On Interacting Control Loops in Self-Adaptive Systems

Pieter Vromant and
Danny Weyns
Dept. of Computer Science
Katholieke Universiteit Leuven
danny.weyns@cs.kuleuven.be

ABSTRACT

Control loops in self-adaptive systems are typically conceived as
a sequence of four computations: Monitor-Analyze-Plan-Execute
(MAPE). During the development of a traffic monitoring system
with support for self-healing, we have noticed that simple MAPE
loops are not sufficient to deal with the more complex failure sce-
narios. To manage the adaptations in these scenarios, we extend
MAPE loops with support for two types of coordination. First, we
introduce support for intra-loop coordination enabling MAPE com-
putations within one loop to coordinate with one another. Intra-loop
coordination allows the execution of multiple sub-loops within one
control loop. Second, we introduce support for inter-loop coordi-
nation enabling MAPE computations across multiple loops to coor-
dinate with one another. Inter-loop coordination allows the MAPE
computations of different loops to coordinate the various phases of
adaptations. We show how we used the extensions to support self-
healing in the traffic monitoring system. We discuss an implemen-
tation framework that supports coordination of MAPE loops, and
from our experiences offer recommendations for future research in
this area.

Categories and Subject Descriptors

D.2.11 [Software Engineering]:
Domain-specific architectures

Software Architectures—

General Terms
Design

Keywords

Self-adaptation, control loop, MAPE, coordination

1. INTRODUCTION

Self-adaptability has been proposed as an effective approach to
tackle the increasing complexity of managing modern-day software
systems. Self-adaptation endows a software system with the capa-
bility to deal autonomously with internal dynamics as well as dy-
namics in the environment [2]. Self-adaptation is realized by adding

Permission to make digital or hard copies of all or part of this work for
personal or classroom use is granted without fee provided that copies are
not made or distributed for profit or commercial advantage and that copies
bear this notice and the full citation on the first page. To copy otherwise, to
republish, to post on servers or to redistribute to lists, requires prior specific
permission and/or a fee.

SEAMS °11, May 23-24, 2011, Waikiki, Honolulu, HI, USA

Copyright 2011 ACM 978-1-4503-0575-4/11/05 ...$10.00.

Sam Malek
Dept. of Computer Science
George Mason University
smalek@gmu.edu

Jesper Andersson
Dept. of Computer Science
Linnaeus University
jesper.andersson@Ilnu.se

adaptation logic to a managed system. The adaptation logic typi-
cally found in self-adaptive systems comprises a sequence of four
computations: monitor, analyze, plan, and execute.

A monitor computation gathers information from the managed
system and possibly the system’s environment in order to update a
set of relevant models, providing the subsequent computations of the
control loop with the necessary data. An analyze computation exam-
ines the data previously gathered by the monitor computation, and
based on the adaptation goals draws conclusions on which further
actions should be undertaken by the self-adaptive system. A plan
computation puts together a series of adaptation actions to resolve
the problem identified by an analyze computation. This set of ac-
tions to the managed system is then carried out by an execution com-
putation. A simple sequence of these four reflective computations—
Monitor-Analyze-Plan-Execute (MAPE)—is the most obvious way
of forming a control loop in a self-adaptive system.

In this position paper, we argue that simple MAPE loops are not
always a sufficient solution to deal with more complex adaptations.
To manage the adaptations for self-healing in a traffic monitoring
system, we extend MAPE loops with support for two types of co-
ordination: one for intra-loop coordination and one for inter-loop
coordination. Intra-loop coordination enables MAPE computations
within one loop to coordinate with one another, allowing multiple
sub-loops within one control loop. For example, to support adapta-
tion scenarios in which the complete planning and execution of the
adaptation is not known upfront, we use multiple plan-execute sub-
loops after the initial monitoring and analysis phase. Inter-loop co-
ordination enables MAPE computations across loops to coordinate
the various phases of adaptations. For example, to support adapta-
tions in which multiple nodes are involved, the planning computa-
tions of the MAPE loops at the different nodes may have to coordi-
nate to prepare the execution of adaptation.

The remainder of this paper is structured as follows. In section 2,
we introduce the traffic monitoring system and explain a number of
failure scenarios. Section 3 motivates the two MAPE loop exten-
sions, and explains in detail how the extensions enable us to deal
with a concrete failure scenario in the traffic monitoring system. In
section 4, we give an overview of an implementation framework for
interacting control loops, and explain how we have applied it to the
traffic monitoring system. We discuss related work in section 5 and
discuss challenges ahead in section 6.

