
Automated Mining of Software Component Interactions
for Self-Adaptation

Eric Yuan
Computer Science Dept.
George Mason University

Fairfax, Virginia, USA
eyuan@gmu.edu

Naeem Esfahani
Computer Science Dept.
George Mason University

Fairfax, Virginia, USA
nesfaha2@gmu.edu

Sam Malek
Computer Science Dept.
George Mason University

Fairfax, Virginia, USA
smalek@gmu.edu

ABSTRACT
A self-adaptive software system should be able to monitor
and analyze its runtime behavior and make adaptation deci-
sions accordingly to meet certain desirable objectives. Tra-
ditional software adaptation techniques and recent “mod-
els@runtime” approaches usually require an a priori model
for a system’s dynamic behavior. Oftentimes the model is
difficult to define and labor-intensive to maintain, and tends
to get out of date due to adaptation and architecture decay.
We propose an alternative approach that does not require
defining the system’s behavior model beforehand, but in-
stead involves mining software component interactions from
system execution traces to build a probabilistic usage model,
which is in turn used to analyze, plan, and execute adapta-
tions. Our preliminary evaluation of the approach against
an Emergency Deployment System shows that the associ-
ations mining model can be used to effectively address a
variety of adaptation needs, including (1) safely applying
dynamic changes to a running software system without cre-
ating inconsistencies, (2) identifying potentially malicious
(abnormal) behavior for self-protection, and (3) our ongoing
research on improving deployment of software components
in a distributed setting for performance self-optimization.

Categories and Subject Descriptors
D.2.11 [Software Engineering]: Software Architectures

General Terms
Algorithms

Keywords
Data Mining, Self-Adaptation, Component-Based Software

1. INTRODUCTION

A self-adaptive software system is comprised of two con-
ceptual parts, a base-level subsystem that provides the soft-

Permission to make digital or hard copies of all or part of this work for
personal or classroom use is granted without fee provided that copies are
not made or distributed for profit or commercial advantage and that copies
bear this notice and the full citation on the first page. To copy otherwise, to
republish, to post on servers or to redistribute to lists, requires prior specific
permission and/or a fee.
SEAMS ’14, June 2-3, 2014, Hyderabad, India
Copyright 14 ACM 978-1-4503-2864-7/14/06 ...$15.00.

ware system’s application logic and domain functionalities
and a meta-level subsystem that manages the behavior of
the base-level subsystem to satisfy certain desirable objec-
tives, e.g., performance, security, reliability, etc. Such man-
agement often takes the form of dynamically changing the
structure of the base-level software, e.g., replacing software
components at runtime.

To make proper decisions, the meta-level subsystem relies
on an abstract representation of the software and the envi-
ronment it executes. The collection of such models is often
referred to as models at runtime, as they need to be kept in
sync with the changes that unfold in a running system and
its environment. An example of architectural models that is
used extensively in the construction of adaptive software is
component interaction model, which represents the behav-
ior of the system’s components in their interactions (e.g.,
message exchanges, interface invocations) with one another.

Component interaction models could be used for a variety
of purposes in runtime management of software, including
(1) determining the dependencies among the system’s com-
ponent to ensure their adaptation (e.g., replacement) does
not leave the system in an inconsistent state [3], (2) detecting
abnormal interactions among the system’s components that
are indicative of security attacks to enable self-protection
capabilities, and (3) optimizing a software system’s perfor-
mance by collocating components that are highly interactive
with one another [19]. The construction of such models,
however, is a difficult task. First, in a complex software
system, manually defining accurate models that truly repre-
sent all possible component interactions is time consuming.
Second, it is not always possible to construct such models a
priori, before the system’s deployment. In service-oriented
architectures (SOA) or peer-to-peer environments, for in-
stance, component behavior may be user-driven and non-
deterministic. Third, even when such models are built, it is
a heavy burden to keep them in sync with the actual imple-
mentation of the software. Indeed, they are susceptible to
the well-studied problem of architectural decay [29], which
tends to occur when changes applied to the software are not
reflected in its architecture models.

An approach toward addressing the above issues is to
automatically mine such models form execution traces of
the system, thus, alleviating the engineers from defining the
models manually. Automated mining-based approaches also
allow for their application throughout the system’s execu-
tion, naturally enabling the refinement of models to chang-
ing behavior of the system and its environment.

Figure 1: Subset of EDS Software Architecture

This paper describes our experiences with an association
rule mining approach that can learn the component inter-
action model of a system by simply observing its behavior.
The approach is comprised of three steps: (1) collect exe-
cution traces of the system at runtime, (2) use association
rule mining to infer a probabilistic model of the component
interactions from the collected execution traces, and (3) con-
tinuously monitor the accuracy of the inferred models, and
upon detecting substantial variations, refine the models by
mining the newly collected data.

The application of this overall approach to the construc-
tion of a self-adaptive emergency response system has shown
to be quite promising. We describe how the component
interaction models inferred using our approach can be ef-
fective in addressing a variety of adaptation needs. Al-
though our experiences have been very promising, mining-
based approaches, such as the one described in this paper,
present their own unique challenges. Thus, we also provide
an overview of these challenges to frame the future research.

The remainder of this paper is organized as follows. Sec-
tion 2 introduces a distributed software system and its adap-
tation requirements to motivate the research. Section 3 pro-
vides an overview of our approach, while Section 4 describes
the details. Sections 5 to 7 present applications of our ap-
proach in solving three types of concern in runtime man-
agement of software. Section 8 highlights related research.
Finally, the paper concludes with a discussion of the remain-
ing challenges and avenues of future research.

2. MOTIVATING EXAMPLE
We illustrate the concepts and evaluate the research us-

ing a software system, called Emergency Deployment System
(EDS), which is intended for the deployment and manage-
ment of personnel in emergency response scenarios. Figure 1
depicts a subset of EDS’s software architecture, and in par-
ticular shows the dependency relationships among its com-
ponents. EDS is used to accomplish four main tasks: (1)
track the resources using Resource Monitor, (2) distribute
resources to the rescue teams using Resource Manager, (3)
analyze different deployment strategies using Strategy Ana-
lyzer, and finally (4) find the required steps toward a selected

Figure 2: EDS Use Case Example

strategy using Deployment Advisor. EDS is representative
of a large component-based software system, where the com-
ponents communicate by exchanging messages (events). In
the largest deployment of EDS to-date, it was deployed on
105 nodes and used by more than 100 users [20].

