

Modeling Dimensions of Self-Adaptive
Software Systems

Jesper Andersson1, Rogerio de Lemos2, Sam Malek3, Danny Weyns4

1 Department of Computer Science, Växjö University,
S-351 95 Växjö Sweden

jesper.andersson@msi.vxu.se

 2 Computing Laboratory, University of Kent,
Canterbury, Kent, CT2 7NF, UK

r.delemos@kent.ac.uk

3 Department of Computer Science, George Mason University,
MS 4A4, 4400 University Drive, Fairfax, VA, 22030 U.S.A.

smalek@gmu.edu

4 Departement Computerwetenschappen, Katholieke Universiteit Leuven,
Celestijnenlaan 200 A, B-3001 Leuven, Belgium

danny.weyns@cs.kuleuven.be

Abstract. It is commonly agreed that a self-adaptive software system is one that
can modify itself at run-time due to changes in the system, its requirements, or
the environment in which it is deployed. A cursory review of the software
engineering literature attests to the wide spectrum of software systems that are
described as self-adaptive. The way self-adaptation is conceived depends on
various aspects, such as the users’ requirements, the particular properties of a
system, and the characteristics of the environment. In this paper, we propose a
classification of modeling dimensions for self-adaptive software systems. Each
modeling dimension describes a particular facet of the system that is relevant to
self-adaptation. The modeling dimensions provide the engineers with a common
set of vocabulary for specifying the self-adaptive properties under consideration
and select suitable solutions. We illustrate how the modeling dimensions apply to
several application scenarios.

Keywords: Self-Adaptive, Self-*, Dynamic Adaptation, Modeling

1. Introduction

Over the past few decades we have witnessed an unrelenting pattern of growth in
the size and complexity of software systems. This pattern of growth, which is very
likely to continue well into the foreseeable future, has motivated software engineering
researchers to develop techniques and tools that allow developers to deal with the
complexity of designing, building and testing large-scale software systems. However,
for the large part these advances have relied heavily on human reasoning or manual
intervention.

At the same time, the emergence of highly distributed, mobile, and embedded
systems that are often long-lived has made it increasingly infeasible to manually

manage and control such systems. This has prompted the development of a new class
of software systems, namely self-adaptive software systems, which can modify their
behavior at run-time due to changes in the system, its requirements, or the environment
in which it is deployed. A cursory review of the software engineering literature attests
to the wide spectrum of software systems that are argued to be self-adaptive. Indeed,
there is a lack of consensus among researchers and practitioners on the points of
variation among such software systems. We refer to these points of variations as
modeling dimensions. The underlying insight guiding our study is that any self-
adaptive system is built according to a conceptual model of adaptation, irrespective of
the technologies and tools leveraged for its implementation. In fact, often the models of
self-adaptation are represented implicitly in the form of domain knowledge or the
engineer’s expertise in the development of these systems. This in turn makes it harder
to systematically, or even qualitatively, compare the different approaches.

 In this paper, we identify modeling dimensions that describe various facets of self-
adaptation, and classify these modeling dimensions in terms of four groups. This
classification allows engineers to precisely specify the self-adaptive properties under
consideration and select suitable solutions.

Note that it is not our ambition to be exhaustive, nor do we claim this is the only, or
even the most appropriate classification. Our objective is to provide an initial impetus
towards defining a comprehensive classification of key properties that are associated
with self-adaptive systems. The purpose of such study is to establish a baseline from
which key aspects of different self-adaptive system can be easily identified and
compared. We demonstrate our classification’s application in three different
application domains. This exercise has served not only as a preliminary evaluation of
the proposed classification, but has also helped us (the developers of these systems) to
learn more about the specifics and in some cases intrinsically hidden characteristics of
our systems. Finally, the classification of the modeling dimensions has aided us with
identifying the current shortcomings of the state-of-the-art, which we propose to the
software engineering community as future research challenges. We hope that it paves
the way for focusing the future research efforts in this area.

The remainder of the paper is organized as follows. Section 2. describes an
illustrative case, which serves as a motivating scenario for describing the classification
of the modeling dimensions. Section 3. presents the details of the modeling
dimensions. Section 4. discusses the application of the classification on two
representative self-adaptive software systems. Section 5. provides an overview of open
research challenges. Section 6. provides some pointers to related work. Finally, the
paper concludes with a discussion of our contributions and our plans for extending this
work.

2. Illustrative Case Study

As an illustrative case study, we consider the problem of obtaining dependable stock
quotes from several, potentially unreliable, web sources [15]. The self-adaptation
problem being considered is how to obtain reliable and available stock quotes through
architectural reconfiguration. There are several web sources for stock quotes, for

example, Yahoo, Google, CNN, Reuters and FT, but these sources might not be
available all the time, and there are no guarantees that the values that are being
provided are correct, and moreover, their quality of services (QoS) may change. Based
on the availability of resources, different fault-tolerant strategies, which rely on
mechanisms, such as, voting, comparison and exception handling are employed in
order to guarantee the delivery of dependable stock quotes. It is also assumed that the
non-functional requirements (NFR) related to dependability may change during the
system lifetime.

The system comprises (1) the application software that includes bridges for handling
architectural mismatches and the fault tolerant strategies, (2) middleware that supports
access to web services, and (3) the system infrastructure that includes computer hosts
and the local area network. The user and the web sources for stock quotes are not
considered to be part of the system.

3. Modeling Dimensions

We have grouped the identified key modeling dimensions for self-adaptive software
systems into four groups: first, the dimensions associated with self-adaptability aspects
of the system goals, second, the dimensions associated with causes of self-adaptation,
third, the dimensions associated with the mechanisms to achieve self-adaptability, and
fourth, the dimensions related to the effects of self-adaptability upon a system. Table 1
provides a summary of the modeling dimensions and their associated groups. Below
we use different facets of the illustrative case study to exemplify the different modeling
dimensions.

