
FORMS: a FOrmal Reference Model for Self-adaptation

Danny Weyns
Depart. of Computer Science

Katholieke Universiteit
Leuven, Belgium

danny.weyns@cs.kuleuven.be

Sam Malek
Depart. of Computer Science

George Mason University,
Washington, USA
smalek@gmu.edu

Jesper Andersson
Depart. of Computer Science

Linnaeus University,
Växjö, Sweden

jesper.andersson@lnu.se

ABSTRACT
Self-adaptive software systems are an emerging class of systems
that adjust their behavior at runtime to achieve certain functional
or quality of service objectives. The construction of such systems
has shown to be significantly more challenging than traditional sys-
tems, partly because researchers and practitioners have been strug-
gling with the lack of a precise method of describing, comparing,
and evaluating alternative architectural choices. In this paper, we
introduce a reference model, entitled FOrmal Reference Model for
Self-adaptation (FORMS), which intends to alleviate this pressing
issue. FORMS consists of a small number of formally specified
modeling primitives that correspond to the key variation points
within self-adaptive software systems, and a set of relationships
that guide their composition. We present our experiences with ap-
plying FORMS to several existing systems, which not only demon-
strates its ability to precisely illuminate their underlying character-
istics, but also its potential as a method of rigorously specifying
architectural patterns for this domain.

Categories and Subject Descriptors
D.2.11 [Software Engineering]: Software Architectures

General Terms
Design, theory

1. INTRODUCTION
Contemporary software systems have become increasingly more

complex, and continue to pervade every facet of our day-to-day ac-
tivities with no signs of abating. At the same time, the cost and
effort associated with the unwieldy methods of maintaining and
updating software after it is deployed have become unacceptable.
This has called for the development of self-adaptive software sys-
tems. Self-adaptive software systems are capable of autonomously
changing their behavior to achieve certain functional or quality of
service (QoS) objectives [4, 12, 13].

The development of self-adaptive software systems has shown to
be significantly more challenging than traditional systems [4], and

Permission to make digital or hard copies of all or part of this work for
personal or classroom use is granted without fee provided that copies are
not made or distributed for profit or commercial advantage and that copies
bear this notice and the full citation on the first page. To copy otherwise, to
republish, to post on servers or to redistribute to lists, requires prior specific
permission and/or a fee.
ICAC’10, June 7–11, 2010, Washington, DC, USA.
Copyright 2010 ACM 978-1-4503-0074-2/10/06 ...$10.00.

over the past decade numerous solutions for alleviating the situa-
tion have been developed [12, 10, 16]. In particular, researchers
and practitioner have proposed several frameworks for construct-
ing such systems. Some have aimed to serve as a conceptual
guideline, such as IBM’s MAPE-K [12] that describes the different
stages of self-adaptation, and Mary Shaw’s work [18] that recog-
nizes the feedback-control loop as an essential component of any
self-adaptive system. Others have adopted an implementation per-
spective, such as Rainbow [10] and Archstudio [16], both of which
advocate a software architecture-based approach for assessing the
adaptation decisions and making the changes.

All of these frameworks are intended to serve merely as guide-
lines, and provide significant leeway in how the engineer designs
and constructs the software system. For instance, given any one
of these frameworks, the same functionality may be realized us-
ing starkly different architectures (e.g., centralized vs. decentral-
ized, flat vs. hierarchical). Therefore, while these frameworks have
achieved noteworthy success in many domains, they are neither ex-
pressive and formal enough to clearly distinguish between the al-
ternative designs, nor is that their intended use.

The hallmark of any established engineering field is the ability to
precisely express the design choices and evaluate the alternatives.
At the same time, there is a lack of rigorous understanding of the
primitive constructs and principles that shape a self-adaptive soft-
ware system [2], which we believe is hindering further progress
in this area. In this paper, we present FORMS, short for FOr-
mal Reference Model for Self-adaptation, which enables the en-
gineers to effectively describe, study, and evaluate alternative de-
sign choices for self-adaptive software systems. FORMS builds on
the existing frameworks and established principles, such as MAPE-
K [12], computational reflection [14], and architecture-based adap-
tation [13, 16]. The reference model consists of a small number
of primitives and a set of relationships among them that delineates
the rules of composition. The model is formally specified, which
enables the engineers to precisely define the key characteristics of
self-adaptive software systems, and compare alternative solutions.

Since there are many types of self-adaptive software, developing
a one-size-fits-all reference model that can represent every aspect
of such systems is not practical. Thus, our objective in the develop-
ment of FORMS has been to make it extensible, without compro-
mising precision and expressiveness. Through an extensive study
of the literature, we first developed the minimum set of primitives
necessary for formally specifying a self-adaptive system, albeit at a
high-level of abstraction. Applying the high-level model to several
existing systems resulted in further refinement and specialization of
the primitives. This exercise helped us to demonstrate the reference
model’s ability to illuminate the key, in some cases hidden, char-
acteristics of these systems. The primitives refined in this manner

enable the engineers to derive and document a catalog of architec-
tural patterns (i.e., known solutions) for different domains.

The remainder of this paper is organized as follows. Section 2
defines the high-level reference model using Z notation, and illus-
trate the concepts via an intuitive example. Section 3 presents our
experiences with using the high-level reference model in two case
studies. Our findings from these studies are then used to refine the
model by extending it with further details, which we describe in
Section 4. Finally, the paper concludes with an overview of re-
lated work, applications and contributions of FORMS, and future
avenues of research in Sections 5, 6, and 7, respectively.

