
1

RESISTing Reliability Degradation through
Proactive Reconfiguration

Deshan Cooray 1 Sam Malek 1 Roshanak Roshandel 2 David Kilgore 1
1
George Mason University

Department of Computer Science

{dcooray, smalek, ckilgor1}@gmu.edu

2
 Seattle University

Department of Computer Science and Software Engineering

roshanak@seattleu.edu

ABSTRACT
Situated software systems are an emerging class of systems that
are predominantly pervasive, embedded, and mobile. They are
marked with a high degree of unpredictability and dynamism in
the execution context. At the same time, such systems often need
to satisfy strict reliability requirements. Most current software
reliability analysis approaches are not suitable for situated
software systems. We propose an approach geared to such
systems, which continuously furnishes refined reliability
predictions at runtime by incorporating various sources of
information. The reliability predictions are leveraged to
proactively place the software in the optimal configuration with
respect to changing conditions. Our approach considers two
representative architectural reconfiguration decisions that impact
the system’s reliability: reallocation of components to processes
and changing the architectural style. We have realized the
approach as part of a framework intended for mission-critical
settings, called REsilient SItuated SofTware system (RESIST), and
evaluated it using a mobile emergency response system.

Categories and Subject Descriptors
D.2.4 [Software Engineering]: Software/Program Verification –
Reliability; D.2.11 [Software Engineering]: Software
Architectures.

General Terms
Design, Reliability

Keywords
Reliability, Software Architecture, Self-Adaptation, Mobility

1. INTRODUCTION
Software systems are fast permeating a variety of domains,
including emergency response, industrial automation, navigation,
health care, power grid, and civil infrastructure. We call this
emerging class of systems situated software systems, which are
predominantly mobile, embedded, and pervasive. They are
characterized by their highly dynamic configuration, unknown
operational profile, and fluctuating conditions. At the same time,
given the mission critical nature of the domains in which they are

deployed (e.g., emergency response), majority of situated systems
are expected to satisfy stringent reliability requirements.

Engineers of a situated software system typically spend significant
effort to determine a good configuration for the system to ensure
its adherence to functional and non-functional requirements. For
instance, they may perform a trade-off analysis between the
system’s resource utilization efficiency and reliability when they
decide the allocation of software components to operating system
(OS) processes. Clearly the overall reliability of such systems
depends on problems both internal (e.g., software bugs) and
external (e.g., network disconnection, hardware failure) to the
software. The key underlying insight in our research is that some
internal software problems may manifest themselves only under
certain dynamic characteristics external to the software (e.g.,
physical location), which is traditionally referred to as context [1].

Due to variability in the execution context, the optimal
configuration for a situated system cannot be determined prior to
its deployment, and no particular configuration can be optimal for
the system’s entire operational lifetime. Thus, runtime
reconfiguration of the system may be necessary to achieve the
system’s maximum potential. Given the mission critical nature of
situated systems, we define the optimal configuration as one that
satisfies the reliability requirement, while taking into
consideration other quality attributes of concern (e.g., resource
utilization efficiency, such as memory and CPU usage).

In this paper, we describe and evaluate REsilient SItuated
SofTware system (RESIST), a framework intended to address
reliability concerns in mission critical, dynamic, and mobile
setting. RESIST furnishes a compositional approach to reliability
estimation starting with analysis at the component level, which in
turn makes it possible to assess the impact of adaptation choices
on the system’s reliability. The analysis is performed continuously
at runtime by incorporating various sources of information. In
addition to the architectural models and the monitoring data,
RESIST incorporates contextual information to predict the
reliability of the system in its near future operation.

RESIST uses the reliability predictions to (1) proactively
determine when the system should be adapted, and (2) find the
optimal configuration for the near future operation of the system.
Our evaluations show that our reliability predictions are accurate
with respect to the observed system reliability. We thus consider
the predicted reliability as an indicator for decision making. An
important contribution of our work is proactive adaptation based
on our reliability analysis that reconfigures the system at runtime
prior to actual reliability degradation. This trait clearly sets our

Permission to make digital or hard copies of all or part of this work for
personal or classroom use is granted without fee provided that copies are
not made or distributed for profit or commercial advantage and that
copies bear this notice and the full citation on the first page. To copy
otherwise, or republish, to post on servers or to redistribute to lists,
requires prior specific permission and/or a fee.
ASE’10, September 20–24, 2010, Antwerp, Belgium.
Copyright 2010 ACM 978-1-4503-0116-9/10/09...$10.00.

2

work apart from the majority of existing self-adaptive frameworks
that are reactive in their decision making [2][12].

We have developed a prototype implementation of RESIST on top
of a tool-suite, which consists of an existing context-aware
architectural middleware integrated with a visual architectural
modeling and analysis environment. Finally, RESIST is evaluated
using a robotics emergency response system.

The remainder of this paper is organized as follows. Section 2
presents a motivating example. Section 3 provides a high-level
overview of RESIST, while Section 4 presents our failure model.
Sections 5 and 6 present the component-level and system-level
reliability models, respectively. Section 7 details the configuration
selection process. A prototype of RESIST and evaluation of the
approach are presented in Sections 8 and 9. An overview of
related work and avenues of future research conclude the paper.

2. MOTIVATING EXAMPLE
Emergency response is a domain that entails a high degree of
mission criticality. Software systems designed for this domain
thus have stringent reliability requirements. As a motivating
example, consider a mobile distributed emergency response
system intended to aid the emergency personnel in fire crises, a
prototype of which was developed in our previous work [5]. This
system consists of several entities, including a central dispatcher
that serves as the “Headquarters” for coordinating the crew
activities, smart fire engines that are designed to alert the
dispatcher of the current location of the vehicle and provide its
occupant with information concerning the crisis scene, firefighters
equipped with PDAs capable of controlling the robots and sensors,
and mobile robots that execute the high-level commands.

While the entire system is highly dynamic and could benefit from
our approach, for the clarity of exposition we focus on the robotic
subsystem. A robot consists of several electronic sensors and
mechanical actuators that allow it to autonomously navigate,
detect smoke, stream video, and extinguish fire. It is constrained
by limited battery life, memory, processing speed, and
connectivity. Architectural design choices affecting the system at
runtime aim at accommodating these constraints.

