
Software Adaptation Patterns for Service-Oriented
Architectures

Hassan Gomaa, Koji Hashimoto, Minseong Kim, Sam Malek, Daniel A. Menascé
Department of Computer Science

George Mason University
Fairfax, VA 22030

{hgomaa, khashimo, mkim12, smalek, menasce}@gmu.edu

ABSTRACT

This paper describes the concept of software adaptation patterns

and how they can be used in software adaptation of service-

oriented architectures. The patterns are described in terms of a

three-layer architecture for self-management. A software

adaptation pattern defines how a set of components that make up

an architecture pattern dynamically cooperate to change the

software configuration to a new configuration. In our approach,

adaptation connectors are introduced to encapsulate adaptation

state machine models so that the adaptation patterns can be more

reusable. A change management model for dynamically evolving

service-oriented applications is also described with a case study.

Categories and Subject Descriptors

D.2.2 [Software Engineering]: Design Tools and Techniques –

State diagrams, D.2.11 [Software Engineering]: Software

Architectures – Domain-specific Architectures, Patterns.

 Keywords

component, service, service-oriented architecture, dynamic

adaptation, software adaptation patterns.

1. INTRODUCTION
Service-Oriented Architectures (SOA) are becoming increasingly

widespread in a variety of computing domains such as enterprise

and e-commerce systems, which continue to grow in size and

complexity. These systems are expected to adapt not only to the

fluctuating execution environments but also to changes in their

operational requirements.

This paper describes the concept of software adaptation patterns

and how they can be used in service oriented architectures.

Previous papers have described how software architectural

patterns can be used to help in building software systems and

product lines [1][7][8]. This paper describes how software

adaptation patterns can be used to help with the adaptation of

service-oriented software systems after original deployment. The

adaptation patterns are part of the Self-Architecting Software

Systems (SASSY) framework [20].

In this paper, we base our research on three areas as follows: a)

research into software architectural and design patterns [2][3][7]

applied in particular to service-oriented architectures [16][17], b)

research into dynamic reconfiguration and change management

[6][9], and c) research into self-adaptive, self-managed or self-

healing systems [4][10]. The research described in this paper

builds on software reconfiguration patterns in our previous work

[6] and advances these concepts by describing patterns to support

dynamic adaptation in service-oriented applications.

This paper first describes different kinds of software adaptation. It

then describes software adaptation patterns for service oriented

architectures, with a detailed example of a sequential coordination

adaptation pattern. Adaptive change management is also

described.

2. RELATED WORK
Dynamic software architectures and dynamic reconfiguration

approaches have been applied to dynamically adapt software

systems [4][10]. These approaches address incorporating

reconfigurability into the architecture, design and implementation

of software systems for the purpose of run-time change and

evolution. In [6][11][12], dynamic reconfiguration is applied to

changing the configuration of a system from one configuration to

another in a software product line while the system is operational.

Research into self-adaptive, self-managed or self-healing systems

[4][10] includes various approaches for monitoring the

environment and adapting a system’s behavior in order to support

run-time adaptation.

Kramer and Magee [9][10] describe how a component must

transition to a quiescent state before it can be removed or replaced

in a dynamic software configuration. Ramirez et al. [13] describe

applying adaptation design patterns to the design of an adaptive

web server. The patterns include structural design patterns and

reconfiguration patterns for removing and replacing components.

For service-oriented computing and service-oriented architectures,

Li et al. [14] suggest the adaptable service connector model, so

that services can be dynamically composed. Irmert et al. [15]

provide a framework to adapt services at run-time without

affecting application execution and service availability.

In comparison with the previous approaches, this paper focuses on

service coordination in service-oriented architectures. We develop

software adaptation patterns for different kinds of service

coordination, in order to adapt not only services but also

coordinator components.

Permission to make digital or hard copies of all or part of this work for
personal or classroom use is granted without fee provided that copies are

not made or distributed for profit or commercial advantage and that

copies bear this notice and the full citation on the first page. To copy
otherwise, or republish, to post on servers or to redistribute to lists,

requires prior specific permission and/or a fee.

SAC’10, March 22-26, 2010, Sierre, Switzerland.
Copyright 2010 ACM 978-1-60558-638-0/10/03…$10.00.

462

3. SOFTWARE ADAPTATION
Software adaptation addresses software systems that need to

change their behavior during execution. In self-managed and self-

healing systems, systems need to monitor the environment and

adapt their behavior in response to changes in the environment

[10]. Garlan and Schmerl [4] have proposed an adaptation

framework for self-healing systems, which consists of monitoring,

analysis/resolution, and adaptation. Kramer and Magee [9] have

described how in an adaptive system, a component needs to

transition from an active (operational state) to a quiescent (idle)

state before it can be removed from a configuration.