2. HIGH-LEVEL MODEL
Our recent work formed the basis for the selection of primitives.

In particular, in [2] we showed the prominent role of reflection in
self-adaptive systems, which informed the general structure of our
model, and in [1] we developed a classification of modeling di-
mensions, which helped us with identifying FORMS’s primitives.
We then carefully examined each primitive in the context of ex-
isting literature (e.g., [12, 13, 16, 10, 9, 8]) to determine its suit-
ability for inclusion in the high-level model. The contribution of
the high-level model presented in this section is its ability to pre-
cisely represent high-level characteristics of a self-adaptive system,
while remaining extensible to enable its specialization for specify-
ing the variation points between the different types of system. In
this section we describe and illustrate the high-level model using
an intuitive example, and in Section 4 describe its refinement.

2.1 Illustrative Example
We use an unmanned vehicle (UV) system for describing the var-

ious concepts in FORMS. As attested to in previous research [4],
UVs are shown to be representative of a large class of self-adaptive
software systems. A UV needs to be able to autonomously nav-
igate, while taking into account traffic laws and other vehicles.
Clearly, the key objective of a UV is to drive to a destination at rea-
sonable speed while avoiding collisions. As further discussed be-
low, a UV is also expected to deal with unanticipated situations that
may require adaptation of its software. The software system run-
ning on such a platform typically consists of several components,
including control component used to interface with the mechanical
parts, navigation component used to determine the best route to the
destination, and awareness component used to track the location
of a car based on the video feed from the camera as well as other
sensors. A concrete application of such a system is the DARPA’s
Grand Challenge contest [17].

A UV system is required to be adaptive to deal with a variety
of internal and external changes. For example, due to failure of
its camera, a UV system may have to rely on other sensors, such
as infrared to temporarily navigate to a safe location. Similarly,
depending on the complexity of the terrain, the UV system may
choose to select among several alternative navigation components
(e.g., computationally expensive but accurate versus efficient but
inaccurate).

2.2 The Reference Model
Fig. 1 provides an overview of the FORMS’s top-level constructs

and their relationships. Though intuitive, the visual representa-
tion does not give a precise semantic description of the constructs,
which is precisely why throughout this paper we use Z notation for
formally specifying the model. Z is a standardized formal speci-
fication language (ISO/IEC 13568:2002) that builds on set theory
and first order predicate logic to precisely specify the primitives

without delving into the implementation details. The formal speci-
fication is type checked using Community Z Tools [6].

As shown in Fig. 1, a self-adaptive system is situated in an envi-
ronment, and comprises one or more base-level and reflective sub-
systems. The environment may correspond to both physical and
logical entities. Therefore, the environment of a computing system
may itself be another computing system. For example, the environ-
ment of a UV includes the road, cars and obstacles on the road, as
well as any external software system, such as the GPS system. The
distinction between environment and self-adaptive system is made
based on the extent of control. For instance, in the UV system, the
self-adaptive system has no control over the GPS system (i.e., can-
not change it), hence it is considered to be part of the environment.

A base-level subsystem provides the system’s domain function-
ality (i.e., application logic). For instance, in the case of UV, nav-
igation of the vehicle is performed by base-level subsystem. A re-
flective subsystem is a part of the computing system that manages
another part of it, which can be either a base-level or a reflective
subsystem. Note that a reflective subsystem may manage another
reflective subsystem. This would be the case when a self-adaptive
system includes multiple reflective levels. For instance, consider
a UV that not only has the ability to adapt its navigation strategy
(e.g., smooth ride, fastest time, safest), but also adapting the way
such adaptation decisions are made (e.g., based on user’s prefer-
ence, gas usage, weather condition).

2.2.1 Environment
As shown in Fig. 1, environment consists of attributes and pro-

cesses. An attribute is a perceivable characteristic of the environ-
ment. Attributes in a UV may correspond to the location of another
car or the current weather condition. The set of attributes is defined:

[Attribute]

A process is an activity that can change the environment at-
tributes. For instance, the movement of another UV is considered a
process, since it changes the location attribute of that UV. The set
of processes is defined:

Process == P Attribute → P Attribute

An environment thus comprises a non-empty set of attributes and
a set of processes:

Environment
attributes : P Attribute
processes : P Process

attributes 6= ∅

A system’s context is a set of accessible environment attributes:

Context == P Attribute

For example, the context of a UV equipped with a camera in-
cludes the location of an observed obstacle on the road, since such
environmental attribute can be perceived. On the other hand, the
temperature of the road asphalt is clearly an environmental at-
tribute, but not necessarily the context of a UV that has no way of
perceiving it. Below we further clarify the meaning of perceiving
the environment.

2.2.2 Base-Level Subsystem
As depicted in Fig. 1, a base-level subsystem consists of domain

models and base-level computations. However, before we elaborate
on these concepts, we need to define the meaning of model and
computation in this setting. A model comprises representations,
which describe something of interest in the physical and/or cyber
world:

Figure 1: Conceptual view of FORMS’s high-level modeling primitives and their relationships.

Model [Representation]
representations : P Representation

representations 6= ∅

Different models may have different types of representations. An
environment representation corresponds to an attribute in the envi-
ronment. The set of environment representations is defined:

[EnvironmentRepresentation]

A domain model describes (represents) a domain of interest for
the application logic (i.e., system’s main functionality, referred to
as base-level subsystem). The domain model in the UV may in-
corporate a variety of information: a digital map marked with the
roads as well as the location of cars traveling along side the UV
on the road, the engine that the base-level software system is con-
trolling, and etc. A domain model maps representations to attribute
sets as follows:

DomainModel
Environment
Model [EnvironmentRepresentation]
mapping : P Attribute ↔ EnvironmentRepresentation

dom mapping ⊆ {attrs : P Attribute | attrs ⊆ attributes}
ran mapping = {r : EnvironmentRepresentation |

r ∈ representations}

To define computation, we introduce the type state:

[State]

A computation is an activity in a software system that manages
its own state. Computations are defined:

Computation
state : P State
compute : P State → P State

dom compute = {s : P State | s ⊆ state}

The computation operation computes a new state as follows:

ComputationOp
∆Computation
s?, s! : P State

s! = compute(s?) ∧
state′ = state \ s? ∪ s!

