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ABSTRACT 
Situated software systems are an emerging class of systems that 
are predominantly pervasive, embedded, and mobile. They are 
marked with a high degree of unpredictability and dynamism in 
the execution context. At the same time, such systems often need 
to satisfy strict reliability requirements. Most current software 
reliability analysis approaches are not suitable for situated 
software systems. We propose an approach geared to such 
systems, which continuously furnishes refined reliability 
predictions at runtime by incorporating various sources of 
information. The reliability predictions are leveraged to 
proactively place the software in the optimal configuration with 
respect to changing conditions. Our approach considers two 
representative architectural reconfiguration decisions that impact 
the system’s reliability: reallocation of components to processes 
and changing the architectural style. We have realized the 
approach as part of a framework intended for mission-critical 
settings, called REsilient SItuated SofTware system (RESIST), and 
evaluated it using a mobile emergency response system.  

Categories and Subject Descriptors 
D.2.4 [Software Engineering]: Software/Program Verification – 
Reliability; D.2.11 [Software Engineering]: Software 
Architectures. 

General Terms 
Design, Reliability 

Keywords 
Reliability, Software Architecture, Self-Adaptation, Mobility 

1. INTRODUCTION 
Software systems are fast permeating a variety of domains, 
including emergency response, industrial automation, navigation, 
health care, power grid, and civil infrastructure. We call this 
emerging class of systems situated software systems, which are 
predominantly mobile, embedded, and pervasive. They are 
characterized by their highly dynamic configuration, unknown 
operational profile, and fluctuating conditions. At the same time, 
given the mission critical nature of the domains in which they are 

deployed (e.g., emergency response), majority of situated systems 
are expected to satisfy stringent reliability requirements.  

Engineers of a situated software system typically spend significant 
effort to determine a good configuration for the system to ensure 
its adherence to functional and non-functional requirements. For 
instance, they may perform a trade-off analysis between the 
system’s resource utilization efficiency and reliability when they 
decide the allocation of software components to operating system 
(OS) processes. Clearly the overall reliability of such systems 
depends on problems both internal (e.g., software bugs) and 
external (e.g., network disconnection, hardware failure) to the 
software. The key underlying insight in our research is that some 
internal software problems may manifest themselves only under 
certain dynamic characteristics external to the software (e.g., 
physical location), which is traditionally referred to as context [1].   

Due to variability in the execution context, the optimal 
configuration for a situated system cannot be determined prior to 
its deployment, and no particular configuration can be optimal for 
the system’s entire operational lifetime. Thus, runtime 
reconfiguration of the system may be necessary to achieve the 
system’s maximum potential. Given the mission critical nature of 
situated systems, we define the optimal configuration as one that 
satisfies the reliability requirement, while taking into 
consideration other quality attributes of concern (e.g., resource 
utilization efficiency, such as memory and CPU usage).  

In this paper, we describe and evaluate REsilient SItuated 
SofTware system (RESIST), a framework intended to address 
reliability concerns in mission critical, dynamic, and mobile 
setting. RESIST furnishes a compositional approach to reliability 
estimation starting with analysis at the component level, which in 
turn makes it possible to assess the impact of adaptation choices 
on the system’s reliability. The analysis is performed continuously 
at runtime by incorporating various sources of information. In 
addition to the architectural models and the monitoring data, 
RESIST incorporates contextual information to predict the 
reliability of the system in its near future operation.  

RESIST uses the reliability predictions to (1) proactively 
determine when the system should be adapted, and (2) find the 
optimal configuration for the near future operation of the system. 
Our evaluations show that our reliability predictions are accurate 
with respect to the observed system reliability. We thus consider 
the predicted reliability as an indicator for decision making. An 
important contribution of our work is proactive adaptation based 
on our reliability analysis that reconfigures the system at runtime 
prior to actual reliability degradation. This trait clearly sets our 
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work apart from the majority of existing self-adaptive frameworks 
that are reactive in their decision making [2][12].  

We have developed a prototype implementation of RESIST on top 
of a tool-suite, which consists of an existing context-aware 
architectural middleware integrated with a visual architectural 
modeling and analysis environment. Finally, RESIST is evaluated 
using a robotics emergency response system.  

The remainder of this paper is organized as follows. Section 2 
presents a motivating example. Section 3 provides a high-level 
overview of RESIST, while Section 4 presents our failure model. 
Sections 5 and 6 present the component-level and system-level 
reliability models, respectively. Section 7 details the configuration 
selection process. A prototype of RESIST and evaluation of the 
approach are presented in Sections 8 and 9. An overview of 
related work and avenues of future research conclude the paper. 

2. MOTIVATING EXAMPLE 
Emergency response is a domain that entails a high degree of 
mission criticality. Software systems designed for this domain 
thus have stringent reliability requirements. As a motivating 
example, consider a mobile distributed emergency response 
system intended to aid the emergency personnel in fire crises, a 
prototype of which was developed in our previous work [5]. This 
system consists of several entities, including a central dispatcher 
that serves as the “Headquarters” for coordinating the crew 
activities, smart fire engines that are designed to alert the 
dispatcher of the current location of the vehicle and provide its 
occupant with information concerning the crisis scene, firefighters 
equipped with PDAs capable of controlling the robots and sensors, 
and mobile robots that execute the high-level commands.  

