
Automated Detection and Mitigation of Inter-application
Security Vulnerabilities in Android (Invited Talk)

Sam Malek
Computer Science Dept.
George Mason University

Fairfax, VA, USA
smalek@gmu.edu

Hamid Bagheri
Computer Science Dept.
George Mason University

Fairfax, VA, USA
hbagheri@gmu.edu

Alireza Sadeghi
Computer Science Dept.
George Mason University

Fairfax, VA, USA
asadeghi@gmu.edu

ABSTRACT
Android is the most popular platform for mobile devices. It facil-
itates sharing data and services between applications by providing
a rich inter-application communication system. While such shar-
ing can be controlled by the Android permission system, enforcing
permissions is not sufficient to prevent security violations, since
permissions may be mismanaged, intentionally or unintentionally,
which can compromise user privacy. In this paper, we provide an
overview of a novel approach for compositional analysis of An-
droid inter-application vulnerabilities, entitled COVERT. Our anal-
ysis is modular to enable incremental analysis of applications as
they are installed on an Android device. It extracts security specifi-
cations from application packages, captures them in an analyzable
formal specification language, and checks whether it is safe for a
combination of applications—holding certain permissions and po-
tentially interacting with each other—to install simultaneously. To
our knowledge, our work is the first formally-precise analysis tool
for automated compositional analysis of Android applications.

Categories and Subject Descriptors
D.2.4 [Software Engineering]: Software/Program Verification

General Terms
Security, Verification

Keywords
Android, Mobile Security, Program Analysis

1. INTRODUCTION
Mobile app markets are creating a fundamental paradigm shift in

the way software is delivered to the end users. The benefits of this
software supply model are plenty, including the ability to rapidly
and effectively acquire, introduce, maintain, and enhance software
used by the consumers. Application frameworks are the key en-
ablers of these markets. An application framework, such as the one
provided by Android, ensures apps developed by a wide variety of
suppliers can interoperate and coexist together in a single system

Permission to make digital or hard copies of all or part of this work for
personal or classroom use is granted without fee provided that copies are
not made or distributed for profit or commercial advantage and that copies
bear this notice and the full citation on the first page. To copy otherwise, to
republish, to post on servers or to redistribute to lists, requires prior specific
permission and/or a fee.
DeMobile’14 , November 17, 2014, Hong Kong, China
Copyright 2014 ACM 978-1-4503-3225-5/14/11 ...$15.00.

(e.g., a phone) as long as they conform to the rules and constraints
imposed by the framework.

This paradigm shift, however, has given rise to a new set of se-
curity challenges. In parallel with the emergence of app markets,
we are witnessing an increase in the security threats targeted at mo-
bile platforms. This is nowhere more evident than in the Android
market (i.e., Google Play), where many cases of apps infected with
malwares and spywares have been reported [11]. In this context,
Android’s security has been a thriving subject of research in the
past few years. Leveraging program analysis techniques, these re-
search efforts have investigated weaknesses from various perspec-
tives, including detection of information leaks [4, 6, 9], analysis of
the least-privilege principle [2, 7], and enhancements to Android
protection mechanisms [3, 5, 8]. The majority of these approaches,
however, are subject to a common limitation: they are intended to
detect and mitigate vulnerabilities in a single app, but fail to iden-
tify vulnerabilities that arise due to the interaction of multiple apps.
Vulnerabilities due to the interaction of multiple apps, such as col-
lusion attacks and privilege escalation chaining [3], cannot be de-
tected by techniques that analyze a single app in isolation. Thus,
security analysis techniques in such domains need to become com-
positional in nature, enabling one to reason about the overall se-
curity posture of a system (e.g., a phone device) in terms of the
security properties inferred from the installed apps.

In our research, we are developing a novel approach, called
COVERT, for automated compositional analysis of systems built
on top of application frameworks. We use Android as an exam-
ple framework to illustrate and evaluate our research. At the heart
of our approach is a modular static analysis technique for Android
apps, designed to enable incremental and automated verification of
apps as they are installed, removed and updated on an Android de-
vice. Through static analysis of each app, our approach extracts
essential information and captures them in an analyzable formal
specification language. These formal specifications are intention-
ally at the architectural level to ensure the technique remains scal-
able, yet represent the true behavior of the implemented software,
as they are automatically extracted from the code. We then use
formal analysis techniques to verify certain properties (e.g., known
security vulnerability patterns) in the extracted specifications. The
rest of this paper provides an overview of our approach.

2. APPROACH OVERVIEW
Figure 1 shows an overview of our approach which has two steps:

1) Model Extractor that uses static code analysis techniques to elicit
formal specifications (models) of the apps comprising a system;
and 2) Formal Analyzer that uses lightweight formal analysis tech-
niques to verify certain properties (e.g., known security vulnerabil-
ity patterns) in the extracted specifications.

Figure 1: A high-level overview of COVERT.

Our approach relies on three types of models: 1) app model that
Model Extractor generates automatically for each Android app; 2)
Phone configuration model that describes the properties of a cer-
tain Android device; and 3) Android framework spec. that defines
a set of rules to lay the foundation of Android apps, how they be-
have (e.g., application, component, messages, etc.), and how they
interact with each other. This specification is constructed once for
a given framework (e.g., Android, iPhone) as a reusable model to
which all extracted app models must conform. It can be considered
as an abstract specification of how a given framework behaves.