2. TRAFFIC MONITORING SYSTEM

The traffic monitoring system consists of a set of intelligent cam-
eras which are distributed evenly along the road. An example of
a highway is shown in Fig. 1. Each camera has a limited view-
ing range and cameras are placed to get an optimal coverage of the
highway with a minimum overlap. The task of the cameras is to

detect and monitor traffic jams on the highway in a decentralized
way, avoiding the bottleneck of a centralized control center. Possible
clients of the monitoring system are traffic light controllers, driver
assistance systems, etc. Our particular focus here is on self-healing
of silent node failures, i.e., failures in which a failing camera be-
comes unresponsive without sending any incorrect data. Since there
are dependencies between the software running on different cameras
(we explain this in detail below), such failures may bring the system
to an inconsistent state and disrupt its services. In [9], we studied
a simple failure scenario that can be resolved by local adaptations.
In this paper, we consider more complex types of failure events that
require coordination between cameras to heal the system. The aim
of self-healing is to bring the system to a consistent state and restore
its services, although in degraded mode since the traffic state is no
longer monitored in the viewing range of a failing camera.

Cc1 c2 C3 C4
agent1 agent2 agent3 agent4

T | F@ b F@ ;o % F)
_orgl ..~ N_org2 LN . org34 . L

_orgl .~ L Sy) or924k‘ &y,) e

| SN N

or924 e

T2

T3 | % /:

N org24

_orgl N
F Camera = Car Viewing

Legend Range
\R Failure {7 Organization ~ M Master Role

Figure 1: Self-healing scenario

2.1 Domain Functionality

Figure 2 shows the primary components of the software deployed
on each camera, i.e. the local camera system. The local traffic moni-
toring system provides the domain functionality to detect traffic jams
and inform clients. The local traffic monitoring system is conceived
as an agent-based system consisting of two components. The agent
is responsible for monitoring the traffic and collaborating with other
agents to report a possible traffic jam to clients. In normal traf-
fic conditions, each agent belongs to a single member organization.
However, when a traffic jam is detected that spans the viewing range
of multiple neighboring cameras, organizations on these cameras
will merge into one organization. To simplify the management of
organizations and interactions with clients, the organizations have a
master/slave structure. The master is responsible for managing the
dynamics of that organization (merging and splitting) by synchro-
nizing with its slaves and with the masters of neighboring organiza-
tions. Therefore, the master uses the context information provided
by its slaves about their local monitored traffic conditions. At TO,
the example in Fig. 1 shows two single member organizations, org/

with agent] and org2 with agent2, and one merged organization,
org34 with agent3 and agent4. At T1, the traffic jam spans the view-
ing range of cameras 2, 3 and 4. As a result, organizations org2 and
org34 have merged to form org24. When the traffic jam resolves,
the organization is split dynamically. The organization middleware
offers services for agents to set up and maintain organizations. To
access the hardware and communication facilities on the camera, the
local traffic monitoring system can rely on the services provided by
the distributed communication and host infrastructure.

Local Camera System Self-Healing Subsystem

Self-Healing Models

Repair
Strategies
I

Dependency
Local Traffic Model
Monitoring System

Q Organization

Services

Monitor /) Manage
i O — fe = MAPE O) Self-Healing
Organlzatlon Manager Controller
Middleware Lo« - - ,}
A\ e Send K(JP\ \([5) Receive

|
| Perceive/

Communication Manager
|" Send/Receive

fJﬁ Send/Receive
X

|

I

|

? T
{J\ Communication and Host
(P Infrastructure Services

Distributed Communication & Host Infrastructure

|:| Component O Port
)7 Required interface

@ Node

—O Provided interface < —- Delegates

Figure 2: Primary components of a local traffic camera

2.2 Self-Healing Scenarios

Looking at the traffic monitoring system, we can see that each
camera occupies one of three distinct roles at any given time: mas-
ter of a single member organization, master of an organization with
additional slaves, or slave in an organization. As these roles come
with certain responsibilities, each camera is dependent on a particu-
lar set of remote cameras in order to function properly.

1. The master of a single agent organization is dependent on its
neighboring nodes and the masters of neighboring organizations.