For instance, cruise controller computation in the UV would
need to maintain its internal state (e.g., accelerate, brake, stop).

We now precisely define base-level computation that is infor-
mally depicted in Fig. 1 as follows:

BaseLevelComputation
Computation
read : P DomainModel × P State → P State
write : P State × P DomainModel → P DomainModel
perceive : P State × Context → P State
effect : P State × Context → Context

A base-level computation reasons and acts upon a subset of do-
main model by reading from and writing to it, while at the same
time monitors and changes environmental context by perceiving
and effecting. As an example, consider a computation in UV deal-
ing with gas usage that reads the current location from the domain
model to reevaluate its state (e.g., gas usage rate), and based on
changes to the state may write a new route on the domain model
that includes a stop by at a gas station.

A base-level subsystem is a software system that provides the
domain functionality (i.e., application logic). Base-level subsystem
is defined:

BaseLevelSubsystem
models : P DomainModel
computations : P BaseLevelComputation

∀ c : computations •
dom c.read = {mdls : P DomainModel |

mdls ⊆ models • (mdls, c.state)} ∧
dom c.write = {mdls : P DomainModel |

mdls ⊆ models • (c.state, mdls)}

A base-level subsystem comprises a set of domain models and
a set of base-level computations. The computations can act upon
the domain models. In the UV example, the base-level subsystem
includes the parts of the system dealing with the navigation and
control of the vehicle.

2.2.3 Reflective Subsystem
We have previously showed that the key defining characteris-

tic that sets self-adaptive systems apart from traditional computing
systems is the ability to reflect on their behavior and structure [2].
Therefore, the modeling primitives dealing with adaptation are in-
formed by concepts that have originated in computational reflec-
tion [14]. Fig. 1 shows the two primitives of self-adaptation in
FORMS: reflection model and reflective computation. We specify
these primitives below.

A reflection model representation reifies the entities (e.g., sub-
system constructs, environment attributes) needed for reasoning

about adaptation. It is analogous to meta-level information from
the domain of computational reflection [14]. A self-adaptive sys-
tem has a set of reflection model representations:

[ReflectionModelRepresentation]

A reflection model comprises reflection model representations:

ReflectionModel
Model [ReflectionModelRepresentation]

Reflection models are used by reflective computations. For in-
stance, a reflection model for the UV may be an architectural rep-
resentation (e.g., component-and-connector view) of the running
software system, which is used at runtime by changing the system’s
architecture.

A reflective computation is defined:

ReflectiveComputation [Subsystem]
Computation
read : P ReflectionModel × P State → P State
write : P State × P ReflectionModel → P ReflectionModel
perceive : Context × P State → P State
sense : P Subsystem × P State → P State
adapt : P Subsystem × P State → P Subsystem
trigger : P State × P ReflectiveComputation[Subsystem]→

P ReflectiveComputation[Subsystem]

A reflective computation reasons and acts upon a subset of reflec-
tion model by reading from and writing to it, while at the same time
monitors certain environmental context by perceiving. However,
note that unlike the base-level computation, reflective computation
does not effect changes in the environment. Moreover, reflective
computation not only senses (monitors) and adapts the subsystem,
but also triggers invocation of other reflective computations.

As mentioned before, a reflective subsystem is composed of re-
flection models and reflective computations. This is formally spec-
ified as follows:

ReflectiveSubsystem [Subsystem]
models : P ReflectionModel
computations : P ReflectiveComputation[Subsystem]

∀ c : computations •
dom c.read = {mdls : P ReflectionModel |

mdls ⊆ models • (mdls, c.state)} ∧
dom c.write = {mdls : P ReflectionModel |

mdls ⊆ models • (c.state, mdls)} ∧
dom c.trigger = {ct : P ReflectiveComputation[Subsystem] |

ct ⊆ computations \ {c} • (c.state, ct)}

The specification states that the computations of a reflective sub-
system have only access to the models of that subsystem, and they
can only trigger computations of the subsystem.

2.2.4 Self-Adaptive System
The formally specified primitives in FORMS provide sufficient

expressive power to precisely define a complete self-adaptive sys-
tem, its relationship with the environment, and most importantly
self-adaptation. A self-adaptive system comprises a set of base-
level and reflective subsystems. As an example, we consider a self-
adaptive system with two reflective levels. We model a meta-level
subsystem (i.e. a reflective systems on top of a base-level subsys-
tem) as follows:

MetaLevelSubsystem == ReflectiveSubsystem[BaseLevelSubsystem]

Similarly, a meta-meta-level subsystem can be defined:

MetaMetaLevelSubsystem ==
ReflectiveSubsystem[MetaLevelSubsystem]

We can now model the self-adaptive system as follows:

SelfAdaptiveSystem
baseLevelSubsystems : P BaseLevelSubsystem
metaLevelSubsystems : P MetaLevelSubsystem
metaMetaLevelSubsystems : P MetaMetaLevelSubsystem

#baseLevelSubsystems ≥ 1
#metaLevelSubsystems ≥ 1
#metaMetaLevelSubsystems ≥ 1
∀mls : metaLevelSubsystems;

cm, ce : ReflectiveComputation •
cm ∈ mls.computations ∧ ce ∈ mls.computations ∧
dom cm.sense = {bls : P BaseLevelSubsystem |

bls ⊆ baseLevelSubsystems • (bls, cm.state)} ∧
dom ce.adapt = {bls : P BaseLevelSubsystem |

bls ⊆ baseLevelSubsystems • (bls, cm.state)}
∀mmls : metaMetaLevelSubsystems;

cm, ce : ReflectiveComputation •
cm ∈ mmls.computations ∧ ce ∈ mmls.computations ∧
dom cm.sense = {mls : P MetaLevelSubsystem |

mls ⊆ metaLevelSubsystems • (mls, cm.state)} ∧
dom ce.adapt = {mls : P MetaLevelSubsystem |

mls ⊆ metaLevelSubsystems • (mls, ce.state)}

The specification states that meta-level subsystems can sense
and adapt base-level subsystems, while meta-meta-level subsys-
tems can sense and adapt meta-level subsystems.