Like any software systems, the EDS functionality can be
decomposed into a number of use cases. The sequence dia-
gram for one such use case, conducting strategy analysis, is
shown in Figure 2 as an example. We see that the execution
of the use case involves a sequence of interactions among
different software components. Note that a component here
represents a coarsely grained software unit that deploys and
runs independently from other components (in contrast to
lower level entities such as a Java object or a code library).
For instance, the “HQ UI” component is a web application
that resides in a web server.

Once deployed and operational, a real-world system such
as EDS needs to continually evolve to ensure quality, meet
changing user requirements, and accommodate environment
changes (such as hardware upgrades). At the same time, the
system must also satisfy a number of architectural objectives
such as availability, performance, reliability, and security.

Non-trivial system adaptations typically require an ab-
stract representation of the components and their interac-
tions at runtime, which can be used to formulate adaptation
strategies and tactics [10]. In the case of EDS, a model such
as Figure 2 could be used to reason about several adaptation
concerns: (1) The model tells us when it is safe to adapt the
components. For instance, as shown in [31], a model such as
that of Figure 2 could be used to determine Strategy Ana-
lyzer can be safely adapted prior to event e4 or after event
e11, but not in between, as its state is inconsistent. (2) The
model could be used in the construction of self-protecting
software to detect abnormal (malicious) behavior. For in-
stance, assuming that the model of Figure 2 represents the
only possible sequence of interaction among the components
under this use case, one could determine a suspicious behav-
ior when Strategy Analyzer interacts with a component it
has not previously interacted with, such as Resource Man-
ager. (3) The model could be used in the construction of
self-optimizing software by changing the deployment of soft-
ware, i.e., allocation of software components to the system’s

hardware nodes. For instance, as shown in [19], to reduce the
response time, components that interact frequently could be
either collocated on the same hardware node or on nodes
that have reliable and fast network connectivity.

Building and maintaining such a component interaction
model, however, faces several difficult challenges, as out-
lined in Section 1. Our approach to addressing these chal-
lenges involves learning a usage proximity model of dynamic
component interactions at runtime, without any pre-defined
behavior specifications. Machine learning-based approaches
alleviates engineers from maintaining the models manually,
and also allow for their automatic adaptation and refinement
to changing behavior of the system and its environment.

3. APPROACH OVERVIEW
We first start with some definitions and assumptions to

frame the discussion of our mining framework. An event
e is defined as a triple tuple e =< src, dst, time >, where
src and dst are identifiers for the source and destination
components, and time is the timestamp of its occurrence.
Although an event is also likely to have a payload (e.g., a
message in XML format), it is not relevant to this line of
research, and thus not modeled. In the EDS example of
Figure 2, 12 events (e1-e12) are depicted.

A transaction t is defined as a triple tuple
t =< start, end,R >, where start and end respectively rep-
resent the events initiating and terminating the transaction
t, while R is a set of transactions that subsequently occur
as a result of t. R 6= ∅ when t is a dependent transaction
(e.g., t1, t3, and t4 in Figure 2), and R = ∅ when t is an in-
dependent transaction (e.g., t2, t5, and t6 in Figure 2). For
convenience sake, a transaction is also sometimes denoted
src . dst where src and dst are the source and destination
components of t’s initiating event.

A top-level transaction t is a kind of transaction where
there is no other transaction x in the system such that
t ∈ x.R. In other words, a transaction is top-level if its oc-
currence is not tied to other transactions in the system. A
top-level transaction corresponds to the system’s use cases
(functional capabilities). For instance, t1 in Figure 2 is a
top-level transaction, initiated in response to e1, which rep-
resents the user requesting a service from the system.

In this example we see that the components involved in
a use case interact closely with one another. Given enough
observations of the system at runtime, it is possible to in-
fer the stochastic component interaction model of the sys-
tem. Such a model not only infers the dynamic dependencies
among the components (i.e., information equivalent to that
captured in Figure 2), but it also provides a probabilistic
measure of the certainty with which events and transactions
may occur. Even though such a model is simplistic and by
no means captures the complete and precise behavior of the
system, it is surprisingly useful in addressing a number of
adaptation objectives as we shall see in later sections.

To keep our approach widely applicable, we make minimal
assumptions about the underlying system:

• Black-Box Treatment : We assume the software com-
ponents’ implementation is not available. This allows
our approach to be applicable to systems that utilize
services or COTS components, whose source code is
not available. It also enables our approach to natu-
rally support the evolution of software components.

Figure 3: Overview of the mining framework

• Observability of Event : We assume that events mark-
ing the interactions among the system’s components
are observable. An event could be either a message
exchange or a method call, which could be monitored
via the middleware facilities that host the components
or instrumentation of the communication links.

• Observability of Transaction Duration: We assume
events start and end, which as you may recall indi-
cate beginning and termination of a transaction, to be
observable. This is a reasonable assumption consistent
with several prior research approaches that have dealt
with safely effecting runtime changes [14, 31, 18].

• Use case-initiating events can be identified. Here we as-
sume that a number of ”entry point” events exist that
initiates top-level transactions. Such events typically
represent the starting point of a system use case. An
online banking system, for example, may have menu
items such as “Withdrawal”, “Deposit”, or “Check Bal-
ance” that trigger different use cases. The EDS sys-
tem, likewise, has client-server events (such as e1 in
Figure 2) that initiate different use cases.

With these assumptions, we proceed to define a novel
approach for automatically deriving the stochastic compo-
nent interaction model by mining the execution history of
the software system. Figure 3 provides an overview of our
approach, consisting of two complementary asynchronously
running cycles: Mining the Interaction Model and Applying
the Model.

The Mining the Interaction Model cycle starts by process-
ing the Event Log of the system to construct a large number
of Itemsets. An itemset indicates the events that occur close
in time. Itemsets are then passed through a data mining
algorithm to derive Transaction Association Rules (TARs)
relating the relationship between transactions that are oc-
curring in the system and those that may happen in the
future. Since mining may generate a large number of rules,
some of which may be invalid and redundant, we prune the
generated rules to arrive at a small number of useful rules
that can be applied efficiently at runtime. Section 4 de-
scribes the details of the mining process.

