
Article Number 7

Figure 1. An example wireless sensor
network application deployed across a
number of heterogeneous, mobile
and/or resource constrained platforms.

Software Deployment Architecture and Quality-of-Service
in Pervasive Environments

Nenad Medvidovic
Computer Science Department

University of Southern California
Los Angeles, CA, 90089-0781 U.S.A.

neno@usc.edu

Sam Malek
Computer Science Department

George Mason University
Fairfax, VA 22030-4444 U.S.A.

smalek@gmu.edu

ABSTRACT

Over the past several years we have investigated two problems
related to the domain of highly distributed, mobile, resource
constrained, embedded, and pervasive environments: software
deployment and quality of service (QoS). We have done so with
the explicit focus on the role played by software architecture in
deployment, and on its relationship to QoS. In the process, we
have amassed a body of knowledge and experience, and assembled
a suite of solutions for targeting different facets of the interplay
among software architecture, deployment, and QoS. At the same
time, the area we are addressing has proven to be multi-faceted
and very complex, constantly presenting new challenges. In this
paper we outline the contours of the problem of QoS in
architecture-based deployment, our strategy for addressing it, and
the challenges that remain. We view this as an important (and
fruitful) area of research.

1. INTRODUCTION
Software architecture is a collection of models that capture a
software system’s principal design decisions in the form of
components (foci of system computation and data management),
connectors (foci of component interaction), and configurations
(specific arrangements of components and connectors intended to
solve specific problems) [9]. Architecture realizes a system’s
functional requirements, that is, the services the system is meant to
provide to its users. Additionally, architecture must ensure the
level of quality at which those services are to be delivered, referred
to in short as quality of service or QoS. Different dimensions of
QoS are latency, availability, durability, reliability, security, fault-
tolerance, survivability, dependability, scalability, heterogeneity,
and so on.

In the domain of pervasive systems, of particular interest is a
specific facet of a software system’s architecture — its deployment
[2]. Simply put, a system’s deployment architecture is the
allocation of the system’s software components (and connectors)
to its hardware hosts. Deployment architecture is particularly
important in pervasive environments because a system will

typically comprise many different, heterogeneous, mobile, and
possibly mutable, execution platforms during its lifetime. Figure 1
shows an example such system for illustration: a particular
instance of the MIDAS family of wireless sensor network-based
systems developed in collaboration between the Bosch Research
and Technology Center and our research group. The interested
reader can find the deployment architecture of this instance of
MIDAS in [7].

Previous research [1][4], including our own [5][8], has shown that
a software system’s deployment architecture can have a significant
effect on the system’s non-functional properties, i.e., it will affect
the system’s delivered QoS. This is further evident in pervasive
systems [7], which are often long-lived, and execute in highly
heterogeneous and unpredictable computing environments.
Consider a pervasive system depicted in the two diagrams in
Figure 2 for instance. These are two different deployment
architectures for a subset of the Emergency Deployment System
(EDS) [6] running on a variety of hand-held devices. Each
deployment architecture depicted in Figure 2 comprises 17
software components distributed across five hardware hosts. The
solid lines connecting the components represent their interaction
paths, while the dotted lines connecting the hosts represent
network connectivity. The two diagrams in the figure depict the
same system, but with several components repositioned across the
hosts.

Even though the actual instances of (the subset of) EDS
corresponding to these two diagrams provide the same
functionality (i.e., the same services) to the system’s end users,
they do so with
different QoS
levels for the
system’s different
services. Thus, for
example, both
hosts 1 and 2 in
Figure 2b will be
running more
components than
their counterparts
in Figure 2a. This
means that they
will likely
consume more
energy and run out
of battery power
more quickly
(affecting many of

Permission to make digital or hard copies of all or part of this work for
personal or classroom use is granted without fee provided that copies are
not made or distributed for profit or commercial advantage and that copies
bear this notice and the full citation on the first page. To copy otherwise, to
republish, to post on servers or to redistribute to lists, requires prior specific
permission and/or a fee.