A self-adaptive system situated in an environment is specified:

SituatedSelfAdaptiveSystem
Environment
SelfAdaptiveSystem
context : Context

context ⊆ attributes
∀ bls : baseLevelSubsystems; c : BaseLevelComputation •

c ∈ bls.computations ∧
dom c.perceive = {attrs : Context |

attrs ⊆ context • (c.state, attrs)} ∧
dom c.effect = {attrs : Context |

attrs ⊆ context • (c.state, attrs)}
∀mls : metaLevelSubsystems; cu : ReflectiveComputation •

cu ∈ mls.computations ∧
dom cu.perceive = {attrs : Context |

attrs ⊆ context • (attrs, cu.state)}
∀mmls : metaMetaLevelSubsystems;

cu : ReflectiveComputation •
cu ∈ mmls.computations ∧
dom cu.perceive = {attrs : Context |

attrs ⊆ context • (attrs, cu.state)}

The specification states that base-level subsystems can perceive
and effect the context in which the self-adaptive system is situated,
while reflective subsystems can only perceive the context.

Finally, we can now formally specify how a meta-level subsys-
tem adapts a base-level subsystem:

MetaLevelAdaptationOp
∆SituatedSelfAdaptiveSystem
ΞEnvironment
e? : ReflectiveComputation[BaseLevelSubsystem]
bls?, bls! : BaseLevelSubsystem
mls?, mls! : MetaLevelSubsystem

bls? ∈ baseLevelSubsystems ∧
mls? ∈ metaLevelSubsystems ∧
e? ∈ mls?.computations ∧
{bls!} = e?.adapt({bls?}, e?.state) ∧
baseLevelSubsystems′ = baseLevelSubsystems \ {bls?} ∪ {bls!}
metaLevelSubsystems′ = metaLevelSubsystems
metaMetaLevelSubsystems′ = metaMetaLevelSubsystems

The specification states that self-adaptation changes the self-
adaptive system, but does not effect the environment. The adapta-

tion is performed by one of the meta-level reflective computations
(e?) which uses its state to adapt one or more base-level subsys-
tems.

3. CASE STUDIES
In this section we apply FORMS to two case studies. To that

end, we describe the concepts and entities found within each case
study via FORMS’s high-level primitives. The purpose of the study
is twofold: (1) to demonstrate the expressiveness and extensibility
of the high-level reference model, and (2) to refine and specialize
the key primitives. We start by applying the reference model to
IBM’s MAPE-K model [12]. Then we study a concrete approach
for self-adaptation in the robotics domain [9].

3.1 MAPE-K
As a first case, we study the MAPE-K reference model [12] and

the corresponding reference architecture, which advocates a hier-
archical composition of autonomic systems. Fig. 2 shows an auto-
nomic manager, the basic building block of an autonomic system.
The autonomic control loop consists of four basic activities: moni-
tor, analyze, plan, and execute.

KnowledgeMonitor Execute

Analyze Plan

Sensor Effector

Effector

Managed Element

Sensor

Figure 2: MAPE-K [12]

The activities share knowledge that typically includes a model
of the managed element and a description of goals [11]. Monitor
uses sensors to collect data from the managed element, which could
be either a software/hardware resource, or an autonomic manager
itself. Analyze provides mechanisms for interpreting the collected
data and predicting the future situations. Plan constructs the actions
needed to achieve goals. Finally, execute uses effectors to carry
out changes to managed elements. An autonomic manager pro-
vides sensors and effectors for other autonomic managers to use.
As further detailed below, this enables hierarchical composition of
autonomic managers.

Fig. 3 shows the MAPE-K instantiation of the basic concepts
of FORMS. In MAPE-K, an autonomic manager corresponds to a
reflective subsystem from FORMS. An autonomic manager com-
prises four types of autonomic manager components, which instan-
tiate four concrete types of reflective computation from FORMS:
monitor, analyze, plan, and execute. Autonomic manager compo-
nents can reason about and act upon the shared knowledge, which
instantiates reflection model from FORMS. Monitor requires a sen-
sor to monitor the managed element, which can be either a man-
aged resource (corresponding to FORMS’s base-Level subsystem)
or an autonomic manager (corresponding to FORMS’s reflective
subsystem). In the former case, the sensor is provided by the man-
ageability endpoint of the managed resource. Execute requires an
effector to adapt the managed element according to the plans con-
structed by the plan component.

While there is a shared understanding on the different types of
computations in MAPE-K, the role of knowledge is less clear. Ac-

cording to Kephart and Chess [12], knowledge refers to the data
collected from managed resources, models for analysis such as
queueing network models, policy information, and action plans.
Miller [15] groups the different forms of knowledge in three dis-
tinct types: topology knowledge, policy knowledge, and problem
determination knowledge. Huebscher and McCann [11] elaborate
on knowledge and make a distinction between: (1) architectural
model of the managed element, including structural and behavioral
data; (2) goal model (e.g. event-condition-action policies or utility
functions); and (3) model of the operating environment in which
the managed element is situated (e.g., hardware devices, network
connections), which may also include other autonomic elements.

We now briefly explain how hierarchies of autonomic systems
are constructed using autonomic managers. Fig. 4 shows the dif-
ferent types of autonomic managers proposed in [12].

