
Context-Driven Optimization of Mobile Service-Oriented Systems

for Improving their Resilience

Deshan Cooray
1
 Sam Malek

1
 Roshanak Roshandel

2

1
Department of Computer Science

George Mason University

Fairfax, VA 22030, USA

{dcooray, smalek}@gmu.edu

2
Department of Computer Science and Software Eng.

Seattle University

Seattle, WA 98122, USA

roshanak@seattleu.edu

Abstract— Mobile software systems are characterized by their

highly dynamic and unpredictable execution context. Such

systems are permeating a number of domains where the

systems operate in constantly changing conditions. We refer to

such systems as Situated Software Systems. These systems are

often deployed in mission-critical settings with stringent

reliability requirements. Existing approaches to performing

reliability analysis are insufficient in meeting the demands of

situated software systems. We propose an approach aimed at

such systems and present it in the form of a framework and

tool suite known as REsilient SItuated SofTware system

(RESIST). The framework utilizes information from the

system’s context to produce reliability predictions, and places

the system in the optimally reliable configuration with respect

to other competing quality attributes.

Keywords-Context Awareness; Software Architecture; Self-

Adaptive Systems; Service-Oriented Architecture; Mobility

I. INTRODUCTION

Software systems are increasingly deployed in mission
critical domains, including emergency response, industrial
automation, navigation, and defense. The majority of such
systems are mobile, embedded, and pervasive. They are
characterized by their highly dynamic configuration,
unknown operational profile, and fluctuating execution
context. We refer to this class of software systems as situated
software systems, since the software in this setting is
expected to operate under constantly changing situations and
conditions. Given the mission-critical nature of the domains
in which situated software systems are deployed, their ability
to meet the Service Level Agreement (SLA), especially
stringent reliability requirements, is a significant concern.

Determining an architectural configuration for a situated
software system that meets its SLA is a challenging task. For
example, in a situation where services are provisioned by a
mobile platform, deciding the optimum architecture in terms
of its software components and their composition requires
engineers to perform trade-off analysis between competing
Quality of Service (QoS) attributes such as efficiency and
reliability. It is clear that the overall reliability of such
systems depends on problems both internal (e.g., software
bugs) and external (e.g., network disconnection, hardware
failure) to the software. The key underlying insight in the
proposed research is that some internal software problems
may manifest themselves only under certain dynamic

characteristics external to the software (e.g., physical
location), which is traditionally referred to as context [1].

Given that the execution context of situated systems
cannot be accurately predicted at the time of design and
development, the optimal configuration for such systems
cannot be determined prior to its deployment. Moreover, due
to variability in the context, no particular configuration of a
situated system is optimal for its entire operational lifetime,
and hence run-time reconfiguration of the system may be
necessary. In situated software systems, the optimal
configuration is one that first and foremost provides the
required level of reliability as per the SLA, while taking into
consideration other quality concerns (e.g., efficiency).

In this paper, we present an approach called REsilient
SItuated SofTware systems (RESIST) that consists of a
framework and automated tool-suite and offers reliability-
aware run-time adaptation of situated software systems to
address the aforementioned challenges. Our approach is
architecture-centric and furnishes reliability predictions at
the level of the system’s architectural components. RESIST
utilizes information from the system’s operational context to
predict the reliability of the system in its near future
operation.

The reliability predictions are then used proactively to
find the most suitable configuration, which is effected
through run-time adaptation provided by the infrastructure,
thus enabling the system’s SLA to be maintained. The most
suitable configuration is one that provides the appropriate
level of resilience to failure by taking into consideration
other quality constraints (e.g., efficiency, security). Unlike
the traditional reactive models of adaptation, the proposed
adaptation will occur proactively, and before the system’s
reliability degrades. To make RESIST readily adoptable and
widely applicable in a variety of existing situated software
systems, we have developed the approach on top of Service-
Oriented Architecture (SOA) technology standards [13]. This
allows RESIST’s SOA-compliant infrastructure to be
deployed in a variety of domains to provide the most
dependable services possible in the face of unanticipated
changes, such as network disruptions, and platform faults, by
seamlessly morphing the running software.

