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Abstract— Mobile software systems are characterized by their 

highly dynamic and unpredictable execution context. Such 

systems are permeating a number of domains where the 

systems operate in constantly changing conditions. We refer to 

such systems as Situated Software Systems. These systems are 

often deployed in mission-critical settings with stringent 

reliability requirements. Existing approaches to performing 

reliability analysis are insufficient in meeting the demands of 

situated software systems. We propose an approach aimed at 

such systems and present it in the form of a framework and 

tool suite known as REsilient SItuated SofTware system 

(RESIST). The framework utilizes information from the 

system’s context to produce reliability predictions, and places 

the system in the optimally reliable configuration with respect 

to other competing quality attributes. 
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I.  INTRODUCTION 

Software systems are increasingly deployed in mission 
critical domains, including emergency response, industrial 
automation, navigation, and defense. The majority of such 
systems are mobile, embedded, and pervasive. They are 
characterized by their highly dynamic configuration, 
unknown operational profile, and fluctuating execution 
context. We refer to this class of software systems as situated 
software systems, since the software in this setting is 
expected to operate under constantly changing situations and 
conditions. Given the mission-critical nature of the domains 
in which situated software systems are deployed, their ability 
to meet the Service Level Agreement (SLA), especially 
stringent reliability requirements, is a significant concern. 

Determining an architectural configuration for a situated 
software system that meets its SLA is a challenging task. For 
example, in a situation where services are provisioned by a 
mobile platform, deciding the optimum architecture in terms 
of its software components and their composition requires 
engineers to perform trade-off analysis between competing 
Quality of Service (QoS) attributes such as efficiency and 
reliability. It is clear that the overall reliability of such 
systems depends on problems both internal (e.g., software 
bugs) and external (e.g., network disconnection, hardware 
failure) to the software. The key underlying insight in the 
proposed research is that some internal software problems 
may manifest themselves only under certain dynamic 

characteristics external to the software (e.g., physical 
location), which is traditionally referred to as context [1].  

Given that the execution context of situated systems 
cannot be accurately predicted at the time of design and 
development, the optimal configuration for such systems 
cannot be determined prior to its deployment. Moreover, due 
to variability in the context, no particular configuration of a 
situated system is optimal for its entire operational lifetime, 
and hence run-time reconfiguration of the system may be 
necessary. In situated software systems, the optimal 
configuration is one that first and foremost provides the 
required level of reliability as per the SLA, while taking into 
consideration other quality concerns (e.g., efficiency). 

In this paper, we present an approach called REsilient 
SItuated SofTware systems (RESIST) that consists of a 
framework and automated tool-suite and offers reliability-
aware run-time adaptation of situated software systems to 
address the aforementioned challenges. Our approach is 
architecture-centric and furnishes reliability predictions at 
the level of the system’s architectural components. RESIST 
utilizes information from the system’s operational context to 
predict the reliability of the system in its near future 
operation. 

The reliability predictions are then used proactively to 
find the most suitable configuration, which is effected 
through run-time adaptation provided by the infrastructure, 
thus enabling the system’s SLA to be maintained. The most 
suitable configuration is one that provides the appropriate 
level of resilience to failure by taking into consideration 
other quality constraints (e.g., efficiency, security). Unlike 
the traditional reactive models of adaptation, the proposed 
adaptation will occur proactively, and before the system’s 
reliability degrades. To make RESIST readily adoptable and 
widely applicable in a variety of existing situated software 
systems, we have developed the approach on top of Service-
Oriented Architecture (SOA) technology standards [13]. This 
allows RESIST’s SOA-compliant infrastructure to be 
deployed in a variety of domains to provide the most 
dependable services possible in the face of unanticipated 
changes, such as network disruptions, and platform faults, by 
seamlessly morphing the running software. 

The remainder of the paper is organized as follows. 
Section II describes background and related work. Section III 
illustrates impact of context on the architecture of a system. 
Section IV describes the RESIST framework and Section V 



describes the infrastructure and tool support and we conclude 
with an outline of our future work. 