Adaptation can take many forms. It is possible to have a self-

managed system that adapts the algorithm it executes based on

changes it detects in the external environment. If these algorithms

are pre-defined, then the system is adaptive but the software

structure and architecture is fixed. The situation is more complex

if the adaptation necessitates changes to the software structure or

architecture. In order to differentiate between these different types

of adaptation, adaptations can be classified as follows within the

context of distributed component-based software architectures:

a) Behavioral adaptation. The system dynamically changes

its behavior within its existing structure. There is no

change to the system structure or architecture.

b) Component adaptation. Dynamic adaptation involves

replacing one component with another that has the same

interface. The dynamic replacement of the old

component(s) with a new component(s) has to be

performed while the system is executing.

c) Architectural adaptation. The software architecture has

to be modified as a result of the dynamic adaptation.

Old component(s), which may not provide the same

interface, must be dynamically replaced by new

component(s) while the system is executing. Hence, the

changes may impact the architectural configuration

(e.g., architectural style) of the system.

Model based adaptation can be used in each of the above forms of

dynamic adaptation, although the adaptation challenge is likely to

grow progressively from behavioral adaptation through

architectural adaptation.

3.1 Three-layer Architecture Model for

Software Adaptation
Our approach for software adaptation is compatible with the

widely accepted three-layer reference architecture model for self-

management [10]. The architecture model consists of 1) Goal

Management layer—planning for change—often human assisted,

2) Change Management layer—execute the adaptation in response

to changes in state (environment) reported from lower layer or in

response to goal changes from above, and 3) Component Control

layer—executing architecture that actually implements the run-

time adaptation.

This reference architecture for self-management originally comes

from research [18][19] on control architectures for robotic

systems. The robot control architectures are composed of three

layers, namely deliberate, sequencing, and reactive layers. The

deliberate layer is to interface with a user and to execute a

planning process. The sequencing layer is to execute the plan by

managing the components in the layer below. The reactive layer is

responsible for reactive control of robot behavior. As a result, the

three layers of the architecture model for self-management, i.e.,

Goal Management, Change Management, and Component Control

layers, are consistent with those of robot control architectures, i.e.,

deliberate, sequencing, and reactive layers, respectively. This

three-layer model provides a good conceptual architecture that

helps identify and organize the necessary features for dynamic

software adaptation.

4. OVERVIEW OF SASSY FRAMEWORK
The software adaptation patterns described in this paper are

developed as part of the Self-Architecting Software Systems

(SASSY), which is a model-driven framework for run-time self-

architecting and rearchitecting of distributed service-oriented

software systems [20][21]. SASSY provides a uniform approach

to automated composition, adaptation, and evolution of software

systems. SASSY provides mechanisms for self-architecting and

rearchitecting that determine the best architecture for satisfying

functional and Quality of Service (QoS) requirements. The quality

of a given architecture is expressed by a utility function, which is

provided by end-users and represents one or more desirable

system objectives.

Figure 1 illustrates, at a high level, how SASSY uses the three

layer architecture model for self adaptation of SOA-based

software. Specific details are provided in the sections that follow.

A system service architecture, consisting of components,

(associated with services) and connectors (associated with

middleware facilities), is optimized with respect to QoS

requirements through selection of the most suitable services. This

architecture is determined with the help of QoS analytical models

and optimization techniques aimed at finding near-optimal

choices that maximize system utility [22].

SASSY’s monitoring support services (Monitoring Service and

Gauge Service in Figure 1) generate triggers that cause self-

adaptation. Services are automatically replaced and the software

architecture is automatically regenerated by the Goal Management

layer when the system utility degrades beyond a certain threshold.

SASSY’s adaptation support services (Change Management

Service and Adaptation Service) are used to transition from one

version of the architecture to a new one. When services fail or are

unable to meet their QoS goals, the SASSY’s monitoring services

trigger service replacement through a new round of service

discovery, optimal service selection, and possible determination

of alternative architectures.

SASSY Monitoring

Support

SASSY Adaptation

Support

Monitoring

Service

Gauge

Service

Change

Management

Service

Adaptation

Service

SASSY

Self-Architecting and Rearchitecting

Status

Plan Request

Change Actions

Change Plans

Goal

Management

Change

Management

Component

Control

Figure 1. High-level view of the SASSY framework

463

More information about SASSY is given in [20][21][22]. In the

remainder of this paper, we describe the role of adaptation

patterns in enabling adaptation of SOA software systems in

SASSY.

