
Abstract
Embedded systems are rapidly growing in size, complexity, distri-
bution, and heterogeneity. As a result, the traditional practice of
developing one-off embedded applications that are often rigid and
unmanageable is no longer acceptable. Recent studies have sug-
gested that an effective approach to developing software systems in
this domain is to employ the principles of software architecture.
However, for software architectural concepts to be truly useful in a
development setting, they must be accompanied by support for
their implementation and evolution. This has motivated our work
over the past several years on an architectural middleware, called
Prism-MW, that provides implementation-level support for the
development of software systems in terms of the software architec-
tural constructs (e.g., components, connectors). Prism-MW was
initially developed in Java and used in several domains. Recently,
as part of an on-going project, we were required to implement
Prism-MW in ANSI C++. This experience proved to be more chal-
lenging than we initially anticipated, mainly due to the inherent
heterogeneity of the computing substrate. As a result of this experi-
ence, we had to reconsider some of our earlier assumptions of what
constitutes an architectural middleware and its role in the software
development process. In this paper, we provide an overview of our
experience and the lessons we have learned along the way.

1. Introduction
Over the past several years, our research group has conducted work
in the area of architectural middleware [6,9,10,12]. We define ar-
chitectural middleware as a middleware platform that provides im-
plementation-level constructs for key architectural abstractions
[13,15]: components, connectors, ports, events, styles, and so forth.
The objective behind architectural middleware is clear: software de-
velopers have embraced these architectural abstractions as powerful
design-level tools, but are typically forced by existing technologies
to realize them using a different set of implementation-level tools.
Thus, while engineers may prefer to think of systems in terms of
high-level abstractions such as components, connectors, styles, and
so on, they are often forced to implement them in terms of low-level
constructs such as methods, arrays, linked lists, and so on.

A programming language (PL) or middleware platform may
provide support beyond such low-level constructs, but typically
they are insufficient to fully realize architecture-level decisions [6].
For illustration, consider the following examples.
• A software component may in fact be implemented as a middle-

ware-level component (though perhaps with different properties,
such as lack of support for required interfaces), or simply as a
cluster of PL-level classes.

• A communication port on a component may be implemented as
an explicit PL-level interface (again, perhaps with different
properties from those intended in the architecture-level port,
such as bi-directionality) or simply as an ungrouped set of meth-
od declarations.

• An event may be supported directly in a middleware as a mes-
sage, or it may be mimicked via a method call or even shared
memory.

• A connector may be distributed (and thus “lost”) across different
implementation-level modules as a combination of method
calls, shared memory, network sockets, and other facilities.

• Finally, a given architectural style (e.g., publish-subscribe or
peer-to-peer) may not be supported at all, but rather at best mim-
icked, and at worst ignored, by the style (e.g., client-server) as-
sumed by the middleware.
Ample experience demonstrates that software engineers have

clearly “made do” with the existing middleware facilities, building
many successful systems. However, an argument can also be made
that it is precisely this “abstraction chasm” between design and im-
plementation that is a significant cause of architectural erosion
[13]. Architectural erosion denotes the (frequent) situation in which
a system’s implementation departs from, or even invalidates, key
architectural design decisions.

Our hypothesis has been that we can significantly reduce archi-
tectural erosion by bridging the abstraction chasm and, in turn, that
we can bridge the chasm by providing an architectural middleware
platform. As a proof-of-concept, we developed such a platform,
called Prism-MW [6,9,10,12]. Prism-MW was initially implement-
ed, evaluated, and used primarily in Java (both JVM and KVM).
However, different subsets of it were also implemented in Embed-
ded Visual C++ (EVC++), Python, C#, and Brew. The Java version
in particular was evaluated extensively in the laboratory setting for
a number of properties of interest, including efficiency, scalability,
dynamic adaptability, and portability [6,12]. Prism-MW was used
in several domains: desktop applications, handheld computing, data
grids, and embedded systems [6,8,10].

Based on this experience, we felt confident in our understand-
ing of architectural middleware and in Prism-MW’s applicability to
additional domains. So, when engineers from the Bosch Research
and Technology Center (RTC) approached us with the idea of using
our work in one of their heterogeneous, distributed embedded sys-
tems, we were optimistic that Prism-MW was the right solution. Af-
ter all, we “only” had to reimplement our design in ANSI C++, and
we already had the EVC++ implementation as a baseline.