A resource autonomic manager manages a managed re-
source. Four concrete types are distinguished: managers for self-
configuring, self-optimizing, self-healing, and self-protecting. Or-
chestrating autonomic managers on the other hand manage groups
of resource autonomic managers. In particular, an orchestrating
autonomic manager within discipline manages a group of resource
autonomic managers of the same type, while an orchestrating au-
tonomic manager across disciplines manages a group of resource
autonomic managers of different type. Orchestrating autonomic
managers themselves can be managed by higher-level autonomic
managers, just like a reflective subsystem in FORMS that can be
reflected upon by a reflective subsystem from the level above. A
hierarchy of autonomic managers in MAPE-K thus corresponds to
the reflective levels in FORMS. In a hierarchy of autonomic man-
agers, data can be obtained and shared via knowledge sources. Ac-
cording to [15], a knowledge source is an implementation of a reg-
istry, dictionary, database or other repository that provides access to
knowledge that need to be shared among autonomic managers. As
further discussed in Section 4, this is an area of further refinement
in FORMS.

3.2 Robotics
In our second case, we study a system from the robotics do-

main. Edwards et al. [9] propose an approach to design and im-
plementation self-adaptive behavior in robotics software through
layers. In particular, they propose an adaptive robotic software ar-
chitecture consisting of (1) a basic bottommost layer with applica-
tion components that control the robot, and (2) one or more meta-
layers with meta-level components that implement fault-tolerance,
dynamic update, resource discovery, redeployment, and etc. In
the proposed architecture, each layer may adapt the layer beneath.
Fig. 5 shows one application instance [9], where component in-
stances are layered and distributed over several nodes. The robot
behavior (bottommost layer) provides the robot’s application logic.
In this case the system is distributed on two robots (nodes), where
a robot follower trails the leader. On top of that, using meta-level
components, we find a distributed failure manager layer that, based
on the collected data, detects and resolves failures in the applica-
tion subsystem. The failure manager layer is the subject to a version
manager layer, which replaces the failure collector components on
robot follower nodes whenever new versions are available.

In our high-level FORMS model we pinpointed two pivotal con-
cepts for self-adaptive systems: reflective computations and reflec-
tive models. We now study these concepts in more depth for this
specific case. Fig. 6 shows the relationship between the entities
in the concrete robotics system of Fig. 5 and FORM’s high-level
primitives.

In the first case study we identified four types of reflective com-

Figure 3: Conceptual view of MAPE-K’s computations and knowledge in relation to FORMS primitives (shades boxes).

Figure 4: Hierarchies of autonomic managers in relation to
FORMS.

putations that corresponded to the four MAPE stages: monitor, an-
alyze, plan, and execute. In this case study, we see a similar set of
computations represented by the meta-level components. A meta-
level component corresponds to the FORMS’s reflective computa-
tion. The authors propose three concrete meta-level components:
collector, analyzer, and admin. Collector gathers data from the
components at the layer below. The collected data could be both
behavioral, such as the utilization of resources, and structural, such
as the topology (configuration) of component instances. Analyzer
interprets the data produced by Collectors to evaluate adaptation
policies and create adaptation plans. Admin controls and manip-
ulates components at the layer below according to the adaptation
plans produced by analyzers. A difference compared to MAPE-K
is that in this architecture analysis and planning are merged into the
analyzer component.

Edwards et al. describe different types of data and models used
by the meta-level components. These models correspond to the no-

Figure 5: Overview of the robotics architecture presented
in [9].

tion of reflection model in FORMS. The different types of models
used in this case study helped us to further refine FORMS. The ar-
chitecture makes use of four types of models: (1) All meta-level
components within a layer have access to a runtime system archi-
tecture that contains the constructs (components, connectors, ports,
etc.) of the layer below. The components of the meta-layer that
deal with failure manager layer have access to the runtime system
architecture of the robot behavior layer, which corresponds to the
base-level subsystem in FORMS. runtime system architecture re-
sembles topology knowledge in MAPE-K. (2) Collector computa-
tions produce collector data that analyzer computations consume.
For example, the failure collector monitors the camera driver and
reports failures to failure analyzer. Collector data is similar to
problem determination knowledge in MAPE-K. (3) A layer is con-
cerned with a specific concern, which is represented as an adap-
tation policy. For example the failure manager layer is concerned

Figure 6: Conceptual view of the robotics system’s computations in relation to FORMS.

with reactive fault recovery. Adaptation policy is similar to pol-
icy knowledge in MAPE-K. Analyzer computations use adaptation
policies to deduce a suitable adaptation plan. The failure analyzer
in the example determines the best replacement component for the
camera based on adaptation policies. (4) The adaptation plan is
consumed by admin computations. For instance, the failure ana-
lyzer in the example notifies the robot admin of the new component
that is needed, and the robot admin instantiates the component.

As detailed in the next section, the different type of models
(knowledge) identified in this case study helped us with refining
FORMS’s reflection model primitive.

4. ELABORATED MODEL

Figure 7: Refined view of FORM’s primitives and their rela-
tionships.

Using FORMS’s high-level primitives to analyze the two case
studies, as well as several other systems that for brevity are not
reported here, helped us to identify a number of additional exten-
sions and refinements. This was anticipated, since as you may re-
call from Section 2 we had intentionally selected to include only

the minimum set of primitives required for formally specifying
self-adaptation. Moreover, this was desired, since our objective
has been to discern the elements of FORMS by carefully exploring
the existing systems, as opposed to simply devising them through
hypothetical means. It is also only through further refinement of
the FORMS’s high-level primitives that we can achieve the re-
quired level of detail for distinguishing between different types
of self-adaptive systems. Fig. 7 shows the elaborated model of
FORMS, including the additional primitives and their relationship
to the high-level constructs. Below we formally describe the de-
tailed model.

