
Scenario-Driven Dynamic Analysis
of Distributed Architectures

Computer Science Department
University of Southern California

Los Angeles, CA 90089-0781
{gedwards, malek, neno}@usc.edu

Abstract. Software architecture constitutes a promising approach to the de-
velopment of large-scale distributed systems, but architecture description
languages (ADLs) and their associated architectural analysis techniques suf-
fer from several important shortcomings. This paper presents a novel ap-
proach that reconceptualizes ADLs within the model-driven engineering
(MDE) paradigm to address their shortcomings. Our approach combines ex-
tensible modeling languages based on architectural constructs with a model
interpreter framework that enables rapid implementation of customized dy-
namic analyses at the architectural level. Our approach is demonstrated in
XTEAM, a suite of ADL extensions and model transformation engines tar-
geted specifically for highly distributed, resource-constrained, and mobile
computing environments. XTEAM model transformations generate system
simulations that provide a dynamic, scenario- and risk-driven view of the ex-
ecuting system. This information allows an architect to compare architectural
alternatives and weigh trade-offs between multiple design goals, such as sys-
tem performance, reliability, and resource consumption. XTEAM provides
the extensibility to easily accommodate both new modeling language fea-
tures and new architectural analyses.

1 Introduction

Many modern-day software systems are targeted for highly distributed, resource-
constrained, and mobile computing environments. In addition to the difficulties inher-
ent in traditional distributed system development, such as unpredictable network laten-
cies and security concerns, this new environment forces software developers to cope
with additional sources of complexity. For example, developers must assume an inher-
ently unstable and unpredictable network topology; they must elevate resource utiliza-
tion concerns to the forefront of design decisions; and they must take application power
consumption profiles into account.

As the complexity associated with software development has increased in this new
setting, software engineers have sought novel ways to represent, reason about, and syn-
thesize large-scale distributed systems. The field of software architecture has advanced
new principles and guidelines for composing the key properties of such systems [1]. In
many cases, the concepts and paradigms developed through research in software archi-
tecture have drastically altered the way developers conceptualize software systems. For
example, in an effort to raise the level of abstraction used for describing large-scale dis-
tributed systems above the object-oriented constructs provided by previous software

George Edwards Sam Malek Nenad Medvidovic

modeling technologies, such as UML 1.x, researchers have attempted to create archi-
tecture description languages (ADLs) and associated toolsets that provide the system
modeler with higher-level architectural constructs. ADLs endeavor to capture the cru-
cial design decisions that determine the ultimate capabilities, properties, and qualities
of a software system [2]. ADL-based representations can be leveraged throughout the
software development process for communication and documentation, examination and
analysis, validation and testing, and refinement and evolution.

However, the software architecture community has struggled to invent modeling
technologies that are semantically powerful as well as flexible and intuitive. ADLs have
generally either focused on structural elements (to the detriment of other important sys-
tem characteristics) or have relied on rigid formalisms that have a narrow vocabulary
and cumbersome syntax [3]. The result is that, for many domains (including the mobile
systems domain), crucial aspects of a system are not expressible in any of the existing
ADLs. As just one example, power usage characteristics, while integral to mobile and
embedded systems, are completely ignored by prominent ADLs.

In parallel with (and largely unaffected by) these developments, model-driven en-
gineering (MDE) has emerged as a promising approach to distributed software system
development that combines domain-specific modeling languages (DSMLs) with model
transformers, analyzers, and generators [4]. DSMLs codify the concepts and relation-
ships relevant in a particular domain as first-class modeling elements [6]. DSMLs also
provide multiple model views and specify domain rules that define model validity (i.e.,
well-formedness). Model transformers, analyzers, and generators examine and manip-
ulate models to create useful artifacts such as component specifications and implemen-
tations, supplementary views of the system, or descriptions of emergent behavior.

The work
described in this
paper leverages
the respective
strengths of
ADLs (i.e.,
high-level, ar-
chitectural de-
scription) and
MDE (i.e., do-
main-specific
extensibility
and model
transformation)
in support of a
novel, scenario-
driven approach
to the modeling and analysis of distributed software architectures. Our approach com-
bines extensible modeling languages based on architectural constructs with a model in-
terpreter1 framework that enables rapid implementation of customized dynamic analy-
ses at the architectural level. The analyses provide statistical data quantifying emergent

Figure 1. Software architecture in the model-driven engineering context.

behaviors and cross-cutting system properties (e.g., end-to-end latencies and system-
wide power consumption).

