
On the Role of Features in Analyzing the Architecture of
Self-Adaptive Software Systems

Ahmed Elkhodary, Sam Malek, Naeem Esfahani

Department of Computer Science
George Mason University

{aelkhoda, smalek, nesfaha2}@gmu.edu

Abstract. In traditional software families, feature-orientation has been shown
effective for bridging the semantic gap between a software system’s
requirements and its architecture. Over the past few years, the emergence of
self-adaptive software systems, which are significantly more challenging to
build than traditional systems, has gained the attention of the software
engineering research community. In this paper, we show that using features at
runtime could alleviate some of the key challenges of building such systems.
The underlying insights are that: (1) features allow representation of the
engineer’s knowledge about some facets of the system that can be used to
enhance the adaptation logic, and (2) features can serve as an abstraction to deal
with the heterogeneity of the underlying architectural models, analytical
algorithms, and implementation platforms. We describe the role of features in a
self-adaptive framework that we have developed, entitled FeatUre-oriented
Self-adaptatION (FUSION). We also report on our preliminary experience with
FUSION that demonstrates the benefits of using features in different stages of
self-adaptation.

Keywords: Self-Adaptive Systems, QoS Analysis, Feature-Oriented Modeling

1 Introduction

Feature-orientation has shown to be an effective paradigm for achieving systematic
evolution and large-scale reuse in traditional software families [1-3]. In particular, it
leverages feature modeling as an intuitive formalism to bridge the semantic gap
between end-user requirements and software architecture.

From an end-user’s perspective, a feature model decomposes the system’s
requirements into meaningful units of functionality, known as features. A feature
serves as an abstraction that is independent of how the functionality is realized by the
system. From a software architectural perspective, feature modeling abstracts low-
level architectural variability into coarse-grained features that are easier to manage. In
turn, it maximizes the reuse potential in the construction of software families. It also
helps to ensure the validity of software family members, since features have a

On the Role of Features in Analyzing the Architecture of Self-Adaptive Software Systems

mapping to the low-level architectural constructs and each mapping is functionally
validated by the engineer.

In parallel with and largely unaffected by advances in feature-orientation and
software product line research, we have witnessed the emergence of self-adaptive
systems [4]. Such systems are capable of changing their behavior at runtime to
achieve certain functional and QoS goals, which are often specified by the users.
Building self-adaptive software systems is significantly more challenging than
traditional software systems. In particular, finding the right abstractions that can
bridge the gap between end-user goals on one end and their dynamic realization in the
software architecture on the other end is challenging.

Given the central role feature-orientation has played in the development of
traditional software systems, it is natural to believe its importance to only grow in the
even more complex domain of self-adaptive systems. Features are often used during
the requirements engineering phase to model the variation points in the software
system. At design-time, the engineer develops a mapping for each feature to part of
the underlying software architecture that realizes it. This mapping often crosscuts the
different parts of the architecture [5]. We advocate an additional role for features that
manifests itself at runtime. We believe features provide an appropriate abstraction for
modeling the adaptation points (i.e., runtime variability) in the software system [12].
Particularly, features are used in our approach to incorporate the engineer’s
knowledge of some facets of the system (e.g., the semantic relationship between
functional capabilities, QoS properties of concern), which augment the traditional
software architectural models to mitigate the challenges of achieving self-adaptation.

In this paper, we describe the role of features in a self-adaptive framework that we
have developed, entitled FeatUre-oriented Self-adaptatION (FUSION). Our
preliminary experience with FUSION has shown the advantages of using features in
the different stages of self-adaptation:
• Features are intuitively understood by both end-users and engineers, making them

a convenient medium for eliciting adaptation preferences.
• FUSION’s analysis operates on a feature-based representation of the system,

decoupling it from the heterogeneity of architectural and analytical models,
application domain, and implementation platform.

• Features allow FUSION to correlate results obtained from multiple analytical
models to discover interactions and conflicts in the system.