An example architectural strategy for improving the system’s
resource utilization efficiency is to use a thread-based architecture.
Software components are deployed as separate threads within a
single OS process, thus allowing for the resources (e.g., stack
memory) to be shared among components, while avoiding the
overhead (e.g., context switching) associated with managing many

separate processes. However, since a process may exit
prematurely due to an errant thread, a disadvantage of the thread-
based model is a potential decrease in system reliability.

Figures 1a and b show two alternative allocations of the robot’s
software components to OS processes. Based on the above
discussion, from a system’s perspective it is reasonable to expect
the architecture depicted in Figure 1a to be more efficient in terms
of utilization of system’s resources, while the one depicted in
Figure 1b to be more reliable. Determining the best configuration
depends on (1) the device’s fluctuating resources (e.g., memory
and CPU utilization, available battery), and (2) the reliability of
the system’s constituent components, which as detailed later may
vary due to changes in context.

The above scenario demonstrates the impact of architectural
decisions on system’s quality attributes. Such decisions while
critical to system’s dependability cannot be made effectively at
design-time. It is only reasonable to assume that some of these
decisions must be made at runtime, requiring specialized
methodologies that continuously evaluate the impact of these
decisions on system’s dependability. We use this system in the
remainder of the paper to describe and evaluate our approach.

3. FRAMEWORK OVERVIEW
An overview of RESIST framework is depicted in Figure 2. The
process is organized as a feedback control loop that continuously
monitors, analyzes, and adapts the system at runtime. RESIST
consists of three conceptual software components.

At design-time and before the system’s implementation is
complete, an initial set of architecture-based reliability models are
developed. These models are used at runtime to assess a variety of
configuration choices and to serve as predictors for the future
reliability of the system. Unlike the traditional architectural
models, they embody contextual properties necessary for
reliability analysis of situated systems. As described below, these
models are expected to be updated and refined at runtime.

Architecture-based reliability models along with contextual and
monitoring information obtained from the system are used by the
Component-Level Reliability Analyzer to predict the reliability of
system’s components in their near future operation. These fine-
grained reliability estimates are used by the Configuration
Reliability Analyzer to determine the reliability of alternative
configurations for the system. The Configuration Selector is in
turn used to select a suitable configuration for the near future
operation of the system. The configuration selector may use other

Alert

Command

Result

Result

Process 1

Navigator

Sensor
Sensor

Sensor

Actuator

Plan

Mission result

PDA command

Process 3

Result

Plan Navigator

Controller

Process 4

(a) (b)

Alert

Command

Result

Result

Process 1

Navigator

Sensor
Sensor

Sensor

Actuator

Plan

Mission result

PDA command

Controller

(c)

Alert

Command

Result

Process 1

Sensor
Sensor

Sensor

Plan

Mission result

PDA command

Process 3

Process

Component

Required

Interface

Provided

Interface

Legend

Navigator

Process 2

Result

ActuatorController

Process 2

Figure 1. Component-to-process allocation alternatives.

3

quality attributes, such as performance, in the selection process.
The process for obtaining and estimating these properties is
beyond the scope of this paper, which is focused on reliability
concerns.

Once a new configuration is selected, the Context-Aware
Middleware adapts the system at runtime to reflect the changes in
configuration. The Context-Aware Middleware provides support
for execution, monitoring, and adaptation of a software system in
terms of its architectural constructs (e.g., components, connectors,
and configuration). At runtime, the middleware monitors the
software system for information that is used to refine the
reliability predictions. This information is obtained from multiple
sources, such as monitoring internal (e.g., frequency of failures,
exceptions, and service requests) and external (e.g., network
fluctuations, battery charge) software properties, changes in the
structure of the software (e.g., disconnection of components due
to network drop outs, off-loading of components due to drained
battery), and contextual properties (e.g., physical location). Since
the monitored data represents the most recent operational,
structural, and contextual profile of the system’s execution, it can
be used to assess the system reliability more accurately. Note that
unlike previous approaches [13][23][31] we do not rely solely on
the monitoring data. Instead, we incorporate architectural
knowledge, monitoring data, and contextual changes at runtime in
a complementary fashion to produce more accurate results.

4. RELIABILITY AND FAILURE MODEL
RESIST estimates reliability as the probability that a system
performs its required functions under stated conditions for a
specified period of time [20]. In situated software systems, given
the ongoing changes in system’s operational conditions, the
reliability may change over time. We consider a failure to be an
inconsistent behavior of a system with respect to its specification.
Faults are caused by defects (e.g., software or hardware error),
and are abnormal conditions that may cause a reduction in, or loss
of, the capability of a functional unit to perform a required
function. Thus, faults are causes of failures [20].

Consistent with other architecture-based reliability approaches
[8][9][10][11] we assume that the occurrence of a failure is
stochastic and that components failure model is fail-stop. Failures
are thus reliably detectable by middleware facilities. Furthermore,
failed components are assumed to eventually (automatically or
manually) recover and resume normal behavior.

We consider two types of failure in RESIST: component and
process failures. Component failure is caused by a fault within the
component’s implementation. Its effects are contained within the
boundary of the component except when it causes a process to
fail. Process failure occurs when one of the components running
as a thread within a process exits prematurely, causing the OS
process, including all of the components deployed on it, to fail.

RESIST’s reliability model is targeted at distinguishing among
alternative architectural configurations, and thus does not consider
failures (e.g., wrong results, mismatched data type) that cannot be
resolved through architectural means. We assume either such
defects are detected during the construction of the system or the
failure is contained within the component in which the fault
occurred (e.g., through the use of appropriate pre- and post-
conditions). While RESIST could be extended to accommodate
these additional types of failures, we do not believe such failures
could be treated effectively through architectural reconfiguration.

