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ABSTRACT 

This paper describes the concept of software adaptation patterns 

and how they can be used in software adaptation of service-

oriented architectures.  The patterns are described in terms of a 

three-layer architecture for self-management. A software 

adaptation pattern defines how a set of components that make up 

an architecture pattern dynamically cooperate to change the 

software configuration to a new configuration. In our approach, 

adaptation connectors are introduced to encapsulate adaptation 

state machine models so that the adaptation patterns can be more 

reusable. A change management model for dynamically evolving 

service-oriented applications is also described with a case study.   

Categories and Subject Descriptors 

D.2.2 [Software Engineering]: Design Tools and Techniques – 

State diagrams, D.2.11 [Software Engineering]: Software 

Architectures – Domain-specific Architectures, Patterns. 

 Keywords 

component, service, service-oriented architecture, dynamic 

adaptation, software adaptation patterns. 

1. INTRODUCTION 
Service-Oriented Architectures (SOA) are becoming increasingly 

widespread in a variety of computing domains such as enterprise 

and e-commerce systems, which continue to grow in size and 

complexity. These systems are expected to adapt not only to the 

fluctuating execution environments but also to changes in their 

operational requirements. 

This paper describes the concept of software adaptation patterns 

and how they can be used in service oriented architectures. 

Previous papers have described how software architectural 

patterns can be used to help in building software systems and 

product lines [1][7][8]. This paper describes how software 

adaptation patterns can be used to help with the adaptation of 

service-oriented software systems after original deployment. The 

adaptation patterns are part of the Self-Architecting Software 

Systems (SASSY) framework [20]. 

In this paper, we base our research on three areas as follows: a) 

research into software architectural and design patterns [2][3][7] 

applied in particular to service-oriented architectures [16][17], b) 

research into dynamic reconfiguration and change management 

[6][9], and c) research into self-adaptive, self-managed or self-

healing systems [4][10]. The research described in this paper 

builds on software reconfiguration patterns in our previous work 

[6] and advances these concepts by describing patterns to support 

dynamic adaptation in service-oriented applications. 

This paper first describes different kinds of software adaptation. It 

then describes software adaptation patterns for service oriented 

architectures, with a detailed example of a sequential coordination 

adaptation pattern. Adaptive change management is also 

described. 

2. RELATED WORK 
Dynamic software architectures and dynamic reconfiguration 

approaches have been applied to dynamically adapt software 

systems [4][10]. These approaches address incorporating 

reconfigurability into the architecture, design and implementation 

of software systems for the purpose of run-time change and 

evolution. In [6][11][12], dynamic reconfiguration is applied to 

changing the configuration of a system from one configuration to 

another in a software product line while the system is operational. 

Research into self-adaptive, self-managed or self-healing systems 

[4][10] includes various approaches for monitoring the 

environment and adapting a system’s behavior in order to support 

run-time adaptation.  

Kramer and Magee [9][10] describe how a component must 

transition to a quiescent state before it can be removed or replaced 

in a dynamic software configuration. Ramirez et al. [13] describe 

applying adaptation design patterns to the design of an adaptive 

web server. The patterns include structural design patterns and 

reconfiguration patterns for removing and replacing components. 

For service-oriented computing and service-oriented architectures, 

Li et al. [14] suggest the adaptable service connector model, so 

that services can be dynamically composed. Irmert et al. [15] 

provide a framework to adapt services at run-time without 

affecting application execution and service availability. 

In comparison with the previous approaches, this paper focuses on 

service coordination in service-oriented architectures. We develop 

software adaptation patterns for different kinds of service 

coordination, in order to adapt not only services but also 

coordinator components. 
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3. SOFTWARE ADAPTATION 
Software adaptation addresses software systems that need to 

change their behavior during execution. In self-managed and self-

healing systems, systems need to monitor the environment and 

adapt their behavior in response to changes in the environment 

[10].  Garlan and Schmerl [4] have proposed an adaptation 

framework for self-healing systems, which consists of monitoring, 

analysis/resolution, and adaptation. Kramer and Magee [9] have 

described how in an adaptive system, a component needs to 

transition from an active (operational state) to a quiescent (idle) 

state before it can be removed from a configuration. 