3.1 Goals

Goals are objectives the system under consideration should achieve [13]. Goals
could either be associated with the lifetime of the system or with scenarios that are
related to the system. Moreover, goals can either refer to the self-adaptability aspects
of the application, or to the middleware or infrastructure that supports that application.

In the context of the case study mentioned above, amongst several possible goals,
we consider, as an example, the following goal: “the system shall deliver dependable
(correct, responsive and available) stock quotes from the web”. This goal could be
expressed in a way in which quantities are associated with the different attributes, and
partitioned into sub-goals, with each sub-goal related to one of the attributes.

Evolution. This dimension captures whether the goals can change within the
lifetime of the system. The number of goals may change, and the goals themselves may
also change as the system as a whole evolves. Hence, goal evolution ranges from static
in which changes are not expected, to dynamic in which goals can change at run-time,
including the number of goals, i.e., the system is able to manage and create new goals
during its lifetime.

In the context of the case study, the degree of goal evolution is static because a goal
is not expected to change at run-time. However, if some stock quote providers start to

charge for their services, then a new goal could be introduced to accommodate the
need of the system to look for free services.

Flexibility. This dimension captures whether the goals are flexible in the way they
are expressed [4]. This dimension is related to the level of uncertainty associated with
the goal specification, which may range over three values: rigid, constrained, and
unconstrained. A goal is rigid when it is prescriptive, while a goal is unconstrained
when its statement provides flexibility for dealing with uncertainty. An example of a
rigid goal is “the system shall do this…”, while an unconstrained goal is “the system
might do this…” A constrained goal provides a middle ground, where there is
flexibility as long as certain constraints are satisfied, such as, “the system may do this…
as long as it does this…”

In the context of the case study, the goal as stated is rigid. However, if we consider a
scenario in which the non-functional requirements (NFR) associated with a goal can
change according to the quality of services (QoS) of the resources available, then the
goal in terms of flexibility could be considered unconstrained. For example, if the NFR
associated with the goal cannot be achieved, then the goal can be relaxed through some
best effort analysis.

Duration. This dimension is concerned with the validity of a goal throughout the
system’s lifetime. It may range from temporary to persistent. While a persistent goal
should be valid throughout the system’s lifetime, a temporary goal may be valid for a
period of time: short, medium and long term. A persistent goal may restrict the
adaptability of the system because it may constrain the system flexibility in adapting to
change. A goal that is associated with a particular scenario can be considered a
temporary goal.

In terms of duration, the goal of the illustrative case can be considered persistent
since it is related with the purpose of the system. On the other hand, a temporary goal
could be “the system shall deliver stock quotes more often when the volume of
transactions go above a certain threshold”.

Multiplicity. This dimension is related to the number of goals associated with the
self-adaptability aspects of a system. A system can either have a single goal or multiple
goals. As a general rule of thumb, a single goal self-adaptive system is relatively easier
to realize than systems with multiple goals. As discussed in the next dimension, this is
particularly true for system where the goals are related.

In the illustrative case, since there are several NFRs associated with the system’s
overall objective, there are several goals that need to be satisfied. Therefore, we
characterize the multiplicity dimension as multiple.

Dependency. In case a system has multiple goals, this dimension captures how the
goals are related to each other. They can be either independent or dependent. A system
can have several independent goals (i.e., they don’t affect each other). When the goals
are dependent, goals can either be complementary with respect to the objectives that
should be achieved or they can be conflicting. In the latter case, tradeoffs have to be
analyzed for identifying an optimal configuration of the goals to be met.

In the illustrative example, the goals that are extracted from the main objective can
be considered dependent. Moreover, if cost is introduced as a NFR, then the goals can
be considered as conflicting since those web sources that are able to provide better QoS
might have a higher associated cost.

Table 1. Modeling dimensions for self-adaptive software systems.

Dimensions Degree Definition
Goals – goals are objectives the system under consideration should achieve
evolution static to dynamic whether the goals can change within the lifetime

of the system
flexibility rigid, constrained,

unconstrained
whether the goals are flexible in the way they are
expressed

duration temporary to persistent validity of a goal through the system lifetime
multiplicity single to multiple how many goals there are?
dependency independent to dependent

(complementary to
conflicting)

how the goals are related to each other

Change – change is the cause for adaptation
source external (environmental),

internal (application,
middleware, infrastructure)

where is the source of change?

type functional, non-functional,
technological

what is the nature of change?

frequency rare to frequent how often a particular change occurs?
anticipation foreseen, foreseeable,

unforeseen
whether change can be predicted

Mechanisms – what is the reaction of the system towards change
type parametric to structural whether adaptation is related to the parameters of

the system components or to the structure of the
system

autonomy autonomous to assisted
(system or human)

what is the degree of outside intervention during
adaptation

organization centralized to decentralized whether the adaptation is done by a single
component or distributed amongst several
components

scope local to global whether adaptation is localized or involves the
entire system

duration short, medium, long term how long the adaptation lasts
timeliness best effort to guaranteed whether the time period for performing self-

adaptation can be guaranteed
triggering event-trigger to time-trigger whether the change that triggers adaptation is

associated with an event or a time slot
Effects – what is the impact of adaptation upon the system
criticality harmless, mission-critical,

safety-critical
impact upon the system in case the self-adaptation
fails

predictability non-deterministic to
deterministic

whether the consequences of adaptation can be
predictable

overhead insignificant to failure the impact of system adaptation upon the quality
of services of the system

resilience resilient to vulnerable the persistence of service delivery that can
justifiably be trusted, when facing changes

3.2 Change

Changes are the cause of adaptation. When there is a change in the system, its
requirements, or the environment in which it is deployed, this may cause the system to
self-adapt. There are changes in which the system is expected to act upon, while others
can be masked from the system. Changes can be classified in terms of place in which
change has occurred, the type and the frequency of the change, and whether it can be
anticipated. All these elements are important for identifying how the system should
react to change that occurs during run-time.

