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Abstract. The proliferation of smart spaces and emergence of new standards, 

such as Web Services, have paved the way for a new breed of software systems. 

Often the complete functional and QoS requirements of such software systems 

are not known a priori at design-time, and even if they are, they may change at 

run-time. Unfortunately, the majority of existing software engineering techniques 

rely heavily on human reasoning and manual intervention, making them 

inapplicable for automatic composition of such software systems at run-time. 

Moreover, these approaches are primarily intended to be used by technically 

knowledgeable software engineers, as opposed to domain users. In this paper, we 

present Service Activity Schemas (SAS), an activity-oriented language for 

modeling software system’s functional and QoS requirements. SAS targets 

service-oriented software systems, and relies on an ontology to provide domain 

experts with modeling constructs that are intuitively understood. SAS forms the 

centerpiece of a framework intended for user-driven composition and adaptation 

of service-oriented software systems in a pervasive setting. We provide a 

detailed description of SAS in the context of a case study and formally specify its 

structural and dynamic properties. 

Keywords: Requirements Modeling, Domain Specific Modeling Languages, 

Model Driven Development, Autonomic Computing, Pervasive Systems 

1 Introduction 

Software systems are increasingly permeating a variety of domains, including 

medical, industrial automation, defense, and emergency response. The growth of 

service-oriented software systems and the emergence of new standards have made it 

possible to develop pervasive systems that were not even conceivable a few years ago.  

In particular, the decoupling of service providers from consumers and the flexibility 

of dynamically discovering and binding to services have facilitated the development of 

software systems intended for execution in smart spaces. The proliferation of portable 

and embedded computing devices and the recent advances in wireless network 

connectivity have further made the service-oriented architecture (SOA) paradigm a 

viable option in such settings. Web Services [1] have also played a crucial role in 

enabling interoperability and alleviating integration challenges in pervasive settings.  



 

 

 

Domain experts and end-users increasingly rely on such systems for their day to day 

activities. The software deployed in such settings needs to deal with the inherently 

dynamic and unpredictable nature of pervasive environments. Finally, the functional 

requirements of such software systems are often not completely known at design-time, 

and even if they were, they may change at run-time.  

These characteristics have forced the designers of such systems to deal with two 

emerging and increasingly important classes of daunting challenges: (1) rapid 

composition of software systems at run-time based on the users’ changing needs, and 

(2) autonomous adaptation of the software system at run-time to satisfy the system’s 

functional and non-functional requirements. However, the majority of existing 

software engineering techniques for representing, analyzing, and composing software 

systems rely heavily on human reasoning and manual intervention, making them 

unwieldy for use in this setting. Moreover, these approaches are primarily intended to 

be used by technically knowledgeable software engineers, as opposed to domain 

experts that use such systems on a daily basis.  

Motivated by the aforementioned challenges, we have developed a framework 

entitled Self-Architecting Software Systems (SASSY) [2]. SASSY enables autonomic 

composition and adaptation of service-oriented software system based on the domain 

users’ requirements. To that end, domain users express their functional and Quality of 

Service (QoS) requirements in an intuitively understood visual modeling language. 

SASSY in turn automatically generates an architectural model that satisfies the 

system’s requirements, and deploys it through discovery and coordination of available 

services. Moreover, SASSY continuously monitors the running system and, if 

necessary, adapts the architecture and running system to ensure the user’s requirements 

are satisfied throughout the system’s execution.  

In this paper, we present Service Activity Schemas (SAS), an activity-oriented 

language for modeling the user requirements in the SASSY framework. SAS allows for 

the representation of both functional and QoS requirements in terms of modeling 

constructs that are intuitively understood by domain experts. The SAS modeling 

notation relies on a domain ontology that clearly specifies the semantics of the domain 

entities and their interrelationships.  

Unlike existing low-level service coordination languages (e.g., BPEL [3] semantic 

BPEL[4], JOpera [5]) and software modeling languages (e.g., UML [6], ADL [7]), the 

language is intended to be usable by domain experts. While SAS is motivated by 

business process modeling languages (e.g., BPMN [8]), it represents a departure from 

them as it codifies the system requirements in a manner that enables the automatic 

generation of executable pervasive SOA software systems.  

