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ABSTRACT
Proliferation of Android devices and apps has created a demand for
applicable automated software testing techniques. Prior research
has primarily focused on either unit or GUI testing of Android apps,
but not their end-to-end system testing in a systematic manner. We
present EvoDroid, an evolutionary approach for system testing of
Android apps. EvoDroid overcomes a key shortcoming of using
evolutionary techniques for system testing, i.e., the inability to pass
on genetic makeup of good individuals in the search. To that end,
EvoDroid combines two novel techniques: (1) an Android-specific
program analysis technique that identifies the segments of the code
amenable to be searched independently, and (2) an evolutionary
algorithm that given information of such segments performs a step-
wise search for test cases reaching deep into the code. Our experi-
ments have corroborated EvoDroid’s ability to achieve significantly
higher code coverage than existing Android testing tools.

Categories and Subject Descriptors
D.2.8 [Software Engineering]: Testing and Debugging

General Terms
Reliability, Experimentation

Keywords
Android, Evolutionary Testing, Program Analysis

1. INTRODUCTION
Mobile app markets have created a fundamental shift in the way

software is delivered to the consumers. The benefits of this soft-
ware supply model are plenty, including the ability to rapidly and
effectively deploy, maintain, and enhance software used by the con-
sumers. By providing a medium for reaching a large consumer mar-
ket at a nominal cost, this paradigm has leveled the playing field,
allowing small entrepreneurs to compete head-to-head with promi-
nent software development companies.

Platforms, such as Android, that have embraced this model of
provisioning apps have seen an explosive growth in popularity. This
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paradigm, however, has given rise to a new set of concerns. Small
organizations do not have the resources to sufficiently test their
products, thereby defective apps are made available to the con-
sumers of these markets. These defects are exploited with ma-
licious intent compromising the integrity and availability of the
apps and devices on which they are deployed. This is nowhere
more evident than in Google Play, a popular Android app market,
where numerous security attacks have been attributed to vulnerable
apps [35]. The situation is likely to exacerbate given that mobile
apps are poised to become more complex and ubiquitous, as mo-
bile computing is still in its infancy.

Automated testing of Android apps is impeded by the fact that
they are built using an application development framework (ADF).
ADF allows the programmers to extend the base functionality of
the platform using a well-defined API. ADF also provides a con-
tainer to manage the lifecycle of components comprising an app
and facilitates the communication among them. As a result, unlike
a traditional monolithic software system, an Android app consists
of code snippets that engage one another using the ADF’s sophis-
ticated event delivery facilities. This hinders automated testing, as
the app’s control flow frequently interleaves with the ADF. At the
same time, reliance on a common ADF provides a level of consis-
tency in the implementation logic of apps that can be exploited for
automating the test activities, as illustrated in this paper.

The state-of-practice in automated system testing of Android
apps is random testing. Android Monkey [3] is the industry’s de
facto standard that generates purely random tests. It provides a
brute-force mechanism that usually achieves shallow code cover-
age. Several recent approaches [18–20, 29, 32, 38] have aimed to
improve Android testing practices. Most notably and closely re-
lated to our work is Dynodroid [32], which employs certain heuris-
tics to improve the number of inputs and events necessary to reach
comparable code coverage as that of Monkey.

Since prior research has not employed evolutionary testing and
given that it has shown to be very effective for event driven soft-
ware [27], [30], we set out to develop the first evolutionary test-
ing framework targeted at Android, called EvoDroid. Evolution-
ary testing is a form of search-based testing, where an individual
corresponds to a test case, and a population comprised of many
individuals is evolved according to certain heuristics to maximize
the code coverage. The most notable contribution of EvoDroid is
its ability to overcome the common shortcoming of using evolu-
tionary techniques for system testing. Evolutionary testing tech-
niques [22,30,36,37] are typically limited to local or unit testing, as
for system testing, they are not able to promote the genetic makeup
of good individuals during the search.

EvoDroid overcomes this challenge by leveraging the knowledge
of how Android ADF specifies and constrains the way apps can be
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built. It uses this platform-specific knowledge to statically analyze
the app and infer a model of its behavior. The model captures (1)
the dependencies among the code snippets comprising the app, and
(2) the entry points of the app (i.e., places in the code that the app
receives external inputs). The inferred model allows the evolution-
ary search to determine how the individuals should be crossed over
to pass on their genetic makeup to future generations. The search
for test cases reaching deep into the code occurs in segments, i.e.,
sections of the code that can be searched independently. Since a
key concern in search-based testing is the execution time of the al-
gorithm, EvoDroid is built to run the tests in parallel on Android
emulators deployed on the cloud, thus achieving several orders of
magnitude improvement in execution time.

The remainder of this paper is organized as follows. Section 2
provides a background on Android. Section 3 outlines an illustra-
tive example that is used to describe our research. Section 4 moti-
vates the research problem using the illustrative example. Section 5
provides an overview of our approach, while Sections 6 to 8 pro-
vide the details and results. The paper concludes with a summary
of the related research in Section 9 and a discussion of our future
work in Section 10.

2. ANDROID BACKGROUND
The Google Android framework includes a full Linux operating

system based on the ARM processor, system libraries, middleware,
and a suite of pre-installed applications. It is based on the Dalvik
Virtual Machine (DVM) [6] for executing programs written in Java.
Android also comes with an application development framework
(ADF), which provides an API for application development and
includes services for building GUI applications, data access, and
other component types. The framework is designed to simplify the
reuse and integration of components.

Android apps are built using a mandatory XML manifest file.
The manifest file values are bound to the application at compile
time. This file provides essential information to an Android plat-
form for managing the life cycle of an application. Examples of
the kinds of information included in a manifest file are descriptions
of the app’s components among other architectural and configura-
tion properties. Components can be one of the following types:
Activities, Services, Broadcast Receivers, and Content Providers.
An Activity is a screen that is presented to the user and contains
a set of layouts (e.g., LinearLayout that organizes items within the
screen horizontally or vertically). The layouts contain GUI con-
trols, known as view widgets (e.g., TextView for viewing text and
EditText for text inputs). The layouts and its controls are typically
described in a configuration XML file with each layout and control
having a unique identifier. A Service is a component that runs in
the background and performs long running tasks, such as playing
music. Unlike an Activity, a Service does not present the user with
a screen for interaction. A Content Provider manages structured
data stored on the file system or database, such as contact informa-
tion. A Broadcast Receiver responds to system wide announcement
messages, such as the screen has turned off or the battery is low.