• FUSION uses inter-feature relationships to reduce the configuration space
significantly and make the analysis efficient.

• By encapsulating the engineer’s knowledge in the mapping of features to the
architecture and enforcing feature model constraints, FUSION ensures correct
functioning of the system during and after the adaptation.

The rest of this paper is organized as follows. Section 2 uses a motivating example
to present some of the key challenges our approach intends to resolve. Section 3
provides a high-level overview of the FUSION framework. Section 4 describes
FUSION’s underlying feature-oriented model. Sections 5 to 8 describe respectively
how features affect the monitoring, analysis, planning, and execution activities in
FUSION. Finally, the paper concludes with an overview of our future research.

On the Role of Features in Analyzing the Architecture of Self-Adaptive Software Systems

2 Challenges

We illustrate the concepts in this paper using an online Travel Reservation System
(TRS). Fig. 1c shows the software architecture of TRS using the traditional
component and connector view. TRS aims to provide the best airline ticket prices in
the market. To make a price quote for the user, TRS takes trip information from the
users, and then discovers and queries the appropriate travel agent services. The travel
agents reply with their price quotes, which are sorted and presented in an ascending
order. In addition to the functional goals, the system is required to attain a number of
QoS goals such as performance, reliability and security. To that end, solutions for
each QoS perspective were developed, e.g., caching for performance, redundancy for
reliability, and checkpoints for security.

A system such as TRS needs to be self-adaptive to deal with unexpected situations,
such as traffic spikes or security attacks. Therefore, the self-adaptation logic of TRS
needs to select from the available adaptation choices. For instance, enable caching to
improve performance during a traffic spike or enable authentication to prevent a
security attack. To do so, heterogeneous analytical models are required. For example,
security engineers may use attack graphs [6] to prevent intrusions and find the best
counter measures, while performance engineers may use queuing network models to
assess the latency goals. For a complex system engineers may need to connect
analytical models of multiple layers of abstraction (i.e., network, software, user, etc.)
to characterize software behavior.

Therefore, applying the existing models of adaptation in the development of self-
adaptive systems, such as TRS, is challenged by the following:

Challenge 1: There is no effective mechanism for identifying the interactions and
conflicts among the goals in a system using the results obtained from several
independent analytical models. For instance, consider the conflict between

Fig. 1. Travel Reservation System: (a) goals, (b) features, thick border indicates a
feature that is enabled, (c) software architecture corresponding to the enabled features.

On the Role of Features in Analyzing the Architecture of Self-Adaptive Software Systems

authentication and the quality of price quotes in TRS. Business Tier component waits
for a limited time to receive quotes from the Travel Agent components before timing
out. Since the authentication protocol introduces an additional delay, a heavy
authentication protocol may force more timeouts on the Business Tier, and hence
reduce the number of quotes received by TRS. Building analytical models that could
relate the interaction among the system’s capabilities and their impact on the system’s
conflicting goals is often infeasible, as they require representation of complex real-
world entities, such as users, networks, service providers, and so on.

Challenge 2: To satisfy multiple goals, self-adaptation logic needs to search in a
configuration space that is equivalent to the combined complexity of all analytical
models involved. As an example, consider how TRS would make use of N
authentication components for authenticating the network traffic between its M
software components, which may be deployed on P different hardware platforms. In
this case, analyzing the impact of authentication alone on the system’s goals would
require exploring a space of (MP possible deployments) N possible ways of authentication = MNP

possible configurations. Such problem is computationally expensive to solve at
runtime for any sizable system. This is while authentication is only one concern out of
many in any typical system.

Challenge 3: Ensuring the correct functioning of the software system during and
after the adaptation is a challenging task. This is often dependent on the application
and cannot be represented effectively in the general purpose architectural modeling
languages. For instance, consider the problem of representing a constraint in TRS that
requires the same authentication protocol to be used on the end-to-end execution flow
from the Web Portal all the way to the Travel Agent and back (depicted in Fig. 1c).
Prior to switching to a new protocol, the system is required to negotiate new
credentials among all of the components involved in the execution flow. The fact that
this authentication protocol crosscuts multiple components is difficult to abstract and
represent at the architectural level.