In this manner, an architect can compare architectural alternatives and weigh trade-
offs between multiple design goals. In particular, during the early design stages, a soft-
ware architect can target high-risk events by modeling scenarios that represent unusual
or dangerous conditions (e.g., extremely heavy loading). The artifacts produced by our
approach can be leveraged by an architect during other stages of the development cycle,
as well. For example, during system maintenance and evolution, our approach can be
used to assess the impact of modifications to the system (e.g., replacing components
with newer versions). A high-level view of the overall approach is shown in Figure 1.

Our initial study of the approach targets software development in distributed, re-
source-constrained, and mobile computing environments, which is a setting that
presents significant challenges for software architects. To demonstrate the approach, we
have developed the eXtensible Tool-chain for Evaluation of Architectural Models
(XTEAM). XTEAM provides ADL extensions for mobile software systems and imple-
ments a corresponding set of dynamic analyses on top of a reusable model interpreter
framework. Architectural models that conform to the XTEAM ADL are constructed in
an off-the-shelf meta-programmable modeling environment. XTEAM model transla-
tors transform these architectural models into executable simulations that furnish meas-
urements and views of the executing system over time.

In order for our approach to be successful, it must fulfill two key requirements:

R1: the language should be extensible to accommodate new domain-specific con-
cepts and concerns as needed.

R2: the provided tool support should be flexible to allow rapid implementation of
new architectural analysis techniques that take advantage of domain-specific
language extensions.

This paper is organized as follows: Section 2 provides an overview of related work
in software architecture and MDE. Section 3 describes how our approach reconceptu-
alizes architectural description and analysis techniques in the MDE paradigm. Section
4 describes our complete tool-chain in detail in order to demonstrate the overall ap-
proach. In Section 5, we provide a discussion of the salient aspects of our work. We con-
clude the paper by summarizing and discussing future directions of this research effort.

2 Related Work

The approach described in this paper builds on previous projects and advancements
in software architecture and model-driven engineering. However, our approach and as-
sociated tool-chain, XTEAM, exhibit several key differences from previous work. So
that we may better illustrate these differences, this section provides an overview of re-
lated projects in software architecture and MDE. In Section 3, we examine more closely
how our approach addresses the shortcomings of and represents an improvement over
related techniques and technologies.

1. We use the term “interpreter” to denote a custom-built component that utilizes and ma-
nipulates models in order to perform functions such as transformation and analysis.

2.1 Model-Driven Engineering
The flexible na-

ture of MDE has
made it a suitable
approach for repre-
senting different
and arbitrarily com-
plex concerns
across a wide spec-
trum of application
domains. Although
a number of previ-
ous works have ap-
plied MDE to the analysis and synthesis of distributed and embedded software systems
[5, 6, 9], they have either done so at a finer level of granularity than the system’s soft-
ware architectural constructs, or have been tied to a particular implementation platform
or analysis engine. While such approaches are very useful in specific contexts, they do
not leverage the concepts and paradigms developed by the software architecture com-
munity in their modeling languages, and do not provide a framework that allows rapid
implementation of customized analyses. Below we provide a brief overview of the most
notable MDE projects related to our work.

Generic Modeling Environment. The MDE paradigm is realized via the appropri-
ate tool support. One of the most widely used MDE tools is the Generic Modeling En-
vironment (GME) [8]. GME is a meta-programmable, graphical modeling environment
that enables the creation of domain-specific modeling languages (DSMLs) and models
that conform to those DSMLs, as shown in Figure 2. GME also provides interfaces for
custom-built components (i.e., model interpreters) to access the information captured in
models in order to conduct analysis or synthesize useful artifacts. To demonstrate the
approach described in this paper, we have implemented a significant portion of
XTEAM in GME.

MILAN. MILAN [6] comprises a DSML for embedded systems based on a dataflow
representation, and a set of model translators that generate executable specifications for
simulation engines. The dataflow formalism consists of nodes connected by directed
edges. Functional, performance, and power simulations can all be generated from a sin-
gle system model. MILAN also enables automated synthesis of software implementa-
tions from system models. While MILAN enables highly accurate simulations, the
modeling language requires the developer to build system models using low-level con-
structs. As noted earlier, the MILAN language is based on a hierarchical dataflow rep-
resentation. This is an appropriate formalism for signal processing systems, but is not
sufficient for large-scale distributed architectures. Attempting to build and maintain the
model of such a system using dataflow can quickly become unmanageable and over-
whelming. In contrast, the high-level structural and behavioral abstractions employed
by ADLs allow the construction, review, and maintenance of large, complex models
with reduced effort and potential for error.