The Applying the Model cycle starts with the Transac-
tion Tracking activity that monitors the currently running
transactions in the system. Rule Selection then uses the in-
formation about currently active transactions to pick a set of
candidate TARs from the Rule Base for estimating the usage

probability of components. Depending on different adapta-
tion objectives, a Prediction Algorithm will be applied to
make the desired adaptation decisions. In sections 5 to 7
we will explore three such algorithms.

4. MINING COMPONENT INTERACTIONS

4.1 Itemset Creation
The first step to mining the relationship among the trans-

actions is to construct itemsets. An itemset, as in the data
mining literature for association rule mining, is a set of items
that have occurred together. In the context of our research,
an itemset I is a set of transactions that have occurred tem-
porally close to one another at some particular point during
the execution of the system: I = {t1, t2, ..., tn}.

By reading the start and end timestamps of the top-level
transactions, we can easily keep track of the set of “active
baskets” in the system, and incoming events will fall into
one or more of them. When a basket closes, an itemset is
produced and stored. In reference to Figure 2, a new itemset
would be created for t1, as its beginning and end (determined
by e1 and e12) do not fall within any other transactions. All
the remaining transactions t2, t3, t4, t5, and t6 are added to
It1 itemset as follows: It1 = {t1, t2, t3, t4, t5, t6}.

Using this process, an entire segment of a software sys-
tem’s execution history can be transformed into a set of
itemsets representing the occurrence of transactions together
in time. Given a sufficiently large usage history, the ap-
proach compensates for concurrently running top-level trans-
actions. Consider a version of the scenario depicted in Fig-
ure 2 in which a second top-level transaction t7 overlapping
partially in time with t1 starts and itself initiates a transac-
tion t8 that falls wholly within the beginning and end times
of both t1 and t7. The approach will include t8 in both
It1 and It7. However, since transactions t1 and t7 are truly
independent, the false placement of t8 in It1 is a random
event that is not likely to occur in a significantly large num-
ber of itemsets, and thus safely ignored by the data-mining
algorithm using minimum frequency thresholds.

4.2 Association Rules Mining
Associations Mining, also known as Frequent Pattern Min-

ing plays an essential role in discovering associations, corre-
lations, and multi-dimensional patterns and have been used
in many practical application such as marketing analysis and
query recommendations [16]. The next step of our approach
is to use the itemsets to generate transaction association
rules (TAR). Each TAR is of the form

X ⇒ Y :< s, c >

where X and Y are sets of transactions, e.g. X = {ti, tj},
Y = {tk} and s and c are the support and confidence level
of the rule, respectively. Note that

s = σ(X ∪ Y)/N (1)

c = σ(X ∪ Y)/σ(X) (2)

where σ(S) is the frequency count of the co-occurrence of
the events in the itemset S, and N is the total number of
itemsets. As a concrete example, here is a rule generated in
one of the test runs for the EDS system:

{HQUI . StrategyAnalyzer,
StrategyAnalyzer . WeatherAnalyzer,

StrategyAnalyzer . StrategyKB}
⇒ {WeatherAnalyzer . Map} :< 0.45, 0.76 >

It is important to note that a TAR of the form
{ti, tj} ⇒ {tk} does not represent a temporal execution se-
quence. Rather, as an association rule it simply states the
proximity or likelihood of transaction tk occurring together
with transactions ti and tj in one itemset (that is, in the
same top level use case).

Several association mining algorithms exist such as Apri-
ori [1] and FP-Growth [12]. In our evaluations we primarily
used the Apriori algorithm for TAR mining due to the fact
that its implementations are mature and widely available.

4.3 Rule Base Pruning
Minimum support and confidence levels are the two key in-

put parameters for an associations mining algorithm. When
generating candidate rules, any rules whose support and con-
fidence values fall below these levels will be discarded. In
order to build a model that captures the entire range of“nor-
mal” system use, we learned that they need to be set at very
low levels, which tend to produce an excessively large num-
ber of rules. Further, many generated TARs are extraneous
and unnecessary, in part due to the fact that we have cho-
sen to ignore the temporal information associated with the
event sequences and focus instead on the proximity of event
co-occurrence. Therefore, pruning the rule base to reduce
its size becomes a critical component of our approach.

Fortunately, depending on the particular adaptation sce-
nario and architecture objective, a number of heuristics can
often come to assistance to drastically reduce the rule base
size. Interested readers may find some examples in [3]. The
rule mining and pruning can be repeated for every N events
in the event log to make sure the model is kept up to date
with the latest system behavior.

Once the association rules are mined and pruned, we
turn our attention to how they can be used to address self-
adaption needs. The following sections demonstrates three
application scenarios. Section 5 employs the model to dy-
namically predict what components can be safely adapted
without compromising system consistency. Section 6 aims to
enable self-protection of the system against malicious threats
at the application level by detecting anomalous behavior
patterns. Section 7 focuses on the self-optimization per-
spective and discusses how the rule base can better inform
and adjust system deployment topology to reduce network
latency and improve performance.

5. SAFE COMPONENT ADAPTATION

5.1 Background
Replacing a component in the middle of a transaction

could place the system in an inconsistent state. Consider
a situation in which Strategy Analyzer component of Fig-
ure 2 is replaced after sending request event e5, but before
receiving the response event e8. Since the newly installed
component does not have the same state as the old one, it
may not be able to handle response e8 and subsequently
initiate transaction t6 via event e9, resulting in an incon-
sistency and potentially the system’s failure. Three general
approaches to this problem have been proposed: quiescence,
tranquility, and version-consistency.

Quiescence [14] is the established approach for safe adap-
tation of a system. A component is in quiescence and can be

adapted if (1) it is not active, meaning it is not participat-
ing in any transaction, and (2) all of the components that
may initiate transactions requiring services of that compo-
nent are passivated. A component is passive if it continues
to receive and process transactions, but does not initiate any
new ones. At runtime, the decision about which part of the
system should be passivated is made using a static compo-
nent interaction model, such as that shown in Figure 1. For
instance, to change the Map component, on top of passivat-
ing itself, Weather Analyzer, Strategy Analysis KB, HQ UI,
Simulation Agent, and Resource Manager components need
to be passivated as well, since those are the components that
may initiate a transaction on Map.