While the entire system is highly dynamic and could benefit from 
our approach, for the clarity of exposition we focus on the robotic 
subsystem. A robot consists of several electronic sensors and 
mechanical actuators that allow it to autonomously navigate, 
detect smoke, stream video, and extinguish fire. It is constrained 
by limited battery life, memory, processing speed, and 
connectivity. Architectural design choices affecting the system at 
runtime aim at accommodating these constraints.  

An example architectural strategy for improving the system’s 
resource utilization efficiency is to use a thread-based architecture. 
Software components are deployed as separate threads within a 
single OS process, thus allowing for the resources (e.g., stack 
memory) to be shared among components, while avoiding the 
overhead (e.g., context switching) associated with managing many 

separate processes. However, since a process may exit 
prematurely due to an errant thread, a disadvantage of the thread-
based model is a potential decrease in system reliability.  

Figures 1a and b show two alternative allocations of the robot’s 
software components to OS processes. Based on the above 
discussion, from a system’s perspective it is reasonable to expect 
the architecture depicted in Figure 1a to be more efficient in terms 
of utilization of system’s resources, while the one depicted in 
Figure 1b to be more reliable. Determining the best configuration 
depends on (1) the device’s fluctuating resources (e.g., memory 
and CPU utilization, available battery), and (2) the reliability of 
the system’s constituent components, which as detailed later may 
vary due to changes in context.  

The above scenario demonstrates the impact of architectural 
decisions on system’s quality attributes. Such decisions while 
critical to system’s dependability cannot be made effectively at 
design-time. It is only reasonable to assume that some of these 
decisions must be made at runtime, requiring specialized 
methodologies that continuously evaluate the impact of these 
decisions on system’s dependability. We use this system in the 
remainder of the paper to describe and evaluate our approach.  

3. FRAMEWORK OVERVIEW 
An overview of RESIST framework is depicted in Figure 2. The 
process is organized as a feedback control loop that continuously 
monitors, analyzes, and adapts the system at runtime. RESIST 
consists of three conceptual software components.  

At design-time and before the system’s implementation is 
complete, an initial set of architecture-based reliability models are 
developed. These models are used at runtime to assess a variety of 
configuration choices and to serve as predictors for the future 
reliability of the system. Unlike the traditional architectural 
models, they embody contextual properties necessary for 
reliability analysis of situated systems. As described below, these 
models are expected to be updated and refined at runtime. 

Architecture-based reliability models along with contextual and 
monitoring information obtained from the system are used by the 
Component-Level Reliability Analyzer to predict the reliability of 
system’s components in their near future operation. These fine-
grained reliability estimates are used by the Configuration 
Reliability Analyzer to determine the reliability of alternative 
configurations for the system. The Configuration Selector is in 
turn used to select a suitable configuration for the near future 
operation of the system.  The configuration selector may use other 
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Figure 1. Component-to-process allocation alternatives. 
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quality attributes, such as performance, in the selection process. 
The process for obtaining and estimating these properties is 
beyond the scope of this paper, which is focused on reliability 
concerns.  

Once a new configuration is selected, the Context-Aware 
Middleware adapts the system at runtime to reflect the changes in 
configuration. The Context-Aware Middleware provides support 
for execution, monitoring, and adaptation of a software system in 
terms of its architectural constructs (e.g., components, connectors, 
and configuration). At runtime, the middleware monitors the 
software system for information that is used to refine the 
reliability predictions. This information is obtained from multiple 
sources, such as monitoring internal (e.g., frequency of failures, 
exceptions, and service requests) and external (e.g., network 
fluctuations, battery charge) software properties, changes in the 
structure of the software (e.g., disconnection of components due 
to network drop outs, off-loading of components due to drained 
battery), and contextual properties (e.g., physical location). Since 
the monitored data represents the most recent operational, 
structural, and contextual profile of the system’s execution, it can 
be used to assess the system reliability more accurately. Note that 
unlike previous approaches [13][23][31] we do not rely solely on 
the monitoring data. Instead, we incorporate architectural 
knowledge, monitoring data, and contextual changes at runtime in 
a complementary fashion to produce more accurate results.  

4. RELIABILITY AND FAILURE MODEL 
RESIST estimates reliability as the probability that a system 
performs its required functions under stated conditions for a 
specified period of time [20]. In situated software systems, given 
the ongoing changes in system’s operational conditions, the 
reliability may change over time. We consider a failure to be an 
inconsistent behavior of a system with respect to its specification. 
Faults are caused by defects (e.g., software or hardware error), 
and are abnormal conditions that may cause a reduction in, or loss 
of, the capability of a functional unit to perform a required 
function. Thus, faults are causes of failures [20]. 

Consistent with other architecture-based reliability approaches 
[8][9][10][11] we assume that the occurrence of a failure is 
stochastic and that components failure model is fail-stop. Failures 
are thus reliably detectable by middleware facilities. Furthermore, 
failed components are assumed to eventually (automatically or 
manually) recover and resume normal behavior. 

We consider two types of failure in RESIST: component and 
process failures. Component failure is caused by a fault within the 
component’s implementation. Its effects are contained within the 
boundary of the component except when it causes a process to 
fail. Process failure occurs when one of the components running 
as a thread within a process exits prematurely, causing the OS 
process, including all of the components deployed on it, to fail.  

RESIST’s reliability model is targeted at distinguishing among 
alternative architectural configurations, and thus does not consider 
failures (e.g., wrong results, mismatched data type) that cannot be 
resolved through architectural means. We assume either such 
defects are detected during the construction of the system or the 
failure is contained within the component in which the fault 
occurred (e.g., through the use of appropriate pre- and post-
conditions). While RESIST could be extended to accommodate 
these additional types of failures, we do not believe such failures 
could be treated effectively through architectural reconfiguration.  

