
Analysis of Android Inter-App Security
Vulnerabilities Using COVERT

Alireza Sadeghi
Department of Computer Science

George Mason University
Fairfax, Virginia, USA

asadeghi@gmu.edu

Hamid Bagheri
Department of Computer Science

George Mason University
Fairfax, Virginia, USA

hbagheri@gmu.edu

Sam Malek
Department of Computer Science

George Mason University
Fairfax, Virginia, USA

smalek@gmu.edu

Abstract—The state-of-the-art in securing mobile software
systems are substantially intended to detect and mitigate vulner-
abilities in a single app, but fail to identify vulnerabilities that
arise due to the interaction of multiple apps, such as collusion
attacks and privilege escalation chaining, shown to be quite
common in the apps on the market. This paper demonstrates
COVERT, a novel approach and accompanying tool-suite that
relies on a hybrid static analysis and lightweight formal analysis
technique to enable compositional security assessment of complex
software. Through static analysis of Android application pack-
ages, it extracts relevant security specifications in an analyzable
formal specification language, and checks them as a whole for
inter-app vulnerabilities. To our knowledge, COVERT is the
first formally-precise analysis tool for automated compositional
analysis of Android apps. Our study of hundreds of Android
apps revealed dozens of inter-app vulnerabilities, many of which
were previously unknown. A video highlighting the main features
of the tool can be found at: http://youtu.be/bMKk7OW7dGg.

I. INTRODUCTION

The ubiquity of smartphones and our growing reliance on
mobile apps are leaving us more vulnerable to cyber security
attacks than ever before. In this context, smartphone platforms,
and in particular Android, have emerged as a topic du jour
for security research. These research efforts have investigated
weaknesses from various perspectives, including detection of
information leaks, analysis of the least-privilege principle, and
enhancements to Android protection mechanisms.

Despite the significant progress, such security techniques
are substantially intended to detect and mitigate vulnerabilities
in a single app, but fail to identify vulnerabilities that arise
due to the interaction of multiple apps. Vulnerabilities due
to the interaction of multiple apps, such as collusion attacks
and privilege escalation chaining [21], cannot be detected by
techniques that analyze a single app in isolation. Thus, there is
a pressing need for security analysis techniques in such rapidly
growing domains to become compositional in nature.

To address this state of affairs, this paper contributes a novel
tool for compositional analysis of Android inter-app vulnera-
bilities, which extends and implements our previous work [1].
COVERT combines static analysis with formal analysis tech-
niques to enable compositional security assessment of complex
software. Through static analysis of application packages, it
extracts relevant security specifications in a format suitable for
formal analysis. Given a collection of specifications extracted

Fig. 1. A malicious app exploits the vulnerabilities of two other apps to send
the device location data to the desirable phone number

in this way, a formal analysis engine (e.g., model checker)
is then used to verify whether it is safe for a combination
of applications—holding certain permissions and potentially
interacting with each other—to be installed simultaneously.

COVERT further advances the current practices in assessing
the inter-application vulnerabilities by providing the analysts
with information that is significantly more useful than that pro-
vided by existing techniques (e.g., Fortify and IBM AppScan)
that analyze the source code of an application in isolation. Our
experiences with COVERT and its evaluation in the context of
hundreds of real-world Android apps, collected from variety of
repositories, corroborate its ability to find dozens of inter-app
vulnerabilities, many of which were previously unknown.

The rest of this paper describes our analysis method, its
implementation, and a summary of related work discussion.

II. MOTIVATING EXAMPLE

To motivate the research and illustrate our tool, we provide
an example of a vulnerability pattern having to do with Inter-
Process Communication (IPC) among Android apps. Android
provides a flexible model of IPC using a type of application-
level message known as Intent. A typical app is comprised of
multiple processes (e.g., Activity, Service) that communicate
using Intent messages. In addition, an app’s processes could
send Intent messages to another app’s processes to perform
actions (e.g., take picture, send text message, etc.). As an
example, Figure 1 partially shows a bundle of two benign,
yet vulnerable apps, installed together on a device.



Fig. 2. COVERT’s Overall Architecture.

App1 is a Weather application that first accesses the device
location (GPS data), and then sends it to another component
of the app via Intra-app Intent messaging. The Action field
of the Intent is used as an address instead of explicitly
addressing the Intent. This represents a common practice
among Android developers [2], yet an anti-pattern that may
lead to unauthorized Intent receipt.

A second vulnerability is in the Messenger app, where Mes-
sageSender uses system-level API SmsManager, resulting in
a message to be sent to the phone number previously retrieved
from the Intent. Although this app has the permission for SMS
service, it fails to ensure that the sender of the original Intent
message also has the permission.