While quiescence provides consistency guarantees, it is
very pessimistic in its analysis and, therefore, sometimes
very disruptive. Consider that the static interaction model
includes all possible dependencies among the system’s com-
ponents, while at any point in the execution of a software
system only some of those dependencies take effect. To ad-
dress this issue, tranquility [31] proposes to use the dynamic
component interaction model of a system in its analysis, an
example of which is shown in Figure 2. Under tranquility
a component can be replaced within a transaction as long as
it has not already participated in a transaction that it may
participate in again. For instance, under tranquility, Map
could be replaced either before it receives event e2 or after
it sends event e7, but not in between.

A shortcoming of tranquility, as realized in [31], was lack
of support for handling dependent transactions. This issue
was addressed in version-consistency [18], which guarantees
a dependent transaction is served by either the old version
or new version of a component that is being changed.

5.2 Applying Association Rules
Any observed event indicates the beginning and termina-

tion of a given transaction to (recall Section 3). Therefore,
we can refer to these events as to.start and to.end, respec-
tively. We use a data structure, called top-level tracker, and
represented as set TLT, to track each top-level transaction
that is active (i.e., currently running) in the system. The
purpose of TLTs is to keep account of the present transaction
activity in the system. Upon observing to.start, the state of
TLTs is updated as follows. If to is a top-level transaction,
a new TLT is created. But if to is not a top-level transac-
tion, its identifier is added to all open TLTs. This is done
because there is no way of knowing which top-level transac-
tion has actually initiated this transaction. Upon observing
to.end, if to is not a top-level transaction, it is ignored. On
the other hand, if to is a top-level transaction, then the TLT
corresponding to to is closed.

The updated TLTs are used to determine what new pre-
dictions can be made about the probability with which com-
ponents will be used. All predictions of the system activity
are made by using the TARs stored in the Rule Base. We
must determine what new TARs, if any, are implicated by
the observation of to.start. A tar ∈ RuleBase can only be
implicated by the observation of to.start, if to is a member
of set X of that tar. If this criterion is met, then we look to
see if the tar is satisfied by any open top-level transaction as
tracked by TLTs. For a tar to be satisfied, all transactions
in X must have been observed during the processing of at
least one TLT (basis of that tar). Furthermore, the tar’s
prediction (i.e., Y) should have new transactions other than

the ones that have already occurred during the processing
of the satisfying TLT. If both of these conditions are met,
then the tar is added to the set set of all new TARs that are
candidates for being applied at that given point in time.

The next step is to apply the implicated TARs to update
the usage prediction registries, represented as set UP . Each
component q in the system has a register uq ∈ UP . The
value of uq represents the probability of q being used or
becoming active in near future. There are typically more
than a single TAR predicting usage probability uq ∈ UP of
any given component q. In other words, component q may
appear in the predictions (i.e., Y) of several satisfied TARs.
While some may be due to the new observation to.start,
others may be due to the prior observations.

Recall from Section 5.1 that a component can be safely
adapted as long as it has not already participated in a
transaction that it may participate in again. When com-
ponent q is already used in a transaction we don’t con-
sider any of the satisfied TARs and let uq = 1, and
hence, guarantee the consistency of adaptation. Otherwise,
we combine the various confidence values from all of the
satisfied TARs into a single prediction value uq.

The insight guiding our research in this step is that each
TLT can make a single prediction for a component. To that
end, for each TLT, we select the TAR with the highest confi-
dence value (i.e., c value of Equation 2) among all the TARs,
which have that TLT as their basis. We then calculate uq

by combining the prediction values of all selected TARs for
all active TLTs in the system. Since we have only selected
a single TAR from each TLT, we can treat the predictions
as independent probabilities when combining them to arrive
at a final prediction value for the component:

uq = 1− prob. q is not used = 1−
∏|selected TARs |

i=1 (1− ci)
The observation of to.end can also cause an update. If

to.end is a top-level transaction, the TLT corresponding to
to.end is removed. As a result, all the TARs that have that
TLT as their only basis should be removed as well. We
simply recalculate uq after removing those TARs from the
set of selected TARs as we described earlier.

When we want to adapt component q, we refer to uq ∈
UP . If uq is below a certain threshold ε (where ε ≤ 1), we
will allow component q to be adapted. We only use our pre-
dictions to reduce the disruptions experienced in the system
before a component is used in a transaction (since uq = 1,
when q is already used, we will not adapt q). Of course, one
could relax this constraints to reach faster adaptation times,
while trading off the safety guarantees. Interested readers
are referred to our recent publication [3] on how we select
the right value of ε to balance between such trade offs.

5.3 Evaluation
We have developed a prototype of the approach using an

implementation of Apriori provided in WEKA [11]. We per-
formed experimentation on runtime adaptation of EDS (re-
call Section 2). To evaluate the approach, we used several
versions of EDS with different concurrency levels [3]. We
used a baseline version of EDS with a single user. We then
repeated the evaluations on higher concurrency systems to
evaluate the susceptibility of the approach to concurrency
errors. The 80 and 137 experiments were simulated by using
hyperactive dummy users, as EDS never naturally reached
that level of concurrency error. Therefore, the values for

Figure 4: ROC Curves for Different Concurrency
Settings in Adaptation Problem

users are merely projections, and the precise values for con-
currency error rate should receive primary focus.

The quality of differentiating active and inactive compo-
nents can be viewed with a receiver operating characteristic
(ROC) curve, often used to evaluate a binary classifier, as
shown in Figure 4. In our case, the ROC curve depicts the
change in the ratio of True Positive (TP) to False Positive
(FP) as different ε thresholds are chosen. The extreme of
ε = 1.0 exists at the origin of the ROC plot, while the ex-
treme of ε = 0.0 exists at the point (1 , 1) of the ROC plot.
Therefore, it can be seen how the TP and FP rates respond
by moving the ε threshold. The ROC curve shows that the
approach does an incredible job of achieving true positives
despite changes in the ε threshold.

