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Figure 1. An example wireless sensor 
network application deployed across a 
number of heterogeneous, mobile 
and/or resource constrained platforms.
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ABSTRACT 

Over the past several years we have investigated two problems 
related to the domain of highly distributed, mobile, resource 
constrained, embedded, and pervasive environments: software 
deployment and quality of service (QoS). We have done so with 
the explicit focus on the role played by software architecture in 
deployment, and on its relationship to QoS. In the process, we 
have amassed a body of knowledge and experience, and assembled 
a suite of solutions for targeting different facets of the interplay 
among software architecture, deployment, and QoS. At the same 
time, the area we are addressing has proven to be multi-faceted 
and very complex, constantly presenting new challenges. In this 
paper we outline the contours of the problem of QoS in 
architecture-based deployment, our strategy for addressing it, and 
the challenges that remain. We view this as an important (and 
fruitful) area of research.   

1. INTRODUCTION 
Software architecture is a collection of models that capture a 
software system’s principal design decisions in the form of 
components (foci of system computation and data management), 
connectors (foci of component interaction), and configurations 
(specific arrangements of components and connectors intended to 
solve specific problems) [9]. Architecture realizes a system’s 
functional requirements, that is, the services the system is meant to 
provide to its users. Additionally, architecture must ensure the 
level of quality at which those services are to be delivered, referred 
to in short as quality of service or QoS. Different dimensions of 
QoS are latency, availability, durability, reliability, security, fault-
tolerance, survivability, dependability, scalability, heterogeneity, 
and so on. 

In the domain of pervasive systems, of particular interest is a 
specific facet of a software system’s architecture — its deployment 
[2]. Simply put, a system’s deployment architecture is the 
allocation of the system’s software components (and connectors) 
to its hardware hosts. Deployment architecture is particularly 
important in pervasive environments because a system will 

typically comprise many different, heterogeneous, mobile, and 
possibly mutable, execution platforms during its lifetime. Figure 1 
shows an example such system for illustration: a particular 
instance of the MIDAS family of wireless sensor network-based 
systems developed in collaboration between the Bosch Research 
and Technology Center and our research group. The interested 
reader can find the deployment architecture of this instance of 
MIDAS in [7].  

Previous research [1][4], including our own [5][8], has shown that 
a software system’s deployment architecture can have a significant 
effect on the system’s non-functional properties, i.e., it will affect 
the system’s delivered QoS. This is further evident in pervasive 
systems [7], which are often long-lived, and execute in highly 
heterogeneous and unpredictable computing environments. 
Consider a pervasive system depicted in the two diagrams in 
Figure 2 for instance. These are two different deployment 
architectures for a subset of the Emergency Deployment System 
(EDS) [6] running on a variety of hand-held devices. Each 
deployment architecture depicted in Figure 2 comprises 17 
software components distributed across five hardware hosts. The 
solid lines connecting the components represent their interaction 
paths, while the dotted lines connecting the hosts represent 
network connectivity. The two diagrams in the figure depict the 
same system, but with several components repositioned across the 
hosts.  

Even though the actual instances of (the subset of) EDS 
corresponding to these two diagrams provide the same 
functionality (i.e., the same services) to the system’s end users, 
they do so with 
different QoS 
levels for the 
system’s different 
services. Thus, for 
example, both 
hosts 1 and 2 in 
Figure 2b will be 
running more 
components than 
their counterparts 
in Figure 2a. This 
means that they 
will likely 
consume more 
energy and run out 
of battery power 
more quickly 
(affecting many of 
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Figure 2. Two candidate deployment architectures for a 

distributed handheld application. 
 

the above properties, such as durability, availability, survivability, 
and so on). Furthermore, the number of (energy costly) 
interactions taking place across the network link between the hosts 
1 and 2 will likely be significantly larger in Figure 2b than in 
Figure 2a. This means that the latency of the involved services will 
increase significantly, while the system’s durability will, again, 
decrease.  