5. SOFTWARE COORDINATION
In SOA applications, services are intended to be self-contained

and loosely coupled, so that dependencies between services are

kept to a minimum. Instead of one service depending on another,

it is desirable to provide coordination services (coordinators) in

situations where multiple services need to be accessed and access

to them needs to be coordinated and/or sequenced. In SASSY, the

software architecture ensures this loose coupling by separating the

concerns of individual services from those of the coordinators,

which sequence the access to the individual services.

As there are many different types of service coordination, it is

helpful to develop SOA coordination patterns to capture the

different kinds of coordination. In particular, coordination can be

categorized by the following two properties: 1) type of

coordination and 2) degree of concurrency. By characterizing the

behavioral and structural properties of these coordination patterns,

it is possible to analyze and estimate the possible adaptation paths

of these patterns. In this paper, we describe independent

coordination patterns with sequential and/or concurrent

coordination.

With independent coordination, each coordinator instance

operates independently of other coordinators in its interactions

with services. E.g., an airline coordination service that contacts

multiple airline services to offer travel alternatives to a customer.

There are many instances of this coordinator, one for each

customer. This is probably the most common form of coordinator

in SOA.

With sequential coordination, a coordinator interacts with multiple

services sequentially in order to achieve the overall service

objective. For example, a travel coordinator needs to first make an

airline reservation and determine the airline travel dates before

making a hotel reservation.

With concurrent coordination, a coordinator interacts with

multiple services concurrently in order to achieve the overall

service objective, e.g., airline coordination service that contacts

multiple airline services to offer travel alternative to a customer.

With combined sequential and concurrent coordination, a

coordinator does some sequential coordination and some

concurrent coordination. For example, a travel coordinator needs

to first make an airline reservation and determine the airline travel

dates before making hotel and car rental reservations, which can

be made in parallel.

A given coordinator can be characterized by these two properties,

for example an independent coordinator that does concurrent

coordination. It is possible for a coordinator to be state dependent

if the coordination needs to follow a specified sequence.

6. SOFTWARE ADAPTATION PATTERNS
A software architecture is composed of distributed software

architectural patterns, such as client/server, master/slave, and

distributed control patterns, which describe the software

components that constitute the pattern and their interconnections.

For each of these architectural patterns, there is a corresponding

software adaptation pattern, which models how the software

components and interconnections can be changed under

predefined circumstances, such as replacing one client with

another in a client/server pattern, inserting a control component

between two other control components in a distributed control

pattern, etc.

A software adaptation pattern defines how a set of components

that make up an architecture or design pattern dynamically

cooperate to change the software configuration to a new

configuration given a set of adaptation commands. In terms of the

three-layer reference architecture (Figure 1) described earlier,

adaptation patterns correspond to the bottom layer of a self-

managed system, i.e., the component control layer, and they

realize dynamic adaptation by actually adding or deleting

components (and appropriate connectors if necessary) according

to adaptation commands sent from the middle layer, i.e., the

change management layer. On the other hand, the goal

management layer is in charge of producing change management

plans (to satisfy QoS goals) that are executed at the change

management layer. Thus, our focus in this paper is mainly on the

component control layer for dynamic software adaptation.

 A software adaptation pattern requires state- and scenario-based

reconfiguration behavior models to provide for a systematic

design approach. The adaptation patterns are described by

adaptation interaction models (using communication or sequence

diagrams) and adaptation state machine models [6][8]. We have

previously developed several adaptation patterns, including the

Master-Slave Adaptation Pattern, Centralized Control Adaptation

Pattern, and Decentralized Control Adaptation Pattern [6].

6.1 Software Adaptation State Machines
An adaptation state machine defines the sequence of states a

component goes through from a normal operational state to a

quiescent state. A component is in the Active state when it is

engaged in its normal application computations. A component is

in the Passive state when it is not currently engaged in a

transaction it initiated, and will not initiate new transactions. A

component transitions to the Quiescent state when it is no longer

operational and its neighboring components no longer

communicate with it. Once quiescent, the component is idle and

can be removed from the configuration, so that it can be replaced

with a different version of the component. Figure 2 shows the

basic adaptation state machine model for a component as it

transitions from Active state to Quiescent state. The adaptation

framework sends a passive command to the component. If the

component is idle, it transitions directly to the quiescent state.

However, if the component is busy participating in a transaction,

it transitions to the Passive state. When the transaction is

completed, it then transitions to the Quiescent state.