5. COMPONENT-LEVEL ANALYSIS
Structural and behavioral knowledge embedded in software
architectural models provide an appropriate level of abstraction
from which reasoning about system’s quality attributes is feasible
[19]. Architectural models are typically compositional: structure
and behavior of complex systems are described in terms of their
constituent components. Despite this however, as identified by
recent surveys [8][10][11], majority of existing architecture-based
reliability modeling approaches largely focus on analysis at the
system level. Moreover, those approaches that incorporate
individual component reliabilities into analysis, assume that
component reliabilities are known apriori. Consequently, existing
approaches are not suitable for situated systems, where the
reliabilities of components and system fluctuate with the context
in which they are deployed. A purely system-wide analysis offers
little help in optimizing the system’s architecture in this setting.

5.1 Component Reliability Calculation
Our component-level reliability model relies on dynamic learning
techniques, specifically Hidden Markov Models (HMMs) [22], to
provide continuous reliability refinement. Component reliability is
estimated stochastically using a Discrete Time Markov Chain
(DTMC) and in terms of the fraction of the time spent in failure
states by the component. A DTMC is defined as a stochastic
process with a set of states S = {S1, S2, ..., SN} and a transition
matrix A = {aij}, where aij is the probability of transitioning from
state Si to state Sj. Reliability is computed by solving for the
steady state probability (obtained from standard numerical
methods [30]) of not being in any failure state. A number of
approaches can be taken to ensure tractability if the state space
size is determined to be too big [30].

Obtaining transition probabilities (matrix A) can be challenging
especially at design-time. Our past research [3] has explored a
range of information sources that can be used to derive these
probabilities at design-time. In the case of mobile, distributed, and
situated software systems, obtaining these values are further
complicated by the fact that the system’s behavior changes at
runtime in response to changes external to the system. We rely on
the availability of monitoring data obtained from the running
system to determine the transition probability matrix A. While a

Context Aware Middleware

Configuration

Selector

Running Software System

Architectural Models

Component-Level

Reliability Analyzer

Configuration
Reliability Analyzer

RESIST

U
ses

Uses

Context info

External

Environment

Figure 2. Overview of RESIST framework.

4

standard Markov-based approach would assume that there is a
one-to-one correspondence between observed runtime events and
sequence of states in the model, such correspondence may not
exist in systems with realistic level of complexity.

As confirmed by our preliminary results [3], in such
circumstances Hidden Markov Models (HMMs) [22] can be used
to learn from runtime data and to obtain behavioral transition
probabilities. An HMM is defined by a set of states S = {S1, S2, ...,
SN}, a transition matrix A = {aij} representing the probabilities of
transitions between states, a set of observations O = {O1, O2, …
OM}, and an observation probability matrix E = {eik}, which
represents the probability of observing event Ok in state Si. The
sets S and O of the HMM come from the component’s
architectural model (e.g., statechart diagram), while runtime data
obtained through monitoring becomes training data for the HMM.

We use the Baum-Welch algorithm [22] to train and solve the
HMM. The input to the algorithm is the data obtained from
runtime monitoring of the software system, and consists of
sequences of observations. Given an initial HMM constructed as
described above, the Baum-Welch algorithm converges on the
transition matrix A, which as described above is used to calculate
probability of failure (or unreliability) in a DTMC.

To clarify the approach, consider the state machine depicted in
Figure 3 for the Controller component of the robot in the
emergency response system introduced earlier. When the
Controller is in idle state, it can receive commands from the
firefighter’s PDA, and when it is in estimating, moving or
planning states the robot makes use of other components such as
sensors and actuators. From this diagram we can derive the sets:

States S = {S1…S4, F} and Observations O = {O1…O11}

where F denotes a common failure state, S1…S4 denote behavioral
states (idle, estimating, planning, moving), and O1…O11 denote the
observations (state transitions).

At runtime, the system is monitored to obtain execution traces in
the form of observation sequences. These execution traces are
then used to train the HMM, using the Baum-Welch algorithm.
The Markov model obtained from this algorithm represents the
operational profile of the system based on the training data, which
represents the system's behavior based on its current context.

To better illustrate the concepts, consider the following transition
probability matrix obtained by running the Baum-Welch algorithm
on sample data obtained from the robot’s Controller:

���� � ����
��
��
� � � � � �� � �	
��
 � �	��
��	��
� � � �	�
�� �	����� �	��
� �	���
 � �	���
� � � � � ��

��
�

The steady state vector obtained from A represents the probability
of being in any of the states as the system operates overtime:

[]0.00330.1914 0.38490.22380.1966 . Here the last

column represents the probability of being in a failure state. The
Controller reliability based on its present runtime context is
computed as:

Rc = 1 - 0.0033 = 0.9967

5.2 Incorporating Context into Analysis
As mentioned earlier, given the dynamism present in situated
system’s domain, it is critical to incorporate the notion of context

into the analysis. Context corresponds to conditions external to the
software system, which change the behavior of the system, and
hence impact its reliability. As a result, to satisfy their reliability
requirements, situated software systems may need to be
reconfigured in response to contextual changes.

An important contribution of our research is the incorporation of
this contextual knowledge into our reliability predictions, which
enables proactive reconfiguration of the software prior to actual
degradations in reliability. In the case of this example, the robot
periodically takes snapshots of the environment and using existing
techniques [26] determines the complexity of the terrain. The
robot then compares the complexity of the current terrain with
previous snapshots. In cases where the terrain seems less/more
complex than the past context, the model is updated to reflect the
contextual change. For example, if there are many obstacles in the
field the robot anticipates more bumps. In the transition
probability matrix the probabilities corresponding to the robot’s
behavior in presence of bumps (e.g., probability of transition from
moving to estimating states) are updated to reflect this contextual
change.

More generally, we define a set �={��� � � ��� to denote a set of
contextual parameters monitored by our runtime infrastructure.
Our goal is to arrive at a revised transition probability matrix ��
that more accurately reflects the near future operation of the

component given the expected contextual changes. If ���� is a
transition probability from state �� to state �� in matrix � which is
affected by changes in a specific contextual parameter � , then �!�� � "#��� � $� %, where " is a context-specific function
quantifying the impact of contextual change on the transition
probability. In the case of the robotic system, we have used the
technique described in [26] to update the probability of
transitioning from moving to estimating states based on the
complexity of the terrain.