Adaptation can take many forms. It is possible to have a self-

managed system that adapts the algorithm it executes based on 

changes it detects in the external environment. If these algorithms 

are pre-defined, then the system is adaptive but the software 

structure and architecture is fixed. The situation is more complex 

if the adaptation necessitates changes to the software structure or 

architecture. In order to differentiate between these different types 

of adaptation, adaptations can be classified as follows within the 

context of distributed component-based software architectures: 

a) Behavioral adaptation. The system dynamically changes 

its behavior within its existing structure. There is no 

change to the system structure or architecture. 

b) Component adaptation. Dynamic adaptation involves 

replacing one component with another that has the same 

interface. The dynamic replacement of the old 

component(s) with a new component(s) has to be 

performed while the system is executing. 

c) Architectural adaptation.  The software architecture has 

to be modified as a result of the dynamic adaptation. 

Old component(s), which may not provide the same 

interface, must be dynamically replaced by new 

component(s) while the system is executing. Hence, the 

changes may impact the architectural configuration 

(e.g., architectural style) of the system. 

Model based adaptation can be used in each of the above forms of 

dynamic adaptation, although the adaptation challenge is likely to 

grow progressively from behavioral adaptation through 

architectural adaptation. 

3.1 Three-layer Architecture Model for 

Software Adaptation 
Our approach for software adaptation is compatible with the 

widely accepted three-layer reference architecture model for self-

management [10]. The architecture model consists of 1) Goal 

Management layer—planning for change—often human assisted, 

2) Change Management layer—execute the adaptation in response 

to changes in state (environment) reported from lower layer or in 

response to goal changes from above, and 3) Component Control 

layer—executing architecture that actually implements the run-

time adaptation.  

This reference architecture for self-management originally comes 

from research [18][19] on control architectures for robotic 

systems. The robot control architectures are composed of three 

layers, namely deliberate, sequencing, and reactive layers. The 

deliberate layer is to interface with a user and to execute a 

planning process. The sequencing layer is to execute the plan by 

managing the components in the layer below. The reactive layer is 

responsible for reactive control of robot behavior. As a result, the 

three layers of the architecture model for self-management, i.e., 

Goal Management, Change Management, and Component Control 

layers, are consistent with those of robot control architectures, i.e., 

deliberate, sequencing, and reactive layers, respectively. This 

three-layer model provides a good conceptual architecture that 

helps identify and organize the necessary features for dynamic 

software adaptation. 

4. OVERVIEW OF SASSY FRAMEWORK 
The software adaptation patterns described in this paper are 

developed as part of the Self-Architecting Software Systems 

(SASSY), which is a model-driven framework for run-time self-

architecting and rearchitecting of distributed service-oriented 

software systems [20][21]. SASSY provides a uniform approach 

to automated composition, adaptation, and evolution of software 

systems. SASSY provides mechanisms for self-architecting and 

rearchitecting that determine the best architecture for satisfying 

functional and Quality of Service (QoS) requirements. The quality 

of a given architecture is expressed by a utility function, which is 

provided by end-users and represents one or more desirable 

system objectives. 

Figure 1 illustrates, at a high level, how SASSY uses the three 

layer architecture model for self adaptation of SOA-based 

software. Specific details are provided in the sections that follow.  

A system service architecture, consisting of components, 

(associated with services) and connectors (associated with 

middleware facilities), is optimized with respect to QoS 

requirements through selection of the most suitable services. This 

architecture is determined with the help of QoS analytical models 

and optimization techniques aimed at finding near-optimal 

choices that maximize system utility [22]. 