We have developed an implementation of SAS as a Domain Specific Modeling 

Language (DSML) on top of the Generic Modeling Environment (GME) [9]. The static 

and dynamic characteristics of the language are formally specified using the GME 

meta-models and Z notation [10], respectively. Our experiences with applying the 

language and environment to pervasive SOA software systems have been very positive. 

In all cases, the language proved to be both usable and rich enough to accurately 

represent the domain expert’s requirements. A subset of one of these systems for a fire 

emergency application is described throughout this paper. 



 

 

 

The remainder of the paper is organized as follows. Section  2 introduces the SASSY 

framework and describes the role of SAS in the overall scheme. Section  3 presents the 

related work. Section  4 describes a case study, which is used to introduce the language 

in Section  5. Section  6 details the process of using the language for the composition of 

service-oriented software system. Sections  7 and  8 present the structural and dynamic 

semantics of SAS, respectively. Finally, the paper concludes with an outline of our 

future work. 

2 The SASSY Framework 

SASSY [2] is a model-driven framework for composing SOA software systems (see 

Fig. 1 for an overview). The domain expert specifies the functional and QoS 

requirements using the SAS language, which is the focus of this paper. With the help 

of a domain ontology, these requirements are translated into the system’s base software 

architecture. The domain ontology provides the means for unambiguously 

distinguishing different concepts and elements, which as outlined further below 

facilitate discovery of services and resources in support of activities. We assume the 

domain ontology is created and maintained by a consortium of domain experts, who 

specify the various domain activities and concepts, including the properties of 

respective services that realize them. Examples of such ontology and directories 

provided by the US government for various domains, including emergency response, 

can be found at [11]. 

After generating the base architecture, SASSY instantiates the architecture by 

discovering the required services and selecting the ones that maximize a global utility 

function that depends on the system’s QoS requirements. SASSY generates alternative 

architectures by exploring and applying architectural patterns that increase the utility. 

For instance, in a situation where a service provider’s availability causes the utility to 

be reduced, SASSY 

may employ a 

replication pattern to 

compose two services 

in a way that one can 

be used as a hot 

standby for the other.    

At run-time, 

SASSY monitors the 

services and computes 

the value of the global 

utility function. When 

it is reduced by a given 

threshold, SASSY re-

architects the system 

and adapts it 

accordingly. Similarly, 
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 Fig. 1. An overview of SASSY framework. 



 

 

 

SASSY re-architects the system when the domain experts change the system 

requirements, and thus evolves the system. 

3 Related Work 

There are fundamentally two schools of thought concerning the modeling of 

activities: one focuses on the modeling of human activities, the other focuses on the 

modeling of workflow of computational and/or business processes.  

The first has its roots in psychology, going back to Leont’ev’s modeling of 

craftsmen activities [12], which inspired design approaches in human-computer 

interaction based on the modeling of user activities (e.g., [13]). This approach 

recognizes that users carry out actions to achieve their goals, but that the specific 

actions and their ordering is adapted to the material conditions of execution, that is, it 

cannot be prescribed a priori: a concept called situated action.   

In contrast, workflow modeling prescribes a concrete flow of actions to be followed.  

Recently, there has been considerable work on Business Process Execution Language 

(BPEL [3]), and Business Process Modeling Notation (BPMN [8]).  BPEL is an 

executable business process language, serialized in XML, to support programming in 

the large (e.g., see [14] for an overview and formal semantics and [4] for application of 

ontology to make BPEL accessible in semantic level). BPMN [8] is a business process 

modeling language, intended to be used by domain experts in a variety of domains. 

BPMN has three major drawbacks: (1) it is a general purpose language and 

semantically loosely defined, making it difficult to automatically generate executable 

models from it; (2) it does not support specification of QoS requirements; and (3) it is 

not suitable for pervasive settings as it lacks support for long living activities. 

Our modeling approach in SASSY combines the adaptability of situated action, for 

dealing with uncertainty and emergent behaviors in domains such as emergency 

response, and the efficacy of workflow, for coordinating the behaviors of complex 

software systems. 

In general, the development of visual modeling languages and tools for supporting 

the design of complex service-oriented systems is lagging behind the development of 

the underlying technology. Among the existing works, JOpera [5] is most closely 

related to our language. JOpera provides a workflow modeling language for 

representing the transformation of data among services. However, unlike SAS, the 

language provided by JOpera is very low-level and not intended for use by domain 

experts. Moreover, JOpera does not provide support for modeling QoS requirements, 

long living activities, and distinguishing local activities from services.    