In previous research [6], the state machine for each component

was modeled using two orthogonal state machines, an operational

state machine (modeling normal component operation) and an

adaptation (also referred to as reconfiguration) state machine.

Generalized Adaptation

State Machine

PassiveActive Quiescent

Passivate
[Processing
Transaction]

Transaction
Ended

Passivate [Idle]

Reactivate

Figure 2. Basic adaptation state machine

464

<<connector>>

: Service Connector

<<connector>>

: Service Connector

<<connector>>

: Coordinator

Connector

: Coordinator

: Service N

: Service 1

Sn6: Forward

Service Response

S13: Service Request

S16: Forward

Service Response
: Client

S1: Client Request

S8: Forward

Client Response

Sn3: Service Request

: Service Request

Buffer

: Service Stub

S2: Next

Client Request

S7: Client

Response

: Service Request

Queue

: Service Stub

: Service Request

Queue

: Service Stub

S14: Next

Service Request

S15: Service

Response

Sn4: Next

Service Request

Sn5: Service

Response

Figure 3. Independent coordination communication diagram

However, for more complicated patterns, there is often some

interaction between the two state machines. In this paper, we

investigate separating the operational state machine from the

adaptation state machine in service-oriented systems. The

objective is to encapsulate the adaptation state machine in the

service connector (as discussed in the next section), such that the

adaptation patterns, as well as the corresponding code that realizes

each pattern, can be more reusable.

7. SOA ADAPTATION PATTERNS
As described in Section 5, a coordination pattern can be

characterized by the type of coordination and the degree of

concurrency. This paper considers independent coordination,

which is a common form of coordination in SOA. In the

independent coordination pattern, a coordinator orchestrates

multiple services independently of other coordinators as shown in

Figure 3. We make the following assumptions:

 A coordinator component is instantiated for each client.

 A client interacts with a service using synchronous

communication; thus, it sends a new request only when

it receives a response to its previous request.

 Services are stateless and independent of each other.

In the following sections, we first describe SASSY’s Adaptation

connectors, followed by the adaptation patterns for three

coordination patterns: 1) sequential coordination, 2) concurrent

coordination, and 3) combined concurrent/sequential coordination

patterns.

7.1 SASSY Adaptation Connectors
The SASSY framework provides two different types of adaptation

connectors, coordinator connector and service connector, as

shown in Figure 3. A service adaptation connector behaves as a

proxy for a service, such that its clients can interact with the

connector as if it was the service. The goal of an adaptation

connector is to separate the concerns of an individual service from

dynamic adaptation, i.e., the adaptation connector implements the

adaptation mechanism for its corresponding service, including the

interaction with the change management service (see next section)

and the management of the operational states of the service. The

adaptation state machine for a given adaptation pattern is

encapsulated in the corresponding adaptation connector. In the

following sections, the adaptation state machines for three

software adaptation patterns are described.

7.2 Sequential Coordination Adaptation

Pattern
In a sequential coordination adaptation pattern for service-

oriented architectures, multiple services are sequentially invoked

by a coordinator, e.g., airline reservation followed by hotel

reservation. Once the coordinator receives a client request for an

application service, it sends a service request to the first service to

be invoked. The coordinator sends another service request to the

second service after receiving a response from the first service.

The coordinator sends a response to the client after a response

from the last service has been received. The communication

diagram depicted in Figure 3 shows a general case where a

coordinator interacts with N services.

Based on the assumptions described earlier, the coordinator

component can only be removed or replaced after it has received

all the responses from the services sequentially invoked and sent

its response to the client. On the other hand, a service can be

removed or replaced after it completes the current service

execution in the case of a sequential service, or after completing

the current set of service executions in the case of a concurrent

service.

The coordinator connector executes its own operating state

machine shown in Figure 4. As mentioned in Section 7.1, the

adaptation state machine for the coordinator is encapsulated in the

coordinator’s connector. The connector implements the dynamic

adaptation of the coordinator when it receives the Passivate

adaptation command from the change management service. In

Figure 4, when the connector is Active (idle and not executing a

client command) and receives a Passivate command, it transitions

to the ―Quiescent‖ state and sends a quiescent notification to the

change management service. When the connector is Active and

receives a request from the client, it forwards the request to the

coordinator and transitions to the ―Waiting For Service Response‖

state, which means that the coordinator is processing a request. If

the connector receives a Passivate command, it transitions to the

―Passivating‖ state in which the coordinator is still interacting

with the service to accomplish its transaction.