ESSPE '07, September 4, 2007, Dubrovnik, Croatia
Copyright 2007 ACM ISBN 978-1-59593-798-8/07/09...$5.00

Article Number 7

Host 2Host 1

Host 3 Host 4 Host 5

Clock

Weather Repository

Map

Weather
Analyzer

Resource
Manager

Strategy
AnalysisKB

Simulation
Agent

Resource
Monitor

SAKBUI

HQ UI

Strategy
Analyzer

Agent Deployment
Advisor

Comman
der UI

Soldier
UI

Comman
der UI

Soldier
UI

Host 2Host 1

Host 3 Host 4 Host 5

Clock

Weather

Repository

Map

Weather
Analyzer

Resource
Manager

Strategy
AnalysisKB

Simulation
Agent

Resource
Monitor

SAKBUI

HQ UI

Strategy
Analyzer

Agent

Deployment
Advisor

Comman
der UI

Soldier
UI

Comman
der UI

Soldier
UI

(a)

(b)

Figure 2. Two candidate deployment architectures for a

distributed handheld application.

the above properties, such as durability, availability, survivability,
and so on). Furthermore, the number of (energy costly)
interactions taking place across the network link between the hosts
1 and 2 will likely be significantly larger in Figure 2b than in
Figure 2a. This means that the latency of the involved services will
increase significantly, while the system’s durability will, again,
decrease.

This example illustrates that determining an “ideal”, or even
merely “good” deployment architecture for a system is a non-
trivial task. This is the case for three reasons:
1. The total number of possible deployments for a given system is

exponential. For a system comprising h hardware hosts and c
software components the number of deployments is hc. This
means that, even for moderately sized systems, determining the
best deployment will require evaluating a very large number of
options.

2. The question of which deployment is “better” does not have a
straightforward answer. For example, consider the two
deployments in Figure 2: which one is better? In order to answer
the question, first we would have to define the “goodness” of a
deployment architecture. Even if we can agree that “good”
means “that which exhibits shorter latency, longer durability,
higher availability, better fault-tolerance, higher scalability, and
so on”, the specific definitions of those individual QoS
dimensions will very likely differ from one developer to
another, or one organization to another — a cursory overview of
software engineering literature will attest to that. Furthermore,
certain QoS dimensions are difficult to quantify. Examples
include security, dependability, heterogeneity, and so on.

3. The system may be severely constrained. For example, certain
devices may be unable to host certain (combinations of)
components either due to insufficient capacity, because they are
missing runtime resources, or because of other concerns such as
security; certain groups of components may be required to be
collocated on the same device; other components may be barred
from residing on the same host; and so on. Constraints such as
these may be particularly pronounced, and may even change at
runtime as the system’s execution context changes, in pervasive
environments. Even in the case of relatively small systems, it
quickly becomes impossible for a human architect to make
appropriate deployment decisions.

In the remainder of this paper, we will first consider one critical
challenge in modeling a deployment architecture and assessing it
for a given set of QoS dimensions: the problem’s multidimensional
nature. We will present a particular solution for dealing with this
problem. We will then briefly touch upon the problem’s other
critical challenge: its inherent complexity, especially in pervasive
environments. We will also outline a strategy for dealing with this
challenge. We close out the paper with a discussion of a number of
significant issues that remain unresolved.

2. DEPLOYMENT AND QOS
Consider a very simple software system, derived from EDS,
consisting of one service (Schedule) provided by two components
(Modify Resource Map and Resource Monitor) that need to be
deployed on two hosts (a laptop and a PDA).1 The only QoS

1 Note that our notion of service is slightly different from that usually used
in the service-oriented computing literature. In this paper, a service
denotes a unit of system-level functionality (e.g., a user-observable task)

dimension of interest in this system is latency. These different
elements are depicted conceptually in
Figure 3a. For this system, four possible deployments are possible,
and it would also be relatively easy to measure (or estimate,
provided appropriate models and analytical tools are available to
the architects) their latencies, as shown in
Figure 3b. It is clear that the first deployment has the shortest
latency. Thus, it is the optimal deployment.
However, if we expand the problem only slightly, by introducing
another QoS dimension—durability (shown in Figure 4a), we get
the situation depicted in Figure 4b. If the objective is to minimize
the latency and maximize the durability in this system, none of the
four deployments can be argued to be optimal. This phenomenon
is known as Pareto Optimal in multidimensional optimization.

that is provisioned via the collaboration and interaction among several
software components (i.e., via multiple component-level services). Our
use of this term is not critical to the paper’s argument.

Article Number 7

ResourceMonitorModifyResourceMap

Latency

Schedule

(a)

(b)

0 1 2 3 4 5

Latency (ms)

Dep 1
Dep2
Dep3
Dep4

Figure 3. (a) An abstract depiction of a simple deployment
problem. (b) The latency values measured for the four
possible deployment architectures.