2. The master of an organization with multiple cameras is depen-
dent on its neighboring nodes, the slaves of its organization and
the masters of neighboring organizations.

3. The slave of an organization is dependent on its neighboring
nodes and the master of its organization.

Consequently, every failure of a camera is of concern to a number of

other cameras, in particular, the cameras with a dependency to the

role of the failing camera. Specifically, the traffic monitoring system
can experience the following failure events:

1. The master of a single agent organization fails. This event affects
the neighboring nodes and the masters of neighboring organiza-
tions.

2. The master of an organization with multiple cameras fails. This
event affects the neighboring nodes, the remaining slaves of the
organization and the masters of neighboring organizations.

3. The slave of an organization fails. This event affects the neigh-
boring nodes and the master of the organization.

We define a self-healing scenario as “an integrated strategy on how
to deal with a particular node failure event.” The role of the failing
camera determines the type of failure and as such the set of cameras
that are involved in the failure. These cameras will take part in the
self-healing scenario designed to deal with that event. Note that
based on the role a camera is occupying and the dependencies that
this role implies, a camera may be involved in multiple self-healing
scenarios. For example, a slave is involved in a scenario to deal with
a failure of the master of its organization, but also in scenarios to
deal with failures of its neighboring cameras.

As an example, Fig. 1 shows a failure of camera 2 at T2. This cor-
responds to failure event 2, since camera 2 serves as the master of an
organization with multiple cameras. The self-healing managers with
dependencies to camera 2, i.e. the slaves of organization org24, i.e.
cameras 3 and 4, the masters of the neighboring organizations, i.e.
camera 1, and the neighboring cameras 1 and 3, will detect the fail-
ure and repair it as defined in the respective self-healing scenarios.
At T3 the system has recovered from the failure and can continue
its correct operation. Camera 3 is the new master of organization
org24 and the masters of orgl and org24 have adapted their respec-
tive dependencies with the masters of neighboring organizations. In
addition, cameras 1 and 3 have also adapted their neighbors in the
dependency model. We discuss a concrete self-healing scenario for
this failure in detail in section 3.

2.3 Self-Healing Subsystem

To recover from camera failures, a self-healing subsystem is
added to the local traffic monitoring system, as shown in Fig. 2.
A self-healing subsystem comprises the following components:

o Self-Healing Models which consist of two models that can be
inspected and updated via the Query/Update interface:

1. Dependency Model contains a model of the current depen-
dencies of the components of the local traffic monitoring
system with other active cameras. Dependencies include
master/slave relationships, neighbor relationships, etc.

2. Repair Strategies contains, for different types of failure sce-
narios, the repair actions required to bring the traffic moni-
toring system back to a consistent state. Examples of repair
actions are: halt the communication of the local traffic mon-
itoring system with the failing camera, remove a slave of
the failing camera from the list of slaves, elect a new mas-
ter, exchange the context with another camera, change the
neighbor to the camera next to the failing camera, etc.

o Self-Healing Controller ensures that the self-healing subsystem
deals with the correct failure scenarios corresponding to the ac-
tual role of the local traffic monitoring system. The self-healing
controller observes the role of the local traffic monitoring system
using the Monitor interface. As discussed, we distinguish be-
tween three different roles: master of a single member organiza-
tion, master with slaves, and slave. Via the Manage interface, the
self-healing controller instructs the MAPE manager to deal with
the set of failure events that affect the local traffic monitoring sys-
tem in the current role. Therefore, the MAPE manager employs
the necessary repair strategies to participate in the proper set of
self-healing scenarios.

o MAPE Manager contains the logic to deal with self-healing. De-
pending on the actual role of the local monitoring system, differ-
ent types of failure events will be observed and dealt with based
on the corresponding repair strategies. The MAPE manager mon-
itors the main system using the Monitor interface, thereby main-
taining the dependency model. To detect failures, the MAPE

manager coordinates with self-healing subsystems on other cam-
eras with a dependency in the dependency model using the Send
and Receive interfaces. When a failure is detected, the manager
may need additional coordination with other managers before it
repairs the local traffic monitoring system. For example, when a
slave detects that the master of its organization fails, it initiates
an election protocol with the other slaves of the organization to
elect a new master. Once a new master is established, the neces-
sary repair actions are executed via the Repair interface, bringing
the local traffic monitoring system back in a consistent state. We
discuss the detailed design of the MAPE manager in section 4.