Given these vulnerabilities, a malicious app can send the
device location data to the desirable phone number via text
message, without the need for any permission. As shown in
Figure 1, the malicious app, first hijacks the Intents containing
the device location info from the first app. Then, it sends a
fake Intent to the second app, containing the GPS data and
adversary phone number as the payload. While the example of
Figure 1 shows exploitation of vulnerabilities in components
from two apps, in general, a similar attack may occur by
exploiting the vulnerabilities in components of either single
app or multiple apps.

The above example points to one of the most challenging
issues in Android security, i.e., detection of compositional
vulnerabilities. What is required is a system-level analysis
capability that (1) identifies the vulnerabilities and capabilities
in individual apps, and (2) determines how those individual
vulnerabilities and capabilities could affect one another when
the corresponding apps are installed together. In the next
section, we introduce COVERT that addresses these issues.

III. COVERT TOOL

To automatically detect the vulnerabilities that occur due to
the interaction of a bundle of apps, we implemented COVERT
tool. The input of the tool is a set of Android application
package archives (APK files), and the output is a list of
vulnerabilities identified in the app bundle.

As illustrated in Figure 2, COVERT tool is implemented in
two layers: the back-end that performs analysis on the apps to
find potential vulnerabilities, and the front-end that provides
an interactive environment intended for use by the end users.
This section describes the details of COVERT’s components.

A. Back-end

The main components of COVERT tool that analyze the apps
to detect security vulnerability issues are implemented in the
back-end layer. As depicted in Figure 2, this layer consists of
two modules: Model Extractor that leverages static analysis
techniques to automatically extract an abstract formal model
of Android apps, and Formal Analyzer that is intended to use
lightweight formal analysis techniques to find vulnerabilities
in the extracted app models.

1) Model Extractor: In order to automatically analyze
vulnerabilities, COVERT first needs to extract a model of each
app’s behavior to reason about its security properties. In our
approach, an app model is composed of the information ex-
tracted from two sources: manifest file and bytecode, which are
processed by our Architecture Extractor and Static Analyzer
modules, respectively.

Architecture Extractor examines the decoded manifest to
capture the high-level architectural information of the appli-
cation, including its components, their types, permissions that
the app requires, and permissions enforced by each component
that the other apps must have in order to interact with that com-
ponent. Architecture Extractor also identifies public interfaces
exposed by each application, which are entry points defined
in the manifest file through Intent Filters of components.

After collecting architectural information Static Analyzer
then extracts complementary information latent in the appli-
cation bytecode. This additional information, such as Intent
creation and transmission, are necessary for detecting inter-
application vulnerabilities. For this purpose, COVERT utilizes
different static analysis techniques to extract other essential
information from the application bytecode. These techniques
are briefly described as follows:

Intent Extraction: Intents are a special kind of event mes-
sages provided by Android to facilitate communication be-
tween application components. Intent messages can be used
for both inter- and intra-app communications, and are thus
essential information for security analysis. COVERT relies on
inter-procedural data flow analysis [3] to extract the Intent
information, including the sender component, the possible
recipient component (in case explicitly specified), and also the
Intent’s Action, Data and Categories specifying the general
action to be performed, additional information about the data
to be processed by the action, and the kind of component that
should handle the Intent, respectively.

Path Extraction: Existence of paths from sensitive data to
statements that send it out, may cause privacy leaks. Such
a path may occur within the scope of a single component
or across multiple components. COVERT analyzes the app
using static taint analysis technique to track sensitive data
flow tuples 〈Source, Sink〉. To achieve a high precision in



1 sig GeneratedIntentHijack{
2 disj vulCmp, malCmp: Component, vulIntent:Intent,
3 disj vulPath, malPath:DetailedPath }{
4 vulIntent.sender = vulCmp & no vulIntent.component
5 malCmp in intentResolver[vulIntent] & no vulCmp.app & malCmp.app
6 vulCmp.app in existingApps.apps & not (malCmp.app in existingApps.apps)
7 vulPath in vulIntent.detailedPaths
8 vulPath.sink = IPC & vulPath.source in SensitiveSources
9 malCmp.detailedPaths = malPath & malPath.source = IPC

10 malPath.sink in SensitiveSinks }

Listing 1. Alloy specifications of Intent Hijack vulnerability in Android.

data flow analysis, COVERT’s analysis is flow-, field-, and
context-sensitive, meaning that it distinguishes a variable’s
values between different program points, distinguishes be-
tween different fields of a heap object, and that in analysis of
method calls is sensitive to their calling contexts, respectively.
In the interest of scalability, the analysis, however, is not path-
sensitive. For single component taint analysis, COVERT relies
on FlowDroid [4], but for analyzing sensitive data paths across
components, it performs a formal, compositional analysis,
discussed in Section III-A2.