When the coordinator receives a response from the last service, it

sends the client response to the connector. The connector then

transitions to the ―Quiescent‖ state; the actions are to forward the

response to the client, and to send a quiescent notification to the

change management service.

465

Coordinator Connector

State Machine

Active

S7: Client Response /
S8: Forward Client Response

S1: Client Request /
S2: Next Client Request

Activate Waiting For

Service

Response

Passivating

Passivate /
Send Quiescent Notification To Change Management Layer

S7: Client Response /
S8: Forward Client Response,
Send Quiescent Notification
To Change Management Service

Passivate

S1: Client Request /
Put the request into
Buffer

Reactivate [Buffer is not empty] /
Send Gone Active Notification To Change Management Service,
Activate New Coordinator,
S2: Next Client Request,
Clear Buffer

Reactivate [Buffer is empty] /
Send Gone Active Notification To Change Management Layer,
Activate New Coordinator

Quiescent
Waiting For

Client Request

Figure 4. Coordinator connector state machine

Service Connector

State Machine

Active

Sx5: Service Response [q = 0] /
Sx6: Forward Service Response

Sx3: Service Request /
Sx4: Next Service Request

Activate

Processing

Sx3: Service Request /
q++

exit / q = 0

Waiting For

Service Request

Sx5: Service Response [q > 0] /
Sx6: Forward Service Response,
Sx4: Next Service Request,
q--

Passive

Passivate /
Send Quiescent Notification To Change Management Layer

Sx3: Service Request /
q++ Sx5: Service Response /

Sx6: Forward Service Response,
Send Quiescent Notification
To Change Management Layer

Passivate

Sx3: Service Request /
q++

Reactivate [q > 0] /
Send Gone Active Notification To Change Management Layer,
Sx4: Next Service Request,
q--

Reactivate [q = 0] /
Send Gone Active Notification To Change Management Layer

Quiescent

Figure 5. Service connector state machine for a sequential service

Service Connector

State Machine

Active

Sx5: Service Response [t = 1] /
Sx6: Forward Service Response,
t = 0

Sx3: Service Request /
Sx4: Next Service Request,
t++

Activate
Processing

(0 < t)
exit / q = 0, t = 0

Waiting For

Service Request
Passive

Passivate /
Send Quiescent Notification To Change Management Layer

Sx3: Service Request /
q++

Sx5: Service Response [t = 1] /
Sx6: Forward Service Response,
t = 0,
Send Quiescent Notification
To Change Management LayerPassivate

Sx3: Service Request /
q++

Reactivate [q > 0] /
Send Gone Active Notification To Change Management Layer,
Sx4: Next Service Request {for each request in the queue},
t = q, q = 0

Reactivate [q = 0] /
Send Gone Active Notification To Change Management Layer

Quiescent

Sx5: Forward Service Response [1 < t] /
Sx6: Service Response,
t--

Sx5: Service Response [1 < t] /
Sx6: Forward Service Response,
t--

Sx3: Service Request /
Sx4: Next Service Request,
t++

Figure 6. Service connector state machine for a concurrent service

While in the quiescent state, the connector could receive a new

request from the client, which it puts into a request buffer. When

the connector receives a Reactivate command, it transitions to

either the ―Waiting For Client Request‖ or the ―Waiting For

Service Response‖ state according whether or not there is a

client request in the request buffer.Figure 5 depicts the operating

state machine executed by the service connector in the case of a

sequential service that has a single thread processing requests.

As a service may have multiple clients besides the coordinator,

the service request queue has an important role to buffer

requests in a sequence. If a service request arrives in the

―Waiting For Service Request‖ state, it is immediately

forwarded to the service. In the ―Processing‖ and ―Passive‖

states, the connector queues service requests on the request

queue. In other words, clients can send requests to the service

regardless of its state, because the connector will queue service

requests if necessary. If the change management service sends a

Passivate command to the connector, the connector will

transition to Quiescent state and continue to queue up any client

requests that arrive. In Quiescent state, the service can be

replaced. When the newly replaced service becomes active, the

connector resumes sending client requests to the service, as

depicted on the state machine shown in Figure 5.

In the case of a concurrent service, the service connector

executes the operating state machine shown in Figure 6. Since

services can be removed or replaced after completing the current

set of service executions, the state machine manages the number

of requests currently executed by the service by the variable t.

466

Although a request is immediately forwarded to the service in

Active or Processing state, the connector still necessitates the

request queue because it cannot forward a new request to the

service which is passive or quiescent.

