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Abstract. Efficiency with respect to energy consumption has increasingly been 
recognized as an important quality attribute for distributed software systems in 
embedded and pervasive environments. In this paper we present a framework for 
estimating the energy consumption of distributed software systems implemented in 
Java. Our primary objective in devising the framework is to enable an engineer to 
make informed decisions when adapting a system’s architecture, such that the 
energy consumption on hardware devices with a finite battery life is reduced, and 
the lifetime of the system’s key software services increases. Our framework explic-
itly takes a component-based perspective, which renders it well suited for a large 
class of today’s distributed, embedded, and pervasive applications. The framework 
allows the engineer to estimate the distributed system’s energy consumption at sys-
tem construction-time and refine it at runtime. In a large number of distributed 
application scenarios, the framework showed very good precision on the whole, 
giving results that were within 5% (and often less) of the actual energy consump-
tion incurred by executing the software. Our work to date has also highlighted the 
framework’s practical applications and a number of possible enhancements.
Keywords. Distributed systems, energy consumption, Java, component-based 
software

1  Introduction 

Modern software systems are predominantly distributed, embedded, and pervasive. 
They increasingly execute on heterogeneous platforms, many of which are character-
ized by limited resources. One of the key resources, especially in long-lived systems, 
is battery power. Unlike the traditional desktop platforms, which have uninterrupted, 
reliable power sources, a newly emerging class of computing platforms have finite 
battery lives. For example, a space exploration system comprises satellites, probes, 
rovers, gateways, sensors, and so on. Many of these are “single use” devices that are 
not rechargeable. In such a setting, minimizing the system’s power consumption, and 
thus increasing its lifetime, becomes an important quality-of-service concern.

The simple observation guiding our research is that if we could estimate the energy 
cost of a given software system in terms of its constituent components ahead of its 
actual deployment, or at least early on during its runtime, we would be able to take 
appropriate, possibly automated, actions to prolong the system’s life span: unloading 
unnecessary or expendable components, redeploying highly energy-intensive compo-
nents to more capacious hosts, collocating frequently communicating components, 
and so on. 

To this end, we have developed a framework that estimates the energy consump-
tion of a distributed Java-based software system at the level of its components. We 
chose Java because of its intended use in network-based applications, its popularity, 
and very importantly, its reliance on a virtual machine, which justifies some simplify-



ing assumptions possibly not afforded by other mainstream languages. We have eval-
uated our framework for precision on a number of distributed Java applications, by 
comparing its estimates against actual electrical current measurements. In all of our 
experiments the framework has been able to estimate the power consumed by a dis-
tributed Java system to within 5% of the actual consumption. 

One novel contribution of our estimation framework is its component-based per-
spective. To facilitate component-level energy cost estimates, we suggest a computa-
tional energy cost model for a software component. We integrate this model with the 
component’s communication cost model, which is based on the experimental results 
from previous studies. This integrated model results in highly accurate estimates of a 
component’s overall energy cost. Furthermore, unlike most previous power estimation 
tools for embedded applications, we explicitly consider and model the energy over-
head of a host’s OS and an application’s runtime platform (e.g., JVM) incurred in 
facilitating and managing the execution of software components. This further 
enhances the accuracy of our framework in estimating a distributed software system’s 
energy consumption. Another contribution of our work is its ability to adjust energy 
consumption estimates at runtime efficiently and automatically, based on monitoring 
the changes in a small number of easily tracked system parameters (e.g., size of data 
exchanged over the network, inputs to a component’s interfaces, invocation frequency 
of each interface, etc.).

In the remainder of this paper we first present the related research in the energy 
estimation and measurement areas (Section 2). We then introduce our energy estima-
tion framework (Section 3) and detail how it is applied to component-based Java sys-
tems (Section 4). This is followed by our evaluation strategy (Section 5) and results 
(Section 6). The paper concludes with a discussion of planned applications of this 
research (Section 7).

2  Related Work

Several studies have profiled the energy consumption of Java Virtual Machine 
(JVM) implementations. Farkas et al. [3] have measured the energy consumption of 
the Itsy Pocket Computer and the JVM running on it. They have discussed different 
JVMs’ design trade-offs and measured their impact on the JVM’s energy consump-
tion. Lafond et al. [11] have showed that the energy required for memory accesses usu-
ally accounts for 70% of the total energy consumed by the JVM. However, none of 
these studies suggest a model that can be used for estimating the energy consumption 
of a distributed Java-based system.