The remainder of the paper is organized as follows.
Section II describes background and related work. Section III
illustrates impact of context on the architecture of a system.
Section IV describes the RESIST framework and Section V

describes the infrastructure and tool support and we conclude
with an outline of our future work.

II. BACKGROUND AND RELATED WORK

Software reliability is defined as the probability that a
system performs its intended functionality correctly under
specified conditions [2]. A system’s software architecture
provides an appropriate level of abstraction to reason about
its quality attributes, including reliability. While a system’s
architectural models can facilitate this process, performing
architecture-aware reliability analysis enables architecture-
based adaptation techniques to be utilized in order to
improve or maintain the system’s reliability. An appropriate
approach must be able to offer fine-grained analysis based on
reliability of constituent elements of the system resulting in
the ability to analyze the reliability of alternative
configurations. Furthermore, such an approach must be able
to offer predictive analysis by accommodating uncertainties
associated with the system’s operation and context.

Most existing techniques aimed at architecture-based
reliability analysis rely on assumptions that make them
unsuitable for situated software systems [6][7][8][9]. A
majority of the approaches are geared towards static design-
time assessment and assume that the system’s operational
profile is known in advance and does not change at runtime.
Further, many of the approaches focus on system-level
analysis and assume that component reliability values are
known apriori—an assumption that is particularly unsuitable
for situated software systems. Finally, the approaches do not
consider the impact of contextual change on the system’s
reliability.

Self-adaptive software systems respond to changes in the
operational environment and autonomously reconfigure
themselves in order to achieve the overall goals of the system
[3]. Given that dynamism and unpredictability associated
with situated software systems and their mission-critical
nature, the system is required to adapt in such a manner that
its effectiveness is maintained throughout the mission.

Related to our work are the general purpose architecture-
based adaptation frameworks [3][4][5]. These frameworks
are primarily reactive in their decision making while the
mission critical nature of situated software systems requires
that the system adapts in anticipation to degradation in its
QoS (e.g., reliability) beyond the allowable threshold.
Nevertheless, these frameworks can form the basis for
systems that adapt proactively.

III. IMPACT OF CONTEXT ON ARCHITECTURE

Any type of information that characterizes the runtime
conditions of the system, and alters its behavior can be
considered its context [11]. A system’s context may consist
of several different aspects of its changing execution
environment that could potentially impact the behavior and
properties of a system. Among them three main categories of
context can be identified [11][12];

• Computing Environment, such as the available
resources, including CPU, network bandwidth, battery
power.

• User Environment, such as the user’s location, social
situation, and an ongoing activity.

• Physical Environment, such as near-by objects, the
amount of light, and temperature.
A context-aware system uses knowledge about its context

to provide relevant information and/or services to the user
[11]. While in some systems contextual information is
directly used to provide services to the user, in some others
contextual information is used to optimize the manner in
which services are provided to the user. For example, a GPS
enabled mobile phone which displays a map based on the
user’s location considers the location as an input to the
service that is provided. In contrast, a mobile robot engaged
in firefighting may need to reconfigure itself depending on
its contextual characteristics so that its dependability is
optimal with respect to other quality attributes such as
resource usage. As described in the next section, RESIST is
aimed at the second class of systems. Specifically, RESIST
uses the system’s context to perform architectural
reconfiguration of the system so that it remains resilient in
the face of degrading reliability.

Changes to the operational context of a system impact its
runtime behavior which in turn could potentially impact the
system’s quality attributes such as reliability. In architecture-
based adaptation the system’s software architecture forms
the basis for adaptation reasoning. Consequently, we argue
that it is important to be able to model the effect of changes
in the context on a system’s architecture as a first class
entity. In our work, we adopt a broad interpretation of
system’s architecture, which simply captures the knowledge
about the system. This knowledge includes many different
aspects of the system, including the principle design
decisions about the system, its structure and behavioral
models, as well as behavioral properties of the system
captured in the form of an operational profile model.