Durability

ResourceMonitorModifyResourceMap

Latency

Schedule

(a)

(b)

Figure 4. (a) An abstract depiction of a slightly expanded
deployment problem. (b) The latency and durability values
measured for the four deployment architectures.

A well known technique for dealing with the trade-offs in a
multidimensional problem is to leverage a mapping function that
arbitrates between conflicting/competing solutions. We can do this
in the case of a software system’s deployment architecture by

explicitly capturing system users who, in turn, express preferences
for the different system services (i.e., the utility that achieving a
given level of quality for that service would have for that user).
The utility function allows us to map the multidimensional
problem to a uni-dimensional one. Therefore, the accuracy of the
analysis performed in this manner depends on our ability to
estimate the users’ preferences accurately. The users’ preferences
can take various forms:
• functions describing continuously the utility of a system service;
• specific sets of discrete values;
• vague statements of utility (e.g., “ideally, the latency should be

under 1ms; anything over 10ms will be unacceptable”);
• “do not care”s for specific services;
• and so on.

Furthermore, the users themselves may be ranked or categorized
according to their importance. This would further help architects to
decide which deployment architectures to select.

Figure 5 builds on the example from Figure 4 after the introduction
of a single user and the user’s utility functions for latency and
durability. If we consider deployment 2 to be the initial
deployment (with the utility set to zero, for simplicity), the other
three deployments’ utilities can be calculated and compared to it.
In this (hypothetical) case, deployment 3 has the highest total
utility to the system’s user and can be considered to be the optimal
deployment for this system.

However, even this solution quickly runs into problems. Let us
consider a relatively small scenario, consisting of three users who
are interested in three QoS dimensions in accessing two services
provided by three software components deployed on three hosts.
This scenario is depicted in Figure 6. In this case, the architect will
somehow have to capture 18 utility functions (3 users * 3 QoS
dimensions * 2 services) and compare 27 different deployments (3
hosts and 3 components, or 33 deployments). Therefore, the
problem becomes intractable for a human very quickly.

3. FORMALIZATION AND AUTOMATION
One obvious solution to the above situation is to take the problem
out of the hands of a human architect and build powerful,
comprehensive models of a system’s deployment architecture.
Formalizing the models would, in turn, enable their automated
processing. These models would have to capture, at the least,
• system elements (hardware hosts and network links, software

components and connectors) and their myriad parameters;
• functions or other ways of quantifying the system parameters;
• functions or other ways of quantifying the QoS dimensions of

interest;
• users and their preferences; and
• constraints on the system elements and/or their parameters.

A partial formalization of the above system elements, with four
QoS dimensions, is shown in Figure 7. This formalization is used
for illustration only; space constraints prevent us from elaborating
on it further. A detailed design can be found in [5]. For any
sizeable distributed system, these models will be very large.
However, they will be “built once and used forever”, meaning that
the cost of constructing them for most systems is likely not to be
prohibitive.

Once constructed, such a model can be used to define a system’s
overall utility, i.e., to calculate and compare the quality of the

Article Number 7

 Figure 6. A slightly larger deployment
scenario.

system’s different deployment architectures. There are known off-
the-shelf techniques for doing this (e.g., mixed integer non-linear
programming, or MINLP, and mixed integer linear programming,
or MIP) [10]. There are also other distributed and decentralized
algorithms that can be applied to the problem [8].

4. REMAINING CHALLENGES
While the solution outlined above represents a promising attack on
the problem, several challenges must be addressed. One challenge
is the sheer size of the problem, in terms of the numbers of
components and hosts, and especially in terms of the number of
captured system parameters. This may prevent effective
visualization of the systems in question, even with the aid of
software tools. In turn, this carries the risk that the system will be
modeled incorrectly, undermining any decision making ability by
the software architects.

Another challenge is that the algorithms mentioned above are
heuristic-based since the problem is exponential. This means that,
for large systems, it is not possible to ascertain the actual quality
of the solution produced by one of these algorithms. Furthermore,
some of the algorithms (e.g., both MINLP and MIP) may not be
able to guarantee a solution for problems of certain size and
complexity.

Since pervasive systems are likely to be long lived and dynamic,
they will demand deployment, and redeployment, solutions that are
able to adjust to the system’s changing execution context
continuously. This means that, while the system’s architects may
choose a computationally expensive deployment strategy initially
(e.g., a precise but inefficient deployment algorithm), during the
system’s execution they may be forced to switch to light-weight
system monitoring and fast, though less precise, redeployment
calculations. Another factor that must be taken into account is the
amount of downtime the system will experience in order to

redeploy: a
deployment
architecture that
is otherwise
inferior may be
preferable if it
can be effected
more quickly.