Activities, Services, and Broadcast Receivers are activated via
Intent messages. An Intent message is an event for an action to
be performed along with the data that supports that action. Intent
messaging allows for late run-time binding between components,
where the calls are not explicit in the code, rather made possi-
ble through Android’s messaging service. All major components,
including Activity and Service, follow pre-specified lifecycles [1]
managed by the ADF. The lifecycle event handlers are called by the
ADF and play an important role in our research as explained later.

3. ILLUSTRATIVE EXAMPLE
We use a simple Android app, called Expense Reporting Sys-

tem (ERS), to illustrate our research. The ERS app allows users
to submit expense report from their Android devices. As shown in
Figure 1, ERS provides two use cases that allow the user to create
two types of report: quick report and itemized report.

When quick report is chosen, the user enters the expense item
name and the amount, and subsequently presented with the sum-
mary screen. The user can choose to submit or quit the application
on the summary screen.

The itemized report option presents the user with the option to
enter the number of line items by tapping the plus and minus but-
tons. When next is tapped, the application prompts the user to enter
the expense name and amount. This screen is repeated until all line
items have been entered. Once all items are entered, the user is
presented with a summary screen with the line items, their amount,
and the total amount. The user can again choose to submit or quit
the application at this time.

4. RESEARCH CHALLENGE
Achieving high code coverage in Android apps, such as ERS, re-

quires trying out a large number of sequences of events such as user
interactions and system notifications. Our research is inspired by
prior work [30] that has shown evolutionary testing to be effective
when sequences of method invocation are important for obtaining
high code coverage. However, application of evolutionary testing
has been mostly limited to the unit level [22,30,36,37], as when ap-
plied at the system level, it cannot effectively promote the genetic
makeup of good individuals in the search.

Figure 2a illustrates the shortcoming of applying an evolutionary
approach for system testing of ERS. Here, we have two individuals
in iteration 1 of the search. In this representation, an individual is
comprised of two types of genes: input genes (e.g., values entered
in text fields) and event genes (e.g., clicked buttons). The test case
specified in an individual is executed from the left most gene to the
right most gene. In essence, each individual is a test script.

Using the screenshots of ERS in Figure 1, we can see that the two
individuals in iteration 1 of Figure 2a represent reasonable tests,
as each covers a different part of the app. For system testing, we
would need to build on these tests to reach deeper into the code.
The problem with this representation, however, is that there is no
effective approach to pass on the genetic make up of these individ-
uals to the next generations. For instance, from Figure 2a, we can
see that the result of a crossover between the two individuals in it-

Figure 1: Expense Report System (ERS).
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Figure 2: Existing evolutionary testing techniques: (a) a repre-
sentation where the individual represents a test case, and (b) a
representation where the individual represents a test suite

eration 1 is a new individual in iteration 2 that does not preserve the
genetic makeup of either parents in any meaningful way. In fact,
using the screenshots of ERS in Figure 1, we can see that the tests
cannot even be executed. There are two issues that contribute to
this: (1) The crossover strategy does not consider which input and
action genes are coupled to one another. For instance, the genes
"lunch", "20", and "Next" are coupled with one another, as only to-
gether they can exercise the Expense Item screen. (2) The crossover
strategy mixes genes from two different execution paths in the sys-
tem. Thus, it produces a test that is likely to be either not executable
or inferior to both its parents. In evolutionary search, the inability
to promote and pass on the genetic makeup of good individuals to
the next generations is highly detrimental to its effectiveness.

To overcome the issues with this representation, prior approaches
[17,27,28,34] use evolutionary algorithm in conjunction with GUI
crawling techniques. One such approach, called EXSYST [27],
represents test suites as individuals and tests as genes, as depicted
in Figure 2b. This approach generates tests that correspond to ran-
dom walks on the GUI model. An individual is comprised of many
random tests, i.e., each gene of the individual corresponds to a sys-
tem test. EXSYST evolves the suites of tests to minimize the num-
ber of tests and maximize coverage. However, the probability of a
single gene (test) achieving deep coverage remains the same as in
the case of random testing. The overall coverage is no better than
the initial population (randomly generated tests), as the evolution-
ary algorithm is mainly used to minimize the number of tests.

EvoDroid is the first evolutionary testing approach for system
testing of Android apps. To that end, it had to overcome the concep-
tual challenges of using evolutionary techniques for system testing.
EvoDroid achieves this through a unique representation of individ-
uals and a set of heuristics that allow the algorithm to maintain and
promote individuals with good genetic makeup that reach deep into
the code.

5. APPROACH OVERVIEW
The overall EvoDroid framework is shown in Figure 3. The input

is an Android app’s source code. From the source code, EvoDroid
extracts two types of models, representing the app’s external in-
terfaces and internal behaviors, to automatically generate the tests:
Interface Model (IM) and Call Graph Model (CGM). The models
are automatically extracted by analyzing the app’s code.

IM provides a representation of the app’s external interfaces and
in particular ways in which an app can be exercised, e.g., the inputs
and events available on various screens to generate tests that are

valid for those screens. A partial representation of IM for the ERS
is shown in Figure 4b. EvoDroid uses the IM to determine the
structure of individuals (tests), i.e., the input and event genes that
are coupled together.

CGM is an extended representation of the app’s call graph. A
typical call graph shows the explicit method call relationships. We
augment that with information about the implicit call relationships
caused by events (messages). An example of CGM for the ERS
is shown in Figure 5. A particular use case (e.g., quick report or
itemized report from Figure 1) follows a certain path through the
CGM. EvoDroid uses CGM to (1) determine the parts of the code
that can be searched independently, i.e., segments, and (2) evaluate
the fitness (quality) of different test cases, based on the paths they
cover through the CGM, thus guiding the search.