5. COMPONENT-LEVEL ANALYSIS 
Structural and behavioral knowledge embedded in software 
architectural models provide an appropriate level of abstraction 
from which reasoning about system’s quality attributes is feasible 
[19]. Architectural models are typically compositional: structure 
and behavior of complex systems are described in terms of their 
constituent components. Despite this however, as identified by 
recent surveys [8][10][11], majority of existing architecture-based 
reliability modeling approaches largely focus on analysis at the 
system level. Moreover, those approaches that incorporate 
individual component reliabilities into analysis, assume that 
component reliabilities are known apriori. Consequently, existing 
approaches are not suitable for situated systems, where the 
reliabilities of components and system fluctuate with the context 
in which they are deployed. A purely system-wide analysis offers 
little help in optimizing the system’s architecture in this setting. 

5.1 Component Reliability Calculation 
Our component-level reliability model relies on dynamic learning 
techniques, specifically Hidden Markov Models (HMMs) [22], to 
provide continuous reliability refinement. Component reliability is 
estimated stochastically using a Discrete Time Markov Chain 
(DTMC) and in terms of the fraction of the time spent in failure 
states by the component. A DTMC is defined as a stochastic 
process with a set of states S = {S1, S2, ..., SN} and a transition 
matrix A = {aij}, where aij is the probability of transitioning from 
state Si to state Sj. Reliability is computed by solving for the 
steady state probability (obtained from standard numerical 
methods [30]) of not being in any failure state. A number of 
approaches can be taken to ensure tractability if the state space 
size is determined to be too big [30].  

Obtaining transition probabilities (matrix A) can be challenging 
especially at design-time. Our past research [3] has explored a 
range of information sources that can be used to derive these 
probabilities at design-time. In the case of mobile, distributed, and 
situated software systems, obtaining these values are further 
complicated by the fact that the system’s behavior changes at 
runtime in response to changes external to the system. We rely on 
the availability of monitoring data obtained from the running 
system to determine the transition probability matrix A. While a 
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standard Markov-based approach would assume that there is a 
one-to-one correspondence between observed runtime events and 
sequence of states in the model, such correspondence may not 
exist in systems with realistic level of complexity.  

As confirmed by our preliminary results [3], in such 
circumstances Hidden Markov Models (HMMs) [22] can be used 
to learn from runtime data and to obtain behavioral transition 
probabilities. An HMM is defined by a set of states S = {S1, S2, ..., 
SN}, a transition matrix A = {aij} representing the probabilities of 
transitions between states, a set of observations O = {O1, O2, … 
OM}, and an observation probability matrix E = {eik}, which 
represents the probability of observing event Ok in state Si. The 
sets S and O of the HMM come from the component’s 
architectural model (e.g., statechart diagram), while runtime data 
obtained through monitoring becomes training data for the HMM.  

We use the Baum-Welch algorithm [22] to train and solve the 
HMM. The input to the algorithm is the data obtained from 
runtime monitoring of the software system, and consists of 
sequences of observations. Given an initial HMM constructed as 
described above, the Baum-Welch algorithm converges on the 
transition matrix A, which as described above is used to calculate 
probability of failure (or unreliability) in a DTMC.  

To clarify the approach, consider the state machine depicted in 
Figure 3 for the Controller component of the robot in the 
emergency response system introduced earlier. When the 
Controller is in idle state, it can receive commands from the 
firefighter’s PDA, and when it is in estimating, moving or 
planning states the robot makes use of other components such as 
sensors and actuators. From this diagram we can derive the sets: 

States S = {S1…S4, F} and Observations O = {O1…O11} 

where F denotes a common failure state, S1…S4 denote behavioral 
states (idle, estimating, planning, moving), and O1…O11 denote the 
observations (state transitions). 

At runtime, the system is monitored to obtain execution traces in 
the form of observation sequences. These execution traces are 
then used to train the HMM, using the Baum-Welch algorithm. 
The Markov model obtained from this algorithm represents the 
operational profile of the system based on the training data, which 
represents the system's behavior based on its current context.  

To better illustrate the concepts, consider the following transition 
probability matrix obtained by running the Baum-Welch algorithm 
on sample data obtained from the robot’s Controller:  

���� � ����
��
��
� � � � � �� � �	
��
 � �	��
��	��
� � � �	�
�� �	����� �	��
� �	���
 � �	���
� � � � � ��

��
�
 

The steady state vector obtained from A represents the probability 
of being in any of the states as the system operates overtime:

[ ]0.00330.1914 0.38490.22380.1966 . Here the last 

column represents the probability of being in a failure state. The 
Controller reliability based on its present runtime context is 
computed as:  

Rc = 1 - 0.0033 = 0.9967 

5.2 Incorporating Context into Analysis  
As mentioned earlier, given the dynamism present in situated 
system’s domain, it is critical to incorporate the notion of context 

into the analysis. Context corresponds to conditions external to the 
software system, which change the behavior of the system, and 
hence impact its reliability. As a result, to satisfy their reliability 
requirements, situated software systems may need to be 
reconfigured in response to contextual changes.  