There have been several tools that estimate the energy consumption of embedded 
operating systems (OSs) or applications. Tan et al. [19] have investigated the energy 
behaviors of two widely used embedded OSs, µC/OS [10] and Linux, and suggested 
their quantitative macro-models, which can be used as OS energy estimators. Sinha et 
al. [16] have suggested a web-based tool, JouleTrack, for estimating the energy cost 
of an embedded software running on StrongARM SA-1100 and Hitachi SH-4 micro-
processors. While they certainly informed our work, we were unable to use these tools 
directly in our targeted Java domain because none of them provide generic energy 
consumption models, but instead have focused on individual applications running on 



specific OSs and platforms.
Recently, researchers have attempted to characterize the energy consumption of the 

Transmission Control Protocol (TCP) [15]. Singh et al. [15] measured the energy con-
sumption of variants of TCP (i.e., Reno, Newreno, SACK, and ECN-ELFN) in ad-hoc 
networks, and showed that ECN-EFLN has a lower energy cost than the others. These 
studies also show that, since TCP employs a complicated mechanism for congestion 
control and error recovery, modeling its exact energy consumption remains an open 
problem. While we plan to incorporate into our framework the future advancements in 
this area, as detailed in the next section we currently rely on the User Datagram Proto-
col (UDP), which does not provide any support for congestion control, retransmis-
sion, error recovery, and so on.

Several studies [4,21] have measured the energy consumption of wireless network 
interfaces on handheld devices that use UDP for communication. They have shown 
that the energy usage by a device due to exchanging data over the network is directly 
linear to the size of data. We use these experimental results as a basis for defining a 
component’s communication energy cost.

Finally, this research builds on our previous works [12,13], where we have out-
lined the architecture of the framework [12], and the overall energy estimation pro-
cess [13]. In this paper, we provide a comprehensive and detailed description of the 
framework, runtime refinement of its estimates, its practical applications, and an 
extensive evaluation of its accuracy in the context of several applications. 

3  Energy Consumption Framework

We model a distributed software system’s energy consumption at the level of its 
components. A component is a unit of computation and state. In a Java-based applica-
tion, a component may comprise a single class or a cluster of related classes. The 
energy cost of a software component consists of its computational and communication
energy costs. The computational cost is mainly due to CPU processing, memory 
access, I/O operations, and so forth, while the communication cost is mainly due to 
the data exchanged over the network. In addition to these two, there is an additional 
energy cost incurred by an OS and an application’s runtime platform (e.g., JVM) in 
the process of managing the execution of user-level applications. We refer to this cost 
as infrastructure energy overhead. In this section, we present our approach to model-
ing each of these three energy cost factors. We conclude the section by summarizing 
the assumptions that underlie our work.

3.1  Computational Energy Cost
In order to preserve a software component’s abstraction boundaries, we determine 

its computational cost at the level of its public interfaces. A component’s interface 
corresponds to a service it provides to other components. While there are many ways 
of implementing an interface and binding it to its caller (e.g., RMI, event exchange), 
in the most prevalent case an interface corresponds to a method. In Section 3.2 we dis-
cuss other forms of interface implementation and binding (e.g., data serialization over 
sockets). 



As an example, Figure 1 shows a component c1 on host H1, c1’s provided inter-
faces, and the invocation of them by remote components. Given the energy cost iCom-
pEC resulting from invoking an interface Ii, and the total number bi of invocations for 
the interface Ii, we can calculate the overall energy cost of a component c1 with n

interfaces (in Joule) as follows: Eq. 1

In this equation, iCompEC(Ii,j), the computational energy cost due to the jth invoca-
tion of Ii, may depend on the input parameter values of Ii and differ for each invoca-
tion. 

In Java, the effect of invoking an interface can 
be expressed in terms of the execution of JVM’s 
256 Java bytecode types, and its native methods. 
Bytecodes are platform-independent codes inter-
preted by JVM’s interpreter, while native methods 
are library functions (e.g., java.io.FileIn-
putStream’s read() method) provided by 
JVM. Native methods are usually implemented in 
C and compiled into dynamic link libraries, which 
are automatically installed with JVM. JVM also 
provides a mechanism for synchronizing threads 
via an internal implementation of a monitor. 