Using these two models, EvoDroid employs a step-wise evolu-
tionary test generation algorithm, which we call segmented evolu-
tionary testing. It aims to find test cases covering as many unique
CGM paths from the starting node of an app to all its leaf nodes.
In doing so, it logically breaks up each path into segments. It uses
heuristics to search for a set of inputs and sequence of events to in-
crementally cover the segments. By carefully composing the test
cases covering each segment into system test cases covering an
entire path in the CGM, EvoDroid is able to promote the genetic
makeup of good individuals in the search.

EvoDroid executes the automatically generated test cases in par-
allel, possibly on the cloud, to address scalability issues. The test
cases are evaluated based on a fitness function that rewards code
coverage and uniqueness of the covered path.

The focus of EvoDroid is on generating test cases that maximize
code coverage, not on whether the test cases have passed or failed.
We acknowledge that automatically generating test oracles is a sig-
nificant challenge. This has been and continues to be the focus of
many research efforts. Currently, we collect two types of results
from the execution of tests: any exceptions that may indicate cer-
tain software faults as well as code coverage information.

Section 6 describes the models used for testing, while Section 7
presents the details of EvoDroid.

6. APPS MODELS EXTRACTION
EvoDroid needs three types of information about the app under

test for automatically generating test cases: (1) the genes compris-
ing a valid individual, e.g., determining the input fields and GUI
controls that should be paired up to have a valid test case for an
Activity (which as you may recall from Section 2 represents a GUI
screen), (2) the app’s segments, i.e., parts of the app that can be
searched separately to avoid the crossovers issues described ear-
lier, and (3) the fitness value of different test cases. We developed
Android-specific program analysis techniques to infer two models
that can provide EvoDroid with this information.

6.1 Interface Model
The Interface Model (IM) provides information about all of the

input interfaces of an app, such as the widgets and input fields
belonging to an Activity. It also includes information about the
application- and system-level Intents handled by each Activity. The
IM is obtained by combining and correlating the information con-
tained in the configuration files and meta-data included in Android
APK (such as Android Manifest and layout XML files).

First we list all the Android components (e.g., Activities, Ser-
vices) comprising an app with the help of information found in the
Manifest file. Afterwards, for each Activity we parse the corre-
sponding layout file. An example of such layout file for ExpenseIt-
emActivity is shown in Figure 4a. It is quite straightforward to ob-
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Figure 3: EvoDroid Framework.

tain all information on each screen, such as widget type, name, and
identifier from this XML document to generate the IM. Figure 4b
depicts the IM for the ERS Activities. We use the information cap-
tured in IM to determine the structure (genes) of individuals for
testing each component of the app.

6.2 Call Graph Model
The Call Graph Model (CGM) contains a set of connected call

graphs capturing the different possible invocation sequences within
a given application. We use MoDisco [13], an open source pro-
gram analysis tool, to extract the app’s call graph. However, since
Android is an event driven environment, MoDisco generates dis-
connected call graphs for each app. Figure 5 shows ERS’s CGM.
As described later, we have extended MoDisco to infer the dashed
lines to create a fully connected graph.

The root node of each call graph snippet is a method that no
other part of the application explicitly invokes. There are two types
of root nodes:

1. Inter-component root nodes: these root nodes represent meth-
ods in a component that handle events generated by other
components or Android framework itself, e.g., an Activity
generating a StartActivity event that results in another Activ-
ity’s onCreate() method to be called, or the Android frame-
work sending a Resume event that results in an Activity’s
onResume() method to be invoked.

2. Intra-component root nodes: these root nodes correspond
to events that are internal to a component. For example, a
Button on an Activity has a Click event associated with it.
This event is handled by a class within the same Activity that
implements the OnClickListener interface and overrides the
onClick() method. These sorts of callback handlers are also
root nodes, as they are called by the Android framework.

The inter-component root nodes are the logical break points for
segments, and the inputs received at these nodes form the structure
of individuals for the corresponding segments. We can determine
the structure of this input using the IM. On the other hand, the
intra-component root nodes do not mark a new segment, as they
do not result in the execution to move to a different component
(e.g., different screen), and thus are not susceptible to the crossover
problem.

Finally, for EvoDroid to generate tests and to determine their
fitness, it needs the CGM to be fully connected. To that end, we
have extended MoDisco with an Android-specific program anal-
ysis capability to infer the relationships among the disconnected
nodes of the call graph. As depicted in Figure 5, we start with the
onCreate() root node of the main Activity, which we know from
Android’s ADF specification to be the starting point of all apps.
We then identify the Intent events and their recipients, as well as
GUI controls and their event handlers, to link the different parts of

<LinearLayout xmlns:android="http://schemas.android
.com/apk/res/android"

android:orientation="vertical"
android:layout_width="fill_parent"
android:layout_height="fill_parent"
>
...
<EditText

android:id="@+id/expenseNameId"
android:layout_width="match_parent"
android:layout_height="wrap_content">
<requestFocus />

</EditText>
<EditText

android:id="@+id/expenseAmoundId"
android:layout_width="match_parent"
android:layout_height="wrap_content">
<requestFocus />

</EditText>
<Button

android:id="@+id/nextBtn"
android:layout_width="wrap_content"
android:layout_height="wrap_content"
android:text="Next" />

...
</LinearLayout>

Figure 4: (a) Parts of the layout file for ExpenseItem Activity, (b) ERS Interface Model
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Figure 5: Part of ERS’s Call Graph Model

the call graph and arrive at the final CGM. We know that the links
would have to be to other root nodes, and achieved through sending
of Intent events. The links formed as a result of this inference tell
us the implied control flow as depicted with the dashed lines in Fig-
ure 5. In the case of inter-component events, the sender of Intent
identifies its handler as one of the Intent’s parameters. In the case
of intra-component events, the root node responsible for handling
that event is registered as a callback method with the sender. For
instance, a button’s onClick() method is registered with an object
that implements the OnClickListener to receive a callback when
the button is clicked. Examples of this in Figure 5 are Decrement-
Button and IncrementButton that are registered with ItemCountAc-
tivity, which implements the OnClickListener interface. As the call
graph snippets are linked and connected, they are traversed in a
similar fashion to arrive at the final connected CGM for the app.