Finally, UML [6,15] is a commonly used notation for the visual modeling of today’s 

software systems. UML’s diagrams provide a standard notation for representing the 

various structural and behavioral aspects of a system’s software. Several approaches 

extend UML’s notation via stereotypes [16,17]. However, using UML to visualize the 

requirements of a software system has several drawbacks: UML’s diagrams are 

relatively static; they do not consider services as first-class modeling entities; do not 

provide native support for representing and visualizing the parameters that affect the 



 

 

 

system’s QoS properties; and are not semantically constrained to enable automatic 

composition of SOA software. Moreover, UML is not aligned with SASSY objectives, 

as it is geared to software engineers, instead of domain experts. 

4 Case Study 

We use a software system, called Fire Emergency Response System (FERS), for 

describing the language and demonstrating its properties throughout this paper. FERS 

is developed internally and motivated by existing standards [11]. It targets SOA-

enabled smart spaces and is intended for use by emergency response organizations to 

automatically detect, respond, and manage fire emergencies.  

An FERS school is equipped with two types of sensors: smoke detectors and fire 

sprinklers. There may be many smoke detectors and fire sprinklers throughout a 

school. A sensor exposes a web service that provides operations for accessing its status 

and controlling it. For instance, a fire sprinkler service provides operations that allow 

other entities in the system to turn the sprinkler on/off. A school also exposes a service 

that provides profile information, such as the name of the school, location, number of 

students, and hours of operation.  

An FERS fire station has a fire monitoring service (FMS) that keeps track of all the 

sensors in the schools. A fire station also has several fire engines. Once smoke is 

detected by the FMS, it uses the fire station’s fire dispatch service to dispatch the 

closest smart fire engines to the scene. In order to determine the number of required 

fire engines that need to be dispatched, the dispatch service uses a heuristic based on 

the information (e.g., number of students, size of the school, and hours of operation) 

made available by the school's profile service and the number of smoke sensors that 

have detected smoke.  

A fire engine constantly communicates its status and progress to the station's 

dispatch service. As soon as the fire has been extinguished, the system resets the smoke 

detectors, turns off the fire sprinklers, and orders the fire engines to return to base. 

5 Language Overview 

This section introduces the SAS language through a small subset of the FERS 

system. In Sections  7 and  8, we revisit the language constructs and precisely define 

their semantics. 

Fig. 2 shows some of the modeling constructs available in the SAS language. Events 

are messages exchanged between two separate entities. Gateways manage the flow of 

control within an entity. Some of the supported gateways include InclusiveGateway 

(Conditional-Or), ExclusiveGateway (Switch), and ParallelGateway (Fork and And-

Join). 

The language distinguishes local Activities from ServiceUsages, i.e., activities 

performed by external entities (another organization). An underlying assumption in our 

work is that activities and service types are defined in a domain ontology, and 



 

 

commonly understood by domain experts. SAS also supports hierarchical composition 

through the notion of Sub-SAS. Activities, Sub-SASs, and ServiceUsages are 

represented by rectangles with round corners. A Sub-SAS is delineated with a plus sign, 

for bringing up the internal composition, and a ServiceUsage with a server icon. 

Communication with a service is via Input and Output events, while communication 

with a Sub-SAS is via StartLink and EndLinks.  

An SAS model is a graph where nodes correspond to activities and services that are 

coordinated to realize some functionality. In fact, as detailed in Section  6, an SAS may 

realize the functionality of a service type defined in the ontology.  

Fig. 2b shows an SAS model that realizes the dispatching service of FERS. When a 

dispatch message arrives, dispatching service calculates which fire engines should be 

assigned to the incident. The SAS is divided into two parallel sequences through a 

ParallelGateway, which behaves as a fork/join. The first path queries the School 

service where the smoke detector is located to get an estimate of the number of people 

in the school. The second path uses the createInc interface of the MissionManager 

Sub-SAS to create a record for the incident.  

When both the incident and occupancy messages have arrived, they are joined by a 

ParallelGateway into a single sequence. assignFE is a looping activity that uses this 

information to determine which fire engines (FE), if any, should be dispatched.  

When the dispatching service receives a normalcy message, it uses the cancelMis 

interface of MissionManager to send a callBack message to command the fire engines 

to return to base. Throughout the mission each fire engine periodically reports its status 

to the dispatch service by sending a report message. 