To generate the app models, Model Extractor takes as input a
set of Android application package archives (APK files). Each An-
droid app has a manifest file that represents its configuration spec-
ification. To parse the manifest files, Model Extractor first disas-
sembles APK files using the publicly available ApkTool tool [1]. It
then examines the app manifest file to determine the involved com-
ponents, their types, Intent Filters that declare the kinds of Intents
each app component accepts, permissions that the app requires, and
permissions enforced by each component that the other apps must
have in order to interact with that component.

Besides such high-level, architectural information collected from
the manifest file, Model Extractor utilizes static analysis techniques
to extract other essential information from the APK files. Our
model extractor is built on top of the Soot static analysis tool devel-
oped for analyzing Java bytecode [12].

Application interactions in Android occur through Intent mes-
sages. An Intent message is an event for an action to be performed
along with the data that supports that action. Model Extractor an-
alyzes disassembled outputs to examine Intent creation and trans-
mission. It also examines whether the intent-receiver components
actually use any API that needs the permission the sender lacks,
which in turn, may lead to security issues, such as privilege escala-
tion. The component, Intent, Intent filter and permission elements
are tracked and represented such that they have all the necessary
attributes required to detect inter-application vulnerabilities. The
extracted information are represented as analyzable formal specifi-
cations. For each Intent message, for example, our model extractor
tracks the following information: (1) its sender, (2) the target com-
ponent, (3) the type of action (if any) it has, (4) data to be processed
by the action, and (5) categories of component that should handle
the Intent.

The set of app models extracted in this way are then combined
together and with the Android framework spec. and device con-
figuration model, and checked as a whole for vulnerabilities that
occur due to the interaction of apps comprising a system. Finally,
the analysis report is returned to the user with the list of vulnerabil-
ities.

We use Alloy as a specification language [10], and the Alloy An-
alyzer as the analysis engine. Alloy is a formal modeling language
with a comprehensible syntax that stems from notations ubiquitous
in object orientation, and semantics based on the first-order rela-
tional logic [10]. Alloy Analyzer is a constraint solver that supports
automatic analysis of models written in Alloy. The analysis process
is based on a translation of Alloy specifications into a Boolean for-

mula in conjunctive normal form (CNF), which is then analyzed
using off-the-shelf SAT solvers.

The analyzer provides two types of analysis: Simulation, in
which the analyzer demonstrates consistency of model specifica-
tions by generating a satisfying model instance; and Model Check-
ing, which involves finding a counterexample—a model instance
that violates a particular assertion. We use the former to com-
pute model instances, represented as satisfying solutions to the
combination of models captured from app implementations. This
shows the validity of such extracted models, confirming that the
extracted models are self-consistent, mutually compatible and con-
sistent with the Android specifications modeled in a separate mod-
ule. To carry out the verification analysis, we use the latter. To that
end, we develop assertions that model a set of security properties
required to be checked. These assertions express properties that are
expected to hold in the extracted specifications. If an assertion does
not hold, the analyzer reports it as a counterexample, along with the
information useful in finding the root cause of the violation.

Our approach can be applied in an offline setting to determine if
a particular configuration for a system comprised of several apps
harbors security vulnerabilities. The approach could also be ap-
plied at runtime to continuously verify the security properties of
an evolving system as new apps are installed, and old ones are up-
dated and removed. To that end, we expect lightweight-monitoring
services would be deployed on the mobile devices to collect the
necessary data and ship it for analysis to an analysis engine run-
ning on a backend server (or cloud). In cases where vulnerabilities
are detected, mitigation strategies could be carried through actua-
tor services deployed on mobile devices. Such actuators may be
implemented in different ways. A simple mitigation strategy is to
prevent the installation of apps or remove apps that create security
vulnerabilities when deployed with certain other apps. An alter-
native, perhaps more complex, mitigation strategy is to employ a
dynamically enforaceable approach, such as restricting communi-
cations between certain apps.

3. REFERENCES
[1] android-apktool - a tool for reverse engineering android apk

files. https://code.google.com/p/android-apktool/.
[2] Au, K. W. Y. et al. Pscout: Analyzing the android permission

specification. In Proc. of CCS’12 (2012).
[3] Bugiel, S. et al. Towards taming privilege-escalation attacks

on android. In Proc. of NDSS (2012).
[4] Chin, E. et al. Analyzing inter-application communication in

android. In Proc. of MobiSys (2011).
[5] Dietz, M. et al. Quire: Lightweight provenance for smart

phone operating systems. In Proc. of USENIX (2011).
[6] Enck, W. et al. Taintdroid: An information-flow tracking

system for realtime privacy monitoring on smartphones. In
Proc. of USENIX OSDI (2011).

[7] Enck, W. et al. On lightweight mobile phone application
certification. In Proc. of CCS (2009).

[8] Fragkaki, E. et al. Modeling and enhancing android’s
permission system. In Proc. of ESORICS (2012).

[9] Hornyack, P. et al. These aren’t the droids you’re looking for:
Retrofitting android to protect data from imperious
applications. In Proc. of CCS (2010).

[10] Jackson, D. Alloy: a lightweight object modelling notation.
TOSEM 11, 2 (2002), 256–290.

[11] Shabtai, A. et al. Google android: A comprehensive security
assessment. Security & Privacy, IEEE 8, 2 (2010), 35–44.

[12] Valle é-Rai, R. et al. Soot - a java bytecode optimization
framework. In Proc. of CASCON’99 (1999).

	Introduction
	Approach Overview
	References