Each Java statement maps to a specific 
sequence of bytecodes, native methods, and/or monitor operations. Based on the 256 
bytecodes, m native methods, and monitor operations that are available on a given 
JVM, we can estimate the energy cost iCompEC(Ii,j) of invoking an interface as fol-
lows:

Eq. 2

where bNumk,j and fNuml,j are the numbers of each type of bytecode and native 
method, and mNumj is the number of monitor operations executed during the jth invo-
cation of Ii. bECk, fECl, and mEC represent the energy consumption of executing a 
given type of bytecode, a given type of native method, and a single monitor operation, 
respectively. These values must be measured before Equation 2 can be used. Unless 
two platforms have the same hardware setup, JVMs, and OSs, their respective values 
for bECk, fECl, and mEC will likely be different. We will explain how these values 
can be obtained in Section 5.

3.2  Communication Energy Cost
Two components may reside in the same address space and thus communicate 

locally, or in different address spaces and communicate remotely. When components 
are part of the same JVM process but running in independent threads, the communica-
tion among the threads is generally achieved via native method calls (e.g., 
java.lang.Object’s notify() method). A component’s reliance on native 
methods has already been accounted for in calculating its computational cost from 
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Equation 2. When components run as separate JVM processes on the same host, Java 
sockets are usually used for their communication. Given that JVMs generally use 
native methods (e.g., java.net.SocketInputStream’s read()) for socket 
communication, this is also captured by a component’s computational cost. 

In remote communication, the transmission of messages via network interfaces 
consumes significant energy. Given the communication energy cost iCommEC due to 
invoking an interface Ii, and the total number bi of invocations for that interface, we 
can calculate the overall communication energy consumption of a component c1 with 

n interfaces (expressed in Joule) as follows: Eq. 3

In this equation, iCommEC(Ii,j), the energy cost incurred by the jth invocation of Ii, 
depends on the amount of data transmitted or received during the invocation and may 
be different for each invocation. Below we explain how we have modeled iCom-
mEC(Ii,j).

We focus on modeling the energy consumption due to the remote communication 
based on UDP. Since UDP is a light-weight protocol (e.g., it provides no congestion 
control, retransmission, and error recovery mechanisms), it is becoming increasingly 
prevalent in resource-constrained pervasive domains [2,20]. Previous research [4,21] 
has shown that the energy consumption of wireless communication is directly propor-
tional to the size of transmitted and received data. Based on this, we quantify the com-
munication energy consumption due to the jth invocation of component c1’s interface 
Ii on host H1 by component c2 on host H2 as fol-

lows:  Eq. 4

Parameters tEvtSize and rEvtSize are the sizes (e.g., KB) of transmitted and received 
messages on host H1 during the jth invocation of Ii. The remaining parameters are 
host-specific. tECH1 and rECH1 are the energy costs (Joule/byte) on host H1 while it 
transmits and receives a unit of data, respectively. tSH1 and rSH1 represent constant 
energy overheads associated with device state changes and channel acquisition [4]. 

In Equation 4, the energy values of tEC, rEC, tS, rS are constant and platform-spe-
cific.1 The system parameters that need to be monitored on each host are only the 
sizes of messages exchanged (tEvtSize and rEvtSize, which include the overhead of 
network protocol headers). Note that transmission or receipt failures between the 
sender and receiver hosts do not affect our estimates: UDP does not do any processing 
to recover from such failures, while our framework uses the actual amount of data 
transmitted and received in calculating the communication energy estimates.

3.3  Infrastructure Energy Consumption
Once the computational and communication costs of a component have been cal-

culated based on its interfaces, its overall energy consumption is determined as fol-
lows: 

Eq. 5

1 We will elaborate on how these parameters are determined for an actual host in Section 6.2
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However, in addition to the computational and communication energy costs, there 
are additional energy costs for executing a Java component incurred by JVM’s gar-
bage collection and implicit OS routines. During garbage collection, all threads 
except the Garbage Collection (GC) thread within the JVM process are suspended 
temporarily, and the GC thread takes over the execution control. We estimate the 
energy consumption resulting from garbage collection by determining the average 
energy consumption rate gEC of the GC thread (Joule/second) and monitoring the 
total time tGC the thread is active (second). In Section 5 we describe how to measure 
the GC thread’s execution time and its average energy consumption rate.