To exemplify the effect the context has on a system’s
architecture, below we present how the mobile nature of a
robotic system introduces contextual changes that can impact
its operational profile, and in-turn its reliability. Figure 1(a)
shows the architectural models of the mobile robot. It
receives a command from an external system such as a PDA,
and returns the result of executing the command. Upon
receiving a command, it uses its Sensors to gather data about
its environment, such as near-by obstacles and proximity to
heat, and determines a plan and executes it using its
Navigator and Actuator components, respectively. Figure
1(b) shows the robot’s Controller component’s behavioral
model in the form of a UML state chart. It includes
behavioral states idle, estimating, planning and moving,
during which the Controller invokes interactions with the
other components in the system (i.e., Sensors, Actuator,
Navigator, etc.). The failed state denotes a common failure
state of the component. Transitions O1 to O6 denote
behavioral transitions resulting from input events such as
interface calls on the component. Transitions F1 to F3 denote
a failure that may arise under some circumstances. Such
failures are caused by faults in the software that could lead to
a failure. Transition S denotes eventual recovery of the

component as a result of automatic or manual re-
initialization of the component.

This behavioral model depicts both the robot’s internal
behavior as well as interactions with the external
environment. For example, O1 corresponds to an input task
from the user, and O5 corresponds to bump events triggered
from the physical environment as a result of colliding with,
or being within close proximity of an obstacle. Changes in
the contextual environment may impact the frequency of
these input events, which in turn alters the frequency of these
two state transitions O1 and O5. The resulting changes in the
execution frequency of the states in turn change the
frequency of failures as well. For example, if the estimating
state happens to be a state from which failures happen
frequently, situations in which robot navigates through a
dense terrain can increase bump events, which consequently
increases the frequency of transition to the estimating state,
and thus the probability of component failure. Thus in this
example, the contextual changes resulting from the robot’s
mobility, in turn impacts the component’s reliability.

The impact of the system’s context is not limited to
internal changes in the component behavior, as they may
also change the manner in which components interact, and
thus influence the system’s reliability. For example, the
Controller interacts with the Sensors in order to perform
estimations prior to planning its navigation route. However,

if the number of bump events increases, the Controller
interacts with the Sensors with a higher frequency in order to
perform re-estimations. Thus, the impact of the Sensor
components’ reliability on system’s reliability depends on
how frequently the Controller needs to interact with the
Sensors, which is in turn determined by location dependent
contextual information such as the complexity of the terrain
(i.e. the probability of bumps).

Therefore the changes in context and its effect on the
system’s architecture can be modeled as follows:

• A set of contextual parameters�� � ���� � � ��	, which
includes any information about a system’s context that
impacts the system

• A set of architectural parameters �
 � �
�� � �
�	 ,
which includes architectural properties that change as a
result of the system’s context

• A set of interactions � � ���� � � �
	 between contextual
and architectural parameters where in each interaction,
one or more contextual parameters cause a change in an
architectural parameter

• A set of functions that captures the effect of the above
interactions on architectural parameters. �� � � , these
functions are of the form;

 ��� ���� �
 (1)

where ���� denotes the power set of contextual parameters.
In the case of the robotic system above, the probability of the
robot encountering an obstacle on its path (a contextual
parameter which changes as a result of its mobility), has an
effect on two architectural parameters: the transition
probability from moving to estimating state in the Controller,
and the probability that the Controller interacts with the
Sensor components. In this example, we have described two
points of interaction between the contextual parameter and
architectural parameters, but in any sizable system one could
expect multiple points of interaction, which further highlight
the importance of properly modeling and incorporating
context in engineering mobile systems.

In the next section, we present an overview of the
RESIST framework, and how the context information is used
in predicting system’s reliability and optimizing system’s
architecture.