II. BACKGROUND AND RELATED WORK 

Software reliability is defined as the probability that a 
system performs its intended functionality correctly under 
specified conditions [2]. A system’s software architecture 
provides an appropriate level of abstraction to reason about 
its quality attributes, including reliability. While a system’s 
architectural models can facilitate this process, performing 
architecture-aware reliability analysis enables architecture-
based adaptation techniques to be utilized in order to 
improve or maintain the system’s reliability. An appropriate 
approach must be able to offer fine-grained analysis based on 
reliability of constituent elements of the system resulting in 
the ability to analyze the reliability of alternative 
configurations. Furthermore, such an approach must be able 
to offer predictive analysis by accommodating uncertainties 
associated with the system’s operation and context. 

Most existing techniques aimed at architecture-based 
reliability analysis rely on assumptions that make them 
unsuitable for situated software systems [6][7][8][9]. A 
majority of the approaches are geared towards static design-
time assessment and assume that the system’s operational 
profile is known in advance and does not change at runtime. 
Further, many of the approaches focus on system-level 
analysis and assume that component reliability values are 
known apriori—an assumption that is particularly unsuitable 
for situated software systems. Finally, the approaches do not 
consider the impact of contextual change on the system’s 
reliability. 

Self-adaptive software systems respond to changes in the 
operational environment and autonomously reconfigure 
themselves in order to achieve the overall goals of the system 
[3]. Given that dynamism and unpredictability associated 
with situated software systems and their mission-critical 
nature, the system is required to adapt in such a manner that 
its effectiveness is maintained throughout the mission. 

Related to our work are the general purpose architecture-
based adaptation frameworks [3][4][5]. These frameworks 
are primarily reactive in their decision making while the 
mission critical nature of situated software systems requires 
that the system adapts in anticipation to degradation in its 
QoS (e.g., reliability) beyond the allowable threshold. 
Nevertheless, these frameworks can form the basis for 
systems that adapt proactively. 

III. IMPACT OF CONTEXT ON ARCHITECTURE 

Any type of information that characterizes the runtime 
conditions of the system, and alters its behavior can be 
considered its context [11]. A system’s context may consist 
of several different aspects of its changing execution 
environment that could potentially impact the behavior and 
properties of a system. Among them three main categories of 
context can be identified [11][12]; 

• Computing Environment, such as the available 
resources, including CPU, network bandwidth, battery 
power. 

• User Environment, such as the user’s location, social 
situation, and an ongoing activity. 

• Physical Environment, such as near-by objects, the 
amount of light, and temperature. 
A context-aware system uses knowledge about its context 

to provide relevant information and/or services to the user 
[11]. While in some systems contextual information is 
directly used to provide services to the user, in some others 
contextual information is used to optimize the manner in 
which services are provided to the user. For example, a GPS 
enabled mobile phone which displays a map based on the 
user’s location considers the location as an input to the 
service that is provided. In contrast, a mobile robot engaged 
in firefighting may need to reconfigure itself depending on 
its contextual characteristics so that its dependability is 
optimal with respect to other quality attributes such as 
resource usage. As described in the next section, RESIST is 
aimed at the second class of systems. Specifically, RESIST 
uses the system’s context to perform architectural 
reconfiguration of the system so that it remains resilient in 
the face of degrading reliability. 

Changes to the operational context of a system impact its 
runtime behavior which in turn could potentially impact the 
system’s quality attributes such as reliability. In architecture-
based adaptation the system’s software architecture forms 
the basis for adaptation reasoning. Consequently, we argue 
that it is important to be able to model the effect of changes 
in the context on a system’s architecture as a first class 
entity. In our work, we adopt a broad interpretation of 
system’s architecture, which simply captures the knowledge 
about the system. This knowledge includes many different 
aspects of the system, including the principle design 
decisions about the system, its structure and behavioral 
models, as well as behavioral properties of the system 
captured in the form of an operational profile model. 