SASSY’s monitoring support services (Monitoring Service and 

Gauge Service in Figure 1) generate triggers that cause self-

adaptation. Services are automatically replaced and the software 

architecture is automatically regenerated by the Goal Management 

layer when the system utility degrades beyond a certain threshold. 

SASSY’s adaptation support services (Change Management 

Service and Adaptation Service) are used to transition from one 

version of the architecture to a new one. When services fail or are 

unable to meet their QoS goals, the SASSY’s monitoring services 

trigger service replacement through a new round of service 

discovery, optimal service selection, and possible determination 

of alternative architectures. 
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Figure 1. High-level view of the SASSY framework 
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More information about SASSY is given in [20][21][22]. In the 

remainder of this paper, we describe the role of adaptation 

patterns in enabling adaptation of SOA software systems in 

SASSY.  

5. SOFTWARE COORDINATION  
In SOA applications, services are intended to be self-contained 

and loosely coupled, so that dependencies between services are 

kept to a minimum. Instead of one service depending on another, 

it is desirable to provide coordination services (coordinators) in 

situations where multiple services need to be accessed and access 

to them needs to be coordinated and/or sequenced. In SASSY, the 

software architecture ensures this loose coupling by separating the 

concerns of individual services from those of the coordinators, 

which sequence the access to the individual services. 

As there are many different types of service coordination, it is 

helpful to develop SOA coordination patterns to capture the 

different kinds of coordination. In particular, coordination can be 

categorized by the following two properties: 1) type of 

coordination and 2) degree of concurrency. By characterizing the 

behavioral and structural properties of these coordination patterns, 

it is possible to analyze and estimate the possible adaptation paths 

of these patterns. In this paper, we describe independent 

coordination patterns with sequential and/or concurrent 

coordination.  

With independent coordination, each coordinator instance 

operates independently of other coordinators in its interactions 

with services. E.g., an airline coordination service that contacts 

multiple airline services to offer travel alternatives to a customer. 

There are many instances of this coordinator, one for each 

customer. This is probably the most common form of coordinator 

in SOA.  

With sequential coordination, a coordinator interacts with multiple 

services sequentially in order to achieve the overall service 

objective. For example, a travel coordinator needs to first make an 

airline reservation and determine the airline travel dates before 

making a hotel reservation. 

With concurrent coordination, a coordinator interacts with 

multiple services concurrently in order to achieve the overall 

service objective, e.g., airline coordination service that contacts 

multiple airline services to offer travel alternative to a customer. 

With combined sequential and concurrent coordination, a 

coordinator does some sequential coordination and some 

concurrent coordination. For example, a travel coordinator needs 

to first make an airline reservation and determine the airline travel 

dates before making hotel and car rental reservations, which can 

be made in parallel. 

A given coordinator can be characterized by these two properties, 

for example an independent coordinator that does concurrent 

coordination. It is possible for a coordinator to be state dependent 

if the coordination needs to follow a specified sequence. 

6. SOFTWARE ADAPTATION PATTERNS 
A software architecture is composed of distributed software 

architectural patterns, such as client/server, master/slave, and 

distributed control patterns, which describe the software 

components that constitute the pattern and their interconnections. 

For each of these architectural patterns, there is a corresponding 

software adaptation pattern, which models how the software 

components and interconnections can be changed under 

predefined circumstances, such as replacing one client with 

another in a client/server pattern, inserting a control component 

between two other control components in a distributed control 

pattern, etc. 

A software adaptation pattern defines how a set of components 

that make up an architecture or design pattern dynamically 

cooperate to change the software configuration to a new 

configuration given a set of adaptation commands. In terms of the 

three-layer reference architecture (Figure 1) described earlier, 

adaptation patterns correspond to the bottom layer of a self-

managed system, i.e., the component control layer, and they 

realize dynamic adaptation by actually adding or deleting 

components (and appropriate connectors if necessary) according 

to adaptation commands sent from the middle layer, i.e., the 

change management layer. On the other hand, the goal 

management layer is in charge of producing change management 

plans (to satisfy QoS goals) that are executed at the change 

management layer. Thus, our focus in this paper is mainly on the 

component control layer for dynamic software adaptation. 