7.3 Concurrent Coordination Adaptation

Pattern
In the concurrent coordination adaptation pattern, multiple

services are invoked by a coordinator concurrently. Once the

coordinator receives a client request, it sends service requests

concurrently to all the services to be invoked. The coordinator

sends a response to the client after the responses from all the

services have been received. Since this pattern also involves

independent coordination, the structural view of this pattern is

the same as Figure 3.

In this adaptation pattern, the operating state machine for the

coordinator connector is exactly the same as shown in Figure 4,

because the coordinator connector determines when the

coordinator is in Quiescent state by monitoring only the message

―S7: Client Response‖ from the coordinator.

The operating state machine for the service connector in the case

of a sequential service and a concurrent service are also the

same as shown in Figure 5 and Figure 6, respectively. As in the

case of the coordinator connector, the service connector

determines when its corresponding service is in Quiescent state

by monitoring only the message ―Sx5: Service Response‖ sent

from the service.

7.4 Combined Coordination Adaptation

Pattern
For the combined sequential and concurrent coordination pattern

described in Section 5, the operating state machines for the

coordinator and service connecters are the same as those in the

sequential and concurrent coordination patterns, for the same

reasons described in Section 7.3. Therefore, the adaptation

connectors can be reused in the independent coordination

pattern, regardless of the coordinator’s degree of concurrency

(sequential, concurrent, or combined sequential/concurrent).

8. ADAPTIVE CHANGE MANAGEMENT
Adaptive change management is provided by a Change

Management Model, which is used to establish a region of

quiescence [9] so that dynamic adaptation can take place. For

each adaptation pattern, the change management model

describes a process for controlling and sequencing the steps in

which the configuration of components in the pattern is changed

from the old configuration to the new configuration. Thus, as

stated before, the middle layer of the three-layer model, i.e.,

change management layer, is responsible in our approach for

implementing the Change Management Model, and controlling

the adaptation process through adaptation commands. The

adaptation commands describe reconfiguration actions

associated with user-required changes, which are predefined as

reconfiguration scenarios. The adaptation commands for SOA

applications are passivate, unlink, remove, create, link, activate,

and reactivate, as described in more detail below with the aid of

an example. Note that remove and create commands are not

required for the adaptation of services provided by third parties.

In the SASSY framework (Section 4), services are discovered by

the Goal Management layer.

8.1 Example of Dynamic Software

Adaptation
As an example of dynamic software adaptation, consider an

emergency response system shown in Figure 7.

a) Initial software configuration

b) Revised software configuration

Figure 7. Dynamic software adaptation in emergency response system

467

The initial software configuration is shown in Figure 7a before

dynamic software adaptation, while the revised configuration after

dynamic software adaptation is shown in Figure 7b.The

emergency system uses the sequential coordination pattern for

coordination of the three services, Building Locator, Occupancy

Awareness, and Fire Station. In the example, Occupancy

Awareness is to be replaced by a more reliable service

composition as depicted in Figure 7b.

The adaptation is triggered by the availability of Occupancy

Awareness operating below 99.999%, which is specified as a QoS

requirement. The Goal Management layer determines a possible

adaptation, which involves two potential Occupancy Awareness

services that are 99.0% available and could be mediated by a fault

tolerant connector (Figure 7b). The Change Management layer

then decides that the change involves adding a second Occupancy

Awareness service and the Fault Tolerant connector, which

invokes the two Occupancy Awareness services but forwards only

the response of the primary service back to the requester.

The Change Management (CM) layer controls and coordinates the

dynamic adaptation, and communicates this to the service

connectors in the software configuration by sending adaptation

commands as follows:

1. CM sends a passivate command to Service Connector 2

for Occupancy Awareness, so that the connector

transitions to the quiescent state.

2. Upon transitioning to quiescent state, Service Connector

2 sends the quiescent notification to CM. CM then sends

an unlink command to Service Connector 2. As a result,

the interconnection between Service Connector 2 and

Occupancy Awareness is unlinked.

3. CM sends Link commands to connect Service Connector

2 with a new service composition, which consists of the

Fault Tolerant connector, Occupancy Awareness 1, and

Occupancy Awareness 2 (as shown in Figure 7b). In this

case, the Fault Tolerant connector has the responsibility

to connect the two service instances. Service Connector

2 and the Fault Tolerant connector are linked as the

Fault Tolerant connector provides a proxy interface for

the Occupancy Awareness service.

4. CM sends a reactivate command to Service Connector 2,

which responds with a Gone Active Notification and

resumes forwarding service requests.