o Communication Manager facilitates intra-loop and inter-loop
communication between computations of MAPE managers. The
Send interface offers facilities for computations of the MAPE
manager to send coordination messages. Messages can be ex-
changed either with local MAPE computations (intra-loop coor-
dination) or with remote MAPE computations (inter-loop coordi-
nation). Local messages are directly delivered via the Receive in-
terface. Remote messages are forwarded to the distributed com-
munication infrastructure via the Send/Receive interface. Remote
messages that arrive at the communication manager are passed to
the local MAPE manager via the Receive interface.

3. MAPE LOOP EXTENSIONS

In this section, we take a closer look at one particular failure event
in the traffic monitoring system and at the self-healing scenario de-
signed to deal with that event. The scenario is defined in terms of
interacting Monitor-Analyze-Plan-Execute (MAPE) control loops,
and illustrates how the proposed coordination extensions to the typi-
cal MAPE loop are integral to the process of bringing the main traf-
fic monitoring system back to a consistent state and allowing it to
function properly again. Intra-loop coordination supports multiple
sub-loops within a single control loop, and inter-loop coordination
supports the coordination of adaptations across control loops.

We focus on failure event 2, meaning the failure of a master of
an organization with multiple cameras. The diagram in Fig. 3 il-
lustrates how control loops running on different cameras interact in
this particular scenario to perform a series of adaptations bringing
the traffic monitoring system back to a consistent state after the fail-
ure of a master of an organization. The first number of the subscript
of each MAPE computation is an identifier of the failure scenario.
The second number of plan (P) and execute (E) identifies the sub-
loop the computations belong to. As shown on top of the diagram,
the failing camera is a master with two slaves. Its organization also
borders on a different organization, governed by a separate master.

In section 2 we mentioned that in the event of a failure of the mas-
ter of an organization with multiple cameras, the remaining slaves
as well as the masters of all neighboring organizations are affected.
In this scenario, control loops are therefore running on these two
types of nodes, in addition to the loop on the camera with the sub-
ject, i.e. the master for which this particular self-healing scenario
has been set up. The scenario is made up of five parts:

1. A monitoring and analysis sub-loop in which the silent failure
of a camera which is the master of an organization of traffic
cameras is detected. Therefore, the monitor computations of the
MAPE managers of all cameras that are dependent on the sub-
ject camera of the scenario periodically ascertain its status using
the ping/echo protocol. At this stage, the subject camera is still
an active part of the scenario. As soon as that node fails, how-
ever, the local analyze computations on each dependent camera
will detect the absence of ping-replies and initiate the rest of the
scenario.

(9]
w

o
Do
®®® =

%

—Z/
@)

ping

s

I
T
|
\
\
|
|
|
|
|
|
|
|
.

|
T

election
S~ 7

new
master node

I e Y

|
T

request
ey

000 0@

notify notify

€2€;
@O ®
®®:

-— — —
””””” R
’ im \\‘ ’/ i@ i‘@ \\‘
H m ,"‘ 4 ™ ;
Camera P N
Legend F {_____» Organization ™ Master Role
ﬁ/ Failure
Intra-Loop
)) Coordination
Self-Healing Scenario O Local MAPE
Scenario Role Computation ~— Inter-Loop
Coordination

Figure 3: Master failure scenario

2. A first planning and execution sub-loop in which the slaves of
the failing master and the master of the neighboring organization
instruct their local traffic monitoring system to halt the communi-
cation with the local traffic monitoring system of the failing cam-
era which is now known to be offline. This part of the scenario
requires no inter-loop coordination between computations of dif-
ferent MAPE loops: all dependent cameras are already aware of
the failure of the master and temporarily pause the relevant com-
munications of the local traffic monitoring systems.

3. A second planning and execution sub-loop in which the remain-
ing slave nodes coordinate to elect one slave as the new master of
their organization using an appropriate election protocol. Once
a new master is elected, the organizational change is effected to
the local traffic monitoring system of each involved camera.

4. A third planning and execution sub-loop in which the newly
elected master is prepared to take up its new role. The newly
elected master collects and processes the local traffic contexts
from each of its slaves using a simple request/reply protocol.