7. EVODROID
The goal of EvoDroid is to find a set of test cases that maximize

code coverage. This is encoded as covering as many unique paths
from the starting node of the CGM to its leaf nodes. In the context
of ERS, depicted in Figure 5, it is to find test cases from node A to
leaf nodes n1, n2, and n3. For example, possible paths in this graph
are A→ B→ C → n1 and A→ B→ E → F → n3. The former
involves two segments, while the latter involves four segments.

For each such path in Figure 5, EvoDroid starts from the begin-
ning node and searches for test cases that can reach the leaf nodes.
Each test case is represented as an individual in EvoDroid and its
genes are the app inputs and the sequence of events. Unlike any
prior approach, EvoDroid takes each path in the CGM, breaks it
into segments, and runs the evolutionary search for each segment

separately. Accordingly, the evolutionary process described here is
repeated for each segment along each path in the CGM.

For each segment in each path, a population with a configurable
number of individuals is generated. The evolutionary process is
continued until all of the paths and their segments are covered or a
configurable threshold (e.g., time limit, certain level of code cov-
erage, number of total test cases, etc.) is reached. The search is
abandoned for a segment, and potentially a path, if the coverage is
not improved after a configurable number of generations. This en-
sures the search does not waste resources on genes that cannot be
further improved; it also prevents the search from getting stuck in
infinite loops when there are cycles in the path. Fitness is measured
based on how close an individual gets to reach the next segment as
well the uniqueness of the covered path. With each iteration, Evo-
Droid breeds new individuals by crossing over current individuals
selected with likelihood proportional to their fitness value, and then
mutates them (e.g., changes some of the input values or events).

The ideal individuals from each segment are saved. An ideal
individual is a test that covers the entire segment and reaches the
root node of another segment. An ideal individual from the previ-
ous segment is prepended to the genes of a new individual for the
next generation, as described further in the next section. Essen-
tially the test cases gradually build on the solutions found for the
prior segments to build up to a system test case. A segment may
also optionally be skipped if it was covered while attempting to
cover another segment. For example, in Figure 5, since the segment
E→ F is shared in the following two paths A→ B→ E→ F→ n3
and A→ E → F → n3, it would only need to be evolved once (as-
suming ideal individuals were found the first time). Similarly, if
while evolving A→ B, the algorithm inadvertently reaches A→ E,
those ideal individuals are saved and EvoDroid may optionally skip
solving A→ E.

The maximum number of individuals or test cases executed in
the search process can be calculated as follows:

T =
|path|

∑
i=1

Segi×gensegi × popgensegi
(1)

where |path| is the number of unique paths (from the starting node
to the leaf nodes) in CGM, seg is the number of segments for each
path, gen is the number of generations per segment, and pop is the
population or the number of individuals per generation.

The remainder of this section describes the details of EvoDroid.

7.1 Representation
The models from Section 6 are used to determine the structure

of genes for each segment. IM tells us the inputs, their data type
(such as integer, double etc.), the number of GUI elements (such as
buttons), and/or system events relevant to the current segment.

An individual is represented as a vector shown in Figure 6a.
Here, previous segment corresponds to the genes of an ideal indi-
vidual from the previous segment, Input [1..n] corresponds to spe-
cific input values from the current segment, and Event [1..m] cor-
responds to the sequence of possible user actions or system events
from the current segment. Each index in the vector contains a gene.
The previous segment is a recursive relationship.

The number of input genes is fixed, as we only need to change the
input values, i.e., mutate the existing input genes. The number of
event genes is variable to handle the situations in which unexplored
parts of the application require a certain number of button clicks
or certain sequence of events. For instance, in the Line Item Count
screen from Figure 1, the plus button must be clicked more than the
minus button and before clicking the next button to be able to reach
the next screen. We execute the test case specified in an individual
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from the left most gene to the right most gene including all previous
segment genes, essentially traversing a path in the CGM.

7.2 Crossover
The first step in creating a new individual for the next generation

is crossover. This process selects two individuals from the current
population and creates a new individual by mixing their genetic
makeup. EvoDroid uses a multi-point probabilistic crossover strat-
egy. There is at least one, and potentially multiple, crossover points
between the two selected individuals.

The segment crossover probability is calculated as follows:

p(c) =
1

e(s−c)
(2)

where e is a configurable constant to achieve a decay factor, s is
the index of the current segment being searched, and c is the index
of a prior segment between 1 and s. The probability is 1.0 for the
current segment, that is to say when c = s. This exponential decay
function ensures that the earlier genetic makeup is not changed fre-
quently, while leaving the possibility open to find individuals that
may explore new areas of the search space.

The crossover point for the current segment can be at any gene
index and at most the length of the smaller of the two individuals.
We only allow one crossover for the current segment, as this is suf-
ficient to create variability in the new individual. Figure 6c shows
the crossover steps for a pair of parent individuals in segment 3
of ERS. The newly created individual inherits part of the genetic
makeup of the parents.

The previous segments are treated separately from the current
segment and the probability function p(c) dictates the chance of
crossover in each segment. There can potentially be a crossover at
each of the previous segments, but we only allow swapping of the
entire ideal individual for each segment, not in the middle of a pre-
vious ideal individual. Figures 6b and c show how ideal individuals
found in prior segments are used to arrive at the parent individuals
in Figure 6c. Here the new individual in Figure 6c inherits the pre-
vious segment individual from the left parent. If the probability
function p(c) had dictated otherwise, it would have been inherited
from the parent on the right.