An important contribution of our research is the incorporation of 
this contextual knowledge into our reliability predictions, which 
enables proactive reconfiguration of the software prior to actual 
degradations in reliability. In the case of this example, the robot 
periodically takes snapshots of the environment and using existing 
techniques [26] determines the complexity of the terrain. The 
robot then compares the complexity of the current terrain with 
previous snapshots. In cases where the terrain seems less/more 
complex than the past context, the model is updated to reflect the 
contextual change. For example, if there are many obstacles in the 
field the robot anticipates more bumps. In the transition 
probability matrix the probabilities corresponding to the robot’s 
behavior in presence of bumps (e.g., probability of transition from 
moving to estimating states) are updated to reflect this contextual 
change.  

More generally, we define a set �={��� � � ��� to denote a set of 
contextual parameters monitored by our runtime infrastructure. 
Our goal is to arrive at a revised transition probability matrix �� 
that more accurately reflects the near future operation of the 

component given the expected contextual changes. If ���� is a 
transition probability from state �� to state �� in matrix � which is 
affected by changes in a specific contextual parameter � , then �!�� � "#��� � $� %, where " is a context-specific function 
quantifying the impact of contextual change on the transition 
probability. In the case of the robotic system, we have used the 
technique described in [26] to update the probability of 
transitioning from moving to estimating states based on the 
complexity of the terrain.  

When updating ��� to �!�� the other elements in row & of the 
matrix � must also be revised to ensure the cumulative probability 
of all transitions in that row remains at 1, thereby retaining the 
properties of a stochastic matrix. When revising the transition 
probabilities in row�&, transition probability from state �� to failed 
state �' is unchanged, since the failure probability is independent 
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of changes in context. The remaining transition probabilities in the 
row are adjusted proportionately such that: 

�!�� ( ��' ( ) ��!�**+'�� =1 

where ��' is the transition probability from state �� to failed state �', and��!�* is a transition probability in row & after proportional 
adjustment.   

6. CONFIGURATION-LEVEL ANALYSIS 
Once the reliability of all components is obtained, a compositional 
model is used to determine the reliability of specific system 
configurations. Configuration reliability is in turn leveraged to 
assess the adherence of a given configuration to the system 
reliability goals. When a system does not meet the intended 
reliability threshold, runtime adaptation becomes necessary to 
ensure that the system’s reliability requirements remain satisfied.  

While majority of runtime adaptation approaches take a reactive 
stance in response to degradation of the system reliability, our 
approach can be used proactively in anticipation of reliability 
degradation. This is done by system monitoring and continuous 
reliability assessment that incorporates fluctuating operational 
context as described earlier. In the rest of this section, we briefly 
describe the system-level reliability analysis approach and the role 
of architectural style and deployment architecture.   

6.1 System Reliability Calculation 
Our Markov-based system-level reliability estimation approach is 
based on the model presented by Wang et al. [32], where the 
system reliability is estimated compositionally based on the 
reliability of individual components, the architectural style 
governing their interactions, and the system’s operational profile. 
A DTMC is built by mapping the components and their 
interactions to a state diagram [32]. A state si maps to one or more 
components in concurrent execution whose completion is required 
in order to transfer control over to the next state. A state transition 
with a probability Pij represents the probability of undergoing a 
transition from si to state sj. Accordingly, system reliability R is 
computed as: 

, � #-�%�.�,� /0/
/123/        (1) 

where M is a & 4 & matrix in which si is the entry state and sk is 
the exit state and whose elements are computed as follows: 

5#6� 7% � � 89:;:<������=>?>@�=:�A@?Bh@=�=>?>@�=<�?CD�6� E �F
���������������������������������������������������������G>h@AH6=@�I 

where Ri is the reliability of state si, and ,� is the reliability of the 
exit state.�/J - K/ is the determinant of matrix #J - K%, while /L/ 
is the determinant of the remaining matrix excluding the last row 
and the first column of #J - K%. 
As an example, consider the following deployment scenario for 
the emergency response robot. A fireman interacts with the robot 
using a PDA. The firemen issues a high-level command (e.g., go 
into the restaurant and extinguish a grease fire) which is received 
by the Controller. The Controller decides upon the appropriate 
sequence of intermediate actions, which will result in the 
successful completion of (or inability to complete) the original 
command. To complete the task, the Controller makes use of a 
variety of sensors, which detect obstacles, proximity, and heat, a 
navigator which plots waypoints, and a mechanical actuator which 
is used to perform the physical activities.  

Let us assume that the initial component reliabilities for the 
Controller and Navigator components are respectively computed 
to be Controller: C = 0.9967 and Navigator: N = 0.9751 using the 
approach described in Section 5. For the purpose of this 
illustration, we assume the remaining components and connectors 
in the system (Input Communication Connector: IC, Touch 
Sensors: TS1, TS2, Heat Sensors: HS1, HS2, Proximity Sensors: 

PS1, PS2,  Actuator: A, and Output Communication Connector: 
OC) are 100% reliable. 