The comparison of the different experiments also shows
the effect of concurrency on the approach. With many users
in the system, there are many more observations that al-
low the approach to predict usage of a component, when
the component is actually used. Therefore, as concurrency
increases, the approach keeps the high quality in differen-
tiating active and inactive components. However, when we
approach 137 users, the concurrency error rate is roughly
60% and active components are constantly at u = 1.0 until
the transactions they participate in subside. This concur-
rency rate forces ε = 1.0 to avoid high disruption in the
system. At this point, ε reaches its maximum value, and
hence, cannot compensate for the increase in FP rate by
moving to a higher value.

6. DETECTING ANOMALOUS BEHAV-
IOR FOR SELF-PROTECTION

6.1 Background
As modern software systems become increasingly modu-

lar, distributed and interactive, they are also facing unprece-
dented security challenges, especially under new computing
paradigms such as mobile and cloud computing. prone to cy-
ber attacks. Conventional techniques for securing software
systems, often manually developed and statically employed,
are therefore no longer sufficient. This has motivated active
research in dynamic and adaptive security approaches [5].

In particular, active research has focused on self-protecting
software systems, a class of systems capable of autonomously
defending itself against security threats at runtime [35].

The first step towards autonomic and responsive security
is the timely and accurate detection of security compromises
and software vulnerabilities at runtime, which is a daunting
task in its own right. Data mining techniques have been
widely applied in this regard, however most security-oriented
data mining research to-date has focused on “lower layers”
of a software system in an architectural sense, that is, min-
ing data at network, host machine, or source code levels.
As a result, such approaches mainly address specific types
of threats that are tactical in nature, but the “big picture”
understanding of attacker strategy and intent, as well as
overall security posture of the system appears to be lacking.
Furthermore, these approaches typically can do very little
to address the growing concern of insider threats, where at-
tackers use the system with legitimate credentials instead of
external intrusions [26].

In contrast, our research has focused on developing a
threat detection approach based on software component in-
teractions as opposed to mining data collected from net-
work traffic or source code. Our underlying insight is that
many cyber attacks misuse the system in a way that devi-
ates from normal system behavior. Take the EDS system
for instance, since it is an online system that manages sensi-
tive information such as personnel records and locations, it
may be subject to various intrusions and exploits including
SQL Injection, Cross-Site Scripting (XSS), and Cross-Site
Request Forgery (CSRF), just to name a few [24]. As a con-
crete example, suppose an attacker obtains a valid user login
and hijacks the Strategy Analyzer component through the
Headquarters User Interface (HQUI) component. Instead of
calling Weather Analyzer and Strategy Analysis KB compo-
nents as prescribed in the use case in Figure 2, the attacker
sends requests from Strategy Analyzer to the Resource Man-
ager and Repository components to retrieve sensitive infor-
mation about all deployed resources, as shown in Figure 5.
Such a violation of system usage occurs at the application
level and is therefore much harder to detect and thwart using
conventional firewalls and intrusion detection devices, which
are primarily concerned with ports and protocols.

To be able to effectively detect potentially malicious be-
havior at the application level, there are two main ap-
proaches, signature-based or anomaly-based. Signature-
based techniques attempt to capture the signatures or speci-
fications of attacks as the basis for detection, which are usu-
ally very accurate and efficient but require constant mainte-
nance as attack strategies and tactics evolve ever so rapidly.
Nor can this approach detect unknown threats. Anomaly-
based approach, on the other hand, seeks to build a “nor-
mal” system usage model as the basis for threat detection.
Our research shows that the mining framework introduced
in Section 3 can be used as such a model that is efficient
and effective against both known and unknown threats; as
shown in preliminary evaluation results.

6.2 Anomaly Detection Based on Association
Rules

After association rules are generated from the mining
phase of the framework as described in Section 4, we are
not quite ready to apply them directly to detect anoma-
lous behavior from the system’s event execution streams. In

Figure 5: Example attack scenario

fact, this problem scenario is the opposite of typical uses
of association rules – instead of using them to predict what
item(s) are frequently associated with a given set of items,
the question we ask here is “is this transaction infrequently
associated with the given itemset of transactions, so much as
to warrant an alarm?” To this end, we developed an effective
detection algorithm that is roughly outlined as follows:

For an itemset containing a top level transaction T and a
set of child transactions t1, t2, ..., tn, by observing the start
and end times of the messages, we can find all the Enclosing
Transaction Sequences (ETS) < x1, ..., xj−1, xj > such that
each transaction is the child of the preceding transaction.
In Figure 2, for example, < t1, t2 >, < t1, t3, t4, t5 > and
< t1, t3, t6 > are such sequences. For normal use cases, all
such sequences should have been captured in the rule base
after we have observed enough number of transactions from
the event log. For malicious uses of the system, however,
some of the ETS such as < t1, t3, t4 > and < t1, t3, t5 >
in Figure 5 occur at a much lower frequency and thus not
found in the rule base. Each not-found ETS will be marked
as a violation, and we can mark the itemset as anomalous
when the number of violations reach a certain threshold.

6.3 Evaluation
Our experimentation environment involves a customized

instance of the original EDS system in a similar setup as
introduced in the previous section. In addition to the normal
system use cases, we injected the attack scenario outlined
in Figure 5 to the simulation runs according to a predefined
anomaly probability, which is set at ∼ 0.3% (3 σ or standard
deviations of a normal distribution) under the assumption
that covert malicious attacks are rare events.

We use the same Apriori implementation from WEKA
for association rule generation. Both simulation and data
analysis are run on a quad-core Mac OS X machine. Ta-
ble 1 shows our experimental results with different number
of users and with the detection algorithm configured to run
with different support and confidence levels.