Figure 2. High-level view of the model-driven engineering process
as implemented in GME.

WML and CUTS. The Workload Modeling Language (WML) is another DSML that
enables dynamic analysis of component-based architectures [9]. WML allows the mod-
eler to create descriptions of the resource utilization patterns of components for the pur-
pose of evaluating system-wide quality-of-service (QoS) properties. WML models can
be automatically transformed into the XML-based inputs required by the Component
Workload Emulator Utilization Test Suite (CUTS). WML is tightly coupled to CUTS
and requires that models be specified in terms of emulator constructs. The WML model
interpreter performs a syntactic translation (from graphical models to XML) rather than
a semantic translation (from architectural constructs to simulation constructs). Further-
more, the analysis provided by WML and CUTS is implemented in the emulator engine,
rather than in the model interpreter, so the implementation of new analysis techniques
would require changes to the infrastructure, rather than utilization of the infrastructure.
Finally, WML does not capture component behavior in a generalized way that permits
the representation of complex control flow paths.

2.2 Software Architecture
In this section, we examine two works that are relevant to XTEAM: Finite State

Processes (FSP) [16], and xADL [7]. FSP is related to XTEAM because it is a modeling
notation used to capture the behavior of software architectures; xADL is related because
it is an extensible ADL. A number of other well-known ADLs provide some sort of stat-
ic analysis capability; their relationship to XTEAM is considered in Section 3.

xADL. The eXtensible Architecture Description Language (xADL) was developed as
a response to the proliferation of proposed ADLs, each of which had a different focus
and addressed different architectural concerns. It was (correctly) observed that no single
ADL could anticipate the needs of a wide variety of projects and domains. Consequent-
ly, the xADL language is inherently extensible and can be enhanced to support new do-
main-specific concepts. The language is defined by XML schemas; a “core” schema
specifies standard architectural constructs common to all ADLs, while “extension”
schemas — written by domain experts and tailored to the needs of specific projects —
specify new modeling elements as needed. While xADL represents a promising step to-
wards the flexibility and customizability required by contemporary large-scale distrib-
uted systems development, xADL’s focus is primarily architectural representation rath-
er than analysis, simulation, or the generation of implementation/configuration/deploy-
ment artifacts. xADL’s supporting toolset consists of parsers and other syntactic tools
that are semantically agnostic. Therefore, the xADL toolset cannot be extended to en-
force semantic consistency within architectural models without modifying the toolset’s
implementation. This is in contrast to MDE, in which DSMLs ensure the construction
of models that conform to domain-specific constraints, while model interpreters pro-
vide semantically-aware analysis. The result is that xADL, by itself, does not fully cap-
italize on the potential of architectural modeling.

FSP. FSP is a modeling notation for capturing the behavior of software architectural
constructs in terms of guarded choices, local and conditional processes, action prefixes,
and so on. FSP also allows for the construction of composite architectural constructs, in
which the behavior of a composed element is defined in terms of the behavior of its con-

stituents. While previous works have leveraged FSP models for analysis and simulation
of a system’s architecture [16], they have not focused on a number of concerns that are
important for distributed systems executing in heterogeneous environments, including
the structural aspects of an architecture, its deployment onto physical hosts, or extensi-
bility of the notation.

3 Reconceptualization of ADLs

By recasting the concepts and techniques developed by the software architecture
community in a model-driven engineering framework, the benefits of an architecture-
based approach to large-scale distributed system development are preserved, while the
shortcomings of the approach are diminished. The architecture-based approach to soft-
ware modeling, and the ADLs that support that approach, suffer from two key draw-
backs: inflexible notations with a narrow vocabulary, and supporting tools that enable
only a limited set of analyses.

Note that these two drawbacks are the corollary of the requirements stated in Sec-
tion 1. The hypothesis underlying this research is that these shortcomings can be ad-
dressed by representing ADLs (and compositions thereof) via domain-specific mode-
ling languages (DSMLs), and performing architectural analysis via model interpreters.
However, to achieve this result, two key challenges must be overcome:

• Development of ADLs, even with the benefit of MDE environments, is inherently
challenging and requires both software architecture and metamodeling expertise.

• Implementation of custom-built model interpreters that access the information con-
tained in models to perform architectural analyses requires significant effort.

In this section, we provide an overview of our approach for overcoming the above
challenges in order to represent and analyze software architectures via MDE techniques
and facilities. In Section 4, the conceptual strategies outlined here are made concrete
through a detailed discussion of XTEAM and explanatory examples.