Fig. 2c shows the association of a QoS requirement with a path through the 

dispatching service SAS. A QoS requirement is specified via a Service Sequence 

 
Fig. 2. SAS for dispatch service: a) language constructs, b) basic flow, and c) response 

SSS is selected. 



 

 

 

Scenario (SSS). In this case, the response SSS indicates that the School service should 

respond to a request made by the coordinator within a pre-specified time. Section  7 

describes how such QoS requirements are specified as attributes of an SSS.   

An SAS may be made available for reuse as a service, a Sub-SAS, or both. An SAS 

exposed as a service may be used by external organizations for constructing their own 

SASs. Similarly, a Sub-SAS allows for hierarchical composition of SASs, and enables 

reuse within the same organization. The details of SAS reuse are further discussed in 

Section  6. 

Note that since one of our objectives has been to make the SAS language usable by 

domain experts, the coordinator is implicitly defined. In other words, an SAS model 

represents the coordination between internal activities and external services. This 

differs from a software design perspective, where a coordinator component is explicitly 

delineated and separated from the rest of the system. Our approach is compatible with 

existing business process modeling languages (e.g., BPMN [8]) that are also intended 

for use by domain experts.  

6 Building Service-Oriented Systems with SAS 

In our work we assume each domain has either a standard body or an organization in 

charge of defining the domain ontology. For example, in the emergency response 

domain a government authority typically defines the corresponding ontology (e.g., 

[11]). SAS enables an organization to realize a service type defined in the ontology, 

and make it available for external use by registering it in a service directory (e.g., 

UDDI [18,19]). In this way each organization retains its autonomy. At the same time, 

the ontology enables interoperability and integration among the various organizations, 

and forms them into a coherent task force. We further elaborate on the details of this 

process below. 

Defining a service type in the ontology consists of specifying (1) the service’s 

interfaces, and (2) the service’s interaction protocol. A service type’s interfaces 

correspond to its input and output messages, similar to the information provided in a 

WSDL [18]. A service type’s interaction protocol describes the relationship between 

the service’s interfaces. It indicates the output messages and the order they are 

generated when the service receives a particular input.  

For defining the interaction protocol a subset of the SAS constructs (i.e., Input, 

Output, Gateway, and Flow) is used. Fig. 3a shows the interaction protocol for the FE 

service (recall example of Fig. 2b). This interaction protocol specifies that a service of 

FE type receives return and missionSend messages and as result of that generates one 

or more report messages. The flow from the gateway to itself in Fig. 3a specifies that 

in response to one request message several report messages can be generated. 

Organizations query the ontology for a service type’s definition to determine how an 

instance of it can be used in their own SAS. An organization that intends to provide an 

instance of a service type creates a corresponding SAS as follows: replaces the Inputs 

and Outputs messages with StartLink and EndLinks, respectively; and provides an 

implementation for each of the service’s interfaces that comply with its interaction 



 

 

 

protocol. The constructed SAS is then made available to other organizations by 

registering it in a service directory. 

Fig. 3b illustrates the corresponding SAS for the interaction protocol of the FE 

service shown in Fig. 3a. As a result of the FE service receiving a return order, the fire 

engine goes back to its base station. The location of base station is a parameter in the 

return message that is delivered to goToLocation activity.  While on its way back, the 

goToLocation activity periodically sends a report message, which as you may recall 

from recall Fig. 2b updates the fire station of the vehicle’s current status.  

When the FE service receives the missionSend message, the vehicle is directed to go 

to the fire scene, and as before continuously sends updates of its current status. When 

the fire engine arrives, it checks whether there is a real fire or not. If it is a false alarm, 

the smoke sensors are turned off. Otherwise, the sprinklers are turned on, and the FE is 

directed to extinguish the fire. Meanwhile, the FE continuously sends report messages 

to update the fire station of its progress.  

Note that activities such as goToLocation, fightFire, and checkFire may either be 

automatically enabled, or rely on a firefighter to manually check the existence of a fire 

and inform the system through a user interface.  In other words, we model the humans 

through the user-interface (itself a service) they use for the interaction with the system. 

The domain experts are advised to be careful with the specification of QoS goals (SSS) 

involving such activities, since the ability to satisfy such QoS properties relies on the 

humans, whose behavior cannot be controlled by SASSY.  