Even though there is still room for improvement, these
results show that our approach can help detect anomalous

Table 1: Detection Performance for 1-User, 5-User,
and 10-User Scenarios

#Concurrent Users 1 5 10
Min. Support Level 0.025 0.01 0.025
Min. Confidence Level 0.2 0.15 0.1

TP Count 16 64 130
FP Count 0 63 1136
FN Count 0 9 27
TN Count 4,984 24,926 48,707
TP Rate (TPR) 1.0 0.877 0.828
FP Rate (FPR) 0.0 0.003 0.023
Precision 1.0 0.504 0.103
Recall 1.0 0.877 0.828
F-Measure 1.0 0.64 0.183
TPR = TP/(TP + FN);FPR = FP/(FP + TN)
Precision = TP/(TP + FP);Recall = TPR
F -Measure = 2TP/(2TP + FP + FN)

(5000 itemsets / use cases per user)

use of the system in an automated, unattended fashion, with
high recall and reasonable precision. In the 5-user scenario,
for example, our framework detects 88% of the anomalous
events with a 50% precision. Instead of manually inspect-
ing 25,000 user sessions with roughly 114,000 total transac-
tions, a security administrator only needs to inspect the 127
alarms, 64 of which are true anomalies that need to be ad-
dressed. This demonstrates that our approach can be used
as an effective mechanism to enhance both overall system se-
curity and security administrator productivity. It is worth
noting that the concurrent users in our simulation runs are
“intense” users used to generate a heavy load on the system,
therefore they actually represent a much larger number of
human users in a real-world system.

The results also show, however, that detection accuracy
(esp. precision) is impacted by system concurrency. From
the TPR-FPR plots (a.k.a., ROC curves) shown in Figure
6, we see a reduced Area Under the Curve (AUC) as the
number of concurrent users increases. To address this issue,
we have developed a concurrency measure γ as the aver-
age number of active top-level transactions under which a
transaction t falls, which is easily measurable from system
event log and is more objective than the number of active
users. We are in the process of devising a“floating”detection
threshold based on γ to mitigate the concurrency effects.

7. SELF-OPTIMIZATION OF DEPLOY-
MENT TOPOLOGY

7.1 Background
The design and development of large-scale, component-

based software systems today are influenced by modern
software engineering practices as embodied by architecture
styles (e.g., pipe and filter), design patterns (e.g. proxies),
and coding paradigms (e.g. aspect-orientation). A direct
consequence is that the deployment of such systems be-
comes more complex and fluid, with hundreds or perhaps
even thousands of options and parameters to consider, along
dimensions such as location, capacity, timing, sequencing,
service levels, security, etc. Many of them may be interde-
pendent and possibly conflicting. Due to the combinatorially
large problem space, the values of these parameters are usu-

Figure 6: ROC Curves for Different Concurrency
Settings in Anomaly Detection Problem

ally set and fine-tuned manually by experts, based on rules
of thumb and experience.

An objective for autonomic systems is therefore to intel-
ligently navigate the solution space and seek ways to op-
timally (re)deploy the system to continuously improve the
overall system performance and cost [13].

To illustrate the self-optimization challenge, we turn our
attention to the deployment topology of the EDS system.
As a geographically distributed system, some of the compo-
nents such as HQUI (recall Figure 1) needs to reside at the
headquarters facility, while some such as the Resource Mon-
itor are required to be at remote sites to be collocated with
emergency response equipment. Other components are more
flexible and can be deployed at either locations. Depending
on the topology, inter-component messages can be either lo-
cal (via inter-process communication on a single computer or
over a LAN), or remote over a WAN, with the latter having
a much larger network latency. Take the strategy analysis
use case outlined in Figure 2 for example, if the Strategy
Analyzer and Strategy Analyzer KB components reside at
different sites, transaction t6 may take a much longer time
than what it would be if the two components were collo-
cated, adversely affecting the response time experienced by
the end user. Obviously, the system should employ a deploy-
ment topology that minimizes remote transactions to reduce
overall network latency, subject to other constraints.

It is worth noting that this is by no means a new prob-
lem, and has been manifested in various settings such as sys-
tem resource management [25], cloud performance optimiza-
tion [4], wireless network configuration [21], etc. However,
traditional approaches, including our own prior work [21,
19], assume the availability of a detailed component interac-
tion model, that includes information about the component
dependencies, frequency of interactions among the compo-
nents, size of exchanged data, processing sequences, etc. As
pointed out earlier in the paper, such a model is difficult to
come by and costly to maintain.

Our proposed framework, on the other hand, leverages
the same component interaction model for dynamic opti-
mization of the deployment topology at runtime, a model

that needs no prior development and can stay up to date
even when the system behavior shifts.

7.2 Applying Association Rules
In essence, the transaction association rules produced

from the mining process is a lookup table that provides the
following information:

• For each single transaction type t, the probability of
its occurrence, estimated by its frequency count during
the past N transactions. (Note that a single transac-
tion can be viewed as a TAR of the form X ⇒ Y where
X is the empty set φ and Y = {t})
• For any set of transaction types {t1, t2, ..., t3}, the

probability of their co-occurrence, as indicated by the
support level of the TARs.

It is easy to see that the problem of determining deploy-
ment topology, namely, assigning component ci to location
Sj , can be framed as a clustering problem. Intuitively, trans-
actions that have a higher probability of occurring should be
local (i.e., in the same cluster), and a set of transactions of-
ten happen in conjunction should be local as well. More
formally, we can have the following heuristics for clustering
components:

1. For any single transaction t ≡ src . dst, the higher
probability of its occurrence, the more likely that plac-
ing components src and dst in the same cluster will
reduce network latency;

2. For any Enclosing Transaction Sequences (ETS) <
t1, t2, ..., tn > as defined in Section 6.2, the higher
probability of their co-occurrence, the more likely that
placing their underlying components in the same clus-
ter will reduce network latency.

Now we see that our component interaction model cap-
tured from associations mining can be used to provide a
probabilistic distance measure for any two components or
two sets of components, which can be used by any clus-
tering algorithm to compute the deployment topology. In
particular, given a proximity matrix between the compo-
nents derived from the rule base, agglomerative hierarchical
clustering [28] can be used to quickly assign components to
the desired number of sites. We are actively implementing
the clustering algorithm and evaluating its effectiveness in
improving EDS deployment topology.

Note that in real-world systems, optimal deployment of
resources depends on many other factors besides network
latency, such as cost of component re-deployment, hardware
capacity at each location, etc. A more holistic approach
needs to formulate a higher-level objective function that
weighs benefits against various costs and constraints (e.g., as
developed in [2] and [19]). In that case, the component-wise
probabilistic proximity measure from our model can become
an input to the larger optimization algorithm.