Challenge 4: Effecting a new architecture for a running system may require
making changes at the different levels of system stack (e.g., application, middleware,
and network). For instance, when a specific authentication protocol is used at the
application layer, security engineers may recommend the use of certain IP services at
the network layer. In addition, since the recommended IP services come with a
performance hit, the engineers may prefer to leave that as an option.

These four challenges have been the prime motivation for our work. As discussed
in the remainder of this paper, by adopting a feature-oriented approach, we are able to
mitigate these challenges.

3 Overview of Feature-Oriented Self-Adaptation

Changes in the system or its environment trigger the process of self-adaptation.
Fig. 2 depicts a high-level overview of FUSION’s four main activities: Monitor,
Analyze, Plan and Execute. These activities are consistent with existing self-adaptive
framework’s that are based on the feedback control loop reference model [4,7].

On the Role of Features in Analyzing the Architecture of Self-Adaptive Software Systems

However, unlike the majority of existing approaches [8-11] that base the analysis and
adaptation on the architectural models, we adopt a feature-based model of adaptation.

At runtime, these activities are performed in the following logical flow:
• Monitor: Collects data through instrumentation of the running system. If a

functional failure or a violation of QoS objective is detected, it correlates the data
into symptoms that can be analyzed.

• Analyze: When a problem is detected, it searches for a configuration that resolves
it. It may perform a trade-off analysis between multiple conflicting goals.

• Plan: Chooses a path of adaptation steps towards the target configuration. The path
has to abide by the system constraints. In addition, adaptation steps must not cause
further failures in the system.

• Execute: Takes the required actions to effect the changes delineated in the plan.
This may require adding, removing, and replacing the components and the way
they are interconnected in the running architecture.

 In the remainder of this paper we describe how using feature-orientation affects
and improves the behavior of these activities. Each activity addresses one of
challenges introduced in Section 2. The Feature Based Models, shown in the middle
of Fig. 2, is how the engineer’s knowledge of the system’s characteristics and its
domain is captured and provided for the activities.

4 Feature-Based Models

A feature is an abstraction of a capability provided by the system. A feature may
affect either the system’s functional (e.g., ticket discounts) or non-functional (e.g.,
authentication protocol) properties.

Conceptually, features elicited for runtime variability serve a different purpose
than traditional ones. The main motivation behind a runtime feature is to account for
variability in the system’s execution context rather than the end-user requirements.
That is, to give the system enough flexibility to cope with an environment where no
one solution works perfectly at all times. The goal is to identify critical features
required for the system given such variability in the context.

The proposed features are in essence variation points in the architecture rather than
requirements. Exposing them as
features makes them
independent of a particular
implementation platform or
application domain. For
example, in a rule-based system
a feature may correspond to a set
of rules, in a service-oriented
system it may correspond to a
set of services in a workflow, in
an adaptive system it may

Fig. 2. High-level overview of FUSION.

On the Role of Features in Analyzing the Architecture of Self-Adaptive Software Systems

correspond to a set of adaptation
strategies, and so forth. Fig. 1b
shows a particular realization of
features: a feature is an abstract
representation of an architectural
variant. As depicted in Fig. 1b,
features map to a subset of the
system’s software architecture. In
other words, features crosscut the
system’s software architecture.

4.1 Runtime Variability

Fig. 1b shows a simple feature model for TRS. There are four features in the
system and one common core. The features in the example use two kinds of
relationships: dependency, and mutual exclusion. The dependency relationship
indicates that a feature requires the presence of another feature. For example, enabling
the Evidence Generation feature requires having the Core feature enabled as well.
Mutual exclusion is another relationship, which implies that if one of the features in a
mutual group is enabled, the others must be disabled. For example, Per-Request
Authentication and Mid-Frequency Authentication cannot be enabled at the same time
as they belong to the same mutual group. Feature modeling supports several other
types of inter-feature relationships [1] that we do not discuss for brevity.