 A software adaptation pattern requires state- and scenario-based 

reconfiguration behavior models to provide for a systematic 

design approach. The adaptation patterns are described by 

adaptation interaction models (using communication or sequence 

diagrams) and adaptation state machine models [6][8]. We have 

previously developed several adaptation patterns, including the 

Master-Slave Adaptation Pattern, Centralized Control Adaptation 

Pattern, and Decentralized Control Adaptation Pattern [6]. 

6.1 Software Adaptation State Machines 
An adaptation state machine defines the sequence of states a 

component goes through from a normal operational state to a 

quiescent state. A component is in the Active state when it is 

engaged in its normal application computations. A component is 

in the Passive state when it is not currently engaged in a 

transaction it initiated, and will not initiate new transactions. A 

component transitions to the Quiescent state when it is no longer 

operational and its neighboring components no longer 

communicate with it. Once quiescent, the component is idle and 

can be removed from the configuration, so that it can be replaced 

with a different version of the component. Figure 2 shows the 

basic adaptation state machine model for a component as it 

transitions from Active state to Quiescent state. The adaptation 

framework sends a passive command to the component. If the 

component is idle, it transitions directly to the quiescent state. 

However, if the component is busy participating in a transaction, 

it transitions to the Passive state. When the transaction is 

completed, it then transitions to the Quiescent state. 

In previous research [6], the state machine for each component 

was modeled using two orthogonal state machines, an operational 

state machine (modeling normal component operation) and an 

adaptation (also referred to as reconfiguration) state machine.  

Generalized Adaptation

State Machine

PassiveActive Quiescent

Passivate
[Processing
Transaction]

Transaction
Ended

Passivate [Idle]

Reactivate

Figure 2. Basic adaptation state machine 
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Figure 3. Independent coordination communication diagram 

However, for more complicated patterns, there is often some 

interaction between the two state machines. In this paper, we 

investigate separating the operational state machine from the 

adaptation state machine in service-oriented systems. The 

objective is to encapsulate the adaptation state machine in the 

service connector (as discussed in the next section), such that the 

adaptation patterns, as well as the corresponding code that realizes 

each pattern, can be more reusable. 

7. SOA ADAPTATION PATTERNS  
As described in Section 5, a coordination pattern can be 

characterized by the type of coordination and the degree of 

concurrency. This paper considers independent coordination, 

which is a common form of coordination in SOA. In the 

independent coordination pattern, a coordinator orchestrates 

multiple services independently of other coordinators as shown in 

Figure 3. We make the following assumptions: 

 A coordinator component is instantiated for each client. 

 A client interacts with a service using synchronous 

communication; thus, it sends a new request only when 

it receives a response to its previous request. 

 Services are stateless and independent of each other. 

In the following sections, we first describe SASSY’s Adaptation 

connectors, followed by the adaptation patterns for three 

coordination patterns: 1) sequential coordination, 2) concurrent 

coordination, and 3) combined concurrent/sequential coordination 

patterns. 

7.1 SASSY Adaptation Connectors 
The SASSY framework provides two different types of adaptation 

connectors, coordinator connector and service connector, as 

shown in Figure 3. A service adaptation connector behaves as a 

proxy for a service, such that its clients can interact with the 

connector as if it was the service. The goal of an adaptation 

connector is to separate the concerns of an individual service from 

dynamic adaptation, i.e., the adaptation connector implements the 

adaptation mechanism for its corresponding service, including the 

interaction with the change management service (see next section) 

and the management of the operational states of the service. The 

adaptation state machine for a given adaptation pattern is 

encapsulated in the corresponding adaptation connector. In the 

following sections, the adaptation state machines for three 

software adaptation patterns are described. 

