e006700200061006600200066006f0072007200650074006e0069006e006700730064006f006b0075006d0065006e007400650072002e0020004400650020006f007000720065007400740065006400650020005000440046002d0064006f006b0075006d0065006e0074006500720020006b0061006e002000e50062006e00650073002000690020004100630072006f00620061007400200065006c006c006500720020004100630072006f006200610074002000520065006100640065007200200035002e00300020006f00670020006e0079006500720065002e>
 /DEU <FEFF00560065007200770065006e00640065006e0020005300690065002000640069006500730065002000450069006e007300740065006c006c0075006e00670065006e0020007a0075006d002000450072007300740065006c006c0065006e00200076006f006e002000410064006f006200650020005000440046002d0044006f006b0075006d0065006e00740065006e002c00200075006d002000650069006e00650020007a0075007600650072006c00e40073007300690067006500200041006e007a006500690067006500200075006e00640020004100750073006700610062006500200076006f006e00200047006500730063006800e40066007400730064006f006b0075006d0065006e00740065006e0020007a0075002000650072007a00690065006c0065006e002e00200044006900650020005000440046002d0044006f006b0075006d0065006e007400650020006b00f6006e006e0065006e0020006d006900740020004100630072006f00620061007400200075006e0064002000520065006100640065007200200035002e003000200075006e00640020006800f600680065007200200067006500f600660066006e00650074002000770065007200640065006e002e>
 /ESP <FEFF005500740069006c0069006300650020006500730074006100200063006f006e0066006900670075007200610063006900f3006e0020007000610072006100200063007200650061007200200064006f00630075006d0065006e0074006f0073002000640065002000410064006f00620065002000500044004600200061006400650063007500610064006f007300200070006100720061002000760069007300750061006c0069007a00610063006900f3006e0020006500200069006d0070007200650073006900f3006e00200064006500200063006f006e006600690061006e007a006100200064006500200064006f00630075006d0065006e0074006f007300200063006f006d00650072006300690061006c00650073002e002000530065002000700075006500640065006e00200061006200720069007200200064006f00630075006d0065006e0074006f00730020005000440046002000630072006500610064006f007300200063006f006e0020004100630072006f006200610074002c002000410064006f00620065002000520065006100640065007200200035002e003000200079002000760065007200730069006f006e0065007300200070006f00730074006500720069006f007200650073002e>
 /FRA <FEFF005500740069006c006900730065007a00200063006500730020006f007000740069006f006e00730020006100660069006e00200064006500200063007200e900650072002000640065007300200064006f00630075006d0065006e00740073002000410064006f006200650020005000440046002000700072006f00660065007300730069006f006e006e0065006c007300200066006900610062006c0065007300200070006f007500720020006c0061002000760069007300750061006c00690073006100740069006f006e0020006500740020006c00270069006d007000720065007300730069006f006e002e0020004c0065007300200064006f00630075006d0065006e00740073002000500044004600200063007200e900e90073002000700065007500760065006e0074002000ea0074007200650020006f007500760065007200740073002000640061006e00730020004100630072006f006200610074002c002000610069006e00730069002000710075002700410064006f00620065002000520065006100640065007200200035002e0030002000650074002000760065007200730069006f006e007300200075006c007400e90072006900650075007200650073002e>
 /ITA (Utilizzare queste impostazioni per creare documenti Adobe PDF adatti per visualizzare e stampare documenti aziendali in modo affidabile. I documenti PDF creati possono essere aperti con Acrobat e Adobe Reader 5.0 e versioni successive.)
 /JPN <FEFF30d330b830cd30b9658766f8306e8868793a304a3088307353705237306b90693057305f002000410064006f0062006500200050004400460020658766f8306e4f5c6210306b4f7f75283057307e305930023053306e8a2d5b9a30674f5c62103055308c305f0020005000440046002030d530a130a430eb306f3001004100630072006f0062006100740020304a30883073002000410064006f00620065002000520065006100640065007200200035002e003000204ee5964d3067958b304f30533068304c3067304d307e305930023053306e8a2d5b9a3067306f30d530a930f330c8306e57cb30818fbc307f3092884c3044307e30593002>
 /KOR <FEFFc7740020c124c815c7440020c0acc6a9d558c5ec0020be44c988b2c8c2a40020bb38c11cb97c0020c548c815c801c73cb85c0020bcf4ace00020c778c1c4d558b2940020b3700020ac00c7a50020c801d569d55c002000410064006f0062006500200050004400460020bb38c11cb97c0020c791c131d569b2c8b2e4002e0020c774b807ac8c0020c791c131b41c00200050004400460020bb38c11cb2940020004100630072006f0062006100740020bc0f002000410064006f00620065002000520065006100640065007200200035002e00300020c774c0c1c5d0c11c0020c5f40020c2180020c788c2b5b2c8b2e4002e>
 /NLD (Gebruik deze instellingen om Adobe PDF-documenten te maken waarmee zakelijke documenten betrouwbaar kunnen worden weergegeven en afgedrukt. De gemaakte PDF-documenten kunnen worden geopend met Acrobat en Adobe Reader 5.0 en hoger.)