5. A fourth planning and execution sub-loop in which the new mas-

ter notifies both its slaves and the master of the neighboring or-
ganization to resume the base-level communication after which
the system can resume normal operation.

4. DESIGN & IMPLEMENTATION

Having elaborated on the concept of self-healing scenarios, we
now explain a concrete implementation framework for the intra-loop
and inter-loop MAPE extensions based on the primary architecture
shown in Fig. 2. Subsequently, we explain the self-healing controller
and the MAPE manager, and how we used them to implement the
traffic monitoring system.

4.1 Self-Healing Controller

Figure 4 shows the internal components of the self-healing con-
troller. Role Monitor uses the Monitor interface to determine the
current role of the local traffic monitoring system. When the role
changes the role monitor informs Role Manager via the Role Change
interface. Role manager then instructs the MAPE manager to adapt
the strategies for dealing with the failure events relevant to the newly
adapted role. The Manage interface supports adaption of the various
phases of the MAPE loop:

void activate (MAPEComponentType c, Role r)

MAPE component types are monitor, analyze, plan, and execute,
and roles are single master, master with slaves, and slave.

Monitor f

b
Self-Healing Controller \;/

Role
Change

Dt -)- Role Manager F—O— Role Monitor

Manage

l:l Component O Port

—O Provided interface)— Required interface

<« —- Delegates
KEY

Figure 4: Components of the self-healing controller

4.2 MAPE Manager

Figure 5 shows the components of the MAPE manager. Each
MAPE component (Monitor, Analyze, Plan, and Execute) encapsu-
lates a corresponding MAPE computation. The various components
execute the appropriate parts of the repair strategies for the current
role of the local traffic monitoring system. Role changes are notified
via the Manage interface. During the execution of the strategies, the
MAPE components can coordinate with other components using the
corresponding Coordination Manager.

Figure 6 zooms in on the coordination manager for the monitor
component. The coordination manager assists the MAPE compo-
nent to asynchronously coordinate with other MAPE components in
the context of particular self-healing scenarios.

The Coordination Point Manager offers facilities for the MAPE
component to register new self-healing scenarios with other compo-
nents via the Coordinate interface:

void register (Scenario s);
Scenario objects are defined as follows:
Scenario = < CameralD subject, FailureType ft >
A scenario object uniquely identifies a self-healing scenario based
on an identifier of the subject of the failure and the failure type.

Failure types are single master failure, master with slaves failure,
and slave failure.

\7) Update
1
X
| Tt Tt T r--TT T Tt I
I I 1 I
hd hd hd Y Ropair
Monitoring e
)—[« *)7 Monitor O Analyze O Plan =0 Execute
'y i i LO
} } } z Manage

(P Coordinate Q Q Q

Monitor Analyze Plan Execute
Coordination Coordination Coordination Coordination
Manager Manager Manager Manager
P RS M
[S ! ,,,\t,j,,,,,,‘,,,¢,,,,,,,,J T
I I I I
,,,,,,,,,,,,,, J',,_‘,,,,,,;,,,,,,,,,,,
MAPE Manager | |
Send é \T)g Receive
Communication Manager

A\ Send/Receive

[component

—O Provided interface

O Port —O— Interface attachment

D— Required interface < —- Delegates

Figure 5: Components of the MAPE manager

(P Coordinate

¥

?

Coordination
Point Manager

Monitor
Coordination Manager

Manage
? Send/Recieve

Coordination

Points

A

5

1

Add/Collect

Message Buffer

Send : N\

g Receive

I:l Component
Y

—QO Provided interface

KE

=7 Regoston

D— Required interface

4 — Delegates

O Port

Figure 6: Components of a coordination manager

Registration of the scenario instantiates a new Coordination Point
and adds it to the set of Coordination Points. A coordination point
manages the coordination for the MAPE component and a particular
scenario. After registration of the scenario, the coordinate interface
enables the MAPE component to exchange self-healing coordina-
tion information with other MAPE components:

void send(SelfHealingMessage m);
SelfHealingMessage receive (Scenario s);

A self-healing message is structured as follows:

SelfHealingMessage = < SenderNodelID sid,
RecipientNodeID rid,
MAPEComputationID id,
Scenario s,
CoordinationData d >

MAPE computation ID is a unique identifier of the MAPE com-
putation. Examples are My and P23 as shown in Fig. 3. Coordi-
nation data consist of the performative specific to the step in the
coordination protocol and the actual data that is exchanged. For
instance, the intra-loop coordination data sent from Pz to Eao
iS transition(CameraID newlyElectedMaster). Examples
of inter-loop coordination data for the scenario are ping () and
echo () for Ma, and reply (TrafficState congested) for Pas.