To exemplify the effect the context has on a system’s 
architecture, below we present how the mobile nature of a 
robotic system introduces contextual changes that can impact 
its operational profile, and in-turn its reliability. Figure 1(a) 
shows the architectural models of the mobile robot. It 
receives a command from an external system such as a PDA, 
and returns the result of executing the command. Upon 
receiving a command, it uses its Sensors to gather data about 
its environment, such as near-by obstacles and proximity to 
heat, and determines a plan and executes it using its 
Navigator and Actuator components, respectively. Figure 
1(b) shows the robot’s Controller component’s behavioral 
model in the form of a UML state chart. It includes 
behavioral states idle, estimating, planning and moving, 
during which the Controller invokes interactions with the 
other components in the system (i.e., Sensors, Actuator, 
Navigator, etc.). The failed state denotes a common failure 
state of the component. Transitions O1 to O6 denote 
behavioral transitions resulting from input events such as 
interface calls on the component. Transitions F1 to F3 denote 
a failure that may arise under some circumstances. Such 
failures are caused by faults in the software that could lead to 
a failure. Transition S denotes eventual recovery of the 



component as a result of automatic or manual re-
initialization of the component. 

This behavioral model depicts both the robot’s internal 
behavior as well as interactions with the external 
environment. For example, O1 corresponds to an input task 
from the user, and O5 corresponds to bump events triggered 
from the physical environment as a result of colliding with, 
or being within close proximity of an obstacle. Changes in 
the contextual environment may impact the frequency of 
these input events, which in turn alters the frequency of these 
two state transitions O1 and O5. The resulting changes in the 
execution frequency of the states in turn change the 
frequency of failures as well. For example, if the estimating 
state happens to be a state from which failures happen 
frequently, situations in which robot navigates through a 
dense terrain can increase bump events, which consequently 
increases the frequency of transition to the estimating state, 
and thus the probability of component failure. Thus in this 
example, the contextual changes resulting from the robot’s 
mobility, in turn impacts the component’s reliability. 

The impact of the system’s context is not limited to 
internal changes in the component behavior, as they may 
also change the manner in which components interact, and 
thus influence the system’s reliability. For example, the 
Controller interacts with the Sensors in order to perform 
estimations prior to planning its navigation route. However, 

if the number of bump events increases, the Controller 
interacts with the Sensors with a higher frequency in order to 
perform re-estimations. Thus, the impact of the Sensor 
components’ reliability on system’s reliability depends on 
how frequently the Controller needs to interact with the 
Sensors, which is in turn determined by location dependent 
contextual information such as the complexity of the terrain 
(i.e. the probability of bumps). 

Therefore the changes in context and its effect on the 
system’s architecture can be modeled as follows: 

• A set of contextual parameters�� � ���� � � ��	, which 
includes any information about a system’s context that 
impacts the system 

• A set of architectural parameters �
 � �
�� � � 
�	 , 
which includes architectural properties that change as a 
result of the system’s context 

• A set of interactions � � ���� � � �
	 between contextual 
and architectural parameters where in each interaction, 
one or more contextual parameters cause a change in an 
architectural parameter 

• A set of functions that captures the effect of the above 
interactions on architectural parameters. �� � � , these 
functions are of the form; 

 
            ��� ���� � 
                                (1) 
 
where ���� denotes the power set of contextual parameters. 
In the case of the robotic system above, the probability of the 
robot encountering an obstacle on its path (a contextual 
parameter which changes as a result of its mobility), has an 
effect on two architectural parameters: the transition 
probability from moving to estimating state in the Controller, 
and the probability that the Controller interacts with the 
Sensor components. In this example, we have described two 
points of interaction between the contextual parameter and 
architectural parameters, but in any sizable system one could 
expect multiple points of interaction, which further highlight 
the importance of properly modeling and incorporating 
context in engineering mobile systems.  