When updating ��� to �!�� the other elements in row & of the
matrix � must also be revised to ensure the cumulative probability
of all transitions in that row remains at 1, thereby retaining the
properties of a stochastic matrix. When revising the transition
probabilities in row�&, transition probability from state �� to failed
state �' is unchanged, since the failure probability is independent

pl
an

ni
ng

 c
om

pl
et
e
/

m
ov

e
(O

3
)

m
ov

in
g
co

m
pl
et
e
/

pl
an

 (O
4
)

fa
ilu

re
 (O

6
)

Figure 3. Behavioral model of the robot’s Controller

component.

5

of changes in context. The remaining transition probabilities in the
row are adjusted proportionately such that:

�!�� (��' () ��!�**+'�� =1

where ��' is the transition probability from state �� to failed state �', and��!�* is a transition probability in row & after proportional
adjustment.

6. CONFIGURATION-LEVEL ANALYSIS
Once the reliability of all components is obtained, a compositional
model is used to determine the reliability of specific system
configurations. Configuration reliability is in turn leveraged to
assess the adherence of a given configuration to the system
reliability goals. When a system does not meet the intended
reliability threshold, runtime adaptation becomes necessary to
ensure that the system’s reliability requirements remain satisfied.

While majority of runtime adaptation approaches take a reactive
stance in response to degradation of the system reliability, our
approach can be used proactively in anticipation of reliability
degradation. This is done by system monitoring and continuous
reliability assessment that incorporates fluctuating operational
context as described earlier. In the rest of this section, we briefly
describe the system-level reliability analysis approach and the role
of architectural style and deployment architecture.

6.1 System Reliability Calculation
Our Markov-based system-level reliability estimation approach is
based on the model presented by Wang et al. [32], where the
system reliability is estimated compositionally based on the
reliability of individual components, the architectural style
governing their interactions, and the system’s operational profile.
A DTMC is built by mapping the components and their
interactions to a state diagram [32]. A state si maps to one or more
components in concurrent execution whose completion is required
in order to transfer control over to the next state. A state transition
with a probability Pij represents the probability of undergoing a
transition from si to state sj. Accordingly, system reliability R is
computed as:

, � #-�%�.�,� /0/
/123/ (1)

where M is a & 4 & matrix in which si is the entry state and sk is
the exit state and whose elements are computed as follows:

5#6� 7% � � 89:;:<������=>?>@�=:�A@?Bh@=�=>?>@�=<�?CD�6� E �F
���G>h@AH6=@�I

where Ri is the reliability of state si, and ,� is the reliability of the
exit state.�/J - K/ is the determinant of matrix #J - K%, while /L/
is the determinant of the remaining matrix excluding the last row
and the first column of #J - K%.
As an example, consider the following deployment scenario for
the emergency response robot. A fireman interacts with the robot
using a PDA. The firemen issues a high-level command (e.g., go
into the restaurant and extinguish a grease fire) which is received
by the Controller. The Controller decides upon the appropriate
sequence of intermediate actions, which will result in the
successful completion of (or inability to complete) the original
command. To complete the task, the Controller makes use of a
variety of sensors, which detect obstacles, proximity, and heat, a
navigator which plots waypoints, and a mechanical actuator which
is used to perform the physical activities.

Let us assume that the initial component reliabilities for the
Controller and Navigator components are respectively computed
to be Controller: C = 0.9967 and Navigator: N = 0.9751 using the
approach described in Section 5. For the purpose of this
illustration, we assume the remaining components and connectors
in the system (Input Communication Connector: IC, Touch
Sensors: TS1, TS2, Heat Sensors: HS1, HS2, Proximity Sensors:

PS1, PS2, Actuator: A, and Output Communication Connector:
OC) are 100% reliable.

The state model in Figure 4a depicts the control flow interactions
among the various components in this configuration, and the
transition probabilities between the components obtained through
runtime monitoring. As shown, each of the components IC, TS1,
TS2, C, N, A and OC have been mapped directly to a state since
they execute in a sequential manner. Components HS1, HS2, PS1,
and PS2 have been mapped to a single state S since they all
execute in parallel upon receiving control, and upon completion
the control transfers back to C. From this state model a
corresponding transition matrix M is created with the matrix
elements representing probability of successfully transitioning

from state Si to Sj computed as�,M 4 NM�. In cases where a state
transition occurs in a sequential manner, Ri is the reliability of the
component executing in state Si, whereas when a transition occurs
out of the parallel set, Ri is the multiplication of the reliabilities of
all components in state Si. Using the transition probabilities in the
state model (Pij) and the component-level reliabilities, we obtain
the following for transition matrix M:

 ��������������J���O�����O�P�������������������������������������Q�����������������������������R��

���������������

J����O�����O�P�����������Q�������R���� �
��
��
��
�� � � � � � � �� � � � � � � �� � � � � � � �� � � � �	

�� �	���
 �	�
�� �	�
��� � � � � � � �� � � �	
��� � � � �� � � � � � � �� � � � � � � � ��

��
��
��

Solving the model according to equation (1) yields a system
reliability of 0.9385.

6.2 Impact of Architectural Style
Architectural styles are a set of constraints on the structure and
behavior of a system to elicit particular desirable qualities [19].
Use of specific architectural styles is a way to apply preconceived
solutions to similar recurring software problems. Runtime
adaptation and reconfiguration of the system aimed at improving
system’s quality may often require changes to the system’s
architectural style. The fault tolerant style, for example, improves

Figure 4. (a) State model for the robot (b) State model with

the Navigator replicated.