9. VALIDATION OF SOFTWARE

ADAPTATION PATTERNS
The emergency response system example described in Section 8

was modeled using XTEAM [23], which is an architectural

modeling and analysis environment. XTEAM provides a structural

Architectural Description Language (ADL), xADL [24], with a

behavioral ADL, Finite State Processes (FSP) [25], to generate

executable system simulations.

In the emergency response system example, we used XTEAM to

model the system’s structure shown in Figure 7 in xADL, and the

behavior of Coordinator and Service Connectors by translating

their state machines described in Figures 4-6 into equivalent FSP

models. In the simulation, we modeled CM as a component in

xADL, which sends the adaptation commands to the adaptation

connectors by executing the change management scenario

described in Section 8. Since XTEAM does not currently support

run-time dynamic adaptation of the software architecture and

executable simulation, we simulated the example using behavioral

adaptation (Section 3). We therefore developed, in advance, the

Fault Tolerant connector and the two Occupancy Awareness

services connected with Service Connector 2, so that XTEAM

simulates execution of the unlink and link commands for the case

of the Occupancy Awareness service replacement.

The system’s simulation in XTEAM, generated from the xADL

and FSP models, was executed with the adaptation state machines

described in Section 0 and the dynamic software adaptation

scenario described in Section 8. This scenario involves the service

connector state machine transitioning from Active to Passive to

Quiescent states, replacing one service with another, and then

reactivating the service connector. A second scenario was

executed in which the coordinator was replaced. This scenario

involves the coordinator connector state machine transitioning

from Active to Passive to Quiescent states, replacing the

coordinator, and then reactivating the coordinator connector.

The validation consisted of 1) executing the change management

scenario, 2) performing the software adaptation from one

configuration to another, and 3) resuming the application after the

adaptation. For both the above two scenarios, the XTEAM

simulation recorded the trace of FSP state transitions for each

xADL component in execution logs. Analysis of these logs

showed that the above three validation steps were carried out as

planned. Thus the validation demonstrates that the software

adaptation patterns and state machines described in this paper

perform the desired software adaptation while ensuring that the

service-oriented application does not enter an inconsistent state.

10. CONCLUSIONS
This paper has described how software adaptation patterns can be

used in service oriented architectures to dynamically adapt

coordinator components and services at run-time. We have

developed software adaptation patterns for independent

coordinators, which can be state dependent, and either sequential

or concurrent services. An independent coordinator, which is

instantiated for each client, can be state dependent if the client has

multiple interactions with one or more services. Future research

will investigate software adaptation patterns with distributed and

hierarchical coordination.

In this paper, we assumed services that are stateless. Future

research will investigate services that are stateful and participate in

a transaction, such as in the two phase commit protocol. The

current approach supports long-living transactions, such as check

flight availability before booking, in which the long-living

transaction is actually executed as two separate independent

stateless transactions.

The adaptation patterns are part of the self-architecting SASSY

framework. The patterns are described in terms of a three-layer

reference architecture for self-management. The adaptation

patterns execute at the lowest level, the component control layer.

The Change Management Service executes at the second layer,

sending change management commands to initiate the coordinator

and/or service adaptation.

Future work will consist of investigating additional adaptation

patterns for service-oriented architectures and incorporating them

into the SASSY framework.

468

11. ACKNOWLEDGMENTS
This work is partially supported by grant CCF-0820060 from the

National Science Foundation. The authors thank João P. Sousa for

his comments on an earlier draft.

12. REFERENCES
[1] H. Gomaa, ―Building Software Systems and Product Lines

from Software Architectural Patterns‖, ECOOP Wkshp. on

Building Systems from Patterns, Glasgow, UK, July 2005.

[2] F. Buschmann, R. Meunier, H. Rohnert, P. Sommerlad,

―Pattern Oriented Software Architecture: A System of

Patterns‖, John Wiley & Sons, 1996.

[3] E. Gamma, R. Helm, R. Johnson and J. Vlissides, ―Design

Patterns: Elements of Reusable Object-Oriented Software‖,

Addison Wesley, 1995.

[4] D. Garlan and B. Schmerl, ―Model-based Adaptation for

Self-Healing Systems‖, Proc. Workshop on Self-Healing

Systems, ACM Press, Charleston, SC, 2002.

[5] H. Gomaa, ―Designing Concurrent, Distributed, and Real-

Time Applications with UML‖, Addison Wesley, Reading

MA, 2000.

[6] H. Gomaa and M. Hussein, ―Software Reconfiguration

Patterns for Dynamic Evolution of Software Architectures‖,

Proc. Fourth Working IEEE/IFIP Conference on Software

Architecture, Oslo, Norway, June, 2004.