The state model in Figure 4a depicts the control flow interactions 
among the various components in this configuration, and the 
transition probabilities between the components obtained through 
runtime monitoring. As shown, each of the components IC, TS1, 
TS2, C, N, A and OC have been mapped directly to a state since 
they execute in a sequential manner. Components HS1, HS2, PS1, 
and PS2 have been mapped to a single state S since they all 
execute in parallel upon receiving control, and upon completion 
the control transfers back to C. From this state model a 
corresponding transition matrix M is created with the matrix 
elements representing probability of successfully transitioning 

from state Si to Sj computed as�,M 4 NM�. In cases where a state 
transition occurs in a sequential manner, Ri is the reliability of the 
component executing in state Si, whereas when a transition occurs 
out of the parallel set, Ri is the multiplication of the reliabilities of 
all components in state Si. Using the transition probabilities in the 
state model (Pij) and the component-level reliabilities, we obtain 
the following for transition matrix M: 

                   ��������������J���O�����O�P�������������������������������������Q�����������������������������R�� 

���������������

J����O�����O�P�����������Q�������R���� �
��
��
��
�� � � � � � � �� � � � � � � �� � � � � � � �� � � � �	

�� �	���
 �	�
�� �	�
��� � � � � � � �� � � �	
��� � � � �� � � � � � � �� � � � � � � � ��

��
��
��

 

 

Solving the model according to equation (1) yields a system 
reliability of 0.9385. 

6.2 Impact of Architectural Style 
Architectural styles are a set of constraints on the structure and 
behavior of a system to elicit particular desirable qualities [19]. 
Use of specific architectural styles is a way to apply preconceived 
solutions to similar recurring software problems. Runtime 
adaptation and reconfiguration of the system aimed at improving 
system’s quality may often require changes to the system’s 
architectural style. The fault tolerant style, for example, improves 

   

Figure 4. (a) State model for the robot (b) State model with  

the Navigator replicated. 
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reliability by replicating critical components. A fault tolerant 
connector in the form of middleware can be used to handle 
component failures and to manage the hot standby copies. In the 
case of the robot, the original architecture (Figure 1b) 
demonstrates the system when the components are allocated to 
three processes with the Navigator and Controller components 
running on separate OS processes. Applying the fault tolerant 
architectural style in this case can improve the reliability by 
replicating the Navigator component, which represents a critical 
point of failure. Recall from section 4 that we have adopted a 
probabilistic failure model, commonly used in the literature, Here, 
an underlying assumption is that replicas fail independently. 
Figure 1c shows a replicated Navigator component added to the 
original architecture while running on a new process. The 
corresponding state model (Figure 4b) shows the two replicated 
instances of the Navigator N1 and N2 both mapped to state N'. The 
reliability of the new state N' can be computed as the probability 
that at least one of them does not fail [32]. Hence the probability 
of state N' executing correctly is 0.9994. Assuming the reliability 
of all other components and each of the Navigator components to 
be the same as before, matrix M can be updated where state N is 
replaced by the new state N', and the matrix element representing 
the transition from N (now N') to C increases to 0.9994 from 
0.9751. Solving the model above according to equation (1) yields 
a system reliability of 0.9824, which is an improvement of 4.7%. 

6.3 Impact of Deployment Architecture 
A system’s deployment architecture is essentially an allocation of 
its software components to hardware hosts and OS processes. A 
system may be realized using more than one deployment 
architecture. At the same time, the deployment architecture has a 
significant impact on system’s reliability. In this paper, we focus 
on the component-to-process allocation, as another representative 
method employed by RESIST to prevent reliability degradations.  

When multiple components are allocated to the same process, a 
failure in one component could cause all other components 
sharing the process to fail. In this case, redeploying components to 
separate processes could improve a system's reliability. In the case 
of the robot, consider two deployment configurations of the 
architecture, one where the Controller and the Navigator are 
deployed as two separate processes and another where the two 
components are deployed as threads sharing the same process. 

Let's assume that N and C represent reliability of the Navigator 
and the Controller components respectively when they execute on 
separate processes. When the two components are redeployed to 
share the same process, the effective reliability of each component 

is simply Q 4 �, where failure in either N or C will cause both 
components to fail. For instance, assuming that N and C to be 
0.9967 and 0.9751 respectively, the effective reliability of the two 
components would be N' = C' = 0.9719. Intuitively, the drop in the 
two components’ reliability results in a decrease in the overall 
system reliability. Therefore, the deployment architecture in which 
the two components are deployed as separate processes yields 
better configuration reliability. 

7. CONFIGURATION SELECTION 
The reliability estimation approach presented earlier can be used 
to determine the most reliable configuration for a situated software 
system. However, in practice, reliability estimates are used in 
conjunction with the estimates of other quality attributes (e.g., 
resource utilization efficiency, response time) to determine the 
optimal configuration for the system. As you may recall, the 

optimal configuration in RESIST is defined as one that satisfies 
the system’s reliability requirement, while improving other quality 
attributes of concern. In other words, in RESIST, reliability takes 
precedence over other quality attributes. This is a reasonable 
objective for the domains targeted by RESIST (i.e., mission 
critical), but it may not be appropriate for others. Consequently, 
the configuration selection problem becomes one of an 
optimization problem1.  Specifically, RESIST’s objective is to 
find an architectural configuration C* such that:  

 �S � �TUV�W#X%Y Z[#�%\[�]�^_`aMbcde�fgbMhfi  (2) 

Subject to   ,#�% j k� k ] l� � m k n � 
where Z[�is a utility function indicating the engineer’s preferences 
for the quality attribute q, R is equation (1) that calculates the 
expected reliability of a given architecture C as further detailed 
below. A utility function is used to perform trade-off analysis 
between competing (conflicting) quality concerns. In the 
emergency response system, we would need two utility functions: 
one specifies the user’s preference for improvements in reliability, 
while another one specifies the same for resource utilization 
efficiency. Elicitation of user’s preferences is a topic that has been 
investigated extensively in the literature (e.g., [28]). RESIST does 
not place a constraint on the format of utility functions. Arguably 
any user can specify hard constraints, which can be trivially 
modeled as step-functions. Alternatively, a utility function may 
take on more advanced forms (e.g., sigmoid curve), and elicited 
using the techniques in [28].   