8. RELATED WORK
Researchers have used log of event data collected from

a system to construct a model of it for various purposes.
Cook et al. [6] use the event data generated by a software
process to discover the formal sequential model of that pro-
cess. In a subsequent work [7], they have extended their
work to use the event traces for a concurrent system to

build a concurrency model of it. Gaaloul et al. [8] discover
the implicit orchestration protocol behind a set of web ser-
vices through structural web service mining of the event logs
and express them explicitly in terms of BPEL. Motahari-
Nezhad et al. [23] present an algorithmic approach for cor-
relating individual events, which are scattered across sev-
eral systems and data sources, semi-automatically. They
use these correlations to find the events that belong to the
same business process execution instance. Wen et al. [32] use
the start and end of transactions from the event log to build
petri-nets corresponding to the processes of the system. To
our knowledge, except our recent work [3], no previous work
has used mining of execution log to understand the dynamic
behavior of the system for the purpose of self-adaptation.

As mentioned earlier in this paper, even though data min-
ing techniques have been extensively used in the security
arena for decades, most of the research has centered around
(a) intrusion detection, esp. at network and host levels (e.g.,
[15]) and (b) malware/virus detection at source code and
executable level (e.g., [27]). Ongoing research also has also
focused on other security problems such as detecting remote
exploits of web applications [22] and peer-to-peer botnet at-
tacks [30]. Few research, has focused on detecting malicious
behavior at the architecture/component level, and none that
employs data mining techniques. We believe detecting ma-
licious behavior at the architectural-level is a prerequisite
for developing self-protection mechanisms that modify the
system’s architecture to mitigate the security threats.

Data mining techniques are increasingly applied in the
software engineering domain to improve software productiv-
ity and quality [34]. The datasets of interest includes exe-
cution sequences, call graphs, and text (such as bug reports
and software documentation). One body of research, for in-
stance, focuses on mining software specifications — frequent
patterns that occur in execution traces [17], which is similar
to our problem but the focus is on mining API call usages
for purposes such as bug detection, not for self-adaptation;
their techniques (such as libSVM) are also different.

9. DISCUSSION AND FUTURE WORK
The underlying assumption in the current version of our

framework is that a single data mining algorithm can pro-
cess all the events/transactions in the system and build the
stochastic component interaction models. This may not be
possible, especially when we consider distributed software
systems that permeate boundaries of several enterprises. An
enterprise may be unwilling to share its internal structure
and event logs with an entity that is out of its control for
various reasons (e.g., protecting competitive edge, security
concerns, etc.). Therefore, we are working on a distributed
version of our approach, which achieves the same goal by
running multiple local data mining algorithms. In fact, ini-
tial results show that confining the algorithms to the bound-
aries of enterprises improves the precision, not to mention
scalability. The natural structure imposed by the boundary
of an enterprise only allows certain components to talk to
the outside world (i.e., other enterprises). This knowledge
helps to reduce the concurrency error significantly.

Regardless of the adaptation needs, the proposed min-
ing framework needs to be highly efficient and as scalable
as the base subsystem itself in order to process the system
execution traces as they occur and provide dynamic, near-
real time predictions. For this reason we plan to conduct

in-depth analysis of the computational characteristics of as-
sociation mining algorithms and ideally leverage elastic, on-
demand computing platforms (e.g. MapReduce) to speed
up the mining framework performance.

The data mining algorithm that we used to build the
stochastic component interaction models is based on set the-
ory. Therefore, it is not able to leverage the frequency of
event occurrences nor the temporal ordering among events,
which are already available in the execution log of the sys-
tem. We believe using these extra information can increase
the accuracy of the inferred models, and in turn, make our
approach more precise. Hence, we are studying the applica-
tion of other types of data mining algorithms (e.g., sequen-
tial pattern mining [28]) that can use the extra information.

The accuracy of mined rules depends on the availability
of a sufficiently large usage history of the software, exercis-
ing the interactions among the system’s component. Such
data could either be collected through benchmark of the
system or its previous deployments. However, determining
how much data is needed to allow for generation of accurate
rules is challenging. The notion of component interaction
coverage metric [33] provides a good starting point in ad-
dressing this issue. In addition, we plan to investigate how
this approach would work in a“cold-start”mode, i.e., when a
system is initially launched. One solution would be to start
off with pessimistic (conservative) predictions, until actual
usage patterns are learned. In addition, we plan to explore
the use of data stream mining [9] in this context, which al-
lows for the mining to be performed incrementally using the
real-time stream of observations from the system.

Our ongoing research for anomalous behavior detection
focuses on more extensive evaluation of the detection algo-
rithm to enhance its accuracy and robustness. In particular,
we plan to develop a more useful likelihood-based measure,
so that the anomalous events can be tagged not just by a
simple yes/no flag, but by a quantitative confidence level.
Equally important is the enhancement of the algorithm to
cope with heightened levels of system concurrency, as indi-
cated in Figure 6. Further, we will evaluate the algorithm’s
sensitivity against different input parameters (e.g. mini-
mum support and confidence levels) to better understand
its “sweet spots” and limitations. Last but not the least, we
seek to prove that our approach is effective against unknown
threats, which we hypothesized in Section 6.1.

10. ACKNOWLEDGMENTS
The authors would like to acknowledge Kyle Canavera

for his contributions to the development of the technique
for reasoning about safety of adaptation. This work was
supported in part by awards CCF-1252644 from the US Na-
tional Science Foundation, W911NF-09-1-0273 from the US
Army Research Office, and D11AP00282 from the US De-
fense Advanced Research Projects Agency.

11. REFERENCES
[1] Agrawal, R., and Srikant, R. Fast algorithms for

mining association rules in large databases. In 20th
Int’l Conf. on Very Large Data Bases (1994), Morgan
Kaufmann, Los Altos, CA, pp. 478–499.

[2] Bobroff, N., Kochut, A., and Beaty, K. Dynamic
placement of virtual machines for managing SLA
violations. In 10th IFIP/IEEE International

Symposium on Integrated Network Management, 2007.
IM ’07 (2007), pp. 119–128.

[3] Canavera, K. R., Esfahani, N., and Malek, S. Mining
the execution history of a software system to infer the
best time for its adaptation. In 20th International
Symposium on the Foundations of Software
Engineering (Nov. 2012).