Reflection Models. We distinguish between four types of reflec-
tion models: subsystem model, concern model, environment model,
and mape working model. A subsystem model provides an abstract
representation of the managed subsystem, often in the the form of
an architectural model used at runtime, such as topology knowledge
in MAPE-K and the runtime system architecture from the robotics
case study. A concern model represents the reflective subsystem’s
objectives (i.e., goals). As you may recall from the case studies, in
both MAPE-K and robotics example, each layer is concerned with
a specific set of objectives. In the robotics case study, the version
manager is concerned with updating the robots, while the failure
manager is concerned with the system failures. The environment
model represents the contextual information utilized in making the
decisions in the meta layers. For instance, in the robotics example,
the meta-meta-layer dealing with version management updates the
system’s failure management components only when the robot is at
a base station. In other words, the location of the robot is an envi-
ronmental attribute used by the reflective subsystem for making the
adaptation decisions. Finally, a mape working model represents the
data structures and information shared between the MAPE activi-
ties. For instance, as you may recall from Section 3, when the plan
component generates a new solution, it provides that via a mape
working model for later use by the execute component.

We now formally specify the environment and subsystem mod-
els. Due to space limitations, the specification of the other models
is provided at [20].

An environment model comprises representations of attributes in

the environment relevant for a particular concern of interest. Envi-
ronment models are defined:

EnvironmentModel
Environment
Model [EnvironmentRepresentation]
mapping : P Attribute ↔ EnvironmentRepresentation

dom mapping ⊆ {attrs : P Attribute | attrs ⊆ attributes}
ran mapping = {r : EnvironmentRepresentation |

r ∈ representations}

The predicates state that the environment representations defined
in reflection model map to sets of attribute of the environment.

To define a subsystem model we first introduce the concept of
feature. Features describe perceivable characteristics of software
systems:

[Feature]

We define a function reify that returns the features for a given
subsystem:

[Subsystem]
reify : Subsystem → P Feature

We introduce subsystem representation that represents (a part of)
a subsystem, which can be either a base-level subsystem or a reflec-
tive subsystem. Subsystem representations are defined:

SubsystemRepresentation [Subsystem]

A subsystem model is a model of a subsystem (either a base-level
system or a reflective subsystem). Subsystem models are defined:

SubsystemModel [Subsystem]
subsystem : Subsystem
Model [SubsystemRepresentation[Subsystem]]
mapping : P Feature ↔ SubsystemRepresentation[Subsystem]

dom mapping ⊆
{features : P Feature | features ⊆ reify(subsystem)}

ran mapping =
{r : SubsystemRepresentation[Subsystem] |

r ∈ representations}

The generic schema states that subsystems representations de-
fined in reflection model map to sets of features of that subsystem
(returned by the reify function). We can apply the generic scheme
to define models for concrete types of subsystems. For example, a
base-level subsystem model is defined:

BaseLevelSubsystemModel
SubsystemModel [BaseLevelSubsystem]

We introduce the schema reflection models which groups the sets
of models used by a set of reflective computations:

ReflectionModels [Subsystem]
environmentModels : P EnvironmentModel
concernModels : P ConcernModel
mapeWorkingModels : P MapeWorkingModel
subsystemModels : P SubsystemModel [Subsystem]

Reflective Computations. We define five types of reflective com-
putations for self-adaptive system: update, monitor, analyze, plan
and execute. The last four represent the four MAPE activities,
whose relationships to FORMS became clear through application
of FORMS to both the MAPE-K and the robotics case studies. Up-
date represents an additional reflective computation that provides
the linkage between the environment and reflective subsystem. For
instance, as you may recall from Section 3.2, the location of the

robot is an environmental attribute required by version manager
for determining when the adaptation should occur. In FORMS we
make an explicit distinction between the process that maintains the
subsystem model (monitor) and the process that maintains the en-
vironment model (update). Note that reflective computations can
only act upon the reflection models of the reflective subsystem to
which the computations belong. However, this does not exclude
that reflective subsystems may share reflection models. An exam-
ple of sharing of models are knowledge sources in MAPE-K.

In this paper, we present the specification of execute. The other
computations are specified similarly. For space constraints, we
have provided them at [20].

Execute [Subsystem]
Computation
read : P EnvironmentModel × P MapeWorkingModel×

P SubsystemModel [Subsystem]× P State → P State
write : P State × P MapeWorkingModel×

P SubsystemModel [Subsystem]→
P MapeWorkingModel × P SubsystemModel [Subsystem]

adapt : P Subsystem × P State → P Subsystem

Execute computations can use environment models and mape
working models to adapt the underlying subsystem.

We define the sets of computations of a reflective subsystem for
each type of reflective computation. Due to space constraints, we
present the specification of executing, and provide the additional
details in [20].

Executing [Subsystem]
executes : P Execute
ReflectionModels[Subsystem]

∀ e : executes •
dom e.read = {eModels : P EnvironmentModel ;

mModels : P MapeWorkingModel ;
sModels : P SubsystemModel [Subsystem] |

eModels ⊆ environmentModels ∧
mModels ⊆ mapeWorkingModels ∧
sModels ⊆ subsystemModels •

(eModels, mModels, sModels, e.state)} ∧
dom e.write = {mModels : P MapeWorkingModel ;

sModels : P SubsystemModel [Subsystem] |
mModels ⊆ mapeWorkingModels ∧
sModels ⊆ subsystemModels •

(e.state, mModels, sModels)}

To perform adaptations, execute computations use the informa-
tion of the different reflection models of the subsystem. An exe-
cute computation can maintain a subsystem model while perform-
ing adaptations of the corresponding subsystem.

We introduce the schema reflective computations which groups
the computations of a reflective subsystem:

ReflectiveComputations [Subsystem]
Updating[Subsystem]
Monitoring[Subsystem]
Analyzing[Subsystem]
Planning[Subsystem]
Executing[Subsystem]

∀m : monitors •
dom m.trigger =

{as : P Analyse | as ⊆ analyses • (m.state, as)}
∀ a : analyses •

dom a.trigger = {ps : P Plan | ps ⊆ plans • (a.state, ps)}
∀ p : plans •

dom p.trigger =
{es : P Execute | es ⊆ executes • (p.state, es)}

The specification states that monitor computations can trigger
analyse computations, analyse computations can trigger plan com-

putations, and plan computations can trigger execute computations.
This loop of triggers corresponds to the autonomic loop in MAPE-
K and the sequence of events between meta-level components in
the robotics case study.