7.2 Sequential Coordination Adaptation 

Pattern 
In a sequential coordination adaptation pattern for service-

oriented architectures, multiple services are sequentially invoked 

by a coordinator, e.g., airline reservation followed by hotel 

reservation. Once the coordinator receives a client request for an 

application service, it sends a service request to the first service to 

be invoked. The coordinator sends another service request to the 

second service after receiving a response from the first service. 

The coordinator sends a response to the client after a response 

from the last service has been received. The communication 

diagram depicted in Figure 3 shows a general case where a 

coordinator interacts with N services. 

Based on the assumptions described earlier, the coordinator 

component can only be removed or replaced after it has received 

all the responses from the services sequentially invoked and sent 

its response to the client. On the other hand, a service can be 

removed or replaced after it completes the current service 

execution in the case of a sequential service, or after completing 

the current set of service executions in the case of a concurrent 

service. 

The coordinator connector executes its own operating state 

machine shown in Figure 4. As mentioned in Section 7.1, the 

adaptation state machine for the coordinator is encapsulated in the 

coordinator’s connector. The connector implements the dynamic 

adaptation of the coordinator when it receives the Passivate 

adaptation command from the change management service. In 

Figure 4, when the connector is Active (idle and not executing a 

client command) and receives a Passivate command, it transitions 

to the ―Quiescent‖ state and sends a quiescent notification to the 

change management service. When the connector is Active and 

receives a request from the client, it forwards the request to the 

coordinator and transitions to the ―Waiting For Service Response‖ 

state, which means that the coordinator is processing a request. If 

the connector receives a Passivate command, it transitions to the 

―Passivating‖ state in which the coordinator is still interacting 

with the service to accomplish its transaction. 

When the coordinator receives a response from the last service, it 

sends the client response to the connector. The connector then 

transitions to the ―Quiescent‖ state; the actions are to forward the 

response to the client, and to send a quiescent notification to the 

change management service. 
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Figure 4. Coordinator connector state machine 
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Figure 5. Service connector state machine for a sequential service 
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Figure 6. Service connector state machine for a concurrent service

While in the quiescent state, the connector could receive a new 

request from the client, which it puts into a request buffer. When 

the connector receives a Reactivate command, it transitions to 

either the ―Waiting For Client Request‖ or the ―Waiting For 

Service Response‖ state according whether or not there is a 

client request in the request buffer.Figure 5 depicts the operating 

state machine executed by the service connector in the case of a 

sequential service that has a single thread processing requests. 

As a service may have multiple clients besides the coordinator, 

the service request queue has an important role to buffer 

requests in a sequence. If a service request arrives in the 

―Waiting For Service Request‖ state, it is immediately 

forwarded to the service. In the ―Processing‖ and ―Passive‖ 

states, the connector queues service requests on the request 

queue. In other words, clients can send requests to the service 

regardless of its state, because the connector will queue service 

requests if necessary. If the change management service sends a 

Passivate command to the connector, the connector will 

transition to Quiescent state and continue to queue up any client 

requests that arrive. In Quiescent state, the service can be 

replaced. When the newly replaced service becomes active, the 

connector resumes sending client requests to the service, as 

depicted on the state machine shown in Figure 5. 

In the case of a concurrent service, the service connector 

executes the operating state machine shown in Figure 6. Since 

services can be removed or replaced after completing the current 

set of service executions, the state machine manages the number 

of requests currently executed by the service by the variable t. 
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Although a request is immediately forwarded to the service in 

Active or Processing state, the connector still necessitates the 

request queue because it cannot forward a new request to the 

service which is passive or quiescent. 

7.3 Concurrent Coordination Adaptation 

Pattern 
In the concurrent coordination adaptation pattern, multiple 

services are invoked by a coordinator concurrently. Once the 

coordinator receives a client request, it sends service requests 

concurrently to all the services to be invoked. The coordinator 

sends a response to the client after the responses from all the 

services have been received. Since this pattern also involves 

independent coordination, the structural view of this pattern is 

the same as Figure 3. 