In the next section, we present an overview of the 
RESIST framework, and how the context information is used 
in predicting system’s reliability and optimizing system’s 
architecture. 

IV. OVERVIEW OF THE RESIST FRAMEWORK 

RESIST consists of a comprehensive and integrated 
approach to monitoring, assessing, and adapting of situated 
software systems. An overview of RESIST framework is 
depicted in Figure 2. The process is organized as a feedback-
control loop that continuously monitors, analyzes, and adapts 
the system at run-time. RESIST consists of three conceptual 
software components, implemented as meta-level 
components.  

At design-time and before the system’s implementation is 
complete, an initial set of architecture-based reliability 
models are developed which are later evolved during 
implementation. At runtime these models are used to assess a 
variety of configuration choices. Furthermore, they serve as 
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Figure 1.   Robot's architecture: (a) robot’s structural model, and 

(b) the behavioral model of the robot’s Controller 



the basis for building predictive 
models to assess future reliability of 
the system. Unlike the traditional 
architectural models, they embody 
contextual properties necessary for 
reliability analysis of situated 
systems. As described below, these 
models are expected to be updated 
and refined at runtime. 

Architecture-based reliability 
models along with contextual and 
monitoring information obtained 
from the system are used by the 
Component-Level Reliability 
Analyzer to predict the reliability of 
system’s components in their near 
future operation. These fine-grained 
reliability estimates are used by the 
Configuration Reliability Analyzer 
to determine the reliability of 
alternative configurations for the 
system. The Configuration Selector 
is in turn used to select a suitable 
configuration for the near future 
operation of the system.  The 
configuration selector may use other 
quality attributes, such as 
performance, in the selection process. The process for 
obtaining and estimating these properties is beyond the scope 
of this paper, which is focused on reliability concerns.  

Once a new configuration is selected, RESIST uses its 
context-aware middleware infrastructure to adapt the system 
(details are described in Section V). This middleware adapts 
the system at runtime to reflect changes in the configuration. 
The middleware provides support for execution, monitoring, 
and adaptation of a software system in terms of its 
architectural constructs (e.g., components, connectors, and 
configuration). At runtime, the middleware monitors the 
software system for information that is used to refine the 
reliability predictions. This information is obtained from 
multiple sources, such as monitoring internal (e.g., frequency 
of failures, exceptions, and service requests) and external 
(e.g., network fluctuations, battery charge) software 
properties, changes in the structure of the software (e.g., 
disconnection of components due to network drop outs, off-
loading of components due to drained battery), and 
contextual properties (e.g., physical location). Since the 
monitored data represents the most recent operational, 
structural, and contextual profile of the system’s execution, it 
can be used to assess the system reliability more accurately. 
Note that unlike previous approaches [14][15] we do not rely 
solely on the monitoring data. Instead, we incorporate 
architectural knowledge, monitoring data, and contextual 
changes at runtime in a complementary fashion to produce 
more accurate results. 

A. Reliability Analysis 

As shown in Figure 2, RESIST performs the reliability 
analysis at two levels: at component level, and at 

configuration level. At both levels, architecture-based 
reliability techniques are used in conjunction with 
monitoring information obtained from the system and its 
context. Since context impacts both the internal behavior of 
components and the interactions among them, the context 
information is incorporated into the reliability analysis at 
both component and configuration level. 

In order to perform reliability analysis and prediction, we 
need to consider the Software Operational Profile (SOP) of 
the system [2]. SOP represents the set of executions that take 
place in a software program along with the probabilities with 
which they will occur in a given environment. As described 
in Section III, these probabilities may be affected by changes 
in the system’s context. In this case, we model these 
probabilities as relevant architectural parameters. 