6

reliability by replicating critical components. A fault tolerant
connector in the form of middleware can be used to handle
component failures and to manage the hot standby copies. In the
case of the robot, the original architecture (Figure 1b)
demonstrates the system when the components are allocated to
three processes with the Navigator and Controller components
running on separate OS processes. Applying the fault tolerant
architectural style in this case can improve the reliability by
replicating the Navigator component, which represents a critical
point of failure. Recall from section 4 that we have adopted a
probabilistic failure model, commonly used in the literature, Here,
an underlying assumption is that replicas fail independently.
Figure 1c shows a replicated Navigator component added to the
original architecture while running on a new process. The
corresponding state model (Figure 4b) shows the two replicated
instances of the Navigator N1 and N2 both mapped to state N'. The
reliability of the new state N' can be computed as the probability
that at least one of them does not fail [32]. Hence the probability
of state N' executing correctly is 0.9994. Assuming the reliability
of all other components and each of the Navigator components to
be the same as before, matrix M can be updated where state N is
replaced by the new state N', and the matrix element representing
the transition from N (now N') to C increases to 0.9994 from
0.9751. Solving the model above according to equation (1) yields
a system reliability of 0.9824, which is an improvement of 4.7%.

6.3 Impact of Deployment Architecture
A system’s deployment architecture is essentially an allocation of
its software components to hardware hosts and OS processes. A
system may be realized using more than one deployment
architecture. At the same time, the deployment architecture has a
significant impact on system’s reliability. In this paper, we focus
on the component-to-process allocation, as another representative
method employed by RESIST to prevent reliability degradations.

When multiple components are allocated to the same process, a
failure in one component could cause all other components
sharing the process to fail. In this case, redeploying components to
separate processes could improve a system's reliability. In the case
of the robot, consider two deployment configurations of the
architecture, one where the Controller and the Navigator are
deployed as two separate processes and another where the two
components are deployed as threads sharing the same process.

Let's assume that N and C represent reliability of the Navigator
and the Controller components respectively when they execute on
separate processes. When the two components are redeployed to
share the same process, the effective reliability of each component

is simply Q 4 �, where failure in either N or C will cause both
components to fail. For instance, assuming that N and C to be
0.9967 and 0.9751 respectively, the effective reliability of the two
components would be N' = C' = 0.9719. Intuitively, the drop in the
two components’ reliability results in a decrease in the overall
system reliability. Therefore, the deployment architecture in which
the two components are deployed as separate processes yields
better configuration reliability.

7. CONFIGURATION SELECTION
The reliability estimation approach presented earlier can be used
to determine the most reliable configuration for a situated software
system. However, in practice, reliability estimates are used in
conjunction with the estimates of other quality attributes (e.g.,
resource utilization efficiency, response time) to determine the
optimal configuration for the system. As you may recall, the

optimal configuration in RESIST is defined as one that satisfies
the system’s reliability requirement, while improving other quality
attributes of concern. In other words, in RESIST, reliability takes
precedence over other quality attributes. This is a reasonable
objective for the domains targeted by RESIST (i.e., mission
critical), but it may not be appropriate for others. Consequently,
the configuration selection problem becomes one of an
optimization problem1. Specifically, RESIST’s objective is to
find an architectural configuration C* such that:

 �S � �TUV�W#X%Y Z[#�%\[�]�^_`aMbcde�fgbMhfi (2)

Subject to ,#�% j k� k] l� � m k n �
where Z[�is a utility function indicating the engineer’s preferences
for the quality attribute q, R is equation (1) that calculates the
expected reliability of a given architecture C as further detailed
below. A utility function is used to perform trade-off analysis
between competing (conflicting) quality concerns. In the
emergency response system, we would need two utility functions:
one specifies the user’s preference for improvements in reliability,
while another one specifies the same for resource utilization
efficiency. Elicitation of user’s preferences is a topic that has been
investigated extensively in the literature (e.g., [28]). RESIST does
not place a constraint on the format of utility functions. Arguably
any user can specify hard constraints, which can be trivially
modeled as step-functions. Alternatively, a utility function may
take on more advanced forms (e.g., sigmoid curve), and elicited
using the techniques in [28].

The optimization is subject to ensuring the specified reliability
requirement is not violated. RESIST may also use this constraint
to determine when a reconfiguration of the system is necessary.

Thus, for a system with o number of software components, where
each component’s reliability prediction TM has computed according
to the method described in Section 5, and h is the number of
processes, an architectural configuration for the aforementioned
optimization problem can be formally specified as follows:

• Decision variable pM] q. represent the number of replicas for
component i

• Decision variable WM�] r���s to indicate if component�t is
placed on the process u

The configuration is subject to the following constraints:

• Each component must be placed on a process:

\t] v�� 	 	 � o��) WM�w�x� �� �
• An architectural constraint may be applied to limit the number
of replicas allowed for a component: \t] v�� 	 	 � o�, pM n yM � Hz@A@�y] q.

• Though a component is allowed to be both replicated and
share a process with another component, an architectural
constraint is imposed such that they may not both happen
simultaneously. This is because replication is most effective
(i.e., achieves maximum improvement in reliability) if both the
component and its replicas are isolated into separate processes.
Thus, we introduce binary variable {M, which indicates if
component t is sharing a process with another component:

1 The analytical models used for estimating quality attributes other
than reliability are outside the scope of this paper.

7

{M � |�� �6}�>z@�t~��BG��GC@C>�=z?A@=�?��AGB@==
�� �6}�>z@�t~��BG��GC@C>�DG@=�CG>�=z?A@�?��AGB@==I

where \t� &] v�� 	 	 � o���� and;
�{M � � -�) WM�� #� - W��%b�+Mw�x�

Thus, the effective reliability of component t is:
TM���� � {MTM����� (�#� - {M%�TM���

where A:����� is the effective reliability of component 6 when the
component shares a process with a different component, and;

TM����� ��) TMWM�w�x� � rT�W�� (�#� - W��%b�+M s,
and TM��� is the effective reliability of component t when the
component is replicated with pM j � number of replicas, and;

TM��� � �� - #� - TM%�.��
The system reliability R(C) is computed by mapping the effective

reliability TM��� of the components to states as described in
equation (1). There are O(ht) ways of allocating software
components to OS processes. The total number of different
architectures resulting from the application of fault tolerant style is
O(max{wi}

t). Thus, the size of the solution space for this
optimization problem is O((max{wi}×h)

t). Clearly the solution
space is large, even for small values of w, h, and t. However, the
solution space may be significantly pruned by imposing
architectural constraints, such as the limit on the number of
replications allowed.