Since a JVM runs as a separate user-level process in an OS, it is necessary to con-
sider the energy overhead of OS routine calls for facilitating and managing the execu-
tion of JVM processes. There are two types of OS routines: 
1. explicit OS routines (i.e., system calls), which are initiated by user-level 

applications (e.g., accessing files, or displaying text and images on the screen); and 
2. implicit OS routines, which are initiated by the OS (e.g., context switching, 

paging, and process scheduling). 
Java applications initiate explicit OS routine calls via JVM’s native methods. There-
fore, Equation 2 already accounts for the energy cost due to the invocation of explicit 
OS routines. However, we have not accounted for the energy overhead of executing 
implicit OS routines. Previous research has shown that process scheduling, context 
switching, and paging are the main consumers of energy due to implicit OS routine 
calls [19]. By considering these additional energy costs, we can estimate the overall 
infrastructure energy overhead of a JVM process p as follows:

 Eq. 6
Recall that gEC is the average energy consumption rate of the GC thread, while tGCp
is the time that the GC thread is active during the execution of process p. csNump, 
pfNump, and prNump are, respectively, the numbers of context switches, page faults, 
and page reclaims that have occurred during the execution of process p. csEC, pfEC, 
and prEC are, respectively, the energy consumption of processing a context switch, a 
page fault, and a page reclaim. We should note that csEC includes the energy con-
sumption of process scheduling as well as a context switch. This is due to the fact that 
in most embedded OSs a context switch is always preceded by process scheduling 
[19]. 

Since there is a singleton GC thread per JVM process, and implicit OS routines 
operate at the granularity of processes, we estimate the infrastructure energy overhead 
of a distributed software system in terms of its JVM processes. In turn, this helps us to 
estimate the system’s energy consumption with higher accuracy. Unless two platforms 
have the same hardware configurations, JVMs, and OSs, the energy values of gEC,
csEC, pfEC, and prEC on one platform may not be the same as those on the other plat-
form. We will describe how these values can be obtained for an actual host in 
Section 5.

Once we have estimated the energy consumption of all the components, as well as 
the infrastructure energy overhead, we can estimate the system’s overall energy con-

( ) ( ) ( ) ( )( ) p p p pifEC p tGC gEC csNum csEC pfNum pfEC prNum prEC= × + × + × + ×



sumption as follows:  Eq. 7

where cNum and pNum are, respectively, the numbers of components and JVM pro-
cesses in the distributed software system.

3.4  Assumptions
In formulating the framework introduced in this section, we have made several 

assumptions. First, we assume that the configuration of all eventual target hosts is 
known in advance. This allows system engineers to closely approximate (or use the 
actual) execution environments in profiling the energy consumption of applications 
prior to their deployment and execution. As alluded above, and as will be further dis-
cussed in Sections 4 and 5, several elements of our approach (e.g., profiling the 
energy usage of a bytecode, assessing infrastructure energy costs) rely on the ability to 
obtain accurate energy measurements “off line”.

Second, we assume that interpreter-based JVMs, such as Sun Microsystems’ KVM 
[9] and JamVM [5], are used. These JVMs have been developed for resource-con-
strained platforms, and require much less memory than “just-in-time” (JIT) compila-
tion-based JVMs. If a JIT-based JVM is used, the energy cost for translating a 
bytecode into native code “on the fly” would need to be added into Equation 2 since 
the JIT compilation itself happens while a Java application is being executed. We are 
currently investigating how our framework can be extended to JIT-based JVMs.

Third, we assume that the systems to which our framework is applicable will be 
implemented in “core” Java. In other words, apart from the JVM, we currently do not 
take into account the effects on energy consumption of any other middleware plat-
form. While this does not prevent our framework from being applied on a very large 
number of existing Java applications, clearly in the future we will have to extend this 
work to include other middleware platforms.

Finally, we assume that the target network environment is a (W)LAN that consists 
of dedicated routers (e.g., wireless access points) and stationary or mobile hosts. This 
is representative of a majority of systems that rely on wireless connectivity and bat-
tery power today. In the case of mobile hosts, we assume that each host associates 
itself with an access point within its direct communication range and communicates 
with other hosts via dedicated access points. In this setting, there could be a hand-off 
overhead when mobile hosts move and change their associated access points. How-
ever, it is not the software system that causes this type of energy overhead, but rather 
the movement of the host (or user). Therefore, we currently do not consider these 
types of overhead in our framework. Note that in order to expand this work to a wire-
less ad-hoc network environment, we also need to consider the energy overhead of 
routing event messages by each host. This type of energy overhead can be accounted 
for by extending the infrastructure aspect of our framework. We plan to investigate 
this issue as part of our future work.
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4  Energy Consumption Estimation

In this section, we discuss the framework’s application for estimating a software 
system’s energy cost at both during system construction-time and runtime.