3.1 ADLs as Domain-Specific Modeling Languages
The first step in leveraging the MDE approach for software architecture is to codify

ADLs as DSMLs within a MDE framework, such as that provided by GME. However,
as mentioned above, the creation of semantically powerful, flexible, and intuitive ADLs
is non-trivial; in fact, it requires a great deal of expertise in both software architecture
and modeling languages. An ADL developer must command a thorough understanding
of the central and elemental concepts in software architecture and must be adept in the
mechanisms for codification of those concepts.

To overcome this challenge, we advocate an approach that avoids the creation of
ADLs from scratch. Instead, we rely on ADL composition (i.e., the combination of con-
structs from multiple ADLs) and ADL enhancement (i.e., the definition of new, custom-
ized ADL constructs). MDE technologies capture the concrete syntax of DSMLs
through metamodels. Once the metamodel for an ADL has been created, the ADL can
be manipulated as needed for a given application domain. Thus, the composition and
enhancement of ADLs is achieved through composition [10] and enhancement of their
corresponding metamodels. Existing notations and languages can be reused to the great-

est extent possible, and only incremental additions to the language are created as needed
to enable a specific architectural analysis technique. In addition to reducing the burden
of language development, this distinction is important for two reasons: (1) existing
ADLs are based on well-understood concepts and generally provide formal semantics,
which increases model understandability, and (2) utilization of common languages
maximizes the potential for reuse of the tool infrastructure (modeling environments and
model interpreters) across development projects and domains. Both ADL composition
and enhancement are utilized in XTEAM.

ADL composition allows the various concepts and design information expressible
in different ADLs to be captured in a single language, which then allows models that
conform to the language to be utilized in a variety of ways and at multiple stages of the
development cycle. Composition of ADL metamodels is simplified by the fact that most
ADLs share a small set of common elements (i.e., components, connectors, interfaces,
and so on) [2] that serve as the integration point. In Section 4, we describe in detail how
features from multiple ADLs are seamlessly integrated in XTEAM.

Some system properties that are not addressed by a general-purpose ADL may be
of significant concern for certain application domains. Furthermore, each type of archi-
tectural analysis requires certain types of information to be modeled and represented,
which may not be supported by a general-purpose ADL. Therefore, ADL enhance-
ment—the ability to incorporate domain-specific concepts via new extensions—is
highly valuable in an architectural modeling tool. The metamodeling mechanism pro-
vided by GME makes this process straightforward and intuitive: the new information is
added to the existing language by creating new elements or new attributes of existing
elements. This ADL metamodel enhancement mechanism provides the means through
which requirement R1 (stated in Section 1) is satisfied. We will further illustrate the mo-
tivation and utility of ADL enhancement through a detailed example in Section 4.

In this way, the mechanisms for language refinement, enhancement, and evolution
are built into MDE tool-chains. As a consequence, the notations used can always be
modified and the vocabulary expanded. As language extensions are developed, new
types of analysis will become possible. In Section 4, we describe how a model transfor-
mation framework can be utilized to rapidly implement customized analyses.

3.2 Architectural Analyses as Model Interpreters
Typically, an ADL is accompanied by tool support that is geared specifically to the

notations provided by the language, thus only allowing for limited types of analysis. On
the other hand, the MDE paradigm advocates flexible tool support, where multiple
model interpreters with different analysis capabilities can be utilized. This characteris-
tic is absolutely necessary for reasoning about the varying and evolving concerns of
large-scale software systems.

MDE tools, such as GME, provide interfaces for custom-built model interpreters to
access and manipulate the information contained in models. However, building these
tools from scratch requires significant effort. In many cases, a complex semantic map-
ping between languages is required that is difficult to define and implement. Such a
mapping is required to transform architecture-based models, which are at a very high
level of abstraction, into simulation models, which are at a much lower level. For this

reason, our approach utilizes a model interpreter framework that allows the software ar-
chitect to rapidly implement custom analysis techniques without knowing the details of
complex semantic mappings (e.g., the architecture-to-simulation mapping is achieved
by the framework infrastructure “under-the-hood”). The interpreter framework pro-
vides “hook” methods for which the architect provides implementations that, taken as
a whole, realize a specific analysis technique. The objects available to the architect in
the implementation of the analysis technique are the architectural constructs defined in
ADL extensions, not low-level simulation constructs. The model interpreter frame-
work, through its “hook” methods, greatly simplifies the development of simulation
generators, and thus provides the means through which requirement R2 is satisfied. Sec-
tion 4 demonstrates the use of the XTEAM model interpreter framework in the imple-
mentation of a specific analysis technique.