Permission Extraction: To ensure the permission policies
are preserved during an inter-component communication, one
should compare the granted permissions of the caller com-
ponent against the enforced permissions at the callee com-
ponent side. Therefore, the permissions actually used by
each component should be determined. In doing so, COVERT
relies on API permission maps available in the literature,
and in particular the PScout permission map [5], one of the
most recently updated and comprehensive permission maps
available for the Android framework. API permission maps
specify mappings between Android API calls/Intents and the
permissions required to perform those calls.

2) Formal Analyzer: COVERT relies on lightweight formal
analysis techniques, and in particular Alloy [6] for modeling
and analysis purposes. Alloy [6] is a formal specification
language based on first order logic, optimized for automated
analysis. The Formal Model Generator module of the Formal
Analyzer first translates the set of app models extracted
by Model Extractor into the Alloy specification language.
Formal models are then combined together with a formal
specification of the application framework, and checked as a
whole for vulnerabilities that occur due to the interaction of
apps comprising a system. For this purpose, COVERT uses the
Aluminum [7] extension of the Alloy Analyzer as the analysis
engine. The analysis is conducted by exhaustive enumeration
over a bounded scope of model instances. Here, the exact
scope of each element, such as Application and Activity, re-
quired to instantiate each vulnerability is automatically derived
from the specification.

To perform the compositional analysis on a set of formal
models, we designed specific Alloy signatures that model a set
of security properties required to be checked. These signatures
express properties that are expected to hold in the extracted
specifications. Listing 1, for example, expresses the Intent
Hijack signature. In short, the signature states that an implicit

Intent (vulIntent) containing sensitive data retrieved from
a sensitive source at a vulnerable component (vulCmp) could
be hijacked by a malicious component (malCmp) that leaks
this data through a sensitive sink. If a signature is satisfied,
the analyzer reports it as a vulnerability, along with the
information useful in finding the root cause of the violation.

Finally, the Vulnerability Model Generator module (recall
Figure 2) refines and translates the Alloy solver results to the
verification report, which is returned to the user with the detail
specification of each detected vulnerability. More details on
COVERT’s back-end are described in [1].

B. Front-end

In order to facilitate the end-user interactions with COVERT
back-end engine, we implemented client applications for
different platforms: Desktop Application, which is a stand-
alone tool that calls back-end components and visualizes the
generated results. Mobile and Web-based applications that
work together to analyze the installed apps in a mobile device
and show the vulnerability report on web browsers.

Desktop Client is a JavaFX [8] application that provides a
graphical user interface and enables end-users to analyze a set
of APK files, which could be downloaded from online app
stores such as Google Play or grabbed from their own mobile
devices using adb [9] tool. The features of this application,
which is available in COVERT’s web page [10], are described
in more detail at the end of this Section.

As an alternative client support, Mobile and Web-based
applications work together to analyze the installed apps in a
mobile device and generate the vulnerability report, without
the need for directly providing the app bundles to the back-
end engine. Mobile app, on the one hand, runs on a mobile
device and retrieves the information of installed apps on the
same device, including the package name, and the version
code. This information, along with the device’s identifier, are
then sent to the back-end server, where the identified apps are
downloaded and analyzed. On the other hand, the user can
access the analysis results via the web-based application, by
providing the device identifier as the access key.

To achieve a high level of scalability, a central repository
of app modelsis maintained in the back-end server. Thereby,
before extracting each app model, which is an expensive task,
COVERT first searches the central repository for that app, by
using the combination of its 〈package name, version code〉 as
the key. If the app model already exists in the repository, the
existing model is reused for the analysis.

In the following, we illustrate some key features of our
tool through a real-world example. Figure 3 shows a snapshot
of COVERT’s front-end desktop application after loading the
results of back-end analysis for sample apps from our ex-
perimental collection. In part (a), the detected vulnerabilities
are categorized based on inter-component vulnerability classes
identified by prior research [2], [11]: Intent Hijack, Intent
Spoofing, Inter/Intra-app data leakage, privilege escalation,
etc.. Part (b) represents the elements involved in a particular
instance of each vulnerability in a hierarchical structure. Here,



Fig. 3. A Snapshot of COVERT’s Desktop Client Application: (a) vulner-
ability categories (b) detail elements of vulnerabilities (c) a potential exploit
scenario (d) graphical overview of the exploit scenario (d) decompiled source
code of vulnerable component.

for example, the expanded vulnerability is an instance of Intent
Hijack, detected in Hesabdar app1. Parts (c) and (d) then
describe details of the detected vulnerability using both text
and graphical notations. As narrated and visualized in Fig-
ure 3(c) and (d), The Hesabdar’s TransactionsActivity
component handles user account information and sends the
information as payload of an implicit Intent to another com-
ponent. When a component sends an implicit Intent, there is
no guarantee that it will be received by the intended recipient.
A malicious application can intercept an implicit Intent simply
by declaring an Intent filter with all of the actions, data, and
categories listed in the Intent, thus stealing sensitive account
information by retrieving the data from the Intent.