Yet another
challenge deals
with how one
can obtain the
utility
quantifications
for the system’s
many services
by its many
distributed users,
especially in a
pervasive
environment.
For many
pervasive
systems, it is
unlikely that architects will have access to all the system users.
Even if they did, it is unlikely that the users would be able to
articulate their preferences in a manner that is easily captured
and/or quantified. This means that it may be necessary to develop
techniques to model different classes of users or usage scenarios,
and provide suites of deployment architectures (rather than a
single solution), which will then be applied in different
circumstances.

It should also be recognized that, by reducing a multi-dimensional
problem to a uni-dimensional one, some modeling expressiveness
and some of the captured information will be inevitably lost. The
question is whether that loss of information will happen at the
expense of the model’s utility and precision. This is difficult to
answer since large segments of this problem area remain
unexplored and the actual target solution(s) in any given scenario
(e.g., the best or even good deployment architecture for a given
distributed system) may not be known. It may also be possible to
explore other techniques for dealing with multi-dimensional
optimization problems, e.g., multi-objective genetic algorithms [3].

It should also be noted that appropriate system deployment (and
redeployment) is only one possible approach for ensuring the
desired QoS level. Techniques such as component replication will
directly aid certain QoS dimensions (e.g., latency, availability, and
fault-tolerance). Likewise, data replication, caching, hoarding, and
pre-fetching can also significantly improve the manner in which a
system delivers its services. It is possible, in principle, to use these
techniques in tandem with deployment (e.g., by appropriately
expanding a system model such as that depicted in Figure 7).
However, the exact effect of each of these potential solutions on
deployment architecture would need to be studied further.

The final issue we wish to highlight is in many ways the pre-
condition to any effective solution relating a software system’s
architecture (i.e., model) on the one hand and the system itself
(i.e., implementation) on the other. In most large, real-world
software systems, the relationship between architecture and
implementation is a complex one, further complicated by

Figure 5. Introducing a user and a notion of utility allows
the calculation of a single scalar value denoting a
deployment architecture’s overall quality.

Article Number 7

A distributed system is modeled in terms of
1. a set H of hardware nodes, a set HP of host parameters, a function ℜ→×HPHhParam :
2. a set C of components, a set CP of component parameters, a function ℜ→×CPCcParam :
3. a set N of network links, a set NP of network link parameters, a function ℜ→×NPNnParam :
4. a set I of logical links (interactions), a set IP of logical link parameters, a function ℜ→× IPI:iParam
5. a set S of services, and a function ℜ→∪∪∪×∪∪∪× }{}{: IPNPCPHPINCHSsParam of values for service-specific system parameters

6. a set { },...d,dDepSpace 21= of all possible deployment mappings, where |C||H||DepSpace| =

7. a set Q of quality of services, a function ℜ→×× DepSpaceQSqValue : that quantifies the achieved level of QoS, and


 −

→
QoS thismaximize todesirable isit if 1
QoS thisminimize todesirable isit if1

:QqType

8. a set U of users, a function]1,[: MinRateQSUqosRate →×× representing the rate of change in a QoS, and a complementary function],0[: MaxUtilQSUqosUtil →××

representing the utility for that rate of change

9. a set PC of parameter constraints, and a function




→×
satisfiednot is if 0

satisfied is if1
:

constr
constr

DepSpacePCdpcSatisfie

10. two functions that restrict locations of software components





∈∈
∈∈

→×
HhCc

HhCc
HCloc

ontodeployedbecannot if0
ontodeployedbecan if1

:







∈∈−
∈∈

→×
nsrestrictionoare thereif 0

2ashostsametheonbecannot1 if 1
2ashostsametheonbetohas1 if 1

: CcCc
CcCc

CCcolloc

 1. System parameters

2. Availability: ∑∑
= =

=
s sC

c

C

c
cHcHcc ,rel)ram(N,freq)*nPasParam(s,Id) ty,availabili qValue(s,

11 12
2,12,1

3. Latency:

∑∑
= =

+=
s sC

c

C

c cHcHcHcH

cccc

cHcHcc
,rel)m(N,bw)*nParanParam(N

,evtSize)ram(s,I,freq)*sPasParam(s,I
,td)am(Nfreq)*nParsParam(s,I)latency, dqValue(s,