IV. OVERVIEW OF THE RESIST FRAMEWORK

RESIST consists of a comprehensive and integrated
approach to monitoring, assessing, and adapting of situated
software systems. An overview of RESIST framework is
depicted in Figure 2. The process is organized as a feedback-
control loop that continuously monitors, analyzes, and adapts
the system at run-time. RESIST consists of three conceptual
software components, implemented as meta-level
components.

At design-time and before the system’s implementation is
complete, an initial set of architecture-based reliability
models are developed which are later evolved during
implementation. At runtime these models are used to assess a
variety of configuration choices. Furthermore, they serve as

3

4

1

Figure 1. Robot's architecture: (a) robot’s structural model, and

(b) the behavioral model of the robot’s Controller

the basis for building predictive
models to assess future reliability of
the system. Unlike the traditional
architectural models, they embody
contextual properties necessary for
reliability analysis of situated
systems. As described below, these
models are expected to be updated
and refined at runtime.

Architecture-based reliability
models along with contextual and
monitoring information obtained
from the system are used by the
Component-Level Reliability
Analyzer to predict the reliability of
system’s components in their near
future operation. These fine-grained
reliability estimates are used by the
Configuration Reliability Analyzer
to determine the reliability of
alternative configurations for the
system. The Configuration Selector
is in turn used to select a suitable
configuration for the near future
operation of the system. The
configuration selector may use other
quality attributes, such as
performance, in the selection process. The process for
obtaining and estimating these properties is beyond the scope
of this paper, which is focused on reliability concerns.

Once a new configuration is selected, RESIST uses its
context-aware middleware infrastructure to adapt the system
(details are described in Section V). This middleware adapts
the system at runtime to reflect changes in the configuration.
The middleware provides support for execution, monitoring,
and adaptation of a software system in terms of its
architectural constructs (e.g., components, connectors, and
configuration). At runtime, the middleware monitors the
software system for information that is used to refine the
reliability predictions. This information is obtained from
multiple sources, such as monitoring internal (e.g., frequency
of failures, exceptions, and service requests) and external
(e.g., network fluctuations, battery charge) software
properties, changes in the structure of the software (e.g.,
disconnection of components due to network drop outs, off-
loading of components due to drained battery), and
contextual properties (e.g., physical location). Since the
monitored data represents the most recent operational,
structural, and contextual profile of the system’s execution, it
can be used to assess the system reliability more accurately.
Note that unlike previous approaches [14][15] we do not rely
solely on the monitoring data. Instead, we incorporate
architectural knowledge, monitoring data, and contextual
changes at runtime in a complementary fashion to produce
more accurate results.

A. Reliability Analysis

As shown in Figure 2, RESIST performs the reliability
analysis at two levels: at component level, and at

configuration level. At both levels, architecture-based
reliability techniques are used in conjunction with
monitoring information obtained from the system and its
context. Since context impacts both the internal behavior of
components and the interactions among them, the context
information is incorporated into the reliability analysis at
both component and configuration level.

In order to perform reliability analysis and prediction, we
need to consider the Software Operational Profile (SOP) of
the system [2]. SOP represents the set of executions that take
place in a software program along with the probabilities with
which they will occur in a given environment. As described
in Section III, these probabilities may be affected by changes
in the system’s context. In this case, we model these
probabilities as relevant architectural parameters.

For the purpose of modeling the SOP, we use existing
techniques based on Discrete Time Markov Chains (DTMC)
at both component and configuration levels. A DTMC is
defined as a stochastic process with a set of states � �
���� ��� � � ��	 and a transition matrix�
 � ����	, where ��� is

the probability of transitioning from state �� to state���. Once

the operational profile of the system in the form of a DTMC
has been estimated, the context information is used to update
the transition probabilities in the DTMC, so that it reflects
the future operational profile.