This crossover strategy aims to preserve the genetic makeup of
the solutions found for earlier segments, as we only allow the crossover
to use the complete ideal individual for a given segment. Any ideal
individual from that segment can be substituted, as they are all solu-
tions for that segment. The previous segments for the new individ-
ual in Figure 6c share the same path (as the evolutionary process
is applied within the context of a path), thus the structure of the
individuals at each previous segment line up properly.

Note that this crossover strategy does not provide any guaran-
tees that the input values and events satisfying an earlier segment
in a path will be able to satisfy later segments in that path. For ex-
ample, solving a particular constraint in segment 3 may require a
specific value to have been entered in segment 1. Indeed, the ob-
jective of the search is to find such combinations. The evolutionary
search, guided by heuristics embedded in the fitness function, natu-
rally weeds out sub-optimal tests. In addition, since we save many
ideal individuals for each segment, each with different input/event
genes, EvoDroid is quite effective at eventually discovering indi-
viduals that solve the entire path.

7.3 Mutation
Mutation changes parts of the genetic makeup of the newly cre-

ated individual. Only the current segment genes are mutated with
a probability threshold that is configurable. We mutate both input

and event genes with several creation, transformation and remove
operations.

The first type of mutation is done to the input genes of an indi-
vidual. The creation of a numerical input includes boundary values,
random, special/interesting values such as the number zero. For
a string input, we generate purely random, uniformly distributed
characters from the alphabet of a certain length, or null. Transfor-
mation operations for inputs include random value of same primi-
tive data type, bit-flipping, arithmetic operations, and binary space
reduction between boundary values. Removal operation for inputs
is not applicable; they are included as null instead.

The second type of mutation is done to the event genes. The cre-
ation operator simply creates an event from the list of valid events
specified in the IM. The number of added events is random with
a minimum of one and a configurable upper threshold. Transfor-
mation operations for events include swapping event gene indexes,
changing one event to another, and inserting a new event at a ran-
dom index. Removal operation for events removes one or more
event genes. The length of the overall individual can change as a
result. Figure 6d show the mutation of a single gene to create a
final unique individual that is different from both parents.

7.4 Fitness
A key aspect of evolutionary algorithms is the notion of fitness.

In each generation, individuals are assessed for their fitness with
respect to the search objective to be selected to pass on their genes.
The fitness value ranges from 0 to 1. EvoDroid considers two
factors when assessing the fitness of individuals. The first is the
distance traveled (number of nodes covered between segments) to
reach the next segment, and the second is the uniqueness of the path
covered compared to the other individuals in the same generation.
The fitness of an individual i is determined as follows:

f (i) =
( x

n

)
+u(i) (3)

where x is the number of covered nodes in the path to the desti-
nation segment, n is the total number of nodes in the path to the
destination segment, and u(i) is the uniqueness function of the in-
dividual as follows:

Figure 6: EvoDroid’s (a) representation of individual, (b) ideal
individuals from segment 2, (c) crossover steps for creating an
individual in the 3rd segment, and (d) mutation
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Figure 7: Fitness evaluation

u(i) =
(

1−
( x

n

))
×

l

∑
k=1

(unique(rk)

l + k

)
(4)

where rk is the covered node at index k in the path covered by the
individual, and unique(rk) is 1 if the covered node at index k is
unique compared to other individuals’ coverage at the same index,
and 0 otherwise, and l is the length of the path that this individual
has covered.

When an individual for a given segment covers the entire seg-
ment path, we identify it as an ideal individual for that segment
with a fitness score of 1. Of course, this means that there can be
multiple individuals per generation that are ideal for a segment.

For illustration of how fitness is calculated, consider the hypo-
thetical example depicted in Figure 7. It shows that the total dis-
tance (number of nodes) to reach SummaryActivity from LineIt-
emActivity is 5. When the first individual executes, the shaded
nodes are marked as covered by that individual. It covers 3 out
of the 5 nodes along the path to segment root node, so it gets a dis-
tance score of x/n = 3/5 = 0.6, a uniqueness score of u(i) = 0.4×
1/(4+1)+1/(4+2)+1/(4+3)+1/(4+4) = 0.25 as the entire
path is unique at this time, for a total fitness score of f (i) = 0.85.

If another individual test case is executed but covers the path with
nodes LineItemActivity → n1→ n2→ n3, it would get a distance
score of x/n = 1/5 = 0.2, and additionally a uniqueness score.
The length of the path this individual covered is 4 and all but the
first node are unique (i.e., n1, n2, n3), so the uniqueness score is
u(i) = .8× (1/(4+ 2)+ 1/(4+ 3)+ 1/(4+ 4)) = 0.34. The total
fitness score for this individual would be f (i) = 0.2+0.34 = 0.54.
Although the individual did not cover much of the path to the des-
tination segment node, it is awarded a fractional score as it may
discover a new area of uncovered code.

Note that the formulation of eq. 3 and 4 ensures that the unique-
ness score alone never makes the value of fitness function to be 1
without reaching the destination. This prevents an individual to be
labeled ideal without first reaching the destination. Finally, a con-
figurable number of test cases with the highest scores are directly
copied to the future generations without any changes, to ensure the
individuals with the best genetic makeup remain in the population.

8. EVALUATION
We evaluated EvoDroid on a large number of apps with varying

characteristics. The goal of our evaluation was twofold: (1) com-
pare the EvoDroid code coverage against the prior solutions, and
(2) characterize its benefits and shortcomings.

8.1 Experiment Environment
Evolutionary testing requires the execution of a large number of

tests. This is especially challenging in the case of the Android em-
ulator [2], as it is known to be slow even when running on worksta-
tions with the latest processors and abundant memory. To mitigate
this issue, we have developed a novel technique to execute the tests
in parallel, possibly on the cloud, which makes it suitable for use
by small as well as large organizations.