In FUSION, at runtime we use the feature model to identify the current system
configuration in terms of a feature-selection string. In a feature-selection string,
enabled features are set to “1”; disabled features are set to “0”. For example, one
possible configuration of TRS would be “1101”, which means that all features from
Fig. 1b are enabled except Per-Request Authentication (i.e., F3).

The adaptation of a system in FUSION is modeled as a transition from one feature-
selection string to another (more details in section 7). Each transition takes one of the
three forms: enable and disable an optional feature, or swap two mutually exclusive
features. Fig. 3 shows three transitions that take the TRS system from feature
selection “1010” to “0101”.

4.2 Goals

In FUSION, system failure is defined as inability to satisfy one or more system
goals. We have adopted a simple, yet very expressive, approach for modeling the
system’s goals. A goal has a utility function for which a system quality metric can be
optimized. The metric is a measurable quantity (e.g., response time) that can be
obtained from a running system. The utility function expresses the engineer’s
preferences for the metric. For instance, G1 (Price Quote Response Time) in Fig. 1a
specifies a response time metric value to be collected from sensors in the system. The
corresponding utility function specifies the user’s preferences for different values of
price quote response time.

Fig. 3. Feature-based adaptation.

On the Role of Features in Analyzing the Architecture of Self-Adaptive Software Systems

FUSION calculates the system’s expected utility for a new feature selection ܨᇱ for
the system as follows: Ug ቀMg൫F'൯ቁgאG

, where U returns the utility associated with achieving a given metric M of goal g.
A utility function can be used to express hard constraints. In that case the utility

function would be a step-function such as the utility of G4 depicted in Fig. 1a. A
utility function may take on more advanced forms (e.g., sigmoid curve), and express
more complex preferences, such as G1, G2, and G3.

FUSION places one constrain on the specification of utility functions: they need to
return zero for the range of metric values that are not acceptable to the user. When a
utility associated with a goal reaches zero, FUSION considers that goal to be violated
and initiates adaptation

5 Monitor

As mentioned in challenge 1 of Section 2, quantifying the impact of adaptation
choices on the system’s conflicting goals are typically difficult (e.g., recall the trade-
off between the authentication protocol and the quality of price quotes). We believe
this difficulty is partially due to the gap between the system’s goals and the low-level
units of adaptation (e.g., add/remove component) at the architecture-level. In other
words, the adaptation occurs through low-level architectural changes, while the goals
are high-level concerns. Achieving a particular goal may require a series of low-level
changes at the architecture level. As a result, identifying the impact of low-level
changes on the system’s goals becomes extremely difficult.

In FUSION, the units of adaptation are features, which are inherently less granular
than low-level architectural constructs. In turn, since Monitor collects the data at a
higher level (i.e., feature level), it is significantly easier to observe and identify the
conflicts among goals. In particular, the monitored data in FUSION can be used to
determine two kinds of interactions:
1. Goal interactions with respect to one feature. A goal interaction occurs when two

goals are affected by enabling a feature. For instance, F1 (Evidence Generation)
has a positive effect on G4 (Accountability) and negative effect on G1 (Price
Quote Response Time), since Evidence Generation adds a mediator component to
witness the exchange of messages between TRS and travel agents.

2. Feature interactions with respect to one goal. A feature interaction occurs when
enabling two features modifies the behavior of one or both features. For example,
enabling both features F1 (Evidence Generation) and F3 (Per-Request
Authentication) has a negative ramification on G1 (Price Quote Response Time)
that is beyond the individual impact of each. Per-Request Authentication changes
the behavior of Evidence Generation, since it causes additional overhead in
mediating exchange of authentication credentials between TRS and travel agents.