Our reliability models used for component and
configuration reliability prediction rely on Hidden Markov
Models (HMMs) [23] to estimate the transition probabilities
of the DTMC (i.e., the matrix �� mentioned above). As
confirmed by our previous results [22], HMMs can be used
to learn from runtime data and to obtain transition
probabilities.

Figure 2. RESIST Framework and its Context-Aware SOA Infrastructure Support

In the case of component reliability, the states are
identified using the component’s behavioral model, such as
the state chart diagram depicted in Figure 1(b), while runtime
data obtained through monitoring the system becomes
training data for the HMM. We use the Baum-Welch
algorithm [23] to train and solve the HMM. The resulting
transition matrix for the component is updated based on the
contextual parameters using functions in the form of
equation (1) that capture the contextual impact on
architectural parameters. The updated transition matrix
represents the new operational profile for the component
based on the context in which the system is expected to
operate in the near future. The reliability prediction is
computed by solving for the steady state probability
(obtained from standard numerical methods [24]) of not
being in the failed state (recall Figure 1(b)).

Once the component level reliabilities are computed, we
use them to arrive at configuration level reliability
predictions using an existing technique [10], where the
system reliability is computed in terms of its component
reliabilities. Here, the components in the system’s structural
model such as the one depicted in Figure 1(a) is used to
derive the states for the Markov Chain. The transition
probabilities are derived in a manner similar to the
component-level reliability, except that now the monitoring
data used consists of interactions between components.
Similar to component reliability prediction, transition
probabilities at configuration level consist of architectural
parameters affected by context. Hence, functions of the form
of equation (1) are used to update relevant transition
probabilities in order to capture the effect of the context in
the near future operation of the system. Solving the model as
per [10] using updated transition probabilities and
component reliabilities yields the prediction for
configuration reliability.

B. Architectural Optimization

The reliability estimation approach presented earlier can
be used to determine the most reliable configuration for a
situated software system. The optimal configuration in
RESIST is defined as one that satisfies the system’s
reliability requirement, while improving other quality
attributes of concern (e.g. efficiency). Consequently, the
configuration selection problem becomes one of an
optimization problem. Specifically, RESIST’s objective is to
find an architectural configuration which satisfies quality
requirements defined in the SLA.

RESIST provides the capability of specifying preferences
for other (potentially conflicting) quality attributes using
utility functions. The user indicates these preferences so that
they are consistent with the QoS requirements specified in
the SLA. In turn, these utility functions are used by the
Configuration Selector to perform trade-off analysis between
conflicting quality concerns when selecting the optimally
reliable configuration. When searching for alternative
configurations, RESIST considers options such as changing
the software architecture (e.g. replication of software
components), and changing the deployment (e.g., component
to process allocation).

V. INFRASTRUCTURE SUPPORT

Our approach for dynamic monitoring and adaptation
builds on our previous research on adaptive software
architectures [16][17], context-aware middleware [18][19],
and dynamic SOA systems [17][20]. The approach is
consistent with the widely accepted three layer model of self-
management [3]: (1) Goal Management Layer—plans for
change; (2) Change Management Layer—coordinates the
change; and (3) Component Control Layer—executes the
change. Figure 2 depicts RESIST’s infrastructure support.
Consistent with our objective of complying with the SOA
principles, we expose RESIST’s monitoring and adaptation
facilities as discoverable services. Details are described
below.

The pink ovals in Figure 2 represent the underlying
facilities that will be deployed on each RESIST platform.
Context, Resource, and Software Probes monitor
environmental, system, and software parameters,
respectively. For example, a Context Probe may correspond
to readings provided from a physical sensor, a Resource
Probe may correspond to an instrumentation of OS for
collecting CPU utilization metrics, and a Software Probe
may provide statistics on the invocation frequency of a
service. Since Context and Resource Probes do not
necessarily depend on the SOA technologies [13], they are
placed outside of the SOA Technology Stack. Adaptation
Engine provides a reflective capability that can be leveraged
to adapt the services hosted on a given RESIST platform,
such as binding a client to a new provider, changing a service
provider’s operations, instantiating new services, and so on.
Both Software Probes and Adaptation Engine depend on
other SOA technologies, and are placed in the SOA
Technology Stack.