In the context of the illustrative case study mentioned above, we consider the cause
of adaptation to be the failure of web sources, the reduced QoS from web sources, and
changes in the NFR (expressed as goals) associated with the system.

Source. This dimension identifies the origin of the change, which can be either
external to the system (i.e., its environment) or internal to the system, depending on
the scope of the system. In case the source of change is internal, it might be important
to identify more precisely where change has occurred: application, middleware or
infrastructure.

The source of the two changes related to the service providers is external to the
system. The change of Apache version, on which the application runs, is an internal
change that happens in the middleware.

Type. This dimension refers to the nature of change. It can be functional, non-
functional, and technological. Technological refers to both software and hardware
aspects that support the delivery of the services. Examples of the three types of change
are, respectively: the purpose of the system has changed and services delivered need to
reflect this change, system performance and reliability need to be improved, and the
version of the middleware in which the application runs has been upgraded.

In the illustrative case, since the changes are related to the QoS of the web sources,
the type of change is non-functional, and the failure of a web source is also considered
a non-functional change. An example of a technological change is the upgrade of the
Apache version.

Frequency. This dimension is concerned with how often a particular change occurs,
and it can range from rare to frequent. If for example a change happens quite often this
might affect the responsiveness of the adaptation.

Failures in the web sources are expected to occur quite often, hence the frequency of
change is frequent. On the other hand, if we consider changes in NFR, these should be
quite rare to occur.

Anticipation. This dimension captures whether change can be predicted ahead of
time. Different self-adaptive techniques are necessary depending on the degree of
anticipation: foreseen (taken care of), foreseeable (planned for), and unforeseen (not
planned for) [14].

Although faults are undesirable, they should be expected to occur, hence the failure
of a web resource should be considered as foreseen. In contrast, the upgrade of the
Apache should be considered as a foreseeable change, and the provision of dependable
weather forecast instead of stock quotes should be considered as unforeseen.

3.3 Mechanisms

This set of dimensions captures the system reaction towards change, which means
that they are related to the adaptation process itself. The dimensions associated with
this group refer to the type of self-adaptation that is expected, the level of autonomy of
the self-adaptation, how self-adaptation is controlled, the impact of self-adaptation in
terms of space and time, how responsive is self-adaptation, and how self-adaptation
reacts to change.

In the context of the illustrative case study mentioned earlier, we consider the
mechanism for self-adaptation to be the system’s architectural reconfiguration in which
the structure of the system is modified as a means to accommodate change.

Type. This dimension captures whether adaptation is related to the parameters of the
system’s components or to the structure of the system. Based on this, adaptation can be
parametric or structural, or a combination of these. Structural adaptation could also be
seen as compositional, since it depends on how components are integrated (e.g.,
dynamic weaving [20]).

The type of self-adaption considered in the illustrative case study is structural since
configurations are changed and components and connectors are replaced. An example
of structural adaptation is when a configuration based on majority voting has to be
changed to a configuration based on comparison because of the lack of resources.

A parametric type self-adaptation would be to increase the time interval between
two stock quote readings.

Autonomy. This dimension identifies the degree of outside intervention during
adaptation. The range of this dimension goes from autonomous to assisted. In the
autonomous case, at run-time there is no influence external to the system guiding how
the system should adapt. On the other hand, a system can have a degree of self-
adaptability when externally assisted, either by another system or by human
participation (which can be considered another system).

In the illustrative case, for the foreseen type of changes the system is autonomous,
but for the foreseeable type of changes, such as a change in the Apache version, human
participation is likely to be required.

Organization. This dimension captures whether adaptation is performed by a single
component – centralized, or distributed amongst several components – decentralized.
If adaptation is decentralized no single component has a complete control over the
system.

The self-adaptation in the case study relies on a complete model of the system,
hence the organization is centralized.

Scope. This dimension identifies whether adaptation is localized or involves the
entire system. The scope of adaptation can range from local to global. If adaptation
affects the entire system then more thorough analysis is required to commit the
adaptation. It is fundamental for the system to be well structured in order to reduce the
impact that change might have on the adaptation.

In the illustrative case, the current architectural configuration of the system and the
web resource that has failed determines the scope of the self-adaptation. For instance,
it may be global if it involves the reconfiguration of the whole system to come up with
a new fault tolerance strategy.

Duration. This dimension refers to the period of time in which the system is self-
adapting, or in other words, how long the adaptation lasts. The adaptation process can
be for short (seconds to hours), medium (hours to months), or long (months to years)
term. Note that time characteristics should be considered relative to the application
domain. While scope dimension deals with the impact of adaptation in terms of space,
duration deals with time.

Considering that the time it takes for architectural reconfiguration is minimal (in the
scale of seconds) when compared with the lifetime of the system (months), the duration
of the self-adaptation in the context of the case study should be short term.

Timeliness. This dimension captures whether the time period for performing self-
adaptation can be guaranteed, and it ranges from best-effort to guaranteed. For
example, in case change occurs quite often, it may be the case that it is impossible to
guarantee that adaptation will take place before another change occurs, in these
situations best effort should be pursued.

In the context of the case study, upper bounds on the process of architectural
reconfiguration can be easily identified, hence the timeliness associated with self-
adaptation can be guaranteed.

Triggering. This dimension identifies whether the change that initiates adaptation is
event-trigger or time-trigger. Although it is difficult to control how and when change
occurs, it is possible to control how and when the adaptation should react to a certain
change. If the time period for performing adaptation has to be guaranteed, then an
event-trigger might not provide the necessary assurances when change is unbounded.

In the illustrative case, the self-adaption mechanism is event-triggered, when a fault
occurs, it is detected and the system starts the process of architectural reconfiguration.

3.4 Effects

This set of dimensions capture what is the impact of adaptation upon the system,
that is, it deals with the effects of adaptation. While mechanisms for adaptation are
properties associated with the adaptation, these dimensions are properties associated
with system in which the adaptation takes place. The dimensions associated with this
group refer to the criticality of the adaptation, how predictable it is, what are the
overheads associated with it, and whether the system is resilient in the face of change.