We set up an instance of Amazon EC2 virtual server running
Windows Server 2008, and configured it with Java SDK, Android
SDK, Android Virtual Device, and a custom test execution manager
engine developed by us. For each test, the test execution manager
launches the emulator, installs the app, sets up and executes the
test. It is also responsible for persisting all of the results, along
with the log and monitored data, to an output repository. A virtual
machine image was created from the above instance to be replicated
on demand. With this, we were able to scale in near-linear time and
cut down on the execution time. We report the results for both
extremes: when the test cases are executed in sequence using a
single processor, and when they execute completely in parallel.

We have implemented EvoDroid using ECJ [9], a prominent
evolutionary computing framework. In the experiments, we used
EMMA [10] to monitor for code coverage, and all of the test cases
were in Robotium [15] format. Our implementation and evaluation
artifacts are available from [11].

8.2 Experiment Setup
We compare EvoDroid with Android Monkey [3] and Dynodroid

[32] in terms of code coverage and execution time. Android Mon-
key is developed by Google and represents the state-of-the-practice
in automated testing of Android apps. It sends random inputs and
events to the app under test. Dynodroid [32] is a recently published
work from researchers at Georgia Tech that uses a smaller number
of inputs and events than Monkey for reaching similar coverage.
We are not able to compare directly with EXSYST [27] and Evo-
Suite [28], as they are not targeted for Android. We do not compare
against [38] as that is for model generation only, while EvoDroid
creates models and performs a step-wise segmented evolutionary
search.

At first blush it may seem unreasonable to compare EvoDroid,
a whitebox testing approach, against Android Monkey and Dyn-
odroid, which are blackbox and greybox testing approaches, re-
spectively. However, there are two reasons that makes this compar-
ison relevant. First, most Android apps can be reverse engineered
using one of the existing tools (see [5,7,8,16]) to obtain the source
code necessary for whitebox testing. Therefore, our approach could
be used for testing almost all Android apps. Second, in the evalu-
ation of any stochastic search algorithm, it is desirable to compare
the results of the algorithm against the unbiased random sample
of the solution space. We believe the comparison against Monkey
and Dynodroid helps us in that vein. It should be noted that un-
like EvoDroid, Monkey and Dynodroid are not designed to run in
a distributed manner, and neither tools are configurable to run for a
specific amount of time.

To achieve a fair comparison with Android Monkey and Dyn-
odroid, however, we had to allot each approach similar number of
events. The events for Android Monkey and Dynodroid are similar
to the genes in EvoDroid. Since there is no one-to-one mapping,
we ran EvoDroid first, and then mapped the total number of gener-
ated tests to Monkey and Dynodroid events. Thus, the number of
events allotted for running Monkey and Dynodroid varied as a func-
tion of the number of test cases executed for EvoDroid as follows:
max(g)× t, where g is the maximum number of genes allowed for
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Figure 8: Android complexity metrics distribution from a random sample of 100 apps

test cases in EvoDroid and t is the number of test cases executed
for a given app.

In all experiment scenarios, for each segment in each path, we
used a maximum of 10 generations of 10 individuals with a maxi-
mum of 10 genes. The number of maximum generations along with
the coverage of all segments served as the terminating conditions.
Euler’s constant (e = 2.718) was used as the crossover decay num-
ber in eq. 2, and during the mutation phase each gene had a 20%
chance of mutation.

To evaluate EvoDroid, two sets of experiments were performed.
The first on apps developed by independent parties from an open
source repository, and the second on synthetic apps. The syn-
thetic apps helped us benchmark EvoDroid’s characteristics in a
controlled setting.

8.3 Open Source Apps
We selected 10 open source apps to evaluate the line coverage

between EvoDroid, Monkey, and Dynodroid. We were not able
to run Dynodroid on two of the subject apps, and thus we are not
able to report on those. As shown in Table 1, EvoDroid consis-
tently achieves significantly higher coverage than both Monkey and
Dynodroid. On average EvoDroid achieves 47% and 27% higher
coverage than Monkey and Dynodroid, respectively.

The generation of test oracles is outside the scope of our work,
nevertheless we collected information about unhandled exceptions,
which allowed us to detect several defects in these apps. For in-
stance, we found several cases of unhandled number format ex-
ception in Tipster, TippyTipper, and Bites that were due to either
leaving the input fields empty, clicking a button that clears the in-
put field followed by clicking a button that would operate on the
inputs, or simply putting a string that could not be converted to a
number. As another example, we found a defect in Bites, an app for
finding and sharing food recipes, in which an unhandled index out
of bounds exception would be raised when editing recipes without
adding the ingredients list first.

Some of the reasons for not achieving complete coverage are un-
supported emulator functions, such as camera, as well as spawning
asynchronous tasks that may fail, not finish by the time the test fin-
ishes, and thus not get included in the coverage results. Other rea-
sons include code for handling external events, such as receiving
a text message, dependence on other apps, such as calendars and
contacts lists, and custom exception classes that are not encoun-
tered or thrown. Additionally, some of the applications contained
dead code or test code that was not reachable, thus the generated
EvoDroid model would not be fully connected. Indeed, in many of
these apps achieving 100% coverage is not possible, regardless of
the technique.

The limitations of emulator, peculiarities in the third-party apps,
and incomplete models made it very difficult to assess the char-
acteristics of EvoDroid independently. In other words, it was not
clear whether the observed accuracy and performance was due to
the aforementioned issues, and thus an orthogonal concern, or due
to the fundamental limitations in EvoDroid’s approach to test gen-
eration. We, therefore, complemented our evaluation on real apps
with a benchmark using synthetic apps, as discussed next.

8.4 Synthetic Benchmark Apps
To control the characteristics of the subjects (i.e., apps under

test), we developed an Android app generator that synthesizes apps
with different levels of complexity for our experiments. Since we
needed a way of ensuring the synthetic apps were representative of
real apps, we first conducted an empirical study involving 100 real
world apps chosen randomly from an open source repository, called
F-Droid [12]. The selected apps were in various categories, such as
education, Internet, games, etc. We analyzed these apps according
to four complexity metrics that could impact EvoDroid:

• Root Nodes per App — the number of disconnected call graphs
in the app; these are the methods called by ADF, and poten-
tially the break points for EvoDroid segments.