The coordination point manager dispatches coordination mes-
sages via the Manage Send/Recieve interface to the proper coordina-
tion point. The coordination point can send coordination messages
to other MAPE components via the Send interface of the Communi-
cation Manager. The communication manager passes messages for
local MAPE components directly to the proper coordination man-
ager via the Receive interface. Messages for remote MAPE com-
ponents are forwarded via the distributed communication infrastruc-
ture via the Send/Receive interface.

The communication manager dispatches messages (locally re-
ceived via the send interface or remotely via the send/receive inter-
face) to the proper coordination manager via the Receive interface.
The coordination point of the corresponding failure scenario adds
messages to the Message Buffer where they wait for delivery. MAPE
components can collect messages per failure scenario by invoking
the receive operation of the coordinate interface. The coordination
point manager uses the corresponding coordination point to collect
a message from the buffer and deliver it to the MAPE component.

Figure 7 shows how the various components interact during a
specific part of the master failure scenario, i.e. part 3 of the sce-
nario in Fig. 3. Excerpts of both the election of a new master by the
plan components (inter-loop coordination), and the local transition
at slave 1 from plan to execute (intra-loop coordination) are shown.
During the election, the P22 computation of the plan component of
slave 3 (i.e. the slave of camera C3, see Fig. 1) sends an election
message to the remaining slave 4 of camera C4 that contains the
camera identifier. Therefore, P22 invokes the send operation of the
plan coordination manager. The message is handled by the appro-
priate coordination point that sends the election message to the local
communication manager. The local communication manager for-
wards the message to the distributed communication infrastructure
for delivery at slave 4. Similarly, slave 4 sends an election message
to slave 3. When the election message from slave 4 arrives at camera
C3, the communication manager delivers it to the proper coordina-
tion manager. It does this by verifying the message’s MAPECom-
putationID, in this case P22, and its scenario information, which
contains the id for the failing camera and the master node failure
scenario type. P22 collects the election message by invoking the re-
ceive operation for the given failure scenario. As a rule, the slave
with the highest camera id will become the new organization mas-
ter. Therefore, P2> compares the identifiers and marks the camera
with the highest id as preliminary master. After a predefined time
window (electionTimeout) without having received additional mes-
sages, the election protocol ends and P22 marks the temporal master
as the new master of the organization. Subsequently, P22 sends an
intra-loop transition message, again via plan coordination manager
and the communication manager. When computation Eo» of the exe-
cute component receives this message, it executes the repair action,
adapting the organization of the local traffic monitoring system to
the new organizational structure. Camera C3 becomes the new mas-
ter with camera C4 as slave.

S. RELATED WORK

Hebig et. al. [4] argue to make control loops explicit and present
a UML profile for control loops that extends UML modeling con-
cepts. The profile allows the specification of interactions between
control loops at the level of the controller, while the work presented
in this paper zooms in on the coordination between specific MAPE
computations within and across control loops.

Villegas and Miiller [7] present a reference model for context-
based self-adaptation that supports exchanging context information
between different control loops to support their operations. E.g.,
context information resulting from the analysis in one loop is pro-

Slave3 Slave3 Slave3

Slave4

Slave3 Slave3 Slave3

PlanCoordination Communication

Plan (P2;)

Self-Healing
Subsystem

ExecuteCoordination Local Traffic

Execute (E;;)

Inter-loop i send(ElectionMsg1)
4{ send(ElectionMsg1)
deliver(ElectionMsg2) -~

recieve(Scenario2) -

-t

send(ElectionMsg1) {
send(ElectionMsg2)

ElectionMsg2

ComparelDs()
S —

R

[electionTimeout]
send(TransitionMsg)

Intra-loop

send(TransitionMsg)
deliver(Tran:

sitionMsg) D

o3 | repair(NewOrganizationStructure) [
i TransitionMsg | | J

Figure 7: Coordination between MAPE computations when electing a new master (part 3 of Fig. 3)

vided to support the decision making in another loop. Our work
goes further in offering support for coordination between the com-
putations of different control loops.