4.1  Construction-Time Estimation
For construction-time estimation, we first need to characterize the computational 

energy cost of each component on its candidate hosts. To this end, we have identified 
three different types of component interfaces:
I. An interface (e.g., a date component’s setCurrentTime) that requires the same 

amount of computation regardless of its input parameters.
II. An interface (e.g., a data compression component’s compress) whose input size 

is proportional to the amount of computation required.
III.An interface (e.g., DBMS engine’s query) whose input parameters have no direct 

relationship to the amount of computation required.
For a type I interface, we need to profile the number of bytecodes, native methods, 

and monitor operations only once for an arbitrary input. We can then calculate its 
energy consumption from Equation 2. 

For type II interfaces, we generate a set of random inputs, profile the number of 
bytecodes, native methods, and monitor operations for each input, and then calculate 
its energy cost from Equation 2. However, the set of generated inputs does not show 
the complete energy behavior of a type II interface. To characterize the energy behav-
ior of a type II interface for any arbitrary input, we employ multiple regression [1], a 
method of estimating the expected value of an output variable given the values of a set 
of related input variables. By running multiple regression on a sample set of input 
variables’ values (i.e., each generated input for a type II interface) and the correspond-
ing output value (the calculated energy cost), it is possible to construct an equation 
that estimates the relationship between the input variables and the output value.

Interfaces of type III present a challenge as there is no direct relationship between 
an interface’s input and the amount of computation required, yet a lot of interface 
implementations fall in this category. For type III interfaces with a set of finite execu-
tion paths, we use symbolic execution [8], a program analysis technique that allows 
using symbolic values for input parameters to explore program execution paths. We 
leverage previous research [7], which has suggested a generalized symbolic execution 
approach for generating test inputs covering all the execution paths, and use these 
inputs for invoking a type III interface. We then profile the number of bytecodes, 
native methods, and monitor operations for each input, estimate its energy cost from 
Equation 2, and finally calculate the interface’s average energy cost by dividing the 
total energy cost by the number of generated inputs.

The above approach works only for interfaces with finite execution paths, and is 
infeasible for interfaces whose implementations have infinite execution paths, such as 
a DBMS engine. We use an approximation for such interfaces: we automatically 
invoke the interface with a large set of random inputs, calculate the energy cost of the 
interface for each input via Equation 2, and finally calculate the average energy con-
sumption of the interface by dividing the total consumption by the number of random 



inputs. This approach will clearly not always give a representative estimate of the 
interface’s actual energy consumption. Closer approximations can be obtained if an 
interface’s expected runtime context is known (e.g., expected inputs, their frequen-
cies, possible system states, and so on). As we will detail in Sections 4.2, we can 
refine our estimates for type III interfaces by monitoring the actual amount of compu-
tation required at runtime.

To estimate the communication energy cost of an interface, we rely on domain 
knowledge (e.g., the known types of input parameters and return values) to predict the 
average size of messages exchanged due to an interface’s invocation. Using this data 
we approximate the communication energy cost of interface invocation via Equation 
4. Finally, based on the computational and communication energy costs of interfaces, 
we estimate the overall energy cost of a component on its candidate host(s) using 
Equations 1, 3, and 5. 

Before estimating the entire distributed system’s energy cost, we also need to 
determine the infrastructure’s energy overhead, which depends on the deployment of 
the software (e.g., the number of components executing simultaneously on each host). 
Unless the deployment of the system’s components on its hosts is fixed a priori, the 
component-level energy estimates can help us determine an initial deployment that 
satisfies the system’s energy requirements (e.g., to avoid overloading an energy-con-
strained device). Once an initial deployment is determined, from Equation 6 we esti-
mate the infrastructure’s energy cost. We do so by executing all the components on 
their target hosts simultaneously, with the same sets of inputs that were used in char-
acterizing the energy cost of each individual component. Finally, we determine the 
system’s overall energy cost via Equation 7.

4.2  Runtime Estimation
Many systems for which energy consumption is a significant concern are long-

lived, dynamically adaptable, and mobile. An effective energy cost framework should 
account for changes in the runtime environment, or due to the system’s adaptations. 
Below we discuss our approach to refining the construction-time estimates after the 
initial deployment. 

The amount of computation associated with a type I interface is constant regardless 
of its input parameters. If the sizes of the inputs to a type II interface significantly dif-
fer from construction-time estimates, new estimates can be calculated efficiently and 
accurately from its energy equation generated by multiple regression. Recall from 
Section 4.1 that for type III interfaces our construction-time estimates may be inaccu-
rate as we may not be able to predict the frequency of invocation or the frequency of 
the execution paths taken (e.g., the exception handling code). Therefore, to refine a 
type III interface’s construction-time estimates, the actual amount of runtime compu-
tation (i.e., number of bytecodes, native methods, and monitor operations) must be 
monitored. In Section 5.4 we present an efficient way of monitoring these parameters.