• Method Call Sequence Depth — the longest method call se-
quence in the app.

• McCabe Cyclomatic Complexity — the average number of
control flow branches per method.

• Block Depth per Method — the average number of nested
condition statements per method.

Figure 8 shows the distribution of these metrics among the 100 An-
droid apps from F-Droid. Our app generator is able to synthesize
apps with varying values in these four metrics. Since we wanted
to evaluate the accuracy and performance of EvoDroid on subjects
with different levels of complexity, we had to derive some complex-
ity classes from this data. For that, we aggregated the data collected
through our empirical study, as shown in Figure 8, and divided it
into 9 equal complexity classes, ranging from 1 to 9. For instance,
the 1st complexity class corresponds to the 10th percentile in all of
the four metrics shown in Figure 8. Essentially an app belonging to
a lower class is less complex with respect to all four metrics than
an app from a higher class.

8.4.1 Impact of Complexity
To benchmark the impact of complexity on EvoDroid, we gen-

erated two apps for each complexity class. Apps were set up such
that exactly 1 path contained no input constraints, while other paths
contained nested conditional input constraints. These constraints
were generated to simulate the Block Depth per Method dimension,
and would have to be satisfied in order for the search to progress

Table 1: Open source apps line coverage.
App Name SLOC EvoDroid Android Dynodroid

Monkey
CalAdder 142 82% 18% -

Tipster 280 89% 51% 48%
Munchlife 392 78% 45% 61%

JustSit 556 84% 37% 69%
AnyCut 1095 84% 6% 66%

TippyTipper 1649 82% 51% -
NotePad 1655 76% 59% 65%

Bites 2301 80% 32% 39%
PasswordMaker 2824 76% 30% 36%

Bookworm 5840 77% 9% 43%
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Table 2: Execution time for testing apps from different complexity classes (in minutes).
Complexity # of EvoDroid Monkey/ EvoDroid EvoDroid Android DynoDroid

Class Segments Test Cases DynoDroid Events Single CPU Parallel Monkey
1 4 30 300 41.55 1.65 1.52 235.57
1 6 40 400 44.10 1.75 1.55 273.27
2 8 50 500 52.00 2.01 1.52 309.43
2 9 60 600 88.31 2.20 1.53 325.78
3 17 130 300 258.77 2.40 1.65 458.90
3 19 140 140 293.38 2.53 1.58 407.60
4 25 210 2100 686.47 3.31 1.97 1091.00
4 33 220 2200 388.30 3.11 1.72 1073.40
5 36 260 2600 796.23 4.13 1.88 592.27
5 48 290 2900 692.77 3.92 2.23 823.57
6 49 280 2800 1107.79 4.90 2.02 623.57
6 47 520 5200 957.97 4.43 2.13 1100.70
7 109 750 7500 2725.27 5.11 2.50 1233.90
7 110 1110 11100 2999.87 5.53 2.82 -
8 233 1800 18000 7645.32 6.20 4.03 -
8 282 1960 19600 8035.17 6.53 4.17 -
9 345 3640 36400 13713.25 6.81 5.43 -
9 487 3680 36800 21395.50 7.59 6.00 -

further and attain deeper coverage. The generated conditional state-
ments had a 50% satisfiability probability given a random input
value. Of course, some of the conditional statements were nested
in the synthetic apps, resulting in a lower probability of satisfying
certain paths.

The line coverage results are summarized in Figure 9a. As the
complexity class of apps increases, the coverage for Monkey and
Dynodroid drops significantly. Since EvoDroid logically divides
an app into segments, the complexity stays relatively the same, i.e.,
it is not compounded per segment. In all experiments, EvoDroid
achieves over 98% line coverage. The cases where 100% cover-
age is not reached is due to EvoDroid abandoning the search when
reaching the maximum number of allowable generations. Increas-
ing the number of generations is likely to resolve those situations.

Once Monkey traverses a path, it does not backtrack or use any
other systematic way to test the app. Therefore, Monkey’s test
coverage is shallow as others have confirmed in [32]. Dynodroid
periodically restarts from the beginning of the app, and is able to
outperform Monkey. Note that for very complex apps, Dynodroid
would crash, and thus we were not able to obtain results.1

Table 2 summarizes the execution time for EvoDroid, Monkey,
and Dynodroid. Even though the execution time for EvoDroid sig-
nificantly increases as the apps become more complex, it could be
alleviated by running EvoDroid in parallel, possibly on the cloud.
EvoDroid parallel times are roughly equivalent to the worst path
execution time. The numbers presented assume as many parallel
instances running as there are test cases. In practice, we expect
EvoDroid to be executed on several machines, but perhaps not hun-
dreds, producing an execution time in between the worst case and
best case reported in Table 2. We can see that as the depth of the
segments increases, the time to execute EvoDroid increases. The
results also show that Monkey runs fairly quickly, while Dynodroid
takes longer, as one would expect due to its backtracking feature.

8.4.2 Impact of Constraints
Input constraint satisfaction is a known weakness of search based

testing techniques. A set of experiments was conducted to assess
the efficacy of our approach as the satisfiability probability of con-
ditional statements was lowered below 50%. We took the second
app from the 3rd complexity class (shown in Figure 9a) and low-

1This is because above 10,000 events Dynodroid needs more than
3.4GB memory, which is more than the maximum memory size the
32-bit virtual machine that Georgia Tech researchers provided us
for our experimentation could support.

ered the satisfiability probability of its conditional statements to
25%, 10%, and 1%. As shown in Figure 9b, when the probability
of constraint satisfiability decreases, the line coverage drops signif-
icantly for EvoDroid. Android Monkey coverage stays the same as
it takes the one path with no constraints and does not backtrack.
The coverage for Dynodroid drops also, but remains better than
Monkey, as it restarts from the beginning several times during exe-
cution.