The SAS depicted in Fig. 3b is only one implementation of the FE service. Other 

organizations may provide their own implementation of FE using different SASs. The 

only restriction is that the SAS needs to adhere to the interface definition and the 

interaction protocol (i.e., Fig. 3a) described in the ontology. Note that our approach 

does not prevent organizations from providing an implementation of a service type 

using other more traditional techniques (e.g., programming languages, BPEL). 

7 Structure of SAS 

The linguistic structure of SAS is defined using the meta-model provided by the 

Generic Modeling Environment toolkit (GME) [9].  GME is a general purpose model-

 
Fig. 3. Fire engine (FE) service: a) interaction protocol specification, and b) an SAS 

implementing the service specification. 



 

 

 

driven engineering environment that enables the development of domain-specific 

modeling languages. Just as formal grammars define the structure of valid sentences 

for textual languages, meta-models play a similar role for graphical languages. GME 

has the ability to interpret a given meta-model and automatically build a modeling 

environment that enforces the structural rules. 

The meta-modeling language supported by GME is a stereotyped variant of UML, 

which we explain below, as needed. 

Fig. 4 shows the meta-model for SAS divided into three parts, for readability: graph, 

service, and QoS.  Starting with graph, an SAS model contains Nodes, ServiceUsages, 

and Flows between those.  Nodes may be either ActivityUsages or Gateways, which in 

turn may be Parallel, Inclusive, or Exclusive.  We elaborate on each of these below. 

Furthermore, hierarchical decomposition is supported by allowing an SAS to contain 

other SASs (i.e., a Sub-SAS). A parent SAS interacts through StartLink and EndLink 

nodes, which act respectively as input and output interfaces to a child SAS.  Ultimately, 

a number of SASs may be included in a hierarchical structure of folders containing the 

Requirements for a system. 

With respect to the stereotypes that annotate this meta-model, GME defines Model 

which corresponds to a diagram, Set for defining subsets of objects within a diagram, 

Atom which has a graphical representation, and Connection, represented as a line 

between two atoms.  Additionally, Reference provides a mechanism to describe several 

usages of a single definition.  First class object, FCO, is a super type of the above used 

for organizing the meta-model, and has no associated graphical representation of its 

own.  For example, SAS is a Model, an Exclusive gateway is an Atom, and Gateway is 

an FCO. 

A Flow represents a line between two GenericNodes: the source and destination of 

the flow. A Flow carries data from between two nodes. The Condition field of a Flow 

determines whether a particular data can traverse that Flow. The Mapping field of a 

GenericNode specifies the transformation of data as it enters and exits a node.  This 

transformation describes which data is passed into the node, and which data is returned 

from the node. Since the transformation of data is a common feature of several SAS 

constructs (e.g., Gateways, ActivityUsages, Links), it is modeled as an attribute of 

GenericNode. 

Gateways play a key role in coordinating the behavior of an SAS, and are best 

explained in behavioral terms: see Section  8. 

7.1 Services and Activities 

ServiceUsage and ActivityUsage constitute the basic functional elements of an SAS.  

While an activity is carried out internally by the component, e.g., a call to a system 

library, a service is requested to another component, possibly across the network. A 

LoopingActivityU may repeat a number of times determined by the Condition field, 

before completion. An Activity may have a return value which can be specified using 

Result. The Results are added to the outgoing data. 

Both ActivityUsage and ServiceUsage are stereotyped with Reference, which allows 

for referring to existing Activity and Service definitions. Such definitions exist in 



 

 

ActivityDirectory and ServiceDirectory, respectively, which are populated based on the 

information available in a domain ontology, and may be consulted by the domain 

experts while designing an SAS.  

Fig. 4b shows the meta-model for services. A ServiceDirectory is a Folder 

containing multiple Service definitions. A Service is a Model, that is, it has an 

associated diagram containing Input and Output interface nodes.  The role of the latter 

is similar to the role of the StartLink and EndLink interface nodes: to facilitate the 

interaction between other constructs in the SAS and the internals of the particular box 

(a service or sub-SAS, respectively). Outputs are responsible for returning the Result 

from the Service. The Proxies that annotate the meta-model are simply a mechanism 

provided by GME for referring to objects defined in other parts of the meta-model. 

7.2 Service Sequence Scenarios and QoS 

Service Sequence Scenarios (SSS) are used to represent the user’s QoS preferences. 