The optimization is subject to ensuring the specified reliability 
requirement is not violated. RESIST may also use this constraint 
to determine when a reconfiguration of the system is necessary.  

Thus, for a system with o number of software components, where 
each component’s reliability prediction TM has computed according 
to the method described in Section 5, and h is the number of 
processes, an architectural configuration for the aforementioned 
optimization problem can be formally specified as follows: 

• Decision variable pM ] q. represent the number of replicas for 
component i  

• Decision variable WM� ] r���s to indicate if component�t is 
placed on the process u 

The configuration is subject to the following constraints: 

• Each component must be placed on a process:  

\t ] v�� 	 	 � o�� ) WM�w�x� �� �  
• An architectural constraint may be applied to limit the number 
of replicas allowed for a component: \t ] v�� 	 	 � o�, pM n yM � Hz@A@�y ] q.  

• Though a component is allowed to be both replicated and 
share a process with another component, an architectural 
constraint is imposed such that they may not both happen 
simultaneously.  This is because replication is most effective 
(i.e., achieves maximum improvement in reliability) if both the 
component and its replicas are isolated into separate processes. 
Thus, we introduce binary variable {M, which indicates if 
component t is sharing a process with another component: 

                                                                 

1 The analytical models used for estimating quality attributes other 
than reliability are outside the scope of this paper. 
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{M � |�� �6}�>z@�t~��BG��GC@C>�=z?A@=�?��AGB@==
�� �6}�>z@�t~��BG��GC@C>�DG@=�CG>�=z?A@�?��AGB@==I 

where \t� & ] v�� 	 	 � o���� and; 
�{M � � -�) WM�� #� - W��%b�+Mw�x�   

Thus, the effective reliability of component t is: 
TM���� � {MTM����� (�#� - {M%�TM��� 

where A:����� is the effective reliability of component 6 when the 
component shares a process with a different component, and; 

TM����� ��) TMWM�w�x� � rT�W�� (�#� - W��%b�+M s, 
and TM��� is the effective reliability of component t when the 
component is replicated with pM j � number of replicas, and;  

TM��� � �� - #� - TM%�.��  
The system reliability R(C) is computed by mapping the effective 

reliability TM��� of the components to states as described in 
equation (1). There are O(ht) ways of allocating software 
components to OS processes. The total number of different 
architectures resulting from the application of fault tolerant style is 
O(max{wi}

t). Thus, the size of the solution space for this 
optimization problem is O((max{wi}×h)

t). Clearly the solution 
space is large, even for small values of w, h, and t. However, the 
solution space may be significantly pruned by imposing 
architectural constraints, such as the limit on the number of 
replications allowed. 

Many commonly available algorithms could be used to solve the 
above optimization problem. For small problems RESIST finds 
the optimal solution using Integer Programming Solvers, while for 
large problems it uses stochastic techniques such as greedy and 
genetic. The details of these algorithms are outside the scope of 
this paper.  

8. IMPLEMENTATION 
We have developed a prototype implementation of RESIST that 
integrates (1) an extended version of XTEAM [4] as the 
environment for maintaining the structural, behavioral, and 
reliability models, (2) Prism-MW [15] as the context-aware 
middleware for obtaining monitoring data from the system and 
effecting reconfiguration changes, and (3) an off-the-shelf HMM 
toolbox for MATLAB. 

XTEAM is an extensible architectural modeling and analysis 
environment that supports modeling of a system’s software 
architecture using several well-known Architectural Description 
Languages (e.g., FSP and xADL for modeling the behavioral and 
structural properties of a system respectively). We extended 
XTEAM’s structural and behavioral meta-models with the 
annotations needed for reliability analysis. To that end, the 
traditional FSP support in XTEAM was extended to include the 
notion of failure states, and associated a transition probability with 
each FSP actions. We also extended the traditional xADL model 
support in XTEAM to model reliability properties of the 
architectural constructs, such as component reliability. Figure 5 
depicts a snapshot of the reliability-annotated xADL and FSP 
models for a subset of the robot’s software system. 

We have used XTEAM’s API for accessing and modifying the 
reliability-annotated models, which are then used to develop 
RESIST’s reliability analysis and proactive reconfiguration 

modules. RESIST’s analysis module reads the reliability-
annotated architectural models to generate the appropriate HMM, 
which is then solved using MATLAB’s HMM toolbox. The 
estimated reliability values are then used to find an optimal 
configuration for the system. 

The running system is implemented on top of Prism-MW 
middleware, which is integrated with RESIST to facilitate 
monitoring and adaptation. Prism-MW’s monitoring services 
provide the runtime data and contextual information needed for 
RESIST’s analysis. The reliability analysis may determine the 
need to change the system’s configuration to prevent reliability 
degradation. In turn, a new configuration is effected by making 
the appropriate changes to XTEAM’s architectural models. 
Whenever XTEAM’s models change (i.e., RESIST selects a new 
configuration), an architectural diff is performed, and the 
differences are effected through the dynamic adaptation services 
of Prism-MW. The details of Prism-MW’s support for mobility, 
context-awareness, and adaptation are described in [15].  