 /NOR <FEFF004200720075006b00200064006900730073006500200069006e006e007300740069006c006c0069006e00670065006e0065002000740069006c002000e50020006f0070007000720065007400740065002000410064006f006200650020005000440046002d0064006f006b0075006d0065006e00740065007200200073006f006d002000650072002000650067006e0065007400200066006f00720020007000e5006c006900740065006c006900670020007600690073006e0069006e00670020006f00670020007500740073006b007200690066007400200061007600200066006f0072007200650074006e0069006e006700730064006f006b0075006d0065006e007400650072002e0020005000440046002d0064006f006b0075006d0065006e00740065006e00650020006b0061006e002000e50070006e00650073002000690020004100630072006f00620061007400200065006c006c00650072002000410064006f00620065002000520065006100640065007200200035002e003000200065006c006c00650072002e>
 /PTB <FEFF005500740069006c0069007a006500200065007300730061007300200063006f006e00660069006700750072006100e700f50065007300200064006500200066006f0072006d00610020006100200063007200690061007200200064006f00630075006d0065006e0074006f0073002000410064006f00620065002000500044004600200061006400650071007500610064006f00730020007000610072006100200061002000760069007300750061006c0069007a006100e700e3006f002000650020006100200069006d0070007200650073007300e3006f00200063006f006e0066006900e1007600650069007300200064006500200064006f00630075006d0065006e0074006f007300200063006f006d0065007200630069006100690073002e0020004f007300200064006f00630075006d0065006e0074006f00730020005000440046002000630072006900610064006f007300200070006f00640065006d0020007300650072002000610062006500720074006f007300200063006f006d0020006f0020004100630072006f006200610074002000650020006f002000410064006f00620065002000520065006100640065007200200035002e0030002000650020007600650072007300f50065007300200070006f00730074006500720069006f007200650073002e>
 /SUO <FEFF004b00e40079007400e40020006e00e40069007400e4002000610073006500740075006b007300690061002c0020006b0075006e0020006c0075006f0074002000410064006f0062006500200050004400460020002d0064006f006b0075006d0065006e007400740065006a0061002c0020006a006f0074006b006100200073006f0070006900760061007400200079007200690074007900730061007300690061006b00690072006a006f006a0065006e0020006c0075006f00740065007400740061007600610061006e0020006e00e400790074007400e4006d0069007300650065006e0020006a0061002000740075006c006f007300740061006d0069007300650065006e002e0020004c0075006f0064007500740020005000440046002d0064006f006b0075006d0065006e00740069007400200076006f0069006400610061006e0020006100760061007400610020004100630072006f0062006100740069006c006c00610020006a0061002000410064006f00620065002000520065006100640065007200200035002e0030003a006c006c00610020006a006100200075007500640065006d006d0069006c006c0061002e>
 /SVE <FEFF0041006e007600e4006e00640020006400650020006800e4007200200069006e0073007400e4006c006c006e0069006e006700610072006e00610020006f006d002000640075002000760069006c006c00200073006b006100700061002000410064006f006200650020005000440046002d0064006f006b0075006d0065006e007400200073006f006d00200070006100730073006100720020006600f60072002000740069006c006c006600f60072006c00690074006c006900670020007600690073006e0069006e00670020006f006300680020007500740073006b007200690066007400650072002000610076002000610066006600e4007200730064006f006b0075006d0065006e0074002e002000200053006b006100700061006400650020005000440046002d0064006f006b0075006d0065006e00740020006b0061006e002000f600700070006e00610073002000690020004100630072006f0062006100740020006f00630068002000410064006f00620065002000520065006100640065007200200035002e00300020006f00630068002000730065006e006100720065002e>
 /ENU (Use these settings to create PDFs that match the "Required" settings for PDF Specification 4.01)
 >>
>> setdistillerparams
<<
 /HWResolution [600 600]
 /PageSize [612.000 792.000]
>> setpagedevice