For that, each SSS defines a path through the SAS (recall Fig. 2c). In the meta-model, 

we represent an SSS path as a set of GenericNode and Flow constructs.  Naturally, an 

SAS may contain several SSS sets, each modeling a separate QoS concern. Fig. 4c 

shows the internal structure of an SSS, which consists of QoSMetric and SSSUtility for 

defining the QoS and  the user’s preferences, respectively.   

Fig. 4. Meta-model for SAS in three parts: a) graph, b) service, and c) QoS. 



 

 

 

QoSMetric may be typed as Plain or Aggregatable. Values of Plain QoS cannot be 

aggregated into more complex measures, e.g., a measure of Security in a qualitative 

scale could be: Low, Medium, High. In contrast, the values of Aggregatable ones may 

be combined using aggregation operators, such as summation or mean, in the case of 

numbers. For example, a measure of throughput may be derived from measures of 

response time and parallel capacity.  Fig. 4c shows ResponseTime as an Aggregatable 

measure, but the approach is not limited to a predetermined set of metrics.  

An SSSUtility contains one or more QoSMetrics and provides a Function, which 

returns the utility associated with a given level of QoSMetric(s) for a user. 

Finally, an SAS contains a global utility function, called SASUtility. It includes a set 

of SSS and is used to specify the users’ preferences in resolving the trade-offs among 

multiple SSS constructs. Its Function field specifies the relationship between the 

contained SSS constructs, i.e., quantifies the impact of achieving QoS specified in the 

SSSUtilities on the value of the global utility (SASUtility). 

8 Behavior of SAS 

The model presented in this section complements the meta-model in section  7 by 

clarifying the behavior of the different kinds of Nodes (Fig. 4).  Similar to BPMN and 

Petri Nets [20], this model is based on the notion of execution token. Specifically, the 

purpose of the behavior model herein is to answer the question: if a token is presented 

as an input to a node, how does that node process the token? 

By specifying the behavioral semantics of the nodes in SAS, this model offers a 

precise guideline for the automatic generation of implementation code (i.e., 

coordination logic) from SASs.  

We selected Z [10] as a convenient notation to express the behavior of SAS 

constructs.  Z builds on set theory and offers the following constructs: base sets, 

functions, schemas, and operations. These constructs are explained by example, below. 

Tokens and nodes are modeled as elements of base sets Token and Node, 

respectively.  At the implementation level, tokens correspond to messages circulating 

in the system, possibly with a data payload, and nodes correspond to the functional 

elements that process those messages and decide what to do next.  By modeling tokens 

as elements of a base set, they are individually distinguishable, but their internal 

structure is abstracted out. The same holds for nodes. 

The left side of the model excerpt below shows the definitions for these base sets, an 

enumeration, Type, and a schema, SAS.  The Type enumeration captures the type of 

node as defined in section 7: activities, start and end links of Sub-SASs, etc. 

 



 

 

 

The set of tokens currently in circulation characterizes the execution state of an 

SAS.  The schema SAS above holds the Tokens set as a state attribute.  This set is 

modified by operations that capture the behavior of the different kinds of nodes.  

Consumed tokens are removed from Tokens, while the produced ones are added to it. 

To help specify the behavior of nodes, a number of functions are defined on the 

right side of the model excerpt above. These functions can be grouped into three 

categories: query, generate, and replication functions.  

Input, Loop, and Merge query the availability of tokens at the input of nodes. These 

three functions take two arguments: a node of interest and the set of tokens currently in 

circulation in the SAS. 

Specifically, Input returns (a set containing) a token that is present at an input flow 

of the node, if such a token is available among the ones currently in circulation in the 

SAS (passed as the second argument).  If not, Input returns the empty set.  Loop returns 

(a set containing) a token, if the node is a LoopingActivity that currently holds a token, 

and if its associated looping condition remains true.  Merge returns a set of tokens, one 

token taken from each of the inputs leading up to the node, provided each of the inputs 

has at least one token available. 

The Generate function abstracts out the transformations of the data payload of 

tokens that may occur within nodes.  Specifically, given a node and a set of tokens at 

the node’s input, Generate returns the token produced by the node. 

All, Possible, and OnePoss are replication functions.  They take a newly generated 

token and a node, and place copies of the token on the node’s output flows. 