For the communication cost of each component, by monitoring the sizes of mes-
sages exchanged over network links, their effects on each interface’s communication 
cost can be determined, and a component’s energy cost can be updated automatically.

Finally, the fact that the frequency at which interfaces are invoked may vary signif-



icantly from what was predicted at construction-time, and the fact that the system may 
be adapted at runtime, may result in inaccurate construction-time infrastructure 
energy estimates. Therefore, the GC thread execution time and the number of implicit 
OS routines invoked at runtime must also be monitored. We discuss the overhead of 
this monitoring in detail in Section 5.4. Based on the refined estimates of each inter-
face’s computational and communication costs, and of the infrastructure’s energy 
overhead, we can improve (possibly automatically) our construction-time estimates of 
distributed systems at runtime.

5  Evaluation Strategy

This section describes our evaluation environment, the tools on which we have 
relied, and the energy measurement and monitoring approaches we have used.

5.1  Experimental Setup
To evaluate the accuracy of our estimates, we need to know the actual energy con-

sumption of a software component or system. To this end, we used a digital multime-
ter, which measures the factors influencing the energy consumption of a device: 
voltage and current. Since the input voltage is fixed in our experiments, the energy 
consumption can be measured based on the current variations going from the energy 
source to the device. 

Figure 2 shows our experimental 
environment setup that included a 
Compaq iPAQ 3800 handheld device 
running Linux and Kaffe 1.1.5 JVM 
[6], with an external 5V DC power 
supply, a 206MHz Intel StrongARM 
processor, 64MB memory, and 
11Mbps 802.11b compatible wireless PCMCIA card. We also used an HP 3458-a dig-
ital multimeter. For measuring the current drawn by the iPAQ, we connected it to the 
multimeter, which was configured to take current samples at a high frequency. A data 
collection computer controlled the multimeter and read the current samples from it.

5.2  Selecting Java Components
We have selected a large number of Java components with various characteristics 

for evaluating our framework. They can be categorized as follows: 1) Computation-
intensive components that require a large number of CPU operations. (e.g., encryp-
tion/decryption, data compression); 2) Memory-intensive components that require 
large segments of memory. (e.g., Database components); 3) Communication-intensive 
components that interact frequently with other components over a network (e.g., FTP 
component).

For illustration, Table 1 shows a cross-section of the Java components used in our 
evaluation. These components vary in size and complexity (HSQLDB is the largest, 
with more than 50,000 SLOC, while Jess is somewhat smaller, with approximately 
40,000 SLOC). The source code of Jess, HSQLDB, and IDEA components can be 
found at Source Forge [18], while the source code of the other components from Table 
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Figure 2. Experimental setup. 



1 was obtained from Source Bank [17].

5.3  Measurement
Prior to the deployment, we first need 

to measure the energy cost on a target 
platform of each bytecode, native 
method, monitor operation, and implicit 
OS routine, as well as the average con-
sumption rate during garbage collection. 
For each bytecode we generate a Java 
class file that executes that bytecode 
1000 times. We also create a skeleton 
Java class with no functionality, which is 
used to measure the energy consumption 
overhead of executing a class file. We 
use the setup discussed in Section 5.1 for 
measuring the actual energy cost of exe-
cuting both class files. We then subtract 
the energy overhead E1 of running the skeleton class file from the energy cost E2 of 
the class file with the profiled bytecode. By dividing the result by 1000, we get the 
average energy consumption of executing the bytecode. Similarly, for measuring the 
energy consumption of each native method, we generate a class file invoking the 
native method and measure its actual energy consumption E3. Note that when JVM 
executes this class file, several bytecodes are also executed. Therefore, to get the 
energy cost of a native method, we subtract (E1 + energy cost of the bytecodes) from 
E3. For a monitor operation, we generate a class file invoking a method that should be 
synchronized among multiple threads, and measure its energy consumption E4. Since 
several bytecodes are also executed during the invocation, we can get the energy cost 
of a monitor operation by subtracting (E1 + energy cost of the bytecodes) from E4.