Examples. We conclude the formal specification with modeling
two examples from the case studies using FORMS. First, we spec-
ify an autonomic system consisting of a two-level hierarchy of
autonomic managers. Then, we specify the architecture of the
robotics case with two robots.

The first example consists of a self-adaptive autonomic system
with four resources: a server, two clients, and a network.

SelfAdaptiveAutonomicSystem
resources : P ManagedElement
resourceManagers : P ResourceAutonomicManager
systemManager :

P OrchestratingAutonomicManagerWithinDiscipline
serverExecute, networkExecute, systemExecute : Execute

resources = {server , client1, client2, network}
resourceManagers = {serverOptimizer , networkOptimizer}
systemManager = {systemOptimizer}
serverExecute ∈ serverOptimizer .computations
networkExecute ∈ networkOptimizer .computations
systemExecute ∈ systemOptimizer .computations
dom serverExecute.adapt =

{(serverExecute.knowledge, {server})}
dom networkExecute.adapt =

{(networkExecute.knowledge, {network})}
dom systemExecute.adapt = {(systemExecute.knowledge,

{serverExecute, networkExecute})}

One resource manager is managing the server, another one is
managing the network. In addition, there is the system manager
who serves as an orchestrating autonomic manager, managing the
two resource managers. The specification describes a hierarchy
of autonomic managers and specifies the scope of adaptations of
the execute computations of the autonomic managers in the self-
adaptive autonomic system.

The second example describes a self-adaptive robotic system that
corresponds to the structure shown in Fig. 5.

The base-level systems in this example are robot behaviors.

RobotBehavior
BaseLevelSubsystem

The reflective subsystems are the managers. Managers have three
types of computations: collectors, analyzers, and admins. We show
the definition of collector; the other models are provided at [20].

Collector [Subsystem]
Monitor [Subsystem]
c trigger : P State × P Analyse2Plan[Subsystem]→

P Analyse2Plan[Subsystem]

Managers use different types of models: environment models
(i.e., location of robots), runtime system architecture, collector
data, adaptation policies, and adaptation plans. We show the defi-
nition of collector data model:

CollectorData
MapeWorkingModel

In addition, we illustrate the concrete environment model of a
version manager:

versionEnvironmentModel : EnvironmentModel

representations = {followerPosition, baseStationLocation}

Version manager is defined:

VersionManager
ReflectiveRoboticSubsystem[FailureManager]

environmentModels = {versionEnvironmentModel}
concernModels = {versionAdaptationPolicy}
mapeWorkingModels = {failureAdaptationPlan}
subsystemModels = {failureArchitecture}
collectors = {versionCollector}
analyse2Planners = {versionAnalyzer}
executes = {updater}

The version manager uses the position of the follower and the
location of the base station in the environment model to determine
whether the robot has reached the base station.

Finally, a self-adaptive robotic system is defined:

SelfAdaptiveRoboticSystem
robotBehaviors : P RobotBehavior
failureManagers : P FailureManager
versionManagers : P VersionManager

robotBehaviors = {leaderBehavior , followerBehavior}
failureManagers = {failureManager}
versionManagers = {versionManager}
. . .
dom versionCollector .sense =

{({failureManager}, versionCollector .state)}
dom versionCollector .c trigger =

{(versionCollector .state, {versionAnalyzer})}
dom versionAnalyzer .ap trigger =

{(versionAnalyzer .state, {updater})}
dom updater .adapt = {({failureManager}, updater .state)}
. . .

We only show the part of the specification that defines the ar-
chitectural structure of the version manager and the scope of the
sense computation (i.e. the failure manager), the interactions be-
tween the computations (triggers) and the scope of the adaptation
computation (also the failure manager). The complete specification
is provided at [20].

5. RELATED WORK
The literature on self-adaptive and autonomic software systems

is extensive. Two of the main influences on the work presented
herein are computational reflection and the use of control loops in
software design. In her seminal work [14], Maes stresses the role of
computational reflection in programming software systems that are
capable of introspecting their runtime properties, and accordingly
adapt their behavior. Coulson et al. [5] describe an implementation
model for reflective middleware. Early work of Shaw [18] presents
an approach for self-adaptation based on process control loops.
Dobson et al. [7] and Brun et al. [3] promote feedback control-
loop as an important design concept in engineering of self-adaptive
software systems. In Fig. 1 one sees clearly how these concepts
influence FORMS. A problem is the lack of formal description that
provides for the required precision and expressibility.

FORMS also builds extensively on the previous frameworks and
reference implementations for self adaptive and autonomic sys-
tems [12, 13, 16, 10, 9, 8]. We have comprehensively discussed
some models and their contributions to FORMS earlier. We have
also shown how, as opposed to these models, FORMS takes the first
steps towards a precise, formally specified, reference model.

Formal models targeting specific aspects of self-adaptation ex-
ist. For instance, Zhang et al. [21] presents an approach to formally
model the behavior of adaptive programs, automatically analyze
them, and generate an implementation of the system. Wermelinger
and Fiadeiro [19] present an algebra for formally specifying run-
time reconfiguration of a system’s software architecture. These and

other works demonstrate the usefulness of applying formal model-
ing to this field. Nevertheless, none of these works have intended
to provide a generally applicable reference model for expressing,
comparing, and evaluating different types of self-adaptive software.

6. APPLICATIONS OF FORMS
Unlike existing informal autonomic frameworks that at best pro-

vide the engineers with a set of rough guidelines, we have used a
formal language for rigorous specification of our reference model.
This formalism affords numerous capabilities. For instance, exist-
ing tools could be used for: (1) type checking (e.g., CZT’s type
checker [6]) to automatically obtain certain guarantees on the va-
lidity of the design of a self-adaptive system, such as conformance
of architecture models that are refined iteratively, (2) executing and
animating the schemas (e.g., CZT’s ZLive animator [6]) to visually
obtain a better understanding of the system’s properties, (3) testing
(e.g., CZT’s ModelJUnit [6]) to automatically generate test cases
for the self-adaptive system, and (4) model transformation to auto-
matically transfer FORMS to other formal notations for perform-
ing various types of analysis (e.g., concurrency checks) or even
generate skeleton code that provides partial implementation of the
system. The latter would be in particular useful for ensuring the
fidelity of the implemented system to its specification in FORMS.