Analysis techniques may be static or dynamic. Static analysis techniques rely on the
formalisms underlying models to provide information about system properties or ex-
pose subtle errors without executing the system [11]. Many static analyses attempt to
prove the “correctness” of a system, which may be useful in many scenarios, but suffers
from the difficulty that system implementation must precisely match the model in order
for the analysis to be relevant. Dynamic analysis, on the other hand, attempts to execute
model-based architectural representations in order to illuminate their characteristics and
behaviors at run-time. Dynamic analysis is more useful for comparing high-level design
possibilities early in the development cycle because it does not require that a model be
completely faithful to the eventual implementation to remain relevant. Static analysis
has an important place in the development of certain types of software systems, but dy-
namic analysis is more relevant when an architect wishes to understand the system’s be-
havior within the context of specific execution scenarios.

For these reasons, our approach has thus far focused on dynamic analysis through
system simulation. Model interpreters synthesize executable specifications that run on
a simulation engine. The simulation code is instrumented to record the occurrence of
events (e.g., message exchanges and component failures) and measurements of system
properties (e.g., observed latencies and memory usage). The results of a simulation run
depend heavily on the environmental context (e.g., the load put on the system) and may
contain elements of randomness and unpredictability (e.g., the timing of client re-
quests). Consequently, we consider our approach to be scenario-driven, in that a given
simulation run represents only one possible execution sequence. The software architect
should choose the set of scenarios to be simulated to include high-risk situations and
boundary conditions. While this simulation-based approach does not provide a formal
proof of system behavior, it does allow the architect to rapidly investigate the conse-
quences of fundamental design decisions (e.g., choice of architectural style or deploy-
ment architecture) in terms of their impact on non-functional properties (e.g., reliability,
performance, or resource utilization).

4 The XTEAM Tool-Chain

In this section, we demonstrate the approach described in Section 3 in the eXtensi-
ble Tool-chain for Evaluation of Architectural Models (XTEAM), a model-driven ar-

chitectural description and simulation environment for distributed, mobile, and re-
source constrained software systems. XTEAM composes existing, general-purpose
ADLs, enhances those ADLs to capture important features of mobile software systems,
and implements simulation generators that take advantage of the ADL extensions atop
a reusable model interpreter framework.

A high-level view of XTEAM is shown in Figure 3. Using GME’s metamodeling
environment, we created an XTEAM ADL metamodel by composing a structural ADL,
the xADL Core [7], with a behavioral ADL, FSP [16]. GME uses the XTEAM meta-
model to configure a domain-specific modeling environment in which XTEAM archi-
tectural models can be created. With this language basis, we were able to implement the
XTEAM model interpreter framework, which provides the ability to generate simula-
tions of application architectures that execute in the adevs [17] discrete event simulation
engine. However, these simulations alone do not implement any architectural analysis
techniques. To do so, we enhanced the XTEAM ADL metamodel with language exten-
sions that capture system characteristics relating to energy consumption, reliability, la-
tency, and memory usage, thereby demonstrating the fulfillment of requirement R1. We
then utilized the extension mechanisms built into the model interpreter framework in
such a way as to generate simulations that measure, analyze, and record the properties
of interest, thereby demonstrating the fulfillment of requirement R2. We further elabo-
rate on this process below.

4.1 Composing ADLs and Implementing a Model Interpreter
Framework

Using the approach described in Section 3, XTEAM leverages previous work in
software architecture through the composition of existing ADLs. We created metamod-
els for the xADL Core, which defines architectural structures and types common to vir-
tually all ADLs, and FSP, which allows the specification of component behaviors. The
integration of these metamodels was straightforward, as they capture largely orthogonal
concerns.

For illustration, the metamodel for xADL Core is shown in Figure 4 (along with ad-
ditional extensions that are discussed in the next subsection). Components and connec-
tors represent the basic building blocks for architecture models. They contain interfaces

Figure 3. The eXtensible Toolchain for Evaluation of Architectural Models.

that can be connected via links. Interface mappings denote the realization of an interface
by the interface of a sub-component. The group element captures the membership of
multiple components and connectors in a set. Components and connectors may contain
substructures. Finally, several of the xADL Core elements include typed attributes, such
as a generic description.

The combination of xADL and FSP allowed us to create executable architectural
representations. Models conformant to the composed ADL contain sufficient informa-
tion to implement a semantic mapping into low-level simulation constructs that can be
executed by an off-the-shelf discrete event simulation engine [18], such as adevs. This
semantic mapping is implemented by our model interpreter framework. The framework
infrastructure synthesizes the low-level structures (e.g., atomic and static digraph mod-
els) and logic (e.g., state transition functions) needed by adevs. “Hook” methods pro-
vided by the framework allow an architect to generate the code needed to realize a wide
variety of dynamic analyses. The following subsection explains this process in more de-
tail through the use of concrete examples.