This example illustrates that determining an “ideal”, or even 
merely “good” deployment architecture for a system is a non-
trivial task. This is the case for three reasons:  
1. The total number of possible deployments for a given system is 

exponential. For a system comprising h hardware hosts and c 
software components the number of deployments is hc. This 
means that, even for moderately sized systems, determining the 
best deployment will require evaluating a very large number of 
options. 

2. The question of which deployment is “better” does not have a 
straightforward answer. For example, consider the two 
deployments in Figure 2: which one is better? In order to answer 
the question, first we would have to define the “goodness” of a 
deployment architecture. Even if we can agree that “good” 
means “that which exhibits shorter latency, longer durability, 
higher availability, better fault-tolerance, higher scalability, and 
so on”, the specific definitions of those individual QoS 
dimensions will very likely differ from one developer to 
another, or one organization to another — a cursory overview of 
software engineering literature will attest to that. Furthermore, 
certain QoS dimensions are difficult to quantify. Examples 
include security, dependability, heterogeneity, and so on. 

3. The system may be severely constrained. For example, certain 
devices may be unable to host certain (combinations of) 
components either due to insufficient capacity, because they are 
missing runtime resources, or because of other concerns such as 
security; certain groups of components may be required to be 
collocated on the same device; other components may be barred 
from residing on the same host; and so on. Constraints such as 
these may be particularly pronounced, and may even change at 
runtime as the system’s execution context changes, in pervasive 
environments. Even in the case of relatively small systems, it 
quickly becomes impossible for a human architect to make 
appropriate deployment decisions. 

In the remainder of this paper, we will first consider one critical 
challenge in modeling a deployment architecture and assessing it 
for a given set of QoS dimensions: the problem’s multidimensional 
nature. We will present a particular solution for dealing with this 
problem. We will then briefly touch upon the problem’s other 
critical challenge: its inherent complexity, especially in pervasive 
environments. We will also outline a strategy for dealing with this 
challenge. We close out the paper with a discussion of a number of 
significant issues that remain unresolved. 

2. DEPLOYMENT AND QOS 
Consider a very simple software system, derived from EDS, 
consisting of one service (Schedule) provided by two components 
(Modify Resource Map and Resource Monitor) that need to be 
deployed on two hosts (a laptop and a PDA).1 The only QoS 
                                                                 

1  Note that our notion of service is slightly different from that usually used 
in the service-oriented computing literature. In this paper, a service 
denotes a unit of system-level functionality (e.g., a user-observable task) 

dimension of interest in this system is latency. These different 
elements are depicted conceptually in  
Figure 3a. For this system, four possible deployments are possible, 
and it would also be relatively easy to measure (or estimate, 
provided appropriate models and analytical tools are available to 
the architects) their latencies, as shown in  
Figure 3b. It is clear that the first deployment has the shortest 
latency. Thus, it is the optimal deployment.  
However, if we expand the problem only slightly, by introducing 
another QoS dimension—durability (shown in Figure 4a), we get 
the situation depicted in Figure 4b. If the objective is to minimize 
the latency and maximize the durability in this system, none of the 
four deployments can be argued to be optimal. This phenomenon 
is known as Pareto Optimal in multidimensional optimization.  

                                                                                                            
that is provisioned via the collaboration and interaction among several 
software components (i.e., via multiple component-level services). Our 
use of this term is not critical to the paper’s argument. 
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Figure 3. (a) An abstract depiction of a simple deployment 
problem. (b) The latency values measured for the four 
possible deployment architectures. 
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Figure 4. (a) An abstract depiction of a slightly expanded 
deployment problem. (b) The latency and durability values 
measured for the four deployment architectures. 

A well known technique for dealing with the trade-offs in a 
multidimensional problem is to leverage a mapping function that 
arbitrates between conflicting/competing solutions. We can do this 
in the case of a software system’s deployment architecture by 

explicitly capturing system users who, in turn, express preferences 
for the different system services (i.e., the utility that achieving a 
given level of quality for that service would have for that user). 
The utility function allows us to map the multidimensional 
problem to a uni-dimensional one. Therefore, the accuracy of the 
analysis performed in this manner depends on our ability to 
estimate the users’ preferences accurately. The users’ preferences 
can take various forms: 
• functions describing continuously the utility of a system service;  
• specific sets of discrete values; 
• vague statements of utility (e.g., “ideally, the latency should be 

under 1ms; anything over 10ms will be unacceptable”); 
• “do not care”s for specific services; 
• and so on. 

Furthermore, the users themselves may be ranked or categorized 
according to their importance. This would further help architects to 
decide which deployment architectures to select.  

Figure 5 builds on the example from Figure 4 after the introduction 
of a single user and the user’s utility functions for latency and 
durability. If we consider deployment 2 to be the initial 
deployment (with the utility set to zero, for simplicity), the other 
three deployments’ utilities can be calculated and compared to it. 
In this (hypothetical) case, deployment 3 has the highest total 
utility to the system’s user and can be considered to be the optimal 
deployment for this system. 

However, even this solution quickly runs into problems. Let us 
consider a relatively small scenario, consisting of three users who 
are interested in three QoS dimensions in accessing two services 
provided by three software components deployed on three hosts. 
This scenario is depicted in Figure 6. In this case, the architect will 
somehow have to capture 18 utility functions (3 users * 3 QoS 
dimensions * 2 services) and compare 27 different deployments (3 
hosts and 3 components, or 33 deployments). Therefore, the 
problem becomes intractable for a human very quickly. 

3. FORMALIZATION AND AUTOMATION 
One obvious solution to the above situation is to take the problem 
out of the hands of a human architect and build powerful, 
comprehensive models of a system’s deployment architecture. 
Formalizing the models would, in turn, enable their automated 
processing. These models would have to capture, at the least, 
• system elements (hardware hosts and network links, software 

components and connectors) and their myriad parameters; 
• functions or other ways of quantifying the system parameters; 
• functions or other ways of quantifying the QoS dimensions of 

interest; 
• users and their preferences; and  
• constraints on the system elements and/or their parameters. 

A partial formalization of the above system elements, with four 
QoS dimensions, is shown in Figure 7. This formalization is used 
for illustration only; space constraints prevent us from elaborating 
on it further. A detailed design can be found in [5]. For any 
sizeable distributed system, these models will be very large. 
However, they will be “built once and used forever”, meaning that 
the cost of constructing them for most systems is likely not to be 
prohibitive.  

Once constructed, such a model can be used to define a system’s 
overall utility, i.e., to calculate and compare the quality of the 
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  Figure 6. A slightly larger deployment  
scenario. 

system’s different deployment architectures. There are known off-
the-shelf techniques for doing this (e.g., mixed integer non-linear 
programming, or MINLP, and mixed integer linear programming, 
or MIP) [10]. There are also other distributed and decentralized 
algorithms that can be applied to the problem [8]. 

4. REMAINING CHALLENGES 
While the solution outlined above represents a promising attack on 
the problem, several challenges must be addressed. One challenge 
is the sheer size of the problem, in terms of the numbers of 
components and hosts, and especially in terms of the number of 
captured system parameters. This may prevent effective 
visualization of the systems in question, even with the aid of 
software tools. In turn, this carries the risk that the system will be 
modeled incorrectly, undermining any decision making ability by 
the software architects. 

Another challenge is that the algorithms mentioned above are 
heuristic-based since the problem is exponential. This means that, 
for large systems, it is not possible to ascertain the actual quality 
of the solution produced by one of these algorithms. Furthermore, 
some of the algorithms (e.g., both MINLP and MIP) may not be 
able to guarantee a solution for problems of certain size and 
complexity. 

Since pervasive systems are likely to be long lived and dynamic, 
they will demand deployment, and redeployment, solutions that are 
able to adjust to the system’s changing execution context 
continuously. This means that, while the system’s architects may 
choose a computationally expensive deployment strategy initially 
(e.g., a precise but inefficient deployment algorithm), during the 
system’s execution they may be forced to switch to light-weight 
system monitoring and fast, though less precise, redeployment 
calculations. Another factor that must be taken into account is the 
amount of downtime the system will experience in order to 

redeploy: a 
deployment 
architecture that 
is otherwise 
inferior may be 
preferable if it 
can be effected 
more quickly. 