[4] Casalicchio, E., Menascé, D. A., and Aldhalaan, A.
Autonomic resource provisioning in cloud systems
with availability goals. In ACM Cloud and Autonomic
Computing Conference (CAC) (2013), p. 1.

[5] Chess, D. M., Palmer, C. C., and White, S. R.
Security in an autonomic computing environment.
IBM Systems Journal 42, 1 (2003), 107–118.

[6] Cook, J. E., and Wolf, A. L. Discovering models of
software processes from event-based data. ACM Trans.
Softw. Eng. Methodol. 7, 3 (July 1998), 215–249.

[7] Cook, J. E., and Wolf, A. L. Event-based detection of
concurrency. In Int’l Symp. on the Foundations of
Software Engineering (Lake Buena Vista, Florida,
Nov. 1998), pp. 35–45.

[8] Gaaloul, W., Baina, K., and Godart, C. Log-based
mining techniques applied to web service composition
reengineering. Service Oriented Computing and
Applications 2, 2-3 (May 2008), 93–110.

[9] Gaber, M. M., Zaslavsky, A., and Krishnaswamy, S.
Mining data streams: A review. SIGMOD Rec. 34, 2
(June 2005), 18–26.

[10] Garlan, D. et al. Rainbow: Architecture-based
self-adaptation with reusable infrastructure. IEEE
Computer 37, 10 (Oct. 2004), 46–54.

[11] Hall, M. et al. The weka data mining software: an
update. SIGKDD Explor. Newsl. 11, 1 (Nov. 2009),
10–18.

[12] Han, J., Pei, J., and Yin, Y. Mining frequent patterns
without candidate generation. In ACM SIGMOD
Record (2000), vol. 29, ACM, pp. 1–12.

[13] Kephart, J., and Chess, D. The vision of autonomic
computing. Computer 36, 1 (Jan. 2003), 41–50.

[14] Kramer, J., and Magee, J. The evolving philosophers
problem: Dynamic change management. IEEE Trans.
Softw. Eng. 16, 11 (Nov. 1990), 1293–1306.

[15] Lee, W., Stolfo, S., and Mok, K. A data mining
framework for building intrusion detection models. In
Proceedings of the 1999 IEEE Symposium on Security
and Privacy, 1999 (1999), pp. 120–132.

[16] Li, H. et al. Pfp: parallel fp-growth for query
recommendation. In Proceedings of the 2008 ACM
conference on Recommender systems (2008), ACM,
pp. 107–114.

[17] Lo, D. et al. Classification of software behaviors for
failure detection: a discriminative pattern mining
approach. In Proceedings of the 15th ACM SIGKDD
international conference on Knowledge discovery and
data mining (New York, NY, USA, 2009), KDD ’09,
ACM, pp. 557–566.

[18] Ma, X. et al. Version-consistent dynamic
reconfiguration of component-based distributed
systems. In Int’l Symp. on the Foundations of
Software Engineering (Szeged, Hungary, Sept. 2011),
ACM, pp. 245–255.

[19] Malek, S., Medvidovic, N., and Mikic-Rakic, M. An
extensible framework for improving a distributed
software system’s deployment architecture. IEEE
Transactions on Software Engineering 38, 1 (Feb.
2012), 73–100.

[20] Malek, S., Mikic-Rakic, M., and Medvidovic, N. A
style-aware architectural middleware for
resource-constrained, distributed systems. IEEE
Transactions on Software Engineering 31, 3 (Mar.
2005), 256–272.

[21] Malek, S. et al. Reconceptualizing a family of
heterogeneous embedded systems via explicit
architectural support. In Int’l Conf. on Software
Engineering (Minneapolis, Minnesota, May 2007),
pp. 591–601.

[22] Masud, M. et al. Detecting remote exploits using data
mining. Advances in Digital Forensics IV (2008),
177–189.

[23] Motahari-Nezhad, H. R. et al. Event correlation for
process discovery from web service interaction logs.
The VLDB Journal 20, 3 (June 2011), 417–444.

[24] OWASP.org. Owasp top ten project.
https://www.owasp.org/index.php/Category:
OWASP Top Ten Project.

[25] Poladian, V. et al. Dynamic configuration of
resource-aware services. In Int’l Conf. on Software
Engineering (Scotland, UK, May 2004), pp. 604–613.

[26] Salem, M. B., Hershkop, S., and Stolfo, S. J. A survey
of insider attack detection research. In Insider Attack
and Cyber Security. Springer, 2008, pp. 69–90.

[27] Schultz, M. et al. Data mining methods for detection
of new malicious executables. In 2001 IEEE
Symposium on Security and Privacy, 2001. S P 2001.
Proceedings (2001), pp. 38–49.

[28] Tan, P.-N., Steinbach, M., and Kumar, V.
Introduction to data mining. Addison Wesley, 2005.

[29] Taylor, R. N., Medvidovic, N., and Dashofy, E. M.
Software architecture: foundations, theory, and
practice. Wiley Publishing, 2009.

[30] Thuraisingham, B. et al. Data mining for security
applications. In IEEE/IFIP International Conference
on Embedded and Ubiquitous Computing, 2008. EUC
’08 (Dec. 2008), vol. 2, pp. 585–589.

[31] Vandewoude, Y. et al. Tranquility: A low disruptive
alternative to quiescence for ensuring safe dynamic
updates. IEEE Trans. Softw. Eng. 33, 12 (Dec. 2007),
856–868.

[32] Wen, L. et al. A novel approach for process mining
based on event types. J. Intell. Inf. Syst. 32, 2 (Apr.
2009), 163–190.

[33] Williams, A., and Probert, R. A measure for
component interaction test coverage. In Computer
Systems and Applications, ACS/IEEE International
Conference on. 2001 (2001), pp. 304–311.

[34] Xie, T. et al. Data mining for software engineering.
Computer 42, 8 (Aug. 2009), 55–62.

[35] Yuan, E., Esfahani, N., and Malek, S. A systematic
survey of self-protecting software systems. ACM
Trans. Auton. Adapt. Syst. 8, 4 (Jan. 2014),
17:1–17:41.