For the purpose of modeling the SOP, we use existing 
techniques based on Discrete Time Markov Chains (DTMC) 
at both component and configuration levels. A DTMC is 
defined as a stochastic process with a set of states � �
���� ��� � � ��	 and a transition matrix�
 � ����	, where ���  is 

the probability of transitioning from state �� to state���. Once 

the operational profile of the system in the form of a DTMC 
has been estimated, the context information is used to update 
the transition probabilities in the DTMC, so that it reflects 
the future operational profile. 

Our reliability models used for component and 
configuration reliability prediction rely on Hidden Markov 
Models (HMMs) [23] to estimate the transition probabilities 
of the DTMC (i.e., the matrix ��  mentioned above). As 
confirmed by our previous results [22], HMMs can be used 
to learn from runtime data and to obtain transition 
probabilities. 

 

Figure 2.    RESIST Framework and its Context-Aware SOA Infrastructure Support 



In the case of component reliability, the states are 
identified using the component’s behavioral model, such as 
the state chart diagram depicted in Figure 1(b), while runtime 
data obtained through monitoring the system becomes 
training data for the HMM. We use the Baum-Welch 
algorithm [23] to train and solve the HMM. The resulting 
transition matrix for the component is updated based on the 
contextual parameters using functions in the form of 
equation (1) that capture the contextual impact on 
architectural parameters. The updated transition matrix 
represents the new operational profile for the component 
based on the context in which the system is expected to 
operate in the near future. The reliability prediction is 
computed by solving for the steady state probability 
(obtained from standard numerical methods [24]) of not 
being in the failed state (recall Figure 1(b)). 

Once the component level reliabilities are computed, we 
use them to arrive at configuration level reliability 
predictions using an existing technique [10], where the 
system reliability is computed in terms of its component 
reliabilities. Here, the components in the system’s structural 
model such as the one depicted in Figure 1(a) is used to 
derive the states for the Markov Chain. The transition 
probabilities are derived in a manner similar to the 
component-level reliability, except that now the monitoring 
data used consists of interactions between components. 
Similar to component reliability prediction, transition 
probabilities at configuration level consist of architectural 
parameters affected by context. Hence, functions of the form 
of equation (1) are used to update relevant transition 
probabilities in order to capture the effect of the context in 
the near future operation of the system. Solving the model as 
per [10] using updated transition probabilities and 
component reliabilities yields the prediction for 
configuration reliability. 

B. Architectural Optimization 

The reliability estimation approach presented earlier can 
be used to determine the most reliable configuration for a 
situated software system. The optimal configuration in 
RESIST is defined as one that satisfies the system’s 
reliability requirement, while improving other quality 
attributes of concern (e.g. efficiency). Consequently, the 
configuration selection problem becomes one of an 
optimization problem. Specifically, RESIST’s objective is to 
find an architectural configuration which satisfies quality 
requirements defined in the SLA.             

RESIST provides the capability of specifying preferences 
for other (potentially conflicting) quality attributes using 
utility functions. The user indicates these preferences so that 
they are consistent with the QoS requirements specified in 
the SLA. In turn, these utility functions are used by the 
Configuration Selector to perform trade-off analysis between 
conflicting quality concerns when selecting the optimally 
reliable configuration. When searching for alternative 
configurations, RESIST considers options such as changing 
the software architecture (e.g. replication of software 
components), and changing the deployment (e.g., component 
to process allocation).   

V. INFRASTRUCTURE SUPPORT 

Our approach for dynamic monitoring and adaptation 
builds on our previous research on adaptive software 
architectures [16][17], context-aware middleware [18][19], 
and dynamic SOA systems [17][20]. The approach is 
consistent with the widely accepted three layer model of self-
management [3]: (1) Goal Management Layer—plans for 
change; (2) Change Management Layer—coordinates the 
change; and (3) Component Control Layer—executes the 
change. Figure 2 depicts RESIST’s infrastructure support. 
Consistent with our objective of complying with the SOA 
principles, we expose RESIST’s monitoring and adaptation 
facilities as discoverable services. Details are described 
below. 