On the Role of Features in Analyzing the Architecture of Self-Adaptive Software Systems

6 Analyze

Analyze conducts runtime analysis to find a configuration of the system that
resolves the violated goals. As mentioned in challenge 2 of Section 2, performing
such analysis at the architectural-level is often computationally very expensive for
any sizable system. FUSION uses features to encode the engineer’s knowledge of the
adaptation choices that are practical. In turn, Analyze operates on the feature selection
space, which is significantly smaller than the architecture selection space.

For instance, in the TRS example, the engineer has exposed only the authentication
strategies that are foreseen to be useful as features. Fig. 1b shows the two
authentication strategies that are modeled as features in the TRS: F3 and F4. This
automatically reduces the configuration space from MNP (recall example of challenge
2) to 2F, where F is the number of variant features that affect the authentication
concern in the system. Clearly it is reasonable to assume that M >> 2 and N×P >> F
for any sizable system.

In addition, using the inter-feature relationships (e.g., mutual exclusions,
dependencies) we can further reduce the feature selection space. For instance, Fig. 1b
shows a mutual exclusive relationship between F3 and F4. This relationship captures
the engineer’s application knowledge that applying two authentication protocols to
the same execution scenario is not a valid configuration. Such relationships reduce the
space of valid feature selections significantly.

We can further scope down the analysis to only the features that affect the violated
goals. Analyze first finds features that have a significant impact (positive or negative)
on the violated goal. It then finds any other goals that are affected by the selected
features. As a result, FUSION’s feature-based analysis is significantly more efficient
than the alternative of assessing all of the system goals for the entire space of
adaptation choices at the architectural level.

7 Plan

As you may recall from challenge 3 in Section 2, adaptation planning is a major
source of difficulty, due to its application dependent nature. This is one of the key
shortcomings of existing self-adaptation frameworks, which either ignore or revert to
ad-hoc techniques during the planning stage. In FUSION, the engineer models this
knowledge in terms of features and their dependencies. This is used to devise a plan
that ensures the system’s correct functioning during and after the adaptation.

Fig. 3 shows an adaptation plan in FUSION, which consists of a series of
transitions from the current feature selection to a new one. Since many paths can be
traversed to reach a target feature selection, Plan uses the feature model to pick a path
that abides by feature model constrains in every intermediate step. In TRS for
example, enabling F3 and F4 at the same time produces a feature selection that violates
the mutual exclusion relationship in the feature model. If two features are mutually
exclusive, the system should never be in a state were both features are enabled.
Similarly, a dependent feature should not be enabled without its prerequisite. In other

On the Role of Features in Analyzing the Architecture of Self-Adaptive Software Systems

words, the path should not cause transition to an invalid feature selection that could
jeopardize the system’s functionality.

In addition, guided by utility functions, Plan can pick a path that minimizes
violation of goals as much as possible. For instance, suppose that enabling F1 causes
5% decrease in the utility of G1. If G1 is already 1% away from violating its
constraint, enabling F1 right away will cause a violation. In such a case, the adaptation
plan first enables another feature, suppose F2, to increase G1’s utility (e.g. up to more
than 5% away from the constraint) before enabling F1.

8 Execute

Execute carries out the process of changing the system’s configuration. However,
as mentioned in challenge 4 of Section 2, effecting a new architecture may require
making changes at different levels of system stack (e.g., application, middleware,
network). FUSION uses features as platform-independent effectors. Each feature is
associated with a feature mapping, which relates the feature to a part of the running
system. A feature mapping is a set of rules that specify the changes that need to take
place in the lower levels of system stack. For mutual exclusive features, one mapping
is created for each mutual group.

Fig. 4 shows how FUSION integrates with the system using a feature mapping
interface. In part (a), the feature mapping interacts with multiple platforms at the
application level. In part (b), the feature mapping rules extend to different levels of
system stack. In both cases, the role of Execute is limited to invoking one feature-
mapping interface at a time (i.e., enable/disable/swap a feature) regardless of how and
where changes are taking place. For example, enabling a feature may correspond to
delopying new components in the application, selecting a new resource allocation
policy in the middleware, switching off certain network interfaces, and so on. The
feature mapping interface invokes effectors in the running system to apply the
changes as specified.