In the context of the illustrative case study mentioned earlier, we consider that the
system fails if it is not able to provide dependable stock quotes.

Criticality. This dimension captures the impact upon the system in case the self-
adaptation fails. There are adaptations that harmless in the context of the services
provided by the system, while there are adaptations that might involve the loss of life.
The range of values associated with this criticality is harmless, mission-critical, and
safety-critical.

The level of criticality of the application (and the adaptation process) is mission-
critical, since it may lead to some financial losses.

Predictability. This dimension identifies whether the consequences of self-
adaptation can be predictable both in value and time. While timeliness is related to the
adaptation mechanisms, predictability is associated with system. Since predictability is

associated with guarantees, the degree of predictability can range from non-
deterministic to deterministic.

Given that in the illustrative case there are no guarantees sufficient web sources will
be available for the continued provisioning of services, the predictability of the
adaptation is non-deterministic.

Overhead. This dimension captures the negative impact of system adaptation upon
the system’s performance. The overhead can range from insignificant to system failure
(e.g., thrashing). The latter will happen when the system ceases to be able to deliver its
services due to the high-overhead of running the self-adaptation processes (monitoring,
analyzer, planning, effecting processes).

Since the architecture of the system that provides dependable stock quotes is based
on web services, the overall overhead associated with the architectural reconfiguration
is quite reasonable. In other words, although the system ceases to provide services for
some time interval, this interval is acceptable.

Resilience. This dimension is related to the persistence of service delivery that can
justifiably be trusted, when facing changes [14]. There are two issues that need to be
considered under this dimension: first, it is the ability of the system to provide
resilience, and second, it is the ability to justify the provided resilience. The degree of
resilience can range from resilient to vulnerable.

In the context of the illustrative case study, the system is resilient to certain types of
change (failures of web sources) because the self-adaptation which is responsible for
the continuous provisioning of services can be analyzed for extracting the assurances
that are needed for justifying resilience.

4. Evaluation – Case studies

A classification framework is generally difficult to evaluate, mainly due to the
process used to develop the classification. A formal evaluation, such as the one
proposed by Gómez-Pérez [8], would require a formal specification of our
classification framework, which is not feasible for our topic of study. Therefore, we
adopt a more practical approach to validate our classification framework.

The main contribution of our work is the descriptive model of the modeling
dimensions for self-adaptive software systems. The evaluation of the proposed
classification was conducted through applying it to several previously developed self-
adaptive software systems. The case studies represent different classes of application
domains: (1) Traffic Jam Monitoring Systems [9], (2) Embedded Mobile Systems
[16,17,19], and (3) High Performance Computing and Sensor Networks [1]. The
feedback from the case studies improved the classification in several iterations. Due to
space constraints we only present the results of the first two studies below.

We use the classification in two different ways, In the Traffic Monitoring System,
we apply the various modeling dimensions to a single scenario of self-healing. This
approach provides detailed insight on one particular quality property of the system. In
the Embedded mobile System, the modeling dimensions are applied to multiple QoS
concerns. This approach provides insight on a set of related quality properties of the
system.

4.1 Traffic Jam Monitoring System

Intelligent transportation systems (ITS) refer to systems that utilize advanced
information and communication technologies to improve the safety, security and
efficiency of transportation systems [6,9]. One particularly challenging problem in
traffic is congestion. A first step to address this problem is monitoring the traffic. We
describe an agent-based approach for traffic monitoring that enables the detection of
traffic jams in a decentralized way, avoiding the bottleneck of a centralized control
center. Our interest is in a particular scenario of self-healing that allows the system to
deal with silent node failures (i.e., a type of failure that occurs when the failing node
becomes unresponsive without sending any incorrect data). We introduce the
application and briefly explain how self-healing is added to the system. Then we give
an overview of the modeling dimensions for the self-healing scenario.

4.1.1 Application

The traffic monitoring system consists of a set of intelligent cameras which are
distributed evenly along a highway. Each camera has a limited viewing range and
cameras are placed to get an optimal coverage of the highway. A camera is able to
measure the current congestion level of the traffic and decide whether there is a traffic
jam or not in its viewing range. Each camera is equipped with a communication unit to
interact with other cameras. The task of the cameras is to detect and monitor traffic
jams on the highway in a decentralized way, i.e. without any centralized entity
involved. Possible clients of the monitoring system are traffic light controllers and
driver assistance systems such as systems that inform drivers about expected travel
time delays. Since traffic jams can span the viewing range of multiple cameras and can
dynamically grow and dissolve, the data observed by multiple cameras has to be
aggregated. Without a central point of control, cameras have to collaborate and
distribute the aggregated data to the clients. To support such dynamic organizations,
we have applied an agent-based design for the system [9]. On each camera an agent is
deployed that can play different roles in organizations. Example roles are “data pusher”
and “data aggregator.”
Agents exploit a
distributed middleware
which provides support
for dynamic
organizations. The
middleware encapsulates
the management of
dynamic evolution of
organizations offering
possible roles to agents
based on the current
context. Figure 1 shows
the deployment view of
the agent-based traffic
monitoring system.

Figure 1. Deployment view of the traffic monitoring
system.

The software on each
camera is structured in
layers. The Host
Infrastructure layer
encapsulates common
middleware services and
basic support for distribution,
hiding the complexity of the
underlying hardware. The
Agent Middleware layer
provides basic services in
multi-agent systems [22],
including support for
perception, action, and
communication. The
Organization Middleware
layer provides support for dynamic organizations. The layer encapsulates the
management of dynamic evolution of organizations and it provides role-specific
services to the agents for perception, action, and communication. Finally the Agent
layer encapsulates the agents that provide the associated functionality in the
organizations for monitoring traffic jams.