4.2 Domain-Specific Extensions and Architectural Analyses
In order to take advantage of the extensibility and flexibility afforded by the MDE

approach, we implemented several domain-specific ADL extensions within the
XTEAM metamodel, and then relied on the interpreter framework to efficiently imple-
ment analysis techniques that operate on the information captured in those extensions.
As XTEAM targets the development of architectures for distributed, mobile, and re-
source constrained software systems, we chose to implement analyses that are highly
relevant for that domain. Below we elaborate on our implementation of one such anal-
ysis in XTEAM and briefly describe three others.

4.2.1 Energy Consumption Extensions and Analysis
The energy consumption of executing software has traditionally been ignored by

software engineers as they could rely on an uninterrupted, abundant energy source. In
the mobile setting, this assumption no longer holds, and the energy consumption of soft-

Figure 4. The metamodel of xADL Core (with the energy consumption extension) as
implemented in XTEAM

ware components can have an important impact on system longevity. The energy con-
sumption estimation framework described in [13] provides a mechanism for estimating
software energy consumption at the level of software architecture.

At a high level, the energy consumption estimation framework defines the overall
energy consumption of a software component as a combination of its computational and
communication energy costs. The computational energy cost (due to CPU processing,
memory access, I/O operations, etc.) is incurred whenever one of the component’s in-
terfaces is invoked, while the communication energy cost is incurred whenever data is
transmitted or received over the wireless network. The estimation framework provides
equations that enable the calculation of these energy costs based on a number of a pa-
rameters, including data sizes and values, the rate of energy consumption during data
transmission, and network bandwidth. Enhancing the XTEAM metamodel with these
values was straightforward: they were added as attributes to the appropriate elements
(groups, which denote hosts in this context, and interfaces), as shown in Figure 4. Then,
in our interpreter framework (recall Figure 3), we inserted the equations for energy con-
sumption based on the parameters defined in the model. The communication energy
cost equation was inserted into the “hook” methods that correspond to the sending and
receiving of data between components. If the components are on different hosts, the
communication energy cost is deducted from the hosts’ total battery power. Similarly,
the computational energy cost equation was inserted into the “hook” method corre-
sponding to the invocation of an interface.Whenever one of these events occurs during
the simulation run, the energy consumption values are calculated and recorded.

Figure 5. Model of the mobile application architecture in XTEAM.

To illustrate the use of the energy consumption ADL extension and analysis, con-
sider the example of a small mobile application in which we have three distributed, mo-
bile hosts: an iPAQ PDA and two IBM Thinkpad laptops. A top-level view of the
XTEAM model for the mobile application is shown in the screen capture in Figure 5
(although most of the model detail cannot be seen in this view). A database client and
a FTP client are deployed to the PDA, while the corresponding servers each run on one
of the laptops. Components that perform encryption and compression (respectively,
IDEA and LZW open-source components) are also deployed on the PDA and laptops.
When the DB client wishes to query the database, it encrypts the query using the local
IDEA component and sends the query over the wireless network to the DB server,
where it is decrypted. The DB server then retrieves the result of the query from the da-
tabase, encrypts the results, and sends them back to the DB client. An analogous path is
used for the FTP client, except that compression rather than encryption is performed.

By invoking our energy con-
sumption simulation generator
(built using the interpreter frame-
work) on the mobile application
model, the energy consumption on
each host can be determined dynam-
ically. Plotting these measurements
as a function of time results in the
example graph shown in Figure 6.

This type of energy consump-
tion estimation has a variety of uses
in the scenario-driven analysis ap-
proach. First, the assignment of
components to hosts, or deployment
architecture, can have a significant effect on system energy consumption, and, in turn,
its longevity. Our environment allows the architect to quickly model a set of potential
deployment architectures, and then observe the energy consumption on each host over
time. Moreover, the architect can determine whether a dynamic redeployment strategy
is required in situations when the actual energy consumption rate differs significantly
from expected rates. Conversely, given a requirement for the longevity of system serv-
ices, the architect can begin to arrive at target energy usages for each component.