As shown in Figure 2, Monitoring Service provides a set
of operations that allow other services to discover and obtain
monitoring data from any platform. Clearly before a service
can access this data, the appropriate authentication is
performed, the details of which are not discussed for brevity.
Similarly, Adaptation Service provides a set of operations
that expose the adaptation capabilities supported by the
underlying Adaptation Engine to the rest of the system.

The monitoring data provided by Monitoring Services are
used by Gauge Services, which look for new patterns of
behavior in the monitored data, and potentially process the
raw data for further analysis. Once a change in the monitored
data of interest is identified, Gauge Service updates the
appropriate Architectural Models. This in turn triggers
RESIST’s Analyzer, which uses the updated models to detect
potential changes in the system’s expected reliability in the
manner described earlier and to possibly find a better
architectural configuration. If a new configuration is selected
for effecting, Change Management Service is invoked, which
leverages the adaptation operations provided by the
Adaptation Service to actually change the running system.
Change Management Service coordinates the adaptation
process to ensure that the system’s functionality is not
jeopardized, and the system downtime is minimized. For

this, we have built on earlier research on pattern-based
dynamic software adaptation [21].

In order to enable engineers construct the required
architectural models using well-known Architectural
Description Languages, and to perform reliability analysis
and architecture trade-off analysis, RESIST uses an
extensible architectural modeling and analysis environment,
called XTEAM [25]. XTEAM enables engineers to build
structural and behavioral models such as xADL, and FSP.
We extended XTEAM’s structural and behavioral meta-
models with the annotations needed for reliability analysis.
To that end, the traditional FSP support in XTEAM was
extended to include the notion of failure states, and
associated a transition probability with each FSP actions. We
also extended the traditional xADL model support in
XTEAM to model reliability properties of the architectural
constructs, such as component reliability.

VI. CONCLUSION

Mobile software systems are characterized by their
highly dynamic and unpredictable execution context. When
placed in mission-critical settings, such systems’ ability to
meet their SLA, in particular stringent reliability
requirements, is of utmost concern. This is further
complicated by mobile system’s dynamic operational
context, and the inability for a single architectural
configuration to meet reliability requirements throughout the
system’s lifetime. The contributions of our work include (1)
modeling the system’s context as a first class entity, (2)
incorporating context into reliability analysis to yield
reliability predictions, (3) automatically find the optimal
architectural configuration that meets the SLA, and (4) SOA
infrastructure for the implementation of such systems using
RESIST.

In our future work, we intend to evaluate the scalability
of RESIST in large-scale software systems comprising of
hundreds of components and hardware hosts. We also intend
to increase the types of reconfiguration decisions and
dependability trade-offs that RESIST supports. Finally, we
plan to investigate the use of other stochastic approaches
(e.g., Dynamic Bayesian Networks, and Hierarchical HMM).

VII. REFERENCES

[1] L. Capra, W. Emmerich, and C. Mascolo. CARISMA: Context-

Aware Reflective Middleware System for Mobile Applications. IEEE
Transactions on Software Engineering, Vol 29, 2003.

[2] H. Pham, System Software Reliability, Springer, 2006.

[3] J. Kramer and J. Magee. Self-Managed Systems: an Architectural

Challenge. International Conference on Software Engineering,

Minneapolis, Minnesota, May 2007.

[4] B. Cheng, et al. Software Engineering for Self-Adaptive Systems: A

Research Roadmap. Software Engineering for Self-Adaptive Systems,
LNCS hot topics, 2009.

[5] D. Garlan, et al. Rainbow: Architecture-Based Self-Adaptation with

Reusable Infrastructure. IEEE Computer, 37(10), 2004.