4.1.2 Self-Healing

When a node fails, the system may enter an inconsistent state in which agents and
the organization middleware are no longer capable of working according to their
specification. To deal with this kind of failures, an additional self-healing subsystem
(SHS) is deployed on each node. The SHS interacts with the local agent middleware
and organization middleware, and relies on the functionalities provided by the agent
middleware to interact with SHSs on other nodes. Figure 2 shows the integration of the
self-healing subsystem with the system software on one node.

SHSs periodically exchange alive signals using the communication service of the
agent middleware (send and receive). Node failures are detected by monitoring the
alive signals. When a SHS detects a failure, it adapts the local structure of the
organizations in which the agent of the failing node is involved in and possibly
interacts with SHSs on other involved nodes to bring the system in a consistent state
from which it can continue its function in a degraded mode.

4.1.3 Modeling Dimensions

We consider the scenario where the system is in normal operation mode (camera
agents are collecting data and provide information to clients about possible traffic
jams) and one of the nodes fails silently. Such event may result in corrupt
organizations with lost or missing roles on the failed node. The self-healing subsystem

Figure 2. Integration of the self-healing subsystem
with the organization middleware and agent

middleware on one node

(SHS) detects the failure and restores the system to a consistent state so that it can
continue its operation.
Goals – The system shall recover from a silent node failure and continue its operation
in a degraded mode.
• Evolution: static – Recovering from silent node failures is a goal that will not

change over the life time of the system.
• Flexibility: rigid – A node failure compromises the consistency of the system and

as such it threatens service delivery. In order to remain operational, the system
must deal with node failures.

• Duration: persistent – Silent node failures can occur at any time during normal
operation. As such, recovering from silent node failures is a persistent goal.

• Multiplicity: multiple – Besides dealing with node failures, the system has other
goals as well. The primary goal of the system is to deliver a monitoring service to
clients interested in traffic jams. Other goals refer to particular qualities of the
system such as accuracy of observation and reaction time.

• Dependency: dependent – There is a dependency between the self-healing goal
and the delivery of services. If the system fails to recover from a node failure, the
quality of the services will significantly degrade.

Change – a node fails silently.
• Source: external (environment) and internal (application) – A silent node failure

can be caused by an external trigger such as a hardware failure, or it can be caused
by a crash of the software running on the node.

• Type: technological – The cause for self-adaptation is of a technologic nature: a
node in the system fails. If the system reacts not properly, the failure will harm the
system functionality.

• Frequency: rare – Silent node failures happen rarely.
• Anticipation: foreseen – Neither the place nor the time of a silent node failure can

be predicted. Still, the system can anticipate how to react when a silent node
failure occurs.

Mechanisms – the SHSs restore the system in a consistent state.
• Type: parametric / structural – From the point of view of a single node which is

involved in a failure, the adaptation is parametric since the SHS will restore the
affected local state of the system. From the point of view of the system, adaptation
is structural since the changes applied by the SHSs on the nodes involved in a
failure will change the structure of collaborating cameras (i.e. the failing camera
will no longer be part of the collaboration).

• Autonomy: autonomous – The SHS acts fully autonomously. The self-adaptation
process will take place without a human involved. However, restoring the failed
node typically will require human intervention.

• Organization: decentralized – SHSs deployed on the different nodes collaborate
to detect a node failure. The required adaptations are performed locally. No central
monitor or controller is involved.

• Scope: local – The adaptation is performed locally. Only the nodes with cameras
taking part in organizations with the camera of the failed node will be involved in
the adaptation process.

• Duration: short term – The adaptation process should be completed in seconds.
This is orders of magnitude faster as traffic jams arise or dissolve.

• Timeliness: best effort – The time period required for performing the adaptation
depends on several factors, such as the current traffic conditions and the available
bandwidth. Given the relative short duration of the adaptation (comparing to the
duration of the traffic jam phenomena), best effort meets the required timeliness.

• Triggering: event-trigger – Adaptation is triggered by the detection of missing
alive messages exchanged between SHSs.

Effects – the system will continue its functionality in degraded mode.
• Criticality: harmless – The services provided by the traffic monitoring system are

in general not critical. If the adaptation fails, the functionality of the system may
significantly degrade, however, no human lives are involved.

• Predictability: deterministic – The consequences of a node failure are clear. The
information provided by the failed node will no longer be available. The SHSs will
bring the system in a consistent state so that it can continue its operation.

• Overhead: almost insignificant – After adaptation, the quality of the services
provided by the system will slightly degrade in case a traffic jam occurs in the
neighborhood of the failed node. All traffic information collected outside the range
of the camera of the failed node will not be affected.

• Resilience: semi-resilient – After adaptation, service delivery will persist with
only minimal decrease of quality. In case of repeatable node failures, the quality of
service delivery may become seriously affected, in particular when neighboring
nodes fail.

4.2 Embedded Mobile System

Below we present the application of our classification model to another self-
adaptive software system, which is representative of an emerging class of mobile,
pervasive, and cyber physical systems. These systems are inherently different from
traditional software systems. For instance, network failures and changes in the
availability of resources are considered the norm, instead of an exception. As detailed
further below, self-adaptation has been shown as a promising approach to deal with the
unpredictability of such systems.

4.2.1 Application

Emergency Deployment System (EDS) is a mobile application intended for
distributed management and deployment of personnel to deal with situations such as
natural disasters and search-and-rescue efforts. An instance of EDS (shown in Figure
3) consists of Headquarters, Team Leader, and Responder applications that leverage
the software services and wireless sensors provided by the system to achieve their
tasks. The Headquarters computer is networked via secure links to a set of mobile
devices used by Leaders during the operation. Each Leader is capable of controlling
his own part of the crisis scene: deploying Responders, analyzing the deployment
strategy, transferring Responders between Leaders, and so on. Responders can only

view the segment of the
operation in which they are
located, receive direct
orders from the Leaders,
and report their status.