[7] H. Gomaa, ―Designing Software Product Lines with UML:

From Use Cases to Pattern-based Software Architectures‖,

Addison-Wesley, 2005.

[8] H. Gomaa, ―A Software Modeling Odyssey: Designing

Evolutionary Architecture-centric Real-Time Systems and

Product Lines‖, Keynote paper, Proc. 9th Intl. Conf. on

Model-Driven Engineering, Languages, and Systems

(MoDELS), Genova, Italy, Oct. 2006.

[9] J. Kramer and J. Magee, ―The Evolving Philosophers

Problem: Dynamic Change Management‖, IEEE

Transactions on Software Eng., Vol. 16, No. 11, 1990.

[10] J. Kramer and J. Magee, ―Self-Managed Systems: an

Architectural Challenge‖, Proc Intl. Conference on Software

Engineering, Minneapolis, MN, May 2007.

[11] M. Kim, J. Jeong, and S. Park, ―From Product Lines to Self-

Managed Systems: An Architecture-Based Runtime

Reconfiguration Framework,‖ Proc. Design and Evolution of

Autonomic Application Software (DEAS2005), ICSE05, St.

Louis, MO, May 2005, pp. 66-72.

[12] J. Lee and K. Kang, ―A Feature-Oriented Approach to

Developing Dynamically Reconfigurable Products in Product

Line Engineering,‖ Proc. 10th Int. Soft. Product Line Conf.

(SPLC 2006), Baltimore, Maryland, 2006.

[13] A. J. Ramirez and B. H. Cheng, ―Applying Adaptation

Design Patterns,‖ Prof. 6th Intl. Conf. on Autonomic

Computing (ICAC), pp. 69-70, Jun. 2009.

[14] G. Li, et al., ―Facilitating Dynamic Service Compositions by

Adaptable Service Connectors‖, International Journal of Web

Services Research, Vol. 3, No. 1, 2006, pp. 67-83.

[15] F. Irmert, T. Fischer, K. Meyer-Wegener, ―Runtime

adaptation in a service-oriented component model‖, Proc.

Intl. Workshop on Software Engineering for Adaptive and

Self-Managing Systems, May 2008, pp. 97-104.

[16] M. Papazoglou, P. Traverso, S. Dustdar, and F. Leymann,

―Service-Oriented Computing: State of the Art and Research

Challenges‖, Computer, vol. 40, pp. 39-45, 2007.

[17] E. Thomas. Service-Oriented Architecture. Prentice Hall

PTR, Upper Saddle River, 2005.

[18] E. Gat, Three-layer Architectures, ―Artificial Intelligence and

Mobile Robots‖, MIT/AAAI Press, 1997.

[19] M. Kim et al., ―Service Robot Software Development with

the COMET/UML Method‖, IEEE Robotics and Automation,

Vol. 16, No. 1, March 2009, pp. 34-45.

[20] S. Malek, N. Esfahani, D. Menascé, J. Sousa, and H. Gomaa,

―Self-Architecting Software Systems (SASSY) from QoS-

Annotated Activity Models‖, in Proc ICSE Workshop on

Principles of Engineering Service Oriented Systems (PESOS

2009), Vancouver, Canada, May 2009.

[21] N. Esfahani, S. Malek, J. P. Sousa, H. Gomaa, and D. A.

Menascé, ―A Modeling Language for Activity-Oriented

Composition of Service-Oriented Software Systems‖, Proc.

ACM/IEEE 12th International Conference on Model Driven

Engineering Languages and Systems (MODELS 09), Denver,

Colorado, Oct. 2009.

[22] D. A. Menascé, J. M. Ewing, H. Gomaa, S. Malek, and J. P.

Sousa, ―A Framework for Utility-Based Service Oriented

Design in SASSY‖, Proc. First Joint WOSP/SIPEW

International Conf. on Performance Engineering, Jan. 2010.

[23] G. Edwards, S. Malek, and N. Medvidovic, ―Scenario-Driven

Dynamic Analysis of Distributed Architecture‖, Proc. Intl.

Conf. on Fundamental Approaches to Software Engineering,

Braga, Portugal, March 2007.

[24] E. Dashofy, A. van der Hoek, and R.N. Taylor, ―An

Infrastructure for the Rapid Development of XML-based

Architecture Description Languages‖, Proc. 24th Intl.

Conference on Software Engineering, pp. 266 - 276, 2002.

[25] J. Magee, et al., ―Behaviour Analysis of Software

Architectures‖, Proceedings of the TC2 First Working IFIP

Conference on Software Architecture (WICSA1), pp. 35 - 50,

1999.

469