Finally, to enable security analyst to inspect the vulnera-
ble apps more carefully, the decompiled source code of the
vulnerable component(s) is shown in part (e) (this tab is not
visible in the snapshot illustrated in Figure 3).

IV. RELATED WORK

Since the emergence of Android platform, dozens of se-
curity analysis tools have been developed for mobile apps.
Most related tools to COVERT are the ones with the focus on
performing static program analysis over Android applications.

Although several tools [2], [12], [13] have been developed
to identify inter-component vulnerabilities, but they do not
consider inter-app security issues. COVERT’s analysis, how-
ever, goes far beyond single application analysis, and enables
compositional analysis of the overall security posture of a
system, greatly increasing the scope of vulnerability analysis.

DidFail [14], perhaps most closely related, introduces an ap-
proach for tracking data flows between Android components.
It leverages Epicc [12] for Intent analysis, but consequently
shares Epicc’s limitation of not covering data scheme, which
negatively affects the precision of this approach in inter-
component path matching. Moreover, DidFail is a purely
program analysis tool, and does not incorporate a formal
analysis technique.

1Hesabdar is an accounting app for personal use and money transaction that,
among other things, manages account transactions and provides a temporal
report of the transaction history.

V. CONCLUSION

This paper presents COVERT, a tool that analyzes Android
applications in a compositional manner to detect inter-app
and inter-component security vulnerabilities. COVERT, at its
core, consists of a back-end engine that extracts formal model
of apps and analyzes the extracted models together to find
the vulnerabilities. On top of the core, COVERT comes with
desktop, mobile and web-based front-end applications that
facilitate the end-user interactions with the analysis engine.
The experimental results corroborated its ability to reveal inter-
app vulnerabilities in real-world Android apps, many of which
were previously unknown.

VI. ACKNOWLEDGEMENTS

This work was supported in part by awards D11AP00282
from the US Defense Advanced Research Projects Agency,
H98230-14-C-0140 from the US National Security Agency,
HSHQDC-14-C-B0040 from the US Department of Homeland
Security, and CCF-1252644 from the US National Science
Foundation.

REFERENCES

[1] H. Bagheri, A. Sadeghi, J. Garcia, and S. Malek, “Covert: Compositional
analysis of android inter-app vulnerabilities,” George Mason University,
Tech. Rep. GMU-CS-TR-2015-1, 2015.

[2] E. Chin, A. P. Felt, K. Greenwood, and D. Wagner, “Analyzing inter-
application communication in android,” in Proceedings of MobiSys,
2011, pp. 239–252.

[3] E. Bodden, “Inter-procedural data-flow analysis with ifds/ide and soot,”
in Proceedings of SOAP. ACM, 2012, pp. 3–8.

[4] S. Arzt, S. Rasthofer, C. Fritz, E. Bodden, A. Bartel, J. Klein,
Y. Le Traon, D. Octeau, and P. McDaniel, “Flowdroid: Precise context,
flow, field, object-sensitive and lifecycle-aware taint analysis for android
apps,” in Proceedings of PLDI, 2014.

[5] K. W. Y. Au, Y. F. Zhou, Z. Huang, and D. Lie, “Pscout: Analyzing the
android permission specification,” in Proceedings of CCS, 2012.

[6] D. Jackson, “Alloy: a lightweight object modelling notation,” TOSEM,
vol. 11, no. 2, pp. 256–290, 2002.

[7] T. Nelson, S. Saghafi, D. J. Dougherty, K. Fisler, and S. Krishnamurthi,
“Aluminum: Principled scenario exploration through minimality,” in
Proceedings of ICSE, 2013, pp. 232–241.

[8] “Javafx.” [Online]. Available: www.goo.gl/nWyRWv
[9] “Android debug bridge.” [Online]. Available: www.goo.gl/06Ee9u

[10] “Covert website,” www.sdalab.com/tools/covert.
[11] L. Davi, A. Dmitrienko, A.-R. Sadeghi, and M. Winandy, “Privilege

escalation attacks on android,” in the 13th Intl. Conf. on Information
security, 2010.

[12] D. Octeau, P. McDaniel, S. Jha, A. Bartel, E. Bodden, J. Klein, and Y. L.
Traon, “Effective Inter-Component Communication Mapping in Android
with Epicc: An Essential Step Towards Holistic Security Analysis,” in
Proceedings of USENIX Security, 2013.

[13] L. Lu, Z. Li, Z. Wu, W. Lee, and G. Jiang, “Chex: statically vetting
android apps for component hijacking vulnerabilities,” in Proceedings
of CCS, 2012.

[14] W. Klieber, L. Flynn, A. Bhosale, L. Jia, and L. Bauer, “Android taint
flow analysis for app sets,” in Proceedings of SOAP, 2014, pp. 1–6.