9. EVALUATION 
We have evaluated RESIST using its prototype implementation 
and the mobile emergency response system described earlier. The 
evaluation consists of three criteria: (1) the validity of reliability 
prediction based on expected changes in the context, (2) the 
effectiveness of proactive system reconfiguration, and (3) the 
performance overhead of runtime analysis. We used XTEAM to 
control the system’s operational profile (i.e., usage) and Prism-
MW for gathering runtime data. Neither the robotic software nor 
RESIST was controlled, which allowed them to behave as they 
would in practice. 

 

Figure 5. Reliability-annotated architectural models of a 

portion of robot’s Controller component in XTEAM: (a) 

structural view in xADL, and (b) behavioral view in FSP. 
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9.1  Validity of Reliability Prediction 
As described in Section 5, RESIST uses the system’s context to 
predict system’s near-future reliability by estimating the impact of 
contextual changes on a components’ internal behavior. We have 
examined the validity of our results by comparing RESIST’s 
predicted reliability values with those estimations obtained from 
the system’s actual behavior. While we have evaluated the validity 
of our predictions for the entire system, in this section, we present 
details of the Controller’s reliability analysis.  

For this experiment, we controlled the influence of context by 
varying the probability of the robot encountering an obstacle on its 
path, which we refer to as bump probability. The bump probability 
correlates to the complexity of the terrain through which the robot 
navigates in order to accomplish an assigned task. An increase in 
the bump probability causes the Controller to transition from the 
moving state to the estimating state with a higher probability 
(recall Figure 3), thereby altering its 
operational profile. The techniques 
presented in [26] together with multi-
linear regression were used in our 
experiments to derive function " (recall 
Section 5.2) that estimates the impact 
of change in terrain to change in bump 

probability with ��
	�� error at 95% 
confidence level. 

In addition to analyzing the effect of 
context, we varied the failure 
probability of the Controller, 
specifically the probability of failure 
from the estimating state. We 
compared RESIST’s reliability 
predictions with the actual observed 
reliability of the robot during operation. 
In this experiment, the Navigator and 
the Controller were placed in separate 
processes, and except for the 

Controller, all other components’ failure probability was fixed at 
0. 

Figure 6 shows the comparison of predicted reliability and 
observed reliability in three execution scenarios where different 
bump probabilities were predicted, and varied the failure 
probability of the Controller component from 0 to 0.05. As 
shown, the Controller’s reliability decreases as the bump 
probability increases. This is because an increase in transitions to 
the estimating state leads to more failures. Further, the deviation 
between observed and predicted reliability both at the level of 
system and Controller are extremely small. Note that since the 
function "  used in the experiment had a 95% likely error bound 
of 2.1%, small deviation in results is to be expected.  However, 
the deviation is small enough that very accurate adaptation 
decisions could be made.  

9.2 Proactive Reconfiguration 
We evaluate RESIST’s ability to satisfy the system’s reliability 
requirement through proactive reconfiguration. We compared an 
instance of the robot using RESIST against one without RESIST. 
The failure probabilities of all components in both instances were 
fixed. We varied the bump probability (effectively changing the 
context) and observed the proactive reconfiguration process. The 
robot was required to maintain a system reliability of at least 97% 
throughout its execution, which formed the constraint in our 
optimization problem.  

Initially, the Navigator was placed in a separate process, and the 
other components were placed together in one process. This 
configuration was based on a design-time analysis of the system 
that satisfied the reliability requirement and minimized the 
resource utilization. In order to predict the resource utilization, we 
used an analytical model that given a configuration of the system 
predicts its resource demand in terms of memory and CPU 
utilization. The analytical model considers the number of required 
OS processes, the number of component replicas, together with 
the average memory utilization, and the average CPU clock cycles 
required by each component. The components’ memory and CPU 
utilization estimates were obtained through their design-time 
benchmarking. Sigmoid curve functions were employed for 
expressing the user preferences for each of the quality attributes. 

 

Figure 6. Accuracy of reliability predictions: (a) system 

reliability (b) Controller’s reliability. 

 

Figure 7. Context-aware proactive reconfiguration. (a) System reliability (b) Resource 

utilization efficiency. 
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Figure 7a illustrates the comparison between the two instances of 
the robot as they maneuver the same area within a building with 
varying levels of complexity (i.e., obstacles). RESIST predicts the 
near future reliability of the system as it approaches an area with a 
complexity that is different from its current location. For instance, 
as the robot passes point B and before it reaches point C, RESIST 
anticipates a drop in reliability (since the bump probability 
increases to 0.14) and proactively adapts the system to maintain its 
reliability above 97%. As a result, the Navigator is replicated and 
the Controller is redeployed to a separate process. This 
reconfiguration prevents the reliability from dropping below the 
requirement. In contrast, the reliability of the robot without 
RESIST deteriorates significantly, falling below the 97% 
requirement.  

Figure 7b shows the effect of reconfiguration on the system’s 
resource utilization efficiency. For instance, at point C both CPU 
and memory utilization increase significantly due to the addition 
of the Navigator replica and separate processes. 

Similarly, RESIST continues to proactively manage the system’s 
configuration. In points F and I, in anticipation of a drop in 
reliability, RESIST proactively places the system in a more 
reliable configuration, albeit less efficient. On the other hand, in 
points D, G, and J, in anticipation of an improvement in reliability, 
RESIST proactively places the system in a more efficient 
configuration, while meeting the 97% reliability requirement. 