Replication functions take into account the constraints on the flow of tokens, as 

represented by the Condition in the Flow object in Fig. 4a.  Specifically, Possible 

places a token on each of the output flows where the associated condition holds, while 

OnePossible does the same for only one of the output flows, selected non- 

deterministically.  For nodes that do not impose constraints on the output flows, such 

as the ParallelGateway, the All function places a new token on each output flow. 

8.1 Services and sub-SAS 

The SAS initialization function and the specifications of Input, Out, and Link are: 

 



 

 

 

SASInit specifies that initially there are no Tokens inside the SAS. A Link could be 

considered an interface of an SAS that connects its constructs to those outside of it. A 

Link passes a subset of the data on an arriving Token to the output Token. A StartLink 

does this on Tokens received from the outside of an SAS, while the EndLink does this 

on the Tokens leaving an SAS.  

Note that a sub-SAS shares the same set of Tokens with the parent SASs. As you 

may recall from Section  6, an SAS may expose its interfaces as services, in which case 

the run-time environment (i.e., the coordination engine) provides the inputs to its 

StartLinks and collects the outputs at its EndLinks.  

 The In and Out are the interfaces of a ServiceUsage (see Fig. 4b), and hence they 

serve as destination and source of tokens, respectively. The run-time environment 

transfers the Tokens between the SAS and external services. 

8.2 Gateways 

Gateways synchronize activities by forking and joining several threads of activities. 

The ParallelGateway requires all the inputs to arrive (And-join) and activates all the 

output flows (fork) at the same time. When an input flow is activated, the 

InclusiveGateway (Conditional-Or) activates a subset of the output flow. For an 

outgoing flow to be activated, the condition specified on the flow must be satisfied. On 

the other hand, the ExclusiveGateway activates the first outgoing flow that has its 

condition satisfied. The outgoing sequence that is activated is selected non-

deterministically. The join semantic for both the InclusiveGateway and 

ExclusiveGateway are the same. 

The behavior of ExclusiveGateway and InclusiveGateway, which are the main 

constructs for enforcing conditions in forking and joining, are specified as follows: 

 

The ExclusiveGateway consumes the available input and generates a token for one 

of the possible output flows. The InclusiveGateway does the same thing except it 

generates a token for all the output flows where the associated condition holds. 

Finally, the behavior of the ParallelGateway is: 

 



 

 

 

The ParallelGateway merges all of the input flows and produces tokens for all of 

the outgoing ones, regardless of the conditions specified on the outgoing flows. If one 

of the input tokens is not available, ParallelGateway does nothing (i.e., it does not 

consume or generate tokens). 

8.3 Activities 

The Activity operation captures the behavior of ActivityUsage nodes, and is very 

similar to the Link operation. The only difference is that the Generate function for 

Activity may add new data (i.e., result of the activity) to Tokens. 

A Looping activity is an extension of a regular activity. It queries for an available 

token as follows: it first uses the Loop function to find any available tokens inside the 

Looping activity to consume, when there are no more tokens available in the activity, it 

uses the Input function to consume tokens from the inputs. 

 

9 Conclusion 

The emergence of SOA-enabled systems in pervasive settings calls for major 

advances in the software engineering methods currently employed. In this paper, we 

presented SAS, a novel visual modeling language intended to alleviate the existing 

shortcomings by automating the composition of such systems. SAS relies on a domain 

ontology to allow an expert specify the system’s functional and QoS requirements 

using commonly understood terminology. The formal specifications of the structural 

and behavioral semantics of SAS provide a precise guideline for the automatic 

generation of a system’s architectural model and executable code (i.e., coordination 

logic), respectively.  

Unlike the existing software design languages (e.g., UML [6], ADLs [7]), SAS is 

intended for use by domain experts, as opposed to software engineers. To that end, the 

language is motivated by existing business process modeling languages (e.g., BPMN 

[8]), which are commonly used by domain experts. However, in contrast, SAS codifies 

the software requirements in a manner that enables the automatic composition of 

service-oriented systems.  



 

 

 

 SAS is part of an ongoing research effort on Self-Architecting Software Systems 

(SASSY) framework [2]. SAS models have been used in SASSY to successfully 

compose service-oriented system. Some of the ongoing research include, automatically 

finding the optimal architecture with respect to QoS objectives specified in SAS 

models, adaptation of a running system in response to environmental changes, and 

evolution of a system due to changes in the SAS models. 
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