In this adaptation pattern, the operating state machine for the 

coordinator connector is exactly the same as shown in Figure 4, 

because the coordinator connector determines when the 

coordinator is in Quiescent state by monitoring only the message 

―S7: Client Response‖ from the coordinator. 

The operating state machine for the service connector in the case 

of a sequential service and a concurrent service are also the 

same as shown in Figure 5 and Figure 6, respectively. As in the 

case of the coordinator connector, the service connector 

determines when its corresponding service is in Quiescent state 

by monitoring only the message ―Sx5: Service Response‖ sent 

from the service. 

7.4 Combined Coordination Adaptation 

Pattern 
For the combined sequential and concurrent coordination pattern 

described in Section 5, the operating state machines for the 

coordinator and service connecters are the same as those in the 

sequential and concurrent coordination patterns, for the same 

reasons described in Section 7.3. Therefore, the adaptation 

connectors can be reused in the independent coordination 

pattern, regardless of the coordinator’s degree of concurrency 

(sequential, concurrent, or combined sequential/concurrent). 

8. ADAPTIVE CHANGE MANAGEMENT 
Adaptive change management is provided by a Change 

Management Model, which is used to establish a region of 

quiescence [9] so that dynamic adaptation can take place. For 

each adaptation pattern, the change management model 

describes a process for controlling and sequencing the steps in 

which the configuration of components in the pattern is changed 

from the old configuration to the new configuration. Thus, as 

stated before, the middle layer of the three-layer model, i.e., 

change management layer, is responsible in our approach for 

implementing the Change Management Model, and controlling 

the adaptation process through adaptation commands. The 

adaptation commands describe reconfiguration actions 

associated with user-required changes, which are predefined as 

reconfiguration scenarios. The adaptation commands for SOA 

applications are passivate, unlink, remove, create, link, activate, 

and reactivate, as described in more detail below with the aid of 

an example. Note that remove and create commands are not 

required for the adaptation of services provided by third parties. 

In the SASSY framework (Section 4), services are discovered by 

the Goal Management layer. 

8.1 Example of Dynamic Software 

Adaptation 
As an example of dynamic software adaptation, consider an 

emergency response system shown in Figure 7. 

 

a) Initial software configuration 

 

b) Revised software configuration 

Figure 7. Dynamic software adaptation in emergency response system 
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The initial software configuration is shown in Figure 7a before 

dynamic software adaptation, while the revised configuration after 

dynamic software adaptation is shown in Figure 7b.The 

emergency system uses the sequential coordination pattern for 

coordination of the three services, Building Locator, Occupancy 

Awareness, and Fire Station. In the example, Occupancy 

Awareness is to be replaced by a more reliable service 

composition as depicted in Figure 7b. 

The adaptation is triggered by the availability of Occupancy 

Awareness operating below 99.999%, which is specified as a QoS 

requirement. The Goal Management layer determines a possible 

adaptation, which involves two potential Occupancy Awareness 

services that are 99.0% available and could be mediated by a fault 

tolerant connector (Figure 7b). The Change Management layer 

then decides that the change involves adding a second Occupancy 

Awareness service and the Fault Tolerant connector, which 

invokes the two Occupancy Awareness services but forwards only 

the response of the primary service back to the requester.  

The Change Management (CM) layer controls and coordinates the 

dynamic adaptation, and communicates this to the service 

connectors in the software configuration by sending adaptation 

commands as follows: 

1. CM sends a passivate command to Service Connector 2 

for Occupancy Awareness, so that the connector 

transitions to the quiescent state. 

2. Upon transitioning to quiescent state, Service Connector 

2 sends the quiescent notification to CM. CM then sends 

an unlink command to Service Connector 2. As a result, 

the interconnection between Service Connector 2 and 

Occupancy Awareness is unlinked. 

3. CM sends Link commands to connect Service Connector 

2 with a new service composition, which consists of the 

Fault Tolerant connector, Occupancy Awareness 1, and 

Occupancy Awareness 2 (as shown in Figure 7b). In this 

case, the Fault Tolerant connector has the responsibility 

to connect the two service instances. Service Connector 

2 and the Fault Tolerant connector are linked as the 

Fault Tolerant connector provides a proxy interface for 

the Occupancy Awareness service. 

4. CM sends a reactivate command to Service Connector 2, 

which responds with a Gone Active Notification and 

resumes forwarding service requests. 

9. VALIDATION OF SOFTWARE 

ADAPTATION PATTERNS 
The emergency response system example described in Section 8 

was modeled using XTEAM [23], which is an architectural 

modeling and analysis environment. XTEAM provides a structural 

Architectural Description Language (ADL), xADL [24], with a 

behavioral ADL, Finite State Processes (FSP) [25], to generate 

executable system simulations. 

In the emergency response system example, we used XTEAM to 

model the system’s structure shown in Figure 7 in xADL, and the 

behavior of Coordinator and Service Connectors by translating 

their state machines described in Figures 4-6 into equivalent FSP 

models. In the simulation, we modeled CM as a component in 

xADL, which sends the adaptation commands to the adaptation 

connectors by executing the change management scenario 

described in Section 8.  Since XTEAM does not currently support 

run-time dynamic adaptation of the software architecture and 

executable simulation, we simulated the example using behavioral 

adaptation (Section 3). We therefore developed, in advance, the 

Fault Tolerant connector and the two Occupancy Awareness 

services connected with Service Connector 2, so that XTEAM 

simulates execution of the unlink and link commands for the case 

of the Occupancy Awareness service replacement. 

The system’s simulation in XTEAM, generated from the xADL 

and FSP models, was executed with the adaptation state machines 

described in Section 0 and the dynamic software adaptation 

scenario described in Section 8. This scenario involves the service 

connector state machine transitioning from Active to Passive to 

Quiescent states, replacing one service with another, and then 

reactivating the service connector. A second scenario was 

executed in which the coordinator was replaced. This scenario 

involves the coordinator connector state machine transitioning 

from Active to Passive to Quiescent states, replacing the 

coordinator, and then reactivating the coordinator connector. 

The validation consisted of 1) executing the change management 

scenario, 2) performing the software adaptation from one 

configuration to another, and 3) resuming the application after the 

adaptation. For both the above two scenarios, the XTEAM 

simulation recorded the trace of FSP state transitions for each 

xADL component in execution logs. Analysis of these logs 

showed that the above three validation steps were carried out as 

planned. Thus the validation demonstrates that the software 

adaptation patterns and state machines described in this paper 

perform the desired software adaptation while ensuring that the 

service-oriented application does not enter an inconsistent state. 

10. CONCLUSIONS 
This paper has described how software adaptation patterns can be 

used in service oriented architectures to dynamically adapt 

coordinator components and services at run-time. We have 

developed software adaptation patterns for independent 

coordinators, which can be state dependent, and either sequential 

or concurrent services. An independent coordinator, which is 

instantiated for each client, can be state dependent if the client has 

multiple interactions with one or more services. Future research 

will investigate software adaptation patterns with distributed and 

hierarchical coordination.  

In this paper, we assumed services that are stateless. Future 

research will investigate services that are stateful and participate in 

a transaction, such as in the two phase commit protocol. The 

current approach supports long-living transactions, such as check 

flight availability before booking, in which the long-living 

transaction is actually executed as two separate independent 

stateless transactions.  

The adaptation patterns are part of the self-architecting SASSY 

framework. The patterns are described in terms of a three-layer 

reference architecture for self-management. The adaptation 

patterns execute at the lowest level, the component control layer. 

The Change Management Service executes at the second layer, 

sending change management commands to initiate the coordinator 

and/or service adaptation.  

Future work will consist of investigating additional adaptation 

patterns for service-oriented architectures and incorporating them 

into the SASSY framework.  
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