Many commonly available algorithms could be used to solve the
above optimization problem. For small problems RESIST finds
the optimal solution using Integer Programming Solvers, while for
large problems it uses stochastic techniques such as greedy and
genetic. The details of these algorithms are outside the scope of
this paper.

8. IMPLEMENTATION
We have developed a prototype implementation of RESIST that
integrates (1) an extended version of XTEAM [4] as the
environment for maintaining the structural, behavioral, and
reliability models, (2) Prism-MW [15] as the context-aware
middleware for obtaining monitoring data from the system and
effecting reconfiguration changes, and (3) an off-the-shelf HMM
toolbox for MATLAB.

XTEAM is an extensible architectural modeling and analysis
environment that supports modeling of a system’s software
architecture using several well-known Architectural Description
Languages (e.g., FSP and xADL for modeling the behavioral and
structural properties of a system respectively). We extended
XTEAM’s structural and behavioral meta-models with the
annotations needed for reliability analysis. To that end, the
traditional FSP support in XTEAM was extended to include the
notion of failure states, and associated a transition probability with
each FSP actions. We also extended the traditional xADL model
support in XTEAM to model reliability properties of the
architectural constructs, such as component reliability. Figure 5
depicts a snapshot of the reliability-annotated xADL and FSP
models for a subset of the robot’s software system.

We have used XTEAM’s API for accessing and modifying the
reliability-annotated models, which are then used to develop
RESIST’s reliability analysis and proactive reconfiguration

modules. RESIST’s analysis module reads the reliability-
annotated architectural models to generate the appropriate HMM,
which is then solved using MATLAB’s HMM toolbox. The
estimated reliability values are then used to find an optimal
configuration for the system.

The running system is implemented on top of Prism-MW
middleware, which is integrated with RESIST to facilitate
monitoring and adaptation. Prism-MW’s monitoring services
provide the runtime data and contextual information needed for
RESIST’s analysis. The reliability analysis may determine the
need to change the system’s configuration to prevent reliability
degradation. In turn, a new configuration is effected by making
the appropriate changes to XTEAM’s architectural models.
Whenever XTEAM’s models change (i.e., RESIST selects a new
configuration), an architectural diff is performed, and the
differences are effected through the dynamic adaptation services
of Prism-MW. The details of Prism-MW’s support for mobility,
context-awareness, and adaptation are described in [15].

9. EVALUATION
We have evaluated RESIST using its prototype implementation
and the mobile emergency response system described earlier. The
evaluation consists of three criteria: (1) the validity of reliability
prediction based on expected changes in the context, (2) the
effectiveness of proactive system reconfiguration, and (3) the
performance overhead of runtime analysis. We used XTEAM to
control the system’s operational profile (i.e., usage) and Prism-
MW for gathering runtime data. Neither the robotic software nor
RESIST was controlled, which allowed them to behave as they
would in practice.

Figure 5. Reliability-annotated architectural models of a

portion of robot’s Controller component in XTEAM: (a)

structural view in xADL, and (b) behavioral view in FSP.

8

9.1 Validity of Reliability Prediction
As described in Section 5, RESIST uses the system’s context to
predict system’s near-future reliability by estimating the impact of
contextual changes on a components’ internal behavior. We have
examined the validity of our results by comparing RESIST’s
predicted reliability values with those estimations obtained from
the system’s actual behavior. While we have evaluated the validity
of our predictions for the entire system, in this section, we present
details of the Controller’s reliability analysis.

For this experiment, we controlled the influence of context by
varying the probability of the robot encountering an obstacle on its
path, which we refer to as bump probability. The bump probability
correlates to the complexity of the terrain through which the robot
navigates in order to accomplish an assigned task. An increase in
the bump probability causes the Controller to transition from the
moving state to the estimating state with a higher probability
(recall Figure 3), thereby altering its
operational profile. The techniques
presented in [26] together with multi-
linear regression were used in our
experiments to derive function " (recall
Section 5.2) that estimates the impact
of change in terrain to change in bump

probability with ��
	�� error at 95%
confidence level.

In addition to analyzing the effect of
context, we varied the failure
probability of the Controller,
specifically the probability of failure
from the estimating state. We
compared RESIST’s reliability
predictions with the actual observed
reliability of the robot during operation.
In this experiment, the Navigator and
the Controller were placed in separate
processes, and except for the

Controller, all other components’ failure probability was fixed at
0.

Figure 6 shows the comparison of predicted reliability and
observed reliability in three execution scenarios where different
bump probabilities were predicted, and varied the failure
probability of the Controller component from 0 to 0.05. As
shown, the Controller’s reliability decreases as the bump
probability increases. This is because an increase in transitions to
the estimating state leads to more failures. Further, the deviation
between observed and predicted reliability both at the level of
system and Controller are extremely small. Note that since the
function " used in the experiment had a 95% likely error bound
of 2.1%, small deviation in results is to be expected. However,
the deviation is small enough that very accurate adaptation
decisions could be made.

9.2 Proactive Reconfiguration
We evaluate RESIST’s ability to satisfy the system’s reliability
requirement through proactive reconfiguration. We compared an
instance of the robot using RESIST against one without RESIST.
The failure probabilities of all components in both instances were
fixed. We varied the bump probability (effectively changing the
context) and observed the proactive reconfiguration process. The
robot was required to maintain a system reliability of at least 97%
throughout its execution, which formed the constraint in our
optimization problem.

Initially, the Navigator was placed in a separate process, and the
other components were placed together in one process. This
configuration was based on a design-time analysis of the system
that satisfied the reliability requirement and minimized the
resource utilization. In order to predict the resource utilization, we
used an analytical model that given a configuration of the system
predicts its resource demand in terms of memory and CPU
utilization. The analytical model considers the number of required
OS processes, the number of component replicas, together with
the average memory utilization, and the average CPU clock cycles
required by each component. The components’ memory and CPU
utilization estimates were obtained through their design-time
benchmarking. Sigmoid curve functions were employed for
expressing the user preferences for each of the quality attributes.

Figure 6. Accuracy of reliability predictions: (a) system

reliability (b) Controller’s reliability.