4.2.2 Other Extensions
We have also leveraged XTEAM to implement dynamic analysis capabilities for

end-to-end latency, memory utilization, and component reliability. The implementation
of ADL extensions and model interpreters for these analyses follows the same pattern
as that used for energy consumption, and demonstrates the fulfillment of our original
requirements. For example, we implemented the component reliability extension and
analysis based on the technique described in [12]. This reliability estimation approach
relies on the definition of component failure types, the probabilities of those failures at
different times during component execution, and the probability of and time required
for failure recovery. This type of analysis meets the primary criteria for implementation

Host A (iPAQ) Battery Power

22000

22500

23000

23500

24000

24500

0 100000 200000 300000 400000 500000 600000

Time (ms)

R
em

ai
ni

ng
 E

ne
rg

y
(m

J)

Figure 6. Results of energy consumption analysis.

in XTEAM: it estimates the reliability of components at the level of software architec-
ture. We extended the FSP-based behavior language in XTEAM to include failure and
recovery events and probabilities. We also developed an analysis that determines if and
when failures occur as the components in the system progress through different tasks
and states. In general, we believe that given an architectural analysis technique that is
applicable in a dynamic, simulated setting, our framework can be utilized to realize that
technique through implementation of the appropriate hook methods.

5 Discussion

This section discusses our approach in the context of wider architectural develop-
ment processes and activities. In particular, we see three cases where our approach is
particularly relevant and unique: (1) providing rationale for fundamental architectural
decisions, (2) weighing trade-offs among multiple conflicting design goals, and (3) un-
derstanding the results of composing independent components developed in isolation.

5.1 Providing Design Rationale
Early in the architectural development process, software architects are, in many sit-

uations, required to rely on their own intuition and past experience when weighing fun-
damental design questions. For example, the choice of a particular architectural style,
the distribution of components across hosts, or the functionality allocated to compo-
nents can dramatically effect the ultimate behaviors and properties of a system, but ar-
chitects have very limited mechanisms for arriving at such decisions beyond their own
knowledge and expertise and the collective wisdom of the architecture community. In
other words, rationalizing such decisions using specific processes and tools is relatively
rare. Our approach to software architecture provides a means of experimentation with
fundamental design decisions and the rationalization of those decisions through quan-
tifiable means. By generating and executing simulations of a distributed system, the
consequences of crucial architectural choices can be better understood.

5.2 Weighing Architectural Trade-offs
Nearly all non-trivial architectural decisions come down to trade-offs between mul-

tiple desirable properties. The relative importance of different system properties to the
user (e.g., availability or performance) can be determined prior to architectural devel-
opment, but the architect is still required to engineer the right balance between conflict-
ing goals. Emphasizing one attribute over others will eventually yield diminishing re-
turns, and usually this “tipping-point” between different qualities is anything but obvi-
ous. For example, given a system with both fixed and mobile hosts, deploying
components to a mobile host will likely increase the availability and reduce the latency
perceived by a client using that device, but will also drain the battery power faster. The
“right” deployment (i.e., that which maximizes the system’s utility given users’ quality-
of-service preferences [14]) depends heavily on the wireless network characteristics,
such as bandwidth and the frequency of disconnects, in addition to a number of other
factors. Rather than relying on intuition or past development projects to achieve the
right balance, our approach allows an architect to determine the relationships between
various design goals and increase system utility experimentally.

5.3 Understanding Compositions of Off-The-Shelf Components
In the present day, independent teams or organizations are often responsible for pro-

ducing components that are ultimately assembled to create a unified system. In such set-
tings, detailed information about individual components (e.g., resource consumption,
failure rates) may be available, but the properties of their composition may not be well-
understood. In such a case, our approach can produce accurate measurements of the
emergent properties of the composed system. This knowledge ultimately enhances the
architects’ understanding of the system and increases their confidence in the ability of
the composed system to meet end-user operational goals. Both of these outcomes serve
to reduce the risk associated with a large-scale development and/or integration project.

6 Conclusions

This paper presented a software architecture-based approach to modeling and anal-
ysis of distributed architectures that leverages the domain-specific extensibility provided
by model-driven engineering. Our approach addresses the significant shortcomings of
previous ADLs by relying on a tool-chain that enables both modeling language and anal-
ysis extensibility. The dynamic analysis capabilities of the tool-chain allow an architect
to better understand the consequences of architectural decisions, focus on aspects that
have the greatest effect on a system’s critical properties, weigh trade-offs between con-
flicting design goals, and better understand component compositions. We demonstrated
and evaluated the approach on XTEAM, a suite of ADL extensions and model transfor-
mation engines targeted specifically for highly distributed, resource-constrained, and
mobile computing environments. We believe our approach represents an improvement
over traditional ADLs and exhibits significant differences from other MDE tools that
have been developed for distributed systems development.