Unfortunately, things did not go that smoothly. The application
domain and computing environment (including the PL) to which we

Tailoring an Architectural Middleware Platform to a
Heterogeneous Embedded Environment

Sam Malek Chiyoung Seo Nenad Medvidovic

Computer Science Department
University of Southern California

Los Angeles, CA 90089-0781 U.S.A.
{malek,cseo,neno}@usc.edu

were porting Prism-MW turned out to be very different from those
we had faced in the past. A lot of the facilities on which we had
come to rely, and which we got “for free” in Java (and even
EVC++) and on the platforms we had employed (e.g., Compaq’s
PocketPC), were no longer present. In this new setting, we had to
custom-build many of those facilities (e.g., data serialization, sock-
et-based communication), and develop several low-level utilities
(e.g., memory management, thread synchronization) to abstract
away the heterogeneity of the computing substrate. Even then, port-
ing Prism-MW posed a number of added challenges, at least in part
due to the inherent trade-off between the two desired characteristics
of a middleware for the embedded systems domain: supporting het-
erogeneous target platforms and achieving efficiency.

This experience forced us to reassess what an architectural mid-
dleware is, what facilities it must provide, and which of those facil-
ities are “more architectural” vs. “more middleware”. As a result,
we have developed a much more nuanced understanding of Prism-
MW, and believe that the insights we have gained can also help us
in formulating a generally applicable reference architecture for ar-
chitectural middleware platforms. As a side benefit, we can now
better relate Prism-MW, and other similar technologies, to tradi-
tional middleware platforms, as well as to related infrastructure
concepts such as software libraries and frameworks.

The remainder of the paper is organized as follows. Section 2
discusses the related work in the areas of architecture-based devel-
opment and middleware for embedded systems. Section 3 provides
a brief overview of Prism-MW. Section 4 presents our experience
in developing a family of sensor network applications on top of
Prism-MW in collaboration with Bosch, with a particular focus on
the changes this imposed on the middleware itself. Finally, Section
5 discusses the lessons we have learned from this experience.

2. Related Work
At a very high-level the related literature can be classified into two
categories: technologies specifically targeted at supporting imple-
mentation of software architectures, and middleware platforms for
embedded systems. Below we provide an overview of the most no-
table solutions from both categories. We should note that the first
category (architectural middleware) only encompasses two technol-
ogies, offering another demonstration of how rarely researchers
have looked into this problem.

ArchJava [1] is an extension to Java that unifies software archi-
tecture with implementation, ensuring that the implementation con-
forms to architectural constraints. ArchJava currently has several
limitations that would likely limit its applicability in the embedded
computing setting: communication between ArchJava components
is achieved solely via method calls; ArchJava is only applicable to
applications running in a single address space; it is currently limited
to Java; and its efficiency has not yet been assessed.

Aura [16] is an architectural style and supporting middleware
for ubiquitous computing applications with a special focus on user
mobility, context awareness, and context switching. Aura is thus
only applicable to certain classes of applications in the embedded
setting. Similarly to Prism-MW, Aura has explicit, first-class con-
nectors.

Orbix/E [3] is a lightweight CORBA ORB optimized for em-
bedded applications. It is designed for rapid development and de-
ployment support in both C++ and Java. Orbix/E has a relatively
small memory footprint, which enables its use in memory con-

strained applications. Orbix/E provides the ability to choose a sub-
set of features for a given application in order to optimize its size
and speed.

ACE [14] is an object-oriented framework that implements
many core patterns for concurrent communication software. The
patterns and components in the ACE framework have been applied
in the ACE ORB (TAO), which is a CORBA-compliant middleware
framework. TAO allows clients to invoke operations on distributed
objects without concern for object location, PL, OS platform, com-
munication protocols, or hardware.