[6] K. Goseva-Popstojanova, et al., Architecture-Based Approaches to

Software Reliability Prediction. International Journal of Computer
and Mathematics with Applications, 46(7), Oct 2003.

[7] S. Krishnamurthy, A. Mathur. On the Estimation of Reliability of a

Software System Using Reliabilities of its Components. International
Symposium. on Software Reliability Engineering, 1997.

[8] R. Reussner, et al. Reliability Prediction for Component-Based
Software Architectures, Journal of Systems and Software, 66(3),

2003.

[9] G. Rodrigues, et al. Using Scenarios to Predict the Reliability of
Concurrent Component-Based Software Systems. International

Conference on Fundamental Approaches to Software Engineering,

Edinburgh, UK, April 2005.

[10] W. Wang, D. Pan, M. Chen. An Architecture Based Software

Reliability Model. Journal of Systems and Software, 2005.

[11] G. Abowd, et al. Towards a Better Understanding of Context and

Context-Awareness. Proceedings of the 1st international symposium

on Handheld and Ubiquitous Computing, p.304-307, September
1999, Karlsruhe, Germany.

[12] B. Schilit, et al. Context-Aware Computing Applications. 1st
International Workshop on Mobile Computing Systems and

Applications, December 1994.

[13] S. Weerawarana, et al. Web Services Platform Architecture: SOAP,
WSDL, WS-Policy, WS-Addressing, WS-BPEL, WS-Reliable

Messaging, and More. Prentice Hall, 2005.

[14] S. Krishnamurthy, A. Mathur. On the Estimation of Reliability of a

Software System Using Reliabilities of its Components. International

Symposium on Software Reliability Engineering, 1997.

[15] W. Wang, et al. Moving Average Modeling Approach for Computing

Component-Based Software Reliability Growth Trends. INFOCOMP
Journal of Computer Science, 5(3), 2006.

[16] S. Malek, et al. Reconceptualizing a Family of Heterogeneous

Embedded Systems via Explicit Architectural Support. International
Conference on Software Engineering (ICSE 2007), Minneapolis,

Minnesota, May 2007.

[17] S. Malek, et al. Self-Architecting Software Systems (SASSY) from

QoS-Annotated Activity Models. International Workshop on

Principles of Engineering Service Oriented Systems (PESOS 2009),
Vancouver, Canada, May 2009.

[18] S. Malek, at al. A Style-Aware Architectural Middleware for

Resource Constrained, Distributed Systems. IEEE Transactions on
Software Engineering, vol. 31, no. 3, March 2005.

[19] S. Malek, at al. Tailoring an Architectural Middleware Platform to a
Heterogeneous Embedded Environment. International Workshop on

Software Engineering and Middleware (SEM 2006), Portland,

Oregon, November 2006.

[20] N. Esfahani, at al. A Modeling Language for Activity-Oriented

Composition of Service-Oriented Software Systems. ACM/IEEE 12th

International Conference on Model Driven Engineering Languages
and Systems (MODELS 09), Denver, Colorado, Oct 2009.

[21] H. Gomaa, et al. Software Reconfiguration Patterns for Dynamic
Evolution of Software Architectures. Fourth Working IEEE/IFIP

Conf. on Software Architecture, Oslo, Norway, 2004.

[22] L. Cheung, R. Roshandel, et al. Early Prediction of Software
Component Reliability. International Conference on Software

Engineering (ICSE 2008), Leipzig, Germany, May 2008.

[23] L. R. Rabiner. A Tutorial on Hidden Markov Models, in Proceedings

of the IEEE, vol. 77, pp. 257-286, 1989.

[24] W.J. Stewart. Introduction to the numerical solution of Markov

Chains. Princeton University Press, 1994.

[25] G. Edwards, S. Malek, and N. Medvidovic. Scenario-Driven Dynamic
Analysis of Distributed Architecture. International Conference on

Fundamental Approaches to Software Engineering (FASE 2007),

Braga, Portugal, March 2007.