Figure 7. Context-aware proactive reconfiguration. (a) System reliability (b) Resource

utilization efficiency.

9

Figure 7a illustrates the comparison between the two instances of
the robot as they maneuver the same area within a building with
varying levels of complexity (i.e., obstacles). RESIST predicts the
near future reliability of the system as it approaches an area with a
complexity that is different from its current location. For instance,
as the robot passes point B and before it reaches point C, RESIST
anticipates a drop in reliability (since the bump probability
increases to 0.14) and proactively adapts the system to maintain its
reliability above 97%. As a result, the Navigator is replicated and
the Controller is redeployed to a separate process. This
reconfiguration prevents the reliability from dropping below the
requirement. In contrast, the reliability of the robot without
RESIST deteriorates significantly, falling below the 97%
requirement.

Figure 7b shows the effect of reconfiguration on the system’s
resource utilization efficiency. For instance, at point C both CPU
and memory utilization increase significantly due to the addition
of the Navigator replica and separate processes.

Similarly, RESIST continues to proactively manage the system’s
configuration. In points F and I, in anticipation of a drop in
reliability, RESIST proactively places the system in a more
reliable configuration, albeit less efficient. On the other hand, in
points D, G, and J, in anticipation of an improvement in reliability,
RESIST proactively places the system in a more efficient
configuration, while meeting the 97% reliability requirement.

9.3 Overhead of Reliability Analysis
Since RESIST is intended to manage situated software systems at
runtime, it is important to assess the performance overhead of
RESIST’s analysis. Table 1 shows the benchmarking results of
RESIST’s reliability analysis on an Intel Core 2, 2.4 GHz, 2 GB
RAM platform, which is representative of the average hardware
capability present in modern mobile robots (e.g., [17]). The results
show the time it took for performing the reliability analysis for
varying number of commands (i.e., tasks sent to the robot). Each
command on average resulted in 20 different monitoring
observations (e.g., component interface invocations) to be
collected and used for training the HMM. The benchmark in the
largest scenario, consisting of 2,000 commands and 41,879
observations took 10.45 seconds. However, in practice, our
experience with the emergency response robot shows the analysis
is often performed on much smaller number of observations,
requiring only a fraction of a second for completion.

10. RELATED WORK
Over the past three decades many software reliability approaches
have been proposed. The approaches most relevant to our work
are those that consider the system’s software architecture
[9][10][13][23][24][27][32]. The underlying assumptions in these
approaches make them unsuitable for use in the domain of
situated, dynamic, and mobile systems. Majority of these
approaches focus on system-level analysis and assume the
reliabilities of the software components are fixed and known.
Moreover, many of these approaches assume (sometimes
implicitly) that the operational profile of the system is known and
does not change at runtime. Finally, none considers the impact of

contextual change on the software system’s reliability. Three
recent surveys [8][10][11] corroborate these observations.

Our past research has addressed some of the uncertainties
associated with design-time reliability analysis by incorporating
various sources of information [3][25]. We also identified the
challenges of reliability analysis in the mobile domain [14]. Our
objective was to provide rough reliability predictions early in the
software life-cycle when an implementation of the system is not
available. In contrast to our previous work, here we are concerned
with runtime reliability of the system and rely on the availability
of its implementation. Moreover, we incorporate latest operational
and contextual information to predict the system’s reliability and
proactively place it in the optimal configuration.

Few approaches combine software architecture and reliability
analysis using runtime data [6][20][31]. While [20] and [31] target
traditional and highly predictable software, KAMI framework [6]
provides continuous dependability analysis using a model-driven
approach. Specifically, KAMI uses runtime data to update the
parameters of reliability and performance models. The focus of
RESIST has been different from KAMI. KAMI reactively adjusts
the system’s models, while RESIST proactively predicts near
future reliability of the system. Moreover, unlike KAMI, RESIST
furnishes reliability predictions at the component level. We
believe KAMI and RESIST to be complementary, as the
continuous refinement of parameters in KAMI could be utilized in
updating RESIST’s reliability models.

Related to our work are the general purpose architecture-based
adaptation frameworks [2][7][12]. In contrast to them, RESIST is
narrowly aimed at improving the reliability of dynamic situated
systems. While none of the existing frameworks directly achieves
our objectives, they form the foundation of our research. In fact,
our framework is compatible with the widely accepted three layer
reference model of self-adaptation [12].

Finally, related is previous research on middleware intended for
situated software systems. Aura [29] is an architectural style and
supporting middleware for ubiquitous computing applications
with a special focus on user mobility, context awareness, and
context switching. XMIDDLE [16] is a data-sharing middleware
for mobile computing. MobiPADS [1] is a reflective middleware
that supports active deployment of augmented services (called
mobilets) for mobile computing. Lime [18] is a Java-based
middleware that provides a coordination layer that can be
exploited for designing applications which exhibit either logical or
physical mobility, or both. Unlike RESIST, none of the above
technologies provides reliability-driven support for optimization
of situated software systems through proactive adaptation.

11. CONCLUSION
Software systems are increasingly situated in mission critical
settings, which present stringent reliability requirements. These
systems are predominantly mobile, embedded, and pervasive,
which are innately dynamic and unpredictable. In turn, no
particular configuration of the system is optimal for the system’s
entire operational life-time. We presented RESIST, a framework
intended to satisfy the reliability requirements, while taking into
consideration other quality attributes (e.g., efficiency) through
proactive reconfiguration of the software. The three key
contributions of RESIST are: (1) incorporation of multiple sources
of information, in particular contextual information, to provide
refined reliability predictions at runtime; (2) automatically find the
optimal architectural configuration that achieves the appropriate-

Table 1. Execution time of reliability analysis in seconds.

Num. of Commands 10 50 100 250 500 1000 2000

Num. of Observation 174 1062 1741 5874 9553 20028 41879

Execution Time in Sec. 0.13 0.35 0.69 1.73 2.48 5.10 10.45

10

level of tradeoff between reliability and other quality attributes;
and (3) proactively adapt the system by positioning it in the
optimal configuration before the system’s reliability degrades.

In our future work, we intend to evaluate the scalability of
RESIST in large-scale software systems comprising of hundreds
of components and hardware hosts. We also intend to increase the
types of reconfiguration decisions and dependability tradeoffs that
RESIST supports. Finally, we plan to investigate the use of other
stochastic approaches (e.g., Dynamic Bayesian Networks, and
Hierarchical HMM) and potentially an integration with KAMI [6]
to support incremental refinement of DTMC parameters, as
opposed to periodic assessment of the reliability at runtime.

12. ACKNOWLEDGMENTS
This work is supported in part by grants CCF-0937472 and CCF-
0820060 from the National Science Foundation.

13. REFERENCES
[1] A. Chan, et al. MobiPADS: Reflective Middleware for

Context-Aware Mobile Computing. IEEE TSE, 29(12), Dec.
2003.

[2] B. Cheng, et al. Software Engineering for Self-Adaptive
Systems: A Research Roadmap. Software Engineering for
Self-Adaptive Systems, LNCS hot topics, 2009.

[3] L. Cheung, R. Roshandel, et al. Early Prediction of Software
Component Reliability. ICSE, Leipzig, Germany, May 2008.

[4] G. Edwards, S. Malek, et al. Scenario-Driven Dynamic
Analysis of Distributed Architectures. Int’l Conf. on

Fundamental Approaches to Software Engineering, Portugal,
March 2007.

[5] N. Esfahani, S. Malek, et al. A Modeling language for
Activity-Oriented Composition of Service-Oriented Software
Systems. Int. Conf. on Model Driven Engineering Languages

and Systems, Denver, Colorado, Oct 2009.

[6] I. Epifani, et al. Model Evolution by Run-Time Parameter
Adaptation. ICSE, Vancouver, Canada, May 2008.

[7] D. Garlan, et al. Rainbow: Architecture-Based Self-
Adaptation with Reusable Infrastructure. IEEE Computer,
37(10), 2004.

[8] S. Gokhale, Architecture-Based Software Reliability
Analysis: Overview and Limitations. IEEE Transactions on
Dependable and Secure Computing, 4(1), Jan 2007.

[9] K. Goseva-Popstojanova, et al. Architectural Level Risk
Analysis using UML. IEEE TSE, Vol.29, No.10, Oct 2003.

[10] K. Goseva-Popstojanova, et al., Architecture-Based
Approaches to Software Reliability Prediction. Int’l. Journal
of Computer and Mathematics with Applications, 46(7), Oct
2003.

[11] A. Immonen, E. Niemela. Survey of reliability and
availability prediction methods from the viewpoint of
software architecture. Journal of Software and Systems
Modeling, Jan 2007.

[12] J. Kramer and J. Magee. Self-Managed Systems: an
Architectural Challenge. ICSE, Minneapolis, MN, May 2007.

[13] S. Krishnamurthy, A. Mathur. On the Estimation of
Reliability of a Software System Using Reliabilities of its
Components. Int’l Symp. on Software Reliability

Engineering, 1997.

[14] S. Malek, et al. Improving the Reliability of Mobile Software
Systems through Continuous Analysis and Proactive
Reconfiguration. ICSE, Vancouver, Canada, May 2009.

[15] S. Malek, et al. A Style-Aware Architectural Middleware for
Resource Constrained, Distributed Systems. IEEE

Transactions on Software Engineering, 31(3), March 2005.

[16] C. Mascolo, et al. XMIDDLE: A Data-Sharing Mid-dleware
for Mobile Computing. International Journal of Personal
and Wireless Communications, Kluwer, vol 21, 2002.

[17] Mobile Robots Inc. http://www.mobilerobots.com/

[18] A. L. Murphy, et al. Lime: A Middleware for Physical and
Logical Mobility. Int’l Conf. on Distributed Computing
Systems, Phoenix, Arizona, May 2001.

[19] D. Perry, A. Wolf. Foundations for the Study of Software
Architecture. Software Eng. Notes, 17(4), October 1992.

[20] H. Pham, Software Reliability, Springer, 2002.

[21] F. Popentiu, and P.Sens. A Software Architecture for
Monitoring the Reliability in Distributed Systems. European
Safety and Reliability Conf., Munich, Germany, Sept 1999.

[22] L. Rabiner. A Tutorial on Hidden Markov Models and
Selected Applications in Speech Recognition. Proceedings of
the IEEE, 77(2), Feb. 1989.

[23] R. Reussner, et al. Reliability Prediction for Component-
Based Software Architectures, Journal of Systems and
Software, 66(3), 2003.

[24] G. Rodrigues, et al. Using Scenarios to Predict the Reliability
of Concurrent Component-Based Software Systems. In’l
Conf. on Fundamental Approaches to Software Engineering,
Edinburgh, UK, April 2005.

[25] R. Roshandel, et al. A Bayesian Model for Predicting
Reliability of Software Systems at the Architectural Level.
Int. Conf. on Qual. of Soft. Arch., Boston, MA, July 2007.

[26] H. Seraji, A. Howard. Behavior-Based Robot Navigation on
Challenging Terrain: A Fuzzy Logic Approach. IEEE Trans.
on Robotics and Automation, vol. 18, no 3, June 2002.

[27] H. Singh, et al. A Bayesian Approach to Reliability
Prediction and Assessment of Component Based Systems.
Int. Symposium on Software Reliability Engineering, 2001.

[28] J. P. Sousa, et al. User Guidance of Resource-Adaptive
Systems. Int’l Conf. on Software and Data Technologies,
Porto, Portugal, July 2008.

[29] J. Sousa, D. Garlan. Aura: an Architectural Framework for
User Mobility in Ubiquitous Computing Environments. Int’l.
Conf. on Software Architecture, Montreal, Canada, August
2002.

[30] W.J. Stewart. Introduction to the numerical solution of
Markov Chains. Princeton University Press, 1994.

[31] W. Wang, et al. Moving Average Modeling Approach for
Computing Component-Based Software Reliability Growth
Trends. INFOCOMP Journal. of Computer Science, 5(3),
2006.

[32] W. Wang, D. Pan, M. Chen. An Architecture-Based Software
Reliability Model. Journal of Systems and Software, 2005.