JXTA [4] is a set of open protocols that allow any connected
device on the network, ranging from cell phones and wireless PDAs
to PCs and servers, to communicate and collaborate in a peer-to-
peer manner. JXTA peers create a virtual network where any peer
can interact with other peers and resources directly, even when
some of the peers and resources are behind firewalls or on different
network transports. JXTA supports multiple platforms and languag-
es, and ensures secure communication of collaborating peers.

Jini network technology [17] is an open architecture that ena-
bles developers to create network-centric hardware or software
services that are highly adaptive to change. The Jini architecture
specifies a way for clients and services to discover each other and
to collaborate across the network. When a service joins a Jini net-
work, it advertises itself by publishing an object that implements the
service API. A client finds services by looking for an object that
supports the API. When the client gets the service’s published ob-
ject, it will download any code it needs in order to communicate
with the service, thereby learning how to “talk” to the particular
service implementation via the API.

XMIDDLE [7] is a data-sharing middleware for mobile com-
puting. XMIDDLE allows applications to share data that are encod-
ed as XML with other hosts, to have complete access to the shared
data when disconnected from the network, and, when possible, to
reconcile any changes made with all the hosts sharing the data. The
goal is to make sure that eventually all hosts will have a consistent
version of the shared data. XMIDDLE is lightweight and fast, and
caters to the frequent disconnection behavior that mobile devices
exhibit. XMIDDLE also allows applications to influence the recon-
ciliation process.

Lime [5] is a Java-based middleware that provides a coordina-
tion layer that can be exploited for designing applications which ex-
hibit either logical or physical mobility, or both. Lime is specifically
targeted at the complexities of ad-hoc mobile environments. The
goal of Lime is to provide the simple Linda model of coordination
in mobile environments via tuple spaces.

Finally, MobiPADS [2] is a reflective middleware that supports
active deployment of augmented services for mobile computing.
MobiPADS supports dynamic adaptation in order to provide flexi-
ble configuration of resources and optimize the operations of mo-
bile applications. MobiPADS configurable services (called mobi-
lets) can be augmented to address the changing conditions of a wire-
less environment (e.g., CPU load, network bandwidth).

While Prism-MW may include features and exhibit character-
istics that are similar to those provided by some of the technologies
discussed above, unlike any of them it provides native implementa-
tion facilities required for software architecture-based development
in a manner that is suitable to embedded and resource-constrained
systems. We discuss Prism-MW’s design and implementation next.

ture records the configuration of its constituent components, con-
nectors, and ports, and provides facilities for their addition, remov-
al, and reconnection, possibly at system runtime. A distributed ap-
plication is implemented as a set of interacting Architecture objects.

Events are used to capture communication in an architecture.
An event consists of a name and payload. An event’s payload in-
cludes a set of typed parameters for carrying data and meta-level in-
formation (e.g., sender, type, and so on). An event type is either a
request for a recipient component to perform an operation or a reply
that a sender component has performed an operation.

Ports are the loci of interaction in an architecture. A link be-
tween two ports is made by welding them together. A port can be
welded to at most one other port. Each Port has a type, which is ei-
ther request or reply. An event placed on one port is forwarded to
the port linked to it in the following manner: request events are for-
warded from request ports to reply ports, while reply events are for-
warded in the opposite direction.

Components perform computations in an architecture and may
maintain internal state. A component is dynamically associated
with its application-specific functionality via a reference to the Ab-
stractImplementation class. This allows us to perform dynamic
changes to a component’s application-specific behavior without
having to replace the entire component. Each component can have
an arbitrary number of attached ports. Components interact with
each other by exchanging events via their ports. When a component
generates an event, it places copies of that event on each of its ports
whose type corresponds to the generated event type. Components
may interact either directly (through ports) or via connectors.

Connectors are used to control the routing of events among the
attached components. Like components, each connector can have
an arbitrary number of attached ports. Components attach to con-
nectors by creating a link between a component port and a single
connector port. Connectors may support arbitrary event delivery se-
mantics (e.g., unicast, multicast, broadcast). In order to support the
needs of dynamically changing applications, each Prism-MW com-

ponent or connector is capable of adding or removing ports at runt-
ime. This property of components and connectors, coupled with
event-based interaction, has proven to be highly effective for ad-
dressing system reconfigurability.

Each subclass of the Brick class has an associated interface.
The IArchitecture interface exposes a weld method for attaching
two ports together. The IComponent interface exposes send and
handle methods used for exchanging events. Component provides
the default implementation of IComponent’s send method: generat-
ed request events are placed asynchronously on all of the request
ports attached to the component, while generated reply events are
placed asynchronously on all of the attached reply ports. The ICon-
nector interface provides a handle method for routing of events. The
Connector class provides the default implementation of the ICon-
nector’s handle method, which forwards all request events to the
connector’s attached request ports and all reply events to the at-
tached reply ports. We have also provided implementations of dif-
ferent routing policies, including unidirectional broadcast, bidirec-
tional broadcast, and multicast [6]. The IPort interface provides the
setMutualPort method for creating a one-to-one association be-
tween two ports.

Finally, Prism-MW’s core associates the Scaffold class with
every Brick. Scaffold is used to schedule and queue events for deliv-
ery (via the AbstractScheduler class) and pool execution threads
used for event dispatching (via the AbstractDispatcher class) in a de-
coupled manner. Prism-MW’s core provides default implementa-
tions of AbstractScheduler and AbstractDispatcher: FIFOScheduler
and RoundRobinDispatcher, respectively.

The novel aspect of our design is that this separation of concerns
allows us to independently select the most suitable event schedul-
ing, queuing, and dispatching policies for a given (e.g., embedded)
application. Furthermore, it allows us to independently assign dif-
ferent scheduling, queuing, and dispatching policies to each archi-
tectural element, and possibly even change these policies at runt-
ime. For example, a single event queue can be instantiated for the

IConnector

Abstract
Monitor

Scaffold

Abstract
Dispatcher

Round Robin
Dispatcher

Abstract
Scheduler

Fifo
Scheduler

Abstract
Scaffold

Brick
Architecture

Component Connector

Event

Port

IComponent

IPort

java.io.Serializable

IArchitecture

#mutualPort

Extensible Component

AbstractServic
eDiscovery

AbstractDeployment

AdminDeployer

ExtensiblePort

Abstract
Distribution

SocketDistribution
IRDistribution

NetworkReliability
Monitor EvtFrequency

Monitor

Extensible
Event

Figure 1. UML class diagram of Prism-MW. Middleware core
classes are highlighted.

3. Design of Prism-MW
Prism-MW supports architectural abstractions by providing
middleware-level modules (e.g., classes) for representing each
architectural element, with operations for creating, manipulat-
ing, and destroying the element. These abstractions enable di-
rect mapping between an architecture and its implementation.
Figure 1 shows the class design view of Prism-MW. The shad-
ed classes constitute the middleware core, which represents a
minimal subset of Prism-MW that enables implementation
and execution of architectures in a single address space. Only
the dark gray classes of Prism-MW’s core are directly relevant
to the application developer, requiring a minimal effort to
master the middleware’s basics. Our goal was to keep the core
compact, reflected in the fact that it contains only twelve
classes (four of which are abstract) and four interfaces. Fur-
thermore, the design of the core (and the entire middleware) is
highly modular: we have tried to limit direct dependencies
among the classes by using abstract classes, interfaces, and in-
heritance as discussed below.

3.1. Architectural Support
Brick is an abstract class that represents an architectural build-
ing block. It encapsulates common features of its subclasses
(Architecture, Component, Connector, and Port). Architec-

entire architecture; alternatively, a separate event queue can be as-
signed to each component. Additionally, dispatching and schedul-
ing are decoupled from the Architecture, allowing one to easily
compose many sub-architectures (each with its own scheduling and
dispatching policies) in a single application. Scaffold also directly
aids architectural awareness (also referred to as reflection) by allow-
ing probing of the runtime behavior of a Brick via different imple-
mentations of the AbstractMonitor class.

Prism-MW’s core has been implemented in Java JVM. Subsets
of the described functionality have also been implemented in Java
KVM, EVC++, C#, and Python; they have been used in example ap-
plications and in evaluating Prism-MW. The implementation of the
middleware core is quite small (under 900 SLOC), which aids
Prism-MW’s understandability and ease of use.

3.2. Extensibility Mechanism
The design of Prism-MW’s core provides extensive separation of
concerns via its explicit architectural constructs and its use of ab-
stract classes and interfaces. The design is highly extensible. The
extensible nature of Prism-MW has enabled us to directly support
multiple architectural styles, even within a single application [6].

Our support for extensibility is built around our intent to keep
Prism-MW’s core unchanged. To that end, the core constructs
(Component, Connector, Port, Event, and Architecture) are sub-
classed via specialized classes (ExtensibleComponent, Extensible-
Connector, ExtensiblePort, ExtensibleEvent, and ExtensibleArchi-
tecture), each of which has a reference to a number of abstract class-
es (Figure 1). Each AbstractExtension class can have multiple im-
plementations, thus enabling selection of the desired functionality
inside each instance of a given Extensible class. If a reference to an
AbstractExtension class is instantiated in a given Extensible class
instance, that instance will exhibit the behavior realized inside the
implementation of that abstract class. Multiple references to ab-
stract classes may be instantiated in a single Extensible class in-
stance. In that case, the instance will exhibit the combined behavior
of the installed abstract class implementations.

4. “Embedding” Prism-MW
Note from the preced-
ing discussion that our
view of Prism-MW was
“flat”: our focus on its
many interweaved ele-
ments did not distin-
guish between facilities
that were clearly at dif-
ferent levels of abstrac-
tion (e.g., low-level
mechanisms to ensure
efficient delivery of
data vs. high-level de-
sign mechanisms such
as architectural styles).
In this section, we describe our experience with developing a family
of sensor network applications, called MIDAS, on top of Prism-
MW in collaboration with Bosch RTC. This experience caused us
to rethink and “stratify” Prism-MW’s architecture. We will only
briefly describe the details of MIDAS here, and instead will mostly
focus on the impact of this project on our architectural middleware.

MIDAS is composed of a large number of sensors, gateways,
hubs, and PDAs that are connected wirelessly in the manner shown
in Figure 2. The sensors are used to monitor the environment around
them. They communicate their status to one another and to the gate-
ways. The gateway nodes are responsible for managing and coordi-
nating the sensors. Furthermore, the gateways translate, aggregate,
and fuse the data received from the sensors, and propagate the ap-
propriate data (e.g., event) to the hubs. Hubs in turn are used to eval-
uate and visualize the sensor data for human users, as well as to pro-
vide an interface through which the user can send control com-
mands to the various sensors and gateways in the system. Hubs may
also be configured to propagate the appropriate sensor data to
PDAs, which are then used by the mobile users of the system.

To facilitate the integration of MIDAS with hardware and soft-
ware that had been developed previously by Bosch, we were re-
quired to develop the portion of MIDAS that runs on the gateways
and hubs in C++ and the portion that runs on the PDA in Java. C++
was also selected due to its expected efficiency and low-overhead.

In Section 3 we described Prism-MW’s architectural support,
which represents the centerpiece of the middleware. However, in
the context of the MIDAS project we came to realize that for these
architectural facilities to be truly useful in a highly heterogeneous
and resource constrained environment, they would need to be com-
plemented with the appropriate low-level system support. Further-
more, it became clear that to fully reap the benefits of developing a
software system using the architectural facilities provided by Prism-
MW, the middleware should be accompanied with several more ad-
vanced facilities. In turn, this experience has helped us to identify
the scope of an architectural middleware, the services it should pro-
vide, and the relationships among those services.

Figure 3 is a graphical depiction of the three layers of an archi-
tectural middleware and their internal composition (as well as the
OS which acts as the bottom-most layer). The three architectural
middleware layers will be further elaborated on throughout the re-
mainder of this paper. In particular, in this section, Subsections 4.1,
4.2, 4.3 primarily refer to the bottom layer, Subsection 4.4 to the
middle layer, and Subsections 4.5, 4.6, and 4.7 to the top layer of
Prism-MW’s architecture.

4.1. Heterogeneity
The JVM provides many common facilities that are used to develop
platform-independent code. On the other hand, in standard C++
most of these facilities are not provided. Rather, it is left to the pro-
grammer to either develop or reuse them off-the-shelf. Unfortunate-
ly, both approaches typically result in a platform-dependent appli-
cation. For this reason, initially we set out to solve this issue by de-
veloping, compiling, and maintaining several versions of Prism-
MW, one per each hardware platform and OS. However, this ap-
proach soon proved to be infeasible: as the number of different ver-
sions of Prism-MW kept growing we were faced with developing
and exhaustively testing the same feature over and over again.

Instead, we opted to develop a domain-specific virtual machine
called Modular Virtual Machine (MVM), as depicted in Figure 3.
MVM was designed as a pluggable family of utilities that provides
an abstraction layer on top of various operating systems (Linux,
Windows, eCos) and hardware platforms (Intel x86, KwikByte, and
several proprietary sensor platforms). MVM is composed of three
parts: resource abstractions, implementations, and factories. Re-
source abstractions are managed via their corresponding factories
and provide a common API that is leveraged by Prism-MW and ap-

Figure 2. MIDAS system.

pendency on the OS, we developed thread, mutex, and semaphore
abstractions and the corresponding implementations in the MVM
layer. Other resource abstractions were also provided similarly.

The above approach proved to be flexible and extensible, as
supporting a new OS or hardware platform would require only the
development of host-specific resource implementations in MVM.
This design also allowed for a clear separation of architectural con-
structs from the system-level constructs (as shown in Figure 3).
Also note that the design of the middleware’s architectural support
(shown in Figure 1) remained intact as we ported it from Java to
C++. This was due to the extensive separation of concern built into
Prism-MW that allowed for a natural layering of the architectural
constructs on top of the lower level system constructs. For example,
changing the threading API at the virtual machine layer only results
in subsequent changes in the AbstractDispatcher’s implementation
class at the architecture-layer. Similarly, changing the interface of
network communication abstractions (e.g., socket) at the virtual
machine layer only results in subsequent changes in the Abstract-
Distribution’s implementation class.

4.2. Serialization
By leveraging JVM’s object serialization facility, we were able to
send and receive event objects as well as software components over
the network. Since there is no similar facility in C++, we had to im-
plement our own serialization facility. For this we created a class
called AbstractSerialization that exports two abstract methods:
toArray, which returns a given object in a byte array format; and
fromArray, which given a byte array representation of an object cre-
ates an instance of that object. To make an object serializable we
simply extend AbstractSerialization and provide the appropriate
implementation for these two methods. For convenience the virtual
machine layer provides the default implementation of serialization
for the basic data types (e.g., integer, string) as well as Prism-MW
specific data types (e.g., Component, Event). For any user-defined
data type (e.g., application logic associated with a Component, ap-
plication-specific payload attached to an Event), the application de-
veloper would have to provide the appropriate implementation of
AbstractSerialization. While this approach is not as convenient as
that provided by Java1 it is more efficient: object serialization in

Java requires more information to be included in the serialization
stream (e.g., each data type needs to be tagged appropriately).

4.3. Memory Management
In the Java version of Prism-MW, we relied on the JVM to manage
the (de)allocation of memory for Java objects at runtime. While this
approach incurred an overhead (i.e., wastes both computational re-
sources and time), with Java realistically we did not have any other
alternatives as we were limited to JVM’s somewhat unpredictable
and uncontrollable memory management mechanism. A similar
overhead also exists in C++, where the (de)allocation of memory on
the heap by both Prism-MW and application logic incurs a signifi-
cant overhead. We were not able to ignore this type of overhead in
MIDAS, since it had stringent latency requirements of transmitting
an alarm from a sensor to a hub and receiving an acknowledgement
back in less than two seconds. To solve this problem we enhanced
MVM by developing a memory management facility based on a
memory pooling technique, which pre-allocates various C++ ob-
jects (e.g., event, mutex, semaphore, etc.) from the heap when the
middleware starts up. This in turn allowed us to efficiently access
the pool when an object with a particular type was required, and re-
lease it back to the pool when it was not needed anymore. We were
thereby able to reduce the overhead of memory allocation to a sim-
ple pointer operation.

To insulate the architectural layer from the idiosyncrasies of the
underlying memory management facility, we created a number of
factory facilities that manage the (de)allocation of the architectural
constructs. For example, a component generates an Event via an
API exported by the event factory facility (shown in