To measure the energy cost of implicit OS routines, we employ the approach sug-
gested by Tan et al. [19], which captures the energy consumption behavior of embed-
ded operating systems. This allows us to determine the energy cost of major implicit 
OS routine calls, such as context switching, paging, and process scheduling. Due to 
space constraints we cannot provide the details of this approach; we point the inter-
ested readers to [19]. Finally, for getting the average energy consumption rate of the 
GC thread, we execute over a given period of time a simple Java class file that creates 
a large number of “dummy” objects, and measure the average energy consumption 
rate during the garbage collection.

5.4  Monitoring
Since we need to monitor the numbers of bytecodes, native methods, monitor oper-

ations, and implicit OS routines, as well as the GC thread execution time, we instru-
mented the Kaffe 1.1.5 JVM to provide the required monitoring data. Since the 
monitoring activity itself also consumes energy, we had to ensure that our monitoring 
mechanism is as light-weight as possible. To this end, we modified Kaffe’s source 
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Table 1: A cross-section of Java 
components used in evaluation.



code by adding: 1) an integer array of size 256 for counting the number of times each 
bytecode type is executed; 2) integer counters for recording the number of times the 
different native methods are invoked; and 3) an integer counter for recording the num-
ber of monitor operations executed.

As mentioned earlier, this monitoring is only used for type III interfaces. We also 
added a timer to Kaffe’s GC module to keep track of its total execution time. This 
timer has a small overhead equivalent to two system calls (for getting the times at the 
beginning and at the end of the GC thread’s execution). For the number of implicit OS 
routines, we simply used the facilities provided by the OS. Since both Linux and Win-
dows by default store the number of implicit OS routines executed in each process’s 
Process Control Block, we did not introduce any additional overhead. We have mea-
sured the energy overhead due to these monitoring activities for the worst case (i.e., 
type III interfaces). The average energy overhead compared with the energy cost with-
out any monitoring was 3.8%. Note that this overhead is transient: engineers can 
choose to monitor systems during specific time periods only (e.g., whenever any 
changes occur or are anticipated in the system or its usage).

6  Evaluation Results

In this section, we present the results of evaluating our framework. 

6.1  Computational Energy Cost
To validate our computa-

tional energy model, we 
compare the values calcu-
lated from Equation 2 with 
actual energy costs. All 
actual energy costs have 
been calculated by subtract-
ing the infrastructure energy 
overhead (Equation 6) from 
the energy consumption 
measured by the digital mul-
timeter. As an illustration, 
Figure 3 shows the results of 
one series of executions for 
the components of Table 1. In this case, for each component we executed each of its 
interfaces 20 times with different input parameter values, and averaged the discrepan-
cies between the estimated and actual costs (referred to as “error rate” below). The 
results show that our estimates fall within 5% of the actual energy costs. These results 
are also corroborated by additional experiments performed on these as well as a large 
number of other Java components [17,18].

In addition to executing components of Table 1 in isolation, we have run these 
components simultaneously in different sample applications. Recall that, since each 
component is running in a separate JVM process, the energy overhead due to implicit 
OS routines is higher when multiple components are running simultaneously than 
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Figure 3. Error rates for the components in Table 1.



when each is running in isolation. Figure 4 shows the error rates of our computational 
energy model as the number of simultaneously running components increases. The 
experimental results show that, despite the increased infrastructure overhead, our esti-
mates usually fall within 4% of the actual energy costs.

As discussed in Section 4.1, 
multiple regression can be used 
for characterizing the energy cost 
of invoking type II interfaces. For 
this we used a tool called DataFit. 
In measurements we conducted 
on close to 50 different type II 
interfaces, our estimates of their 
energy cost have been within 5% 
of the actual energy costs. As an 
illustration, Figure 5 shows the 
graph generated by DataFit for 
the find interface of the 
Shortest Path component, 
using 20 sets of sample values for find’s input parameters (x1 and x2), and the result-
ing energy costs (y) estimated by Equation 3. Several actual energy costs are shown 
for illustration as the discrete points on the graph.

For estimating the energy con-
sumption of type III interfaces, as 
discussed previously we generated 
a set of random inputs, estimated 
the energy cost of invoking each 
interface with the inputs using 
Equation 3, and calculated its 
average energy consumption. Fig-
ure 6 compares the average energy 
consumption of each interface for 
the DB and Jess components cal-
culated using our framework with 
the interface’s actual average 
energy consumption. The results 
show that our estimates are within 
5% of the actual average energy 
costs. Recall that these design-
time energy estimates can be 
refined at runtime by monitoring the numbers of bytecodes, native methods, and mon-
itor operations executed. For example, for a scenario that will be detailed in 
Section 6.3, we refined the construction-time energy estimate for the DB query inter-
face at runtime, reducing the error rate to under 2.5%.