The domain of
emergency and response is
by its nature unpredictable.
For instance, it is
completely conceivable
that due to some
unforeseen event the
Headquarters fail, in
which case it is desirable
for a designated Leader to
assume the role of the
Headquarters. On top of
the unpredictability of the application domain, given that EDS is a mobile platform, it
also needs to be able to deal with fluctuations in the availability of computing
resources. For instance, the system should be able to deal with situations where as a
result of user mobility the network connectivity or its throughput changes significantly.

4.2.2 Self-Adaptation

In response to the Quality of Service (QoS) challenges of mobile software systems,
such as those faced by EDS, software engineers have previously developed a variety of
run-time adaptation techniques, including caching [11] or hoarding [12] of data, and
multi-modal components [21]. In our work [16,17,19] we have demonstrated that a
software system’s deployment architecture (i.e., allocation of the system’s software
components to its hardware hosts) has a significant impact on the mobile system’s QoS
properties. For example, a mobile system’s latency can be improved if the system is
deployed such that the most frequent and voluminous interactions among the
components involved in delivering the functionality occur either locally or over
reliable and capacious wireless network links. A key observation is that most system
parameters (e.g., available bandwidth, reliability of networks, and frequency of
interactions) that are required for finding a good deployment architecture are not
known until run-time, and even then they can change. Therefore, a redeployment of the
software system via migration of its components may be necessary to improve its QoS.

We have developed a self-adaptive infrastructure [16,17,19] for improving a mobile
system’s deployment architecture that consists of four phases: 1) monitoring the
system parameters of interest (e.g., reliability of links, frequencies of interaction), 2)
populating a deployment model of the system with the monitored system properties, 3)
finding a new deployment architecture that improves the system’s QoS properties, and
4) effecting the new deployment architecture via software component mobility [7]. In
order to reason about multiple QoS dimensions we leverage a multivariate utility
function. The utility function allows us to resolve the trade-offs among multiple QoS

Figure 3. An instance of EDS application.

dimensions (e.g., when improvement in one QoS results in degradation in another
QoS).

4.2.3 Modeling Dimensions

We have applied the above approach for improving a mobile software system’s
deployment architecture on several instances of EDS. Below we provide an analysis of
this work in the context of the modeling dimensions from Section 3. :
Goals – improve the users’ preference, which is specified in the form of a utility
function.
• Evolution: dynamic – New QoS concerns may be added, old ones may be

removed or modified, and the users’ preferences for the QoS concerns may
change.

• Flexibility: constrained – The goal is to maximize the utility function as long as
the system constraints are satisfied. An example of a system constraint is as
follows: the amount of memory required for software components that are
deployed on a host should be less than the amount of available memory on that
host.

• Duration: long term – The system is always in pursuit of the optimal
configuration.

• Multiplicity: multiple – Since most instances of EDS consist of multiple users
with different roles (e.g., commanders, leaders, troops), and the fact that often
there are multiple QoS dimensions of importance to each user, the goals are often
multi-faceted.

• Dependency: dependent – The goals are dependent on one another. For example,
a deployment architecture that maximizes the system’s security often leverages
complex encryption and authentication protocols, which have a negative impact on
the system’s latency.

Change – fluctuations in system parameters (e.g., network bandwidth, reliability) and
changes in the system usage (i.e., load).
• Source: external (environment) and internal (application) – Source of change

could be either external environment, such as a situation when a mobile user’s
connectivity is impacted severely due to his movement (e.g., when the user is
behind thick walls). Alternatively, the source of change could be internal
application, where some of the distributed components interact more frequently
than others. In this case, a better deployment may be to collocate the components
to minimize the amount of remote communication.

• Type: non-functional – Changes in the system could potentially degrade the level
of QoS provisioned by the system.

• Frequency: frequent – System parameters are changing constantly. However, in
order to avoid the system from constantly redeploying itself, changes in the system
are observed over a period of time, and only changes that are significant enough
are reported to the adaptation modules.

• Anticipation: foreseen – In mobile systems changes in system parameters are the
norm, rather than the exception. In EDS we foreseen such changes, and developed
the appropriate mitigation capability.

Mechanisms – redeployment of software components.
• Type: structural – Through component redeployment the deployment architecture

of the system is changed.
• Autonomy: autonomous – EDS is a long-lived and highly distributed system. At

the same time, given that changes in such a system are frequent and unpredictable,
it is infeasible for a manual control of adaptation at run-time.

• Organization: centralized analysis, decentralized adaptation – Finding
(calculating) a new optimal deployment architecture is performed centrally,
effecting the actual change (i.e., migrating and rebinding software components) is
performed by individual platforms in a decentralized manner.

• Scope: local and global – The actual components that are redeployed depend on
the results of the analysis. The result of adaptation could range from redeployment
of a single software component to redeployment of the entire system.

• Duration: short term – The amount of time required to redeploy the system
should be short. Redeployment impacts the availability of (some of) the system’s
services. This is in particular true for the EDS system that has stringent availability
requirement.

• Timeliness: best effort – The time required for adaptation depends on a number of
system parameters (e.g., network throughput) as well as the sizes of the software
components that need to be redeployed. Therefore, it is not possible to provide any
hard guarantees. For relatively stable systems it is feasible to determine a time
bound.

• Triggering: event-trigger – The triggering usually depends on the patterns
identified in the monitored data. If the monitored data indicates significant
changes in the system, the analysis process is initiated.

Effects – system provisions its services with higher level of QoS.
• Criticality: mission-critical, safety-critical – Depending on the nature of

emergency scenario EDS could be either a mission or safety critical system.
• Predictability: non-deterministic – An underlying assumption in EDS is that

changes in the past are a good indicator of the system’s future behavior. However,
this assumption may not hold, in particular if the users’ usages of the system’s
services or its parameters change dramatically.

• Overhead: reasonable – In EDS we have developed a mechanism to ensure the
system does not constantly redeploy itself. This is realized by ensuring that the
adaptation is triggered only if there are significant changes in the monitored data
over a prespecified period of time. However, there is a considerable overhead in
terms of wasted resources (e.g., battery) for the redeployment of the components,
and if the components are large this overhead may be prohibitive.

• Resilience: semi-resilient – A services (functionality) becomes temporary
unavailable if some of the software components involved in provisioning that
service are currently being redeployed. However, there is no impact to the services
that do not depend on the part of the system that is being redeployed.

5. Challenges of Modeling Self-Adaptive Systems

Substantial progress has been made by the software engineering community in
tackling the challenges posed by each of the discussed modeling dimensions. However,

there are several important research questions that are remaining. Our study of the
modeling dimensions, in particular the exercise of applying it to several self-adaptive
software systems, helped us to identify some important research questions that should
be the focus of future research in this area. We briefly elaborate on those below based
on the categories of the modeling dimensions.

5.1 Goals

A self-adaptive software system often needs to perform a trade-off analysis between
several potentially conflicting goals. Current state-of-the-art techniques leverage a
utility function to map the trade-offs among several conflicting goals to a scalar value,
which is then used for making decisions about adaptation. However, in practice,
defining such a utility function is a challenging task. Practical techniques for
specifying and generating utility functions, potentially based on the user’s
requirements, are needed. One promising direction is to use preferences that compare
situations under Pareto optimal conditions.

5.2 Change

Often the adaptation is triggered by the occurrence of a pattern in the data that is
gathered from a running system. For example, the system is monitored to determine
when a particular level of QoS is not satisfied, which then initiates the adaptation
process. However, monitoring a system, especially when there are several different
QoS properties of interest, has an overhead. In fact, the amount of degradation in QoS
due to monitoring could outweigh the benefits of improvements in QoS to adaptation.
We believe that more research on light-weight monitoring techniques, as well as more
advanced models that take the monitoring overhead of the approach into account are
needed.

5.3 Mechanisms

Many types of adaptation techniques have been developed: architecture-based
adaptation that is mainly concerned with structural changes at the level of software
components, parametric based adaptation that leverages policy files or input
parameters to configure the software components, aspect-oriented-based adaptation
that changes the behavior of a running system via dynamic weaving techniques.
Researchers and practitioners have typically leveraged a single tactic to realize
adaptation based on the characteristics of the target application. However, given the
unique benefits of each approach, we believe a fruitful avenue of future research is a
more comprehensive approach that leverages several adaptation tactics simultaneously.

Most state-of-the-art adaptive systems are built according to the centralized control
loop pattern. Thereby, if applied to a large-scale software system, many such
techniques suffer from scalability problems. The field of multi-agent systems has
developed a large body of knowledge on decentralized systems, where each agent
(software component) adapts its behavior at run-time. Related are biologically inspired
adaptation systems that tend to further push the limits of decentralization. While these

approaches are promising, practical experiences with these approaches in real-world
settings are limited. Methods used in systems engineering, like hierarchical
organization and coordination schemes could also be applicable. There is a pressing
need for decentralized, but still manageable, efficient, and predictable techniques for
constructing self-adaptive software systems. A major challenge is to accommodate a
systematic engineering approach that integrates both control-loop approaches with
decentralized agent inspired approaches.

Responsiveness is a crucial property in real-time software systems, which are
becoming more prevalent with the emergence of embedded and cyber-physical
systems. These systems are often required to deterministically respond within pre-
specified (often short) time intervals, making it extremely difficult to adapt the system,
while satisfying the deadline requirements. There is a need for adaptation models
targeted for real-time systems that treat the duration and overhead of adaptation as first
class entities.

5.4 Effects

Adapting safety-critical software systems, while ensuring the safety requirements,
has remained largely an out-of-reach goal for the practitioners and researchers. There is
a need for verification and validation techniques that guarantee safe and sound
adaptation of safety-critical systems, under all foreseen and unforeseen events.

Finally, predicting the exact behavior of a software system due to run-time changes
is a challenging task. For example, while it may be possible to predict the new
functionality that will become available as a result of replacing a software component,
it may not be possible to determine what will be the impact of the replaced software
component on the other components that are sharing the same resources (e.g., CPU,
memory, and network). More advanced and predictive models of adaptation are needed
for systems that could fail to satisfy their requirements due to side-effects of change.

In highly dynamic systems, such as mobile systems, where the environmental
parameters change frequently, the overhead of adaptation due to frequent changes in
the system could be so high that the system ends up thrashing. This overhead includes
the frequent execution of the reasoning algorithms (e.g., finding a new configuration),
the downtime of a portion of the system due to making changes, or simply the resource
cost (e.g., wasted CPU cycles, battery power) of changing the system. The trade-offs
between the adaptation overhead and the accrued benefits of changing the system
needs to be taken into consideration for such systems.

6. Related Work

This work defines a classification of modeling dimensions that should be considered
when modeling self-adaptive software systems. Similar classifications exist but our
survey reveals that none is suitable for characterizing the modeling variations among
self-adaptive software systems. Dobson et al. provide a survey of techniques applied to
autonomic computing [5]. Buckley et al. define a taxonomy for software change [3],
which unlike our approach is not focused on run-time adaptation (change) of software.
Another major difference is that goals are not made explicit in Buckeley’s taxonomy.

Implementation of adaptability requires support from middleware or languages,
Bradbury et al. classify support from dynamic software architecture languages [2]. This
work has a focus on architecture specification and does not consider the goals.
Similarly, the taxonomy by McKinley et al. [18] specifically targets compositional
software adaptation, and is not applicable to other types of self-adaptive software. The
work by Laprie on a classification of resilience [14] has also inspired some of the
dimensions and their values in our work.

7. Discussions and Future Work

The classification model presented in this paper applies to any self-adaptive
software system. We believe that this classification will be useful in several different
development situations. It can be used as a driver for traditional forward engineering,
but also useful in a reverse engineering context where engineers comprehend the
existing solutions.

The classification brings more structure to the area of self-adaptive software
systems. With the classification in mind it is more likely that an individual engineer as
well as groups of engineers to be able to understand the technology domain better, thus
avoiding situations where two or more interpretations of a technique affect the
development process. Our intention with the classification has been to create a
vocabulary that can be used within, for instance, a design team.

The classification can also be used to drive development. Despite its rather high
level of abstraction, the groups, dimensions, and degrees can be used as a requirements
statement for the self-adaptive scenarios in a system. This information supports
decision making about tools, languages, and middleware platforms.

The classification could also be utilized in reverse engineering activities. Part of
this process is “understanding structures” that are currently present in a self-adaptive
application, and then go forward and change. The classification provides a check-list
for conceptual and physical concepts concerned with structural and behavioral
properties that can be identified in existing application documentation, hence assist in
classifying an application’s self-adaptive behavior.

While our experience with the classification model has been positive so far, we
believe the classification model can be refined further. In particular, we would like to
provide a more detailed enumeration of possible values for the classification’s degree
attribute (i.e., the middle column of Table 1). We also hypothesize that the majority of
self-adaptive software systems are developed according to a handful of architectural
patterns. We intend to leverage the proposed classification model, which allows for
systematically identifying the variations among different self-adaptive software
systems, to study and document the most commonly used architectural patterns for
such systems.

8. References
1. J. Andersson, et al. An Adaptive High-Performance Service Architecture. ETAPS Workshop

on Software Composition Electronic Notes Theoretical Computer Science 114. 2005.
2. J. S. Bradbury, et al. A Survey Of Self-Management In Dynamic Software Architecture

Specifications. Proceedings of the 1st ACM SIGSOFT Workshop on Self-Managed Systems
(WOSS '04). Eds. D. Garlan, J. Kramer, and A. Wolf. pp. 28-33.

3. J. Buckley, T. Mens, M. Zenger, A. Rashid, and G. Kniesel. Towards A Taxonomy of
Software Change. Journal of Software Maintenance and Evolution. Sep 2005. pp. 309-332.

4. B. H. C. Cheng, et al. Software Engineering for Self-Adaptive Systems: A Research Road
Map. Software Engineering for Self-Adaptive Systems. Proceedings of the 08031 Dagstuhl
Seminar. Eds. B. H. C. Cheng et al. Schloss Dagstuhl - Leibniz-Zentrum fuer Informatik,
Germany. 2008.

5. S. Dobson, S. Denazis, et al. A Survey of Autonomic Communications. ACM Transactions
on Autonomous and Adaptive Systems, vol 1, no 2, pp 223-259, 2006.

6. ERTICO. Intelligent Transportation Systems for Europe, http://www.ertico.com/.
7. A. Fuggetta, G. P. Picco, and G. Vigna. Understanding Code Mobility. IEEE Trans. on

Software Engineering 24. 1998. pp. 342-361.
8. A. Gómez-Pérez. Evaluation of Ontologies. International Journal of Intelligent Systems 16.

2001. pp. 391-409.
9. R. Haesevoets, et al. Managing Agent Interactions With Context-driven Dynamic

Organizations. Engineering Environment-Mediated Multi-Agent Systems. Lecture Notes in
Computer Science, vol. 5049, 2007.

10. ITS. Intelligent Transportation Society of America, http://www.itsa.org/.
11. J. J. Kistler and M. Satyanarayanan. Disconnected Operation in the Coda File System. ACM

Transactions on Computer Systems 10(1). Feb 1992.
12. G. H. Kuenning and G. J. Popek. Automated Hoarding for Mobile Computers. ACM Symp.

on Operating Systems Principles. St. Malo, France. Oct 1997.
13. A. van Lamsweerde. Goal-Oriented Requirements Engineering: A Guided Tour.

Proceedings of 5th IEEE International Symposium on Requirements Engineering (RE'01).
Toronto, Canada. Aug 2001. pp. 249-263.

14. J. C. Laprie. From Dependability to Resilience. Supplemental Proceedings of the
International Conference on Dependable Systems & Networks (DSN 2008). Anchorage,
Alaska. June 2008. pp. G8-G9.

15. R. de Lemos. Architecting Web Services Applications for Improving Availability.
Architecting Dependable Systems III. Eds. R. de Lemos, C. Gacek, A. Romanovsky. LNCS
3549. Springer. Berlin, Germany. 2005. pp. 69-91.

16. S. Malek, et al. A Framework for Ensuring and Improving Dependability in Highly
Distributed Systems. Architecting Dependable Systems III. Eds. R. de Lemos, C. Gacek, A.
Romanovsky. LNCS 3549. Springer. Berlin, Germany. 2005.

17. S. Malek, C. Seo, S. Ravula, B. Petrus, and N. Medvidovic. Reconceptualizing a Family of
Heterogeneous Embedded Systems via Explicit Architectural Support. International
Conference on Software Engineering (ICSE 2007). Minneapolis, Minnesota, May 2007.

18. P. K. Mckinley, S. M. Sadjadi, E. P. Kasten, and B. H. C. Cheng. Composing Adaptive
Software. IEEE Computer 37(7). July 2004. pp. 56-64.

19. M. Mikic-Rakic, S. Malek, and N. Medvidovic. Architecture-Driven Software Mobility in
Support of QoS Requirements. International Workshop on Software Architectures and
Mobility (SAM). Leipzig, Germany. May 2008.

20. A. Popovici, T. Gross, and G. Alonso. 2002. Dynamic Weaving for Aspect-oriented
Programming. Proceedings of the 1st international Conference on Aspect-Oriented
Software Development (AOSD '02). Enschede, The Netherlands. April 2002. pp. 141-147.

21. Y. Weinsberg, and I. Ben-Shaul. A Programming Model and System Support for
Disconnected-Aware Applications on Resource-Constrained Devices. International
Conference on Software Engineering (ICSE 2002). Orlando, FL. 2002.

22. D. Weyns, H. Parunak, F. Michel, T. Holvoet, and J. Ferber, Environments for multiagent
systems, state-of-the-art and research challenges, Environments for multi-agent systems.
Lecture Notes in Computer Science, vol. 3374, 2005.