Beyond automated tool support, formal specification has been
shown to increase the quality of software development, as formal
reasoning can help to detect problems at early stages of system de-
velopment. Moreover, our approach allows validation of a system
built according to its specification in FORMS against the require-
ments, i.e., translate a specific requirement into a predicate and de-
termine whether it follows from the system’s specification.

In light of the above discussion, the contributions of FORMS can
be summarized as follows: (1) establishes a shared vocabulary of
primitives in this domain that while simple and concise can be used
to precisely define arbitrary complex self-adaptive systems, (2) en-
ables engineers to precisely express their design choices and assess
those choices using the mechanisms outlined above, (3) allows for
comparison and evaluation of different types of self-adaptive sys-
tems, and (4) lays the foundation for a systematic method of devel-
oping a catalog of known solutions (i.e., architectural patterns).

7. CONCLUSIONS & FUTURE WORK
In this paper, we presented a novel formal reference model for

self-adaption, entitled FORMS. We have distilled self-adaptation
primitives from existing frameworks and established principles, re-
lated them to one another in an integrated conceptual model, and
provided a formal definition of them using Z notation. We have
demonstrated FORMS precision, expressiveness, and extensibility
by applying it to several systems.

While our experiences with FORMS have been very positive,
several avenues of future work remain. We plan to study other types
of systems, such as those that are biologically inspired, to further
assess, and potentially extend, FORMS’s primitives. For instance,
we envision the need for refining the existing primitives to repre-
sent coordination in decentralized systems. The formally defined
reference model primitives form the basis for a design language.
A language we plan to use for documenting architectural patterns
in this setting. In turn, by studying the relationships between pat-
terns and specific quality attributes, we intend to develop a catalog
of strategies and tactics for building systems in this domain. In the
long-term, FORMS may be the foundation for a full-fledged model
based engineering approach for self-adaptive and autonomic soft-
ware systems.

8. REFERENCES
[1] J. Andersson et al. Modeling dimensions of self-adaptive

software systems. In B. H. C. Cheng et al., editors, LNCS
Hot Topics on Software Engineering for Self-Adaptive
Systems. Springer, 2009.

[2] J. Andersson et al. Reflecting on self-adaptive software
systems. In Workshop on Software Engineering for Adaptive
and Self-Managing Systems, Vancouver, BC, May 2009.

[3] Y. Brun et al. Engineering self-adaptive systems through
feedback loops. In Software Engineering for Self-Adaptive
Systems. LNCS Hot Topics, 2009.

[4] B. Cheng et al. Software engineering for self-adaptive
systems: A research road map. In B. H. C. Cheng et al.,
editors, LNCS Hot Topics Software Engineering for
Self-Adaptive Systems. Springer, 2009.

[5] G. Coulson et al. A generic component model for building
systems software. ACM Trans. Comput. Syst., 26(1), 2008.

[6] CZT. http://czt.sourceforge.net/, Jan 2010.
[7] S. Dobson et al. A survey of autonomic communications.

TAAS, 1(2):223–259, 2006.
[8] J. Dowling and V. Cahill. The k-Component architecture

meta-model for self-adaptive software. In Int’l Conf. on
Metalevel Architectures and Separation of Crosscutting
Concerns, London, UK, 2001. Springer-Verlag.

[9] G. Edwards et al. Architecture-driven self-adaptation and
self-management in robotics systems. In Workshop on
Software Engineering for Adaptive and Self-Managing
Systems, Vancouver, BC, May 2009.

[10] D. Garlan et al. Rainbow: Architecture-based self-adaptation
with reusable infrastructure. IEEE Computer, Oct 2004.

[11] M. C. Huebscher and J. A. McCann. A survey of autonomic
computing - degrees, models, and applications. ACM
Comput. Surv, 40(3), 2008.

[12] J. O. Kephart and D. M. Chess. The vision of autonomic
computing. Computer, 36(1):41–50, 2003.

[13] J. Kramer and J. Magee. Self-managed systems: an
architectural challenge. In Int’l Conf. on Software
Engineering, May 2007.

[14] P. Maes. Concepts and experiments in computational
reflection. In OOPSLA, Orlando, FL, Oct 1987.

[15] B. Miller. The autonomic computing edge: The role of
knowledge in autonomic systems., Sep 2005.

[16] P. Oreizy and others. Architecture-based runtime software
evolution. In Int’l Conf. on Software engineering, Kyoto,
Japan, May 1998.

[17] G. Seetharaman et al. Unmanned vehicles come of age: The
DARPA grand challenge. IEEE Computer, Dec. 2006.

[18] M. Shaw. Beyond objects: A software design paradigm
based on process control. ACM SIGSOFT Software
Engineering Notes, 20(1):27–38, Jan. 1995.

[19] M. Wermelinger and J. L. Fiadeiro. Algebraic software
architecture reconfiguration. In European Software
Engineering Conf. and Int’l Symp. on Foundations of
Software Engineering, Toulouse, France, 1999 1999.

[20] D. Weyns, S. Malek, and J. Andersson. Z specifications of
FORMS. In CW 579, Tech. Report, Katholieke Universiteit
Leuven, 2010. http://www.cs.kuleuven.be/
publicaties/rapporten/cw/CW579.abs.html.

[21] J. Zhang and B. H. C. Cheng. Model-based development of
dynamically adaptive software. In International Conference
on Software Engineering, Shanghai, China, May 2006.