The results demonstrate that EvoDroid (as well as any other evo-
lutionary testing approach) performs poorly in cases where the apps
are highly constrained (e.g., the probability of satisfying many con-
ditional constraints with random inputs is close to zero, such as an
if condition that specifies an input value to be equal to a specific
value). Fully addressing this limitation requires an effective ap-
proach for solving the constraints, such as symbolic execution, as
described further in Section 10. Fortunately, from Figure 8 we see
that for a typical Android app, the average cyclomatic complexity
is approximately 2.2 and block depth is approximately 1.75. These
numbers are encouraging, as they show that on average most An-
droid apps are not very constrained.

8.4.3 Impact of Sequences
Given the event driven nature of Android apps, there are situa-

tions when certain sequences of events must precede others or cer-
tain number of events must occur to execute a part of the code. We
evaluated EvoDroid for these types of situations by generating apps
from the 3rd complexity class with ordered sequence lengths rang-
ing from 1 to 5. Sequences of events with these lengths would have
to be satisfied, per segment in all paths, in order to proceed with
the search (e.g. certain buttons on an Activity must be clicked in a
certain sequence of length 1 to 5).

Figure 9c summarizes the results from these experiments. While
EvoDroid’s coverage decreases, it does so at a much slower pace
than Monkey or Dynodroid. We observe that EvoDroid is effective
in generating system tests for Android apps involving complex se-
quence of events. This is indeed one of the strengths of EvoDroid
that is quite important for Android apps as they are innately event
driven.

9. RELATED WORK
The Android development environment ships with a testing frame-

work [4] that is built on top of JUnit. Robolectric [14] is another
testing framework for Android apps that runs tests without relying
on the Android emulator. While these frameworks automate the ex-
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Figure 9: Benchmark Apps coverage results: (a) Line coverage results for testing apps from different complexity classes (b) Impact
of constraints on line coverage (c) Impact of sequences of events on line coverage

ecution of the tests, the test cases themselves have to be developed
manually.

Amalfitano et al. [18] described a crawling-based approach that
leverages completely random inputs to generate unique test cases.
In a subsequent work [19], they presented an automated Android
GUI ripping approach where task lists are used to fire events on the
interface to discover and exercise the GUI model. Hu and Neamtiu
[29] presented a random approach for generating GUI tests that
uses the Android Monkey to execute. We use program analysis to
derive the models. This sets us apart from these works that employ
black-box testing techniques.

Yang et al. [38] described a grey-box model creation technique
that similar to our work is concerned with deriving models for test-
ing of Android app and can potentially be substitued for our mod-
els. They also found that models generated using their approach
could be incomplete. Jensen et al. [31] presented a system testing
approach that combines symbolic execution with sequence gener-
ation. They attempt to find valid sequences and inputs to reach
prespecified target locations. Their approach neither uses an evo-
lutionary search technique like ours, nor is their goal maximizing
code coverage. Anand et al. [20] presented an approach based on
concolic testing of a particular Android library to identify the valid
GUI events using the pixel coordinates. Dynodriod [32] is an in-
put generation system for Android that was used extensively in our
experiments.

Evolutionary testing falls under search based testing techniques
and has typically been used to optimize test suites [17, 27, 28, 34]
or has been applied at the unit level [30]. Evolutionary testing ap-
proaches such as [17, 27, 28, 34] have attempted to optimize a test
suite for coverage. These are all blackbox approaches that build
their GUI models at run time by executing and crawling or by
recording user behavior, and therefore the generated models may
not be complete. Since our approach uses program analysis, we
obtain a more complete model of the app’s behavior. They also dif-
fer from us in that they represent test cases as genes. Two unit level
evolutionary testing approaches were presented in [36,37]. A com-
bination of approaches were also presented in [22, 30]. Evolution-
ary algorithm and symbolic execution techqniques were combined
in [30], while evolutionary algorithm and hill climbing algorithm
were used together in [22]. These techniques are all geared towards
unit testing. An ant colony optimization search was used in [23]
along with a call graph similar to ours for GUI testing. However,
their call graph is generated by executing the system and connect-
ing overlapping call nodes to attempt to form the entire call graph.
This approach suffers from the same issue as the GUI crawling
methods, meaning that the call graph model may be incomplete.
Choi et al. [25] proposed a machine learning approach to improve

the app models by exploring the states not encountered during man-
ual testing. This work is complementary to our work, as it may be
possible to use these improved models in EvoDroid.

There has also been a recent interest in using cloud computing
to validate and verify software. TaaS is a testing framework that
automates software testing as a service on the cloud [24]. Cloud9
[26] provides a cloud-based symbolic execution engine. Similarly,
our framework is leveraging the computational power of cloud to
scale evolutionary testing.

10. CONCLUDING REMARKS
We have presented EvoDroid, a novel framework for automated

testing of Android apps. The key contributions of our work are (1)
an automated technique to generate abstract models of the app’s be-
havior to support automated testing, (2) a segmented evolutionary
testing technique that preserves and promotes the genetic makeup
of individuals in the search process, and (3) a scalable system-wide
testing framework that can be executed in parallel on the cloud.

Although our approach has shown to be significantly better than
existing tools and techniques for automated testing of Android apps,
in the worst case scenario it can degrade quite a bit due to its inabil-
ity to systematically reason about input conditions. This is a known
limitation of search based algorithms, such as evolutionary testing.
In our ongoing work [33], we are developing an Android-specific
symbolic execution engine. We are extending Java Pathfinder, which
symbolically executes pure Java code, to work on Android. We
plan to use both techniques in tandem to complement one another.
We are also exploring relational logic and the associated model
finders for generating reduced combinatorics in testing Android
apps [21].

Another weakness of our approach is not being able to fully gen-
erate models for apps that use third party libraries or native code.
There is also a significant variability in the way the app code is
generally written. As a result, the models may in fact be incom-
plete. However, as mentioned earlier and evaluated in Section 8.3,
EvoDroid is able to work on partial and/or incomplete models. In
the future, we plan to improve our models generation capabilities
to handle a larger subset of the Android specifications.
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