Yet another 
challenge deals 
with how one 
can obtain the 
utility 
quantifications 
for the system’s 
many services 
by its many 
distributed users, 
especially in a 
pervasive 
environment. 
For many 
pervasive 
systems, it is 
unlikely that architects will have access to all the system users. 
Even if they did, it is unlikely that the users would be able to 
articulate their preferences in a manner that is easily captured 
and/or quantified. This means that it may be necessary to develop 
techniques to model different classes of users or usage scenarios, 
and provide suites of deployment architectures (rather than a 
single solution), which will then be applied in different 
circumstances. 

It should also be recognized that, by reducing a multi-dimensional 
problem to a uni-dimensional one, some modeling expressiveness 
and some of the captured information will be inevitably lost. The 
question is whether that loss of information will happen at the 
expense of the model’s utility and precision. This is difficult to 
answer since large segments of this problem area remain 
unexplored and the actual target solution(s) in any given scenario 
(e.g., the best or even good deployment architecture for a given 
distributed system) may not be known. It may also be possible to 
explore other techniques for dealing with multi-dimensional 
optimization problems, e.g., multi-objective genetic algorithms [3]. 

It should also be noted that appropriate system deployment (and 
redeployment) is only one possible approach for ensuring the 
desired QoS level. Techniques such as component replication will 
directly aid certain QoS dimensions (e.g., latency, availability, and 
fault-tolerance). Likewise, data replication, caching, hoarding, and 
pre-fetching can also significantly improve the manner in which a 
system delivers its services. It is possible, in principle, to use these 
techniques in tandem with deployment (e.g., by appropriately 
expanding a system model such as that depicted in Figure 7). 
However, the exact effect of each of these potential solutions on 
deployment architecture would need to be studied further. 

The final issue we wish to highlight is in many ways the pre-
condition to any effective solution relating a software system’s 
architecture (i.e., model) on the one hand and the system itself 
(i.e., implementation) on the other. In most large, real-world 
software systems, the relationship between architecture and 
implementation is a complex one, further complicated by 

Figure 5. Introducing a user and a notion of utility allows 
the calculation of a single scalar value denoting a 
deployment architecture’s overall quality. 
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A distributed system is modeled in terms of 
1. a set H  of hardware nodes, a set HP  of host parameters, a function ℜ→×HPHhParam :   
2. a set C  of components, a set CP  of component parameters, a function ℜ→×CPCcParam :  
3. a set N  of network links, a set NP  of network link parameters, a function  ℜ→×NPNnParam :  
4. a set I  of logical links (interactions), a set IP  of logical link parameters, a function ℜ→× IPI:iParam  
5. a set S  of services, and a function ℜ→∪∪∪×∪∪∪× }{}{: IPNPCPHPINCHSsParam  of values for service-specific system parameters 

6. a set { },...d,dDepSpace 21=  of all possible deployment mappings, where |C||H||DepSpace|   =  

7. a set Q  of quality of services, a function ℜ→×× DepSpaceQSqValue :  that quantifies the achieved level of QoS, and 


 −

→
QoS  thismaximize  todesirable isit  if 1
QoS  thisminimize  todesirable isit  if1 

:QqType   

8. a set U  of users, a function ]1,[: MinRateQSUqosRate →××  representing the rate of change in a QoS, and a complementary function ],0[: MaxUtilQSUqosUtil →××  

representing the utility for that rate of change 

9. a set PC  of parameter constraints, and a function 



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6. Memory constraint: 
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architectural drift and erosion [9]: each architecture-level design 
decision may be realized by many implementation-level modules; 
furthermore, each implementation-level module may participate in 
realizing multiple architecture-level decisions. The solutions we 
have outlined above do not try to artificially oversimplify the 
relationship between the system’s model and the system itself. 
However, we have assumed that this relationship is established 
early on during a system’s lifecycle, and carefully managed 
thereafter. We believe that without such an assumption, no 
guarantees about a system’s QoS can be made from any of its 
models (including that of its deployment architecture). 
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Figure 7. A partial deployment architecture model, used for illustration. 