11 12 2,12,1

2,12,1

2,12,1 ,

4. Communication security: ∑∑
= =

=
s sC

c

C

c
cHcHcccc ,enc)nParam(N,evtSize)*am(s,Ifreq)*sParsParam(s,Iurity, d)qValue(s,

11 12
2,12,12,1 ,sec

5. Energy consumption:

∑∑
= = 













++=

s sC

c

C

c cc
cc

cHcH

cccc

ns),hostEnrCohParam(H
e),opcodeSizcParam(c

ns),hostEnrCohParam(H
e),opcodeSizcParam(c,freq)cParam(s,I

ns),commEnrConParam(N
,evtSize)am(s,Ifreq)*sParsParam(s,I

energy d)qValue(s,
11 12 21

2,1

2,1

2,12,1)21(*
,

6. Memory constraint:

0),(1),(),(),(==












≤=∈∀∈∀ ∑ dmemConstSatisfiedcp else dmemConstdpcSatisfie then ,hostMemhhParamcompMemccParamhHCcHh if c

linknetwork a on bandwidth available
components twobetween exchanged sizeevent average

components twobetween ninteractio offrequency
eventper ncomputatio ofamount average

componenta for memory required
opcodeper nconsumptioenergy average

hosta onmemory available

NPbw
IPevtSize

IPfreq
CPopcodeSize

CP compMem
HPshostEnrCon

HP hostMem

∈
∈

∈
∈
∈
∈

∈

parametermemory available shost' a on constraint PCmemConst
dimensions QoS four Qenergy urity,sec y,ty, latencavailabili

data ngtransmitti of nconsumptioenergy NPscommEnrCon
link network a of capability encryption NP enc

link network a ofdelay ontransmissi NPtd
link network a ofy reliabilit NPrel

∈
∈

∈
∈
∈
∈

architectural drift and erosion [9]: each architecture-level design
decision may be realized by many implementation-level modules;
furthermore, each implementation-level module may participate in
realizing multiple architecture-level decisions. The solutions we
have outlined above do not try to artificially oversimplify the
relationship between the system’s model and the system itself.
However, we have assumed that this relationship is established
early on during a system’s lifecycle, and carefully managed
thereafter. We believe that without such an assumption, no
guarantees about a system’s QoS can be made from any of its
models (including that of its deployment architecture).

5. REFERENCES
[1] M. C. Bastarrica, et. al. A Binary Integer Programming

Model for Optimal Object Distribution. Int’l. Conf. on
Principles of Distributed Systems, Amiens, France, Dec.
1998.

[2] A. Carzaniga, et. al. A Characterization Framework for Soft-
ware Deployment Technologies. Tech. Report CU-CS-857-
98, Dept. of Computer Science, University of Colorado, 1998.

[3] K. Deb, et al. A Fast and Elitist Multiobjective Genetic Algo-
rithm: NSGA-II. IEEE Trans. on Evolutionary Computation,
Vol. 6, No 2, 2002.

[4] G. Hunt, et. al. The Coign Automatic Distributed Partitioning
System. Symposium on Operating System Design and Imple-
mentation, New Orleans, Feb. 1999.

[5] S. Malek. A User-Centric Approach for Improving a Distrib-
uted Software System’s Deployment Architecture. Ph.D. Dis-
sertation, USC, May 2007.

[6] S. Malek, et. al.. A Style-Aware Architectural Middleware for
Resource-Constrained, Distributed Systems. IEEE Trans. on
Software Engineering, March 2005.

[7] S. Malek, et. al. Reconceptualizing a Family of
Heterogeneous Embedded Systems via Explicit Architectural
Support. In Proceedings of ICSE 2007, Minneapolis, MN,
May 2007 .

[8] M. Mikic-Rakic, et. al. Improving Availability in Large,
Distributed, Component-Based Systems via Redeployment. In
proceedings of the 3rd Int’l. Working Conference on
Component Deployment, Grenoble, France, Nov. 2005

[9] D. E. Perry and A. L. Wolf. Foundations for the Study of
Software Architecture. ACM SIGSOFT Software Engineering
Notes, 17:4, October 1992.

[10] L. A. Wolsey. Integer Programming. John Wiley & Sons,
New York, NY, 1998.

Figure 7. A partial deployment architecture model, used for illustration.