Fig. 4. FUSION uses feature-mapping to integrate with (a) heterogeneous

implementation platforms, and (b) different levels of system stack.

On the Role of Features in Analyzing the Architecture of Self-Adaptive Software Systems

9 Conclusion

We described the role of features in a self-adaptive framework, called FUSION.
We showed how feature modeling alleviates some of the key challenges of building
self-adaptive systems. The underlying insight guiding our research is that: (1) by
using features to incorporate the engineer’s knowledge of some aspects of the system
we can enhance the adaptation logic, and (2) features can serve as an abstraction to
deal with the heterogeneity of the underlying architectural models, analytical
algorithms, and implementation platforms. As part of our future work we intend to
empirically evaluate and compare the FUSION framework against other self-
adaptation frameworks. In particular we plan to quantitatively assess the benefits and
drawbacks of using feature abstractions for self-adaptation in the context of real-
world applications.

Acknowledgments. This work is partially funded by contract W9132V-07-C-0006
with US Army Geospatial Center, as well as grant CCF-0820060 from National
Science Foundation. We would like to thank Mark Pullen for his guidance and
support in this research.

References
1. Gomaa, H.: Designing Software Product Lines with UML: From Use Cases to Pattern-

Based Software Architectures, Addison-Wesley Professional, 2004.
2. Kang, K.C., et al.: Feature-oriented domain analysis (FODA) feasibility study. Carnegie-

Mellon University, Pittsburgh, PA, Software Engineering Institute, 1990.
3. Kang, K.C., et al.: FORM: A feature-oriented reuse method with domain-specific

reference architectures. In: Annals of Software Engineering, vol. 5, 1998, pp. 143–168.
4. Cheng, B. H. C. et al., Software Engineering for Self-Adaptive Systems: A Research

Roadmap. In: Software Engineering for Self-Adaptive Systems, Lecture Notes on
Computer Science Hot Topics, 2009, pp. 1-26.

5. Lee, K., Kang, K., Kim, M., Park, S.: Combining feature-oriented analysis and aspect-
oriented programming for product line asset development. In: 10th International Software
Product Line Conference, 2006, pp. 10 pp.-112.

6. Foo, B., Wu, Y., Mao, Y., Bagchi, S., Spafford, E.: ADEPTS: adaptive intrusion response
using attack graphs in an e-commerce environment. In: Dependable Systems and
Networks, 2005. DSN 2005. Proceedings International Conference on, 2005, pp. 508-517.

7. Andersson, J., de Lemos, R., Malek., S., and Weyns, D.: Modeling Dimensions of Self-
Adaptive Software Systems. In: Software Engineering for Self-Adaptive Systems, Lecture
Notes on Computer Science Hot Topics, 2009.

8. Garlan, D., Cheng, S., Huang, A., Schmerl, B., Steenkiste, P.: Rainbow: Architecture-
Based Self-Adaptation with Reusable Infrastructure, Oct. 2004.

9. Oreizy, P., et al.: An Architecture-Based Approach to Self-Adaptive Software. In: IEEE
Intelligent Systems, vol. 14, 1999, pp. 54--62.

10. Kramer, J., Magee, J.: Self-Managed Systems: an Architectural Challenge. In:
International Conference on Software Engineering, 2007, pp. 259-268.

11. Malek, S., Mikic-Rakic, M., Medvidovic, N.: An extensible framework for autonomic
analysis and improvement of distributed deployment architectures. In: Proceedings of the
workshop on Self-managed systems, ACM New York, NY, USA, 2004, pp. 95-99.

12. Lee, J., Kang, K.: “A feature-oriented approach to developing dynamically reconfigurable
products in product line engineering,” Software Product Line Conference, 2006 10th
International, 2006, pp. 10 pp.-140.