The pink ovals in Figure 2 represent the underlying 
facilities that will be deployed on each RESIST platform. 
Context, Resource, and Software Probes monitor 
environmental, system, and software parameters, 
respectively. For example, a Context Probe may correspond 
to readings provided from a physical sensor, a Resource 
Probe may correspond to an instrumentation of OS for 
collecting CPU utilization metrics, and a Software Probe 
may provide statistics on the invocation frequency of a 
service. Since Context and Resource Probes do not 
necessarily depend on the SOA technologies [13], they are 
placed outside of the SOA Technology Stack. Adaptation 
Engine provides a reflective capability that can be leveraged 
to adapt the services hosted on a given RESIST platform, 
such as binding a client to a new provider, changing a service 
provider’s operations, instantiating new services, and so on. 
Both Software Probes and Adaptation Engine depend on 
other SOA technologies, and are placed in the SOA 
Technology Stack. 

As shown in Figure 2, Monitoring Service provides a set 
of operations that allow other services to discover and obtain 
monitoring data from any platform. Clearly before a service 
can access this data, the appropriate authentication is 
performed, the details of which are not discussed for brevity. 
Similarly, Adaptation Service provides a set of operations 
that expose the adaptation capabilities supported by the 
underlying Adaptation Engine to the rest of the system. 

The monitoring data provided by Monitoring Services are 
used by Gauge Services, which look for new patterns of 
behavior in the monitored data, and potentially process the 
raw data for further analysis. Once a change in the monitored 
data of interest is identified, Gauge Service updates the 
appropriate Architectural Models. This in turn triggers 
RESIST’s Analyzer, which uses the updated models to detect 
potential changes in the system’s expected reliability in the 
manner described earlier and to possibly find a better 
architectural configuration. If a new configuration is selected 
for effecting, Change Management Service is invoked, which 
leverages the adaptation operations provided by the 
Adaptation Service to actually change the running system. 
Change Management Service coordinates the adaptation 
process to ensure that the system’s functionality is not 
jeopardized, and the system downtime is minimized. For 



this, we have built on earlier research on pattern-based 
dynamic software adaptation [21]. 

In order to enable engineers construct the required 
architectural models using well-known Architectural 
Description Languages, and to perform reliability analysis 
and architecture trade-off analysis, RESIST uses an 
extensible architectural modeling and analysis environment, 
called XTEAM [25]. XTEAM enables engineers to build 
structural and behavioral models such as xADL, and FSP. 
We extended XTEAM’s structural and behavioral meta-
models with the annotations needed for reliability analysis. 
To that end, the traditional FSP support in XTEAM was 
extended to include the notion of failure states, and 
associated a transition probability with each FSP actions. We 
also extended the traditional xADL model support in 
XTEAM to model reliability properties of the architectural 
constructs, such as component reliability. 

VI. CONCLUSION 

Mobile software systems are characterized by their 
highly dynamic and unpredictable execution context. When 
placed in mission-critical settings, such systems’ ability to 
meet their SLA, in particular stringent reliability 
requirements, is of utmost concern. This is further 
complicated by mobile system’s dynamic operational 
context, and the inability for a single architectural 
configuration to meet reliability requirements throughout the 
system’s lifetime. The contributions of our work include (1) 
modeling the system’s context as a first class entity, (2) 
incorporating context into reliability analysis to yield 
reliability predictions, (3) automatically find the optimal 
architectural configuration that meets the SLA, and (4) SOA 
infrastructure for the implementation of such systems using 
RESIST. 

In our future work, we intend to evaluate the scalability 
of RESIST in large-scale software systems comprising of 
hundreds of components and hardware hosts. We also intend 
to increase the types of reconfiguration decisions and 
dependability trade-offs that RESIST supports. Finally, we 
plan to investigate the use of other stochastic approaches 
(e.g., Dynamic Bayesian Networks, and Hierarchical HMM). 
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