Figure 4. Error rates with respect to the number of 
simultaneously running components.

Error Rate = (estimated cost – actual cost) *100 / actual cost
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Figure 5. Multiple regression for the find interface of
the Shortest Path component.
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6.2  Communication Energy Cost
For evaluating the communica-

tion energy cost, we use a wireless 
router for the iPAQ to communi-
cate with an IBM ThinkPad X22 
laptop via a UDP socket imple-
mentation over a dedicated wire-
less network. Recall from 
Section 3.2 that several parame-
ters (tEC, rEC, tS, and rS) from 
Equation 4 are host-specific. To 
quantify these parameters for the 
iPAQ, we created two Java pro-
grams that exchange messages via UDP sockets, and executed them on the iPAQ and 
the laptop. We then used the digital multimeter to measure the actual energy cost E on 
the iPAQ as a result of transmitting and receiving a sample set of messages of various 
sizes to/from the laptop. Since several bytecodes and native methods (e.g., 
java.net.SocketInputStream’s read() method) are executed during the 
program execution on the iPAQ, we subtract their energy costs from E to get the 
energy consumption of a wireless interface card on the iPAQ. Based on these results, 
we used multiple regression to find equations that capture the relationship between 
the input (size of the transmitted or received data x) and the output (actual energy con-
sumption y of a wireless interface card on the iPAQ): 

 Eq. 8 Eq. 9
We used the generated equations 

to quantify the host-specific parame-
ters in Equation 4. For example, the 
size of transmitted data xt in Equation 
8 represents tEvtSize in Equation 4. 
The constant energy cost of 3.1958 
represents the parameter tS in Equa-
tion 4, which is independent of the 
size of transmitted data. The vari-
ables tEC is captured by the constant 
factor 4.0131. Figure 7 shows two 
graphs plotted for Equations 9 and 
10, which represent the framework’s 
estimates. As shown, the estimates, 
which are depicted by the discrete 
points are within 3% of the actual 
energy costs.

6.3  Overall Energy Cost 
We have evaluated our framework 

Figure 6. Accuracy of the framework for type III 
interface of DB and Jess components.
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based implementations of a general purpose F

over a large number of applications. Figure 8
shows one example such application 
deployed across three iPAQ hosts. These
iPAQ devices communicate with each other 
via a wireless router. Each software compo-
nent interacts with the other components via 
a UDP socket. A line between two compo-
nents (e.g., IDEA and FTP Client on host 
A) represents an interaction path between 
them. The FTP Client and Server com-
ponents used in our evaluation are UDP-
TP. We have used several execution 
scenarios in this particular system. For example, DB Client component on host A 
may invoke the query interface (i.e., type III interface) of the remote DB Server
on host B; in response, DB Server calculates the results of the query, and then 
invokes IDEA’s encrypt interface (i.e., type II interface) and returns the encrypted 
results to DB Client; finally, DB Client invokes the decrypt interface (i.e., 
type II interface) of its collocated IDEA component to get the results.

We executed the above software 
system by varying the frequencies and 
sizes of exchanged messages, mea-
sured the system’s overall energy cost, 
and compared it with our framework’s 
runtime estimates. As shown in Figure 
9, our estimates fall within 5% of the 
actual costs regardless of interaction 
frequencies and the average size of 
messages. In addition, we have evalu-
ated our framework for a large number 
of additional distributed applications, 
increasing the numbers of components 
and hosts [14], and had similar results 
as shown in Figure 10.

7  Conclusion

We have presented a framework for 
estimating the energy cost of Java-
based software systems. Our primary objective in devising the framework has been to 
enable an engineer to make informed decisions, such that the system’s energy con-
sumption is reduced and the lifetime of the system’s critical services increases. In a 
large number of distributed application scenarios the framework has shown very good 
precision, giving results that have been within 5% (and often less) of the actually mea-
sured power losses incurred by executing the software. We consider the development 
and evaluation of the framework to be a critical first step in pursuing several avenues 
of further work. As part of our future work, we plan to investigate the applications of 

Figure 9. The framework’s error rates with 
respect to the interaction frequency (top) and 

the average size of a message (bottom).
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Figure 8. A distributed Java-based 
system comprising three hosts.
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F
r

the framework to various types of archi-
tectural decisions that could improve a 
system’s energy usage, such as off-load-
ing of software components, adapting 
components, modifying communication 
protocols, and so on. 
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