Several other authors have studied particular aspects of coordina-
tion of multiple control-loops in self-adaptive systems. A concrete
example from task coordination for a self-adaptive system in the
robotics domain is discussed by Edwards et al. [3]. Raheja et. al. [6]
discuss how to coordinate multiple loops, responsible for multiple
concerns (tasks), using preemption in Rainbow. Malek et al. [5] use
an auction based coordination mechanism to coordinate resource
usage for a self-adaptive distributed system that utilizes adaptive
(re)-deployment. Coordination of multiple control-loops responsi-
ble for context-aware composition and on-line learning for auto-
nomic software product lines is discussed by Abbas et. al. [1]. In
comparison to these works, this paper provides a more focused and
comprehensive discussion to the general problem of integrating and
coordinating multiple control-loops.

6. DISCUSSION & CHALLENGES AHEAD

Our experience with a self-adaptive software system demon-
strated the limitations of a MAPE loop with accurately explain-
ing and representing coordination in a distributed setting. We re-
conceptualized MAPE by enhancing it with two types of coordi-
nation (inter-loop and intra-loop), which resulted in a more natural
way of designing and realizing self-adaptation. We described an im-
plementation framework aimed at streamlining the development of
both types of coordination in a distributed setting’.

While our experience in the context of a self-managing traffic
monitoring system has been very positive, several avenues of future
research remain. In particular, we are exploring the extent in which
the framework can be employed in other application domains. To
that end, we plan to develop an extensible architecture in which
modules realizing different coordination mechanisms (e.g., event
driven, method-call driven) and protocols (e.g., voting, auctioning,
gossip) are incorporated into the framework, and made available as
reusable library for the community. Furthermore, the current frame-
work assumes that only one adaptation can happen at a time. We
plan to extend the framework architecture with support for concur-
rent adaptations beyond a single concern (e.g. self-healing and self-
optimization in parallel). In the traffic monitoring system, each con-
trol loop comprises the four MAPE computations. Obviously, other

"http://people.cs.kuleuven.be/danny.weyns/MAPEcode.zip.

configurations are possible, such as a setting where monitoring and
execution are distributed, but analysis and planning are centralized.
We plan to study how the MAPE manager can be extended to sup-
port different patterns of distribution of MAPE computations.
Finally, we also aim to develop a more rigorous approach for
specifying various coordination patterns of MAPE loops that are
possible in self-adaptive systems. Therefore, we plan to integrate the
coordination patterns with our earlier work on a formal language for
specifying self-adaptive systems [8]. We believe the resulting lan-
guage would allow one to formally specify both structural and be-
havioral properties of a self-adaptive system, providing a basis for
expressing architectural choices and evaluate alternative designs.

7. REFERENCES

[1] N. Abbas et al. Autonomic software product lines. In
International Workshop on Variability in Software Product Line
Architectures, Copenhagen, 2010.

[2] B. Cheng et al. Software engineering for self-adaptive systems:
A research road map. In Software Engineering for
Self-Adaptive Systems, LNCS vol.5525, 2009.

[3] G. Edwards et al. Architecture-driven self-adaptation and
self-management in robotics systems. In Software Engineering
for Adaptive and Self-Managing Systems, SEAMS, 2009.

[4] R. Hebig, H. Giese, and B. Becker. Making control loops
explicit when architecting self-adaptive systems. In
Self-Organizing Architectures, LNCS vol. 6090, 2010.

[5] S.Malek et al. A decentralized redeployment algorithm for
improving the availability of distributed systems. In Int.
Conference on Component Deployment, France, 2005.

[6] R. Raheja et al. Improving architecture-based self-adaptation
using preemption. In Self-Organizing Architectures, LNCS vol.
6090, 2010.

[7] N. Villegas and H. Miiller. A control engineered reference
model for context-based self-adaptation. In Dagstuhl Seminar
10431 on Self-adaptive Systems, 2010.

[8] D. Weyns, S. Malek, and J. Andersson. FORMS: a formal
reference model for self-adaptation. In 7zh Int. Conf. on
Autonomic Computing ICAC, Washington, DC, 2010.

[9] D. Weyns, S. Malek, and J. Andersson. On decentralized
self-adaptation: Lessons from the trenches and challenges for
the future. In Software Engineering for Adaptive and
Self-Managing Systems, SEAMS, Cape Town, 2010.