9.3 Overhead of Reliability Analysis 
Since RESIST is intended to manage situated software systems at 
runtime, it is important to assess the performance overhead of 
RESIST’s analysis. Table 1 shows the benchmarking results of 
RESIST’s reliability analysis on an Intel Core 2, 2.4 GHz, 2 GB 
RAM platform, which is representative of the average hardware 
capability present in modern mobile robots (e.g., [17]). The results 
show the time it took for performing the reliability analysis for 
varying number of commands (i.e., tasks sent to the robot). Each 
command on average resulted in 20 different monitoring 
observations (e.g., component interface invocations) to be 
collected and used for training the HMM. The benchmark in the 
largest scenario, consisting of 2,000 commands and 41,879 
observations took 10.45 seconds. However, in practice, our 
experience with the emergency response robot shows the analysis 
is often performed on much smaller number of observations, 
requiring only a fraction of a second for completion.  

10. RELATED WORK 
Over the past three decades many software reliability approaches 
have been proposed. The approaches most relevant to our work 
are those that consider the system’s software architecture 
[9][10][13][23][24][27][32]. The underlying assumptions in these 
approaches make them unsuitable for use in the domain of 
situated, dynamic, and mobile systems. Majority of these 
approaches focus on system-level analysis and assume the 
reliabilities of the software components are fixed and known. 
Moreover, many of these approaches assume (sometimes 
implicitly) that the operational profile of the system is known and 
does not change at runtime. Finally, none considers the impact of 

contextual change on the software system’s reliability. Three 
recent surveys [8][10][11] corroborate these observations.  

Our past research has addressed some of the uncertainties 
associated with design-time reliability analysis by incorporating 
various sources of information [3][25]. We also identified the 
challenges of reliability analysis in the mobile domain [14]. Our 
objective was to provide rough reliability predictions early in the 
software life-cycle when an implementation of the system is not 
available. In contrast to our previous work, here we are concerned 
with runtime reliability of the system and rely on the availability 
of its implementation. Moreover, we incorporate latest operational 
and contextual information to predict the system’s reliability and 
proactively place it in the optimal configuration. 

Few approaches combine software architecture and reliability 
analysis using runtime data [6][20][31]. While [20] and [31] target 
traditional and highly predictable software, KAMI framework [6] 
provides continuous dependability analysis using a model-driven 
approach. Specifically, KAMI uses runtime data to update the 
parameters of reliability and performance models. The focus of 
RESIST has been different from KAMI. KAMI reactively adjusts 
the system’s models, while RESIST proactively predicts near 
future reliability of the system. Moreover, unlike KAMI, RESIST 
furnishes reliability predictions at the component level. We 
believe KAMI and RESIST to be complementary, as the 
continuous refinement of parameters in KAMI could be utilized in 
updating RESIST’s reliability models.  

Related to our work are the general purpose architecture-based 
adaptation frameworks [2][7][12]. In contrast to them, RESIST is 
narrowly aimed at improving the reliability of dynamic situated 
systems. While none of the existing frameworks directly achieves 
our objectives, they form the foundation of our research. In fact, 
our framework is compatible with the widely accepted three layer 
reference model of self-adaptation [12].  

Finally, related is previous research on middleware intended for 
situated software systems. Aura [29] is an architectural style and 
supporting middleware for ubiquitous computing applications 
with a special focus on user mobility, context awareness, and 
context switching. XMIDDLE [16] is a data-sharing middleware 
for mobile computing. MobiPADS [1] is a reflective middleware 
that supports active deployment of augmented services (called 
mobilets) for mobile computing. Lime [18] is a Java-based 
middleware that provides a coordination layer that can be 
exploited for designing applications which exhibit either logical or 
physical mobility, or both. Unlike RESIST, none of the above 
technologies provides reliability-driven support for optimization 
of situated software systems through proactive adaptation.  

11. CONCLUSION  
Software systems are increasingly situated in mission critical 
settings, which present stringent reliability requirements. These 
systems are predominantly mobile, embedded, and pervasive, 
which are innately dynamic and unpredictable. In turn, no 
particular configuration of the system is optimal for the system’s 
entire operational life-time. We presented RESIST, a framework 
intended to satisfy the reliability requirements, while taking into 
consideration other quality attributes (e.g., efficiency) through 
proactive reconfiguration of the software. The three key 
contributions of RESIST are: (1) incorporation of multiple sources 
of information, in particular contextual information, to provide 
refined reliability predictions at runtime; (2) automatically find the 
optimal architectural configuration that achieves the appropriate-

Table 1. Execution time of reliability analysis in seconds. 

Num. of Commands 10 50 100 250 500 1000 2000 

Num. of Observation 174 1062 1741 5874 9553 20028 41879 

Execution Time in Sec. 0.13 0.35 0.69 1.73 2.48 5.10 10.45 
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level of tradeoff between reliability and other quality attributes; 
and (3) proactively adapt the system by positioning it in the 
optimal configuration before the system’s reliability degrades.  

In our future work, we intend to evaluate the scalability of 
RESIST in large-scale software systems comprising of hundreds 
of components and hardware hosts. We also intend to increase the 
types of reconfiguration decisions and dependability tradeoffs that 
RESIST supports. Finally, we plan to investigate the use of other 
stochastic approaches (e.g., Dynamic Bayesian Networks, and 
Hierarchical HMM) and potentially an integration with KAMI [6] 
to support incremental refinement of DTMC parameters, as 
opposed to periodic assessment of the reliability at runtime.  
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