There are several ways in which we intend to extend this work. First, we will utilize
the XTEAM tool-chain in the context of architectural development for a real-world se-
curity application that operates in an embedded, wireless environment. Second, we will
integrate XTEAM with other complementary architecture-based development tools, in-
cluding DeSi [14] and Prism-MW [15]. Third, we will determine more precisely the ex-
act class of analysis techniques that can be implemented with our model interpreter
framework, and evaluate the feasibility of supporting other classes of analysis tech-
niques (e.g., static analyses) via additional interpreter frameworks. Lastly, we will fur-
ther define ways in which our approach can be integrated with widely-used architectural
development processes, such as the Architecture Trade-off Analysis Method (ATAM).

7 Acknowledgments

The work described in this paper was sponsored by the National Science Foundation un-
der Grant number ITR-0312780. Any opinions, findings, and conclusions expressed in
this paper are those of the authors and do not necessarily reflect the views of the NSF.
This material was also sponsored by Bosch. The authors wish to thank the anonymous
reviewers for their detailed and helpful comments.

8 References

[1] Perry, D. E., Wolf, A.L.: Foundations for the Study of Software Architectures. ACM SIG-
SOFT Software Engineering Notes, pp. 40-52, Oct 1992.

[2] Medvidovic N., et al.: A Classification and Comparison Framework for Software Archi-
tecture Description Languages. IEEE Trans. on Software Engineering, 26(1), Jan 2000.

[3] Medvidovic, N., Dashofy, E. and Taylor, R.N.: Moving Architectural Description from
Under the Technology Lamppost. Journal of Systems and Software, 2006.

[4] Schmidt, D.C.: Model-Driven Engineering. IEEE Computer, 39(2), pp. 41-47, Feb 2006.

[5] Karsai, G., Sztipanovits, J., Ledeczi, A., and Bapty, T.: Model-integrated development of
embedded software. In Proceedings of the IEEE, 91(1), pp. 145-164, Jan 2003.

[6] Ledeczi, A., et al.: Modeling methodology for integrated simulation of embedded systems.
ACM Transactions on Modeling and Computer Simulation, 13(1), pp. 82-103, Jan 2003.

[7] Dashofy, E., van der Hoek, A. and Taylor, R.N.: An Infrastructure for the Rapid Develop-
ment of XML-based Architecture Description Languages. Proceedings of the 24th Inter-
national Conference on Software Engineering, pp. 266 - 276, 2002.

[8] GME: The Generic Modeling Environment. http://www.isis.vanderbilt.edu/projects/gme/

[9] Paunov, S., et al.: Domain-Specific Modeling Languages for Configuring and Evaluating
Enterprise DRE System Quality-of-Service. Proceedings of the 12th IEEE International
Conference on Embedded and Real-Time Computing Systems and Applications, 2006.

[10] Ledeczi, A., et al.: On metamodel composition. Proceedings of the 2001 IEEE Internation-
al Conference on Control Applications, pp. 756-760, 2001.

[11] Jackson, D., Rinard, M.: Software Analysis: A Roadmap. In The Future of Software Engi-
neering, Anthony Finkelstein (Ed.), pp. 215-224, ACM Press 2000.

[12] Roshandel, R., et al.: Estimating Software Component Reliability by Leveraging Architec-
tural Models. 28th International Conference on Software Engineering, May 2006.

[13] Seo C., Malek S., N. Medvidovic: An Energy Consumption Framework for Distributed
Java-Based Software Systems. Tech. Report USC-CSE-2006-604, 2006.

[14] Malek, S.: A User-Centric Framework for Improving a Distributed Software System's De-
ployment Architecture. To appear in proceedings of the doctoral symposium at the 14th
Symposium on Foundation of Software Engineering, Portland, Oregon, Nov. 2006.

[15] Malek, S., et al.: Prism-MW: A Style-Aware Architectural Middleware for Resource Con-
strained, Distributed Systems. IEEE Trans. on Software Engineering. 31(3), Mar. 2005.

[16] Magee, J., et al.: Behaviour Analysis of Software Architectures. Proceedings of the TC2
First Working IFIP Conference on Software Architecture (WICSA1), pp. 35 - 50, 1999.

[17] Adevs: A Discrete EVent System simulator. http://www.ece.arizona.edu/~nutaro/

[18] Schriber, T. J., Brunner, D.T.: Inside Discrete-Event Simulation Software: How it Works
and Why it Matters. Proceedings of the Winter Simulation Conference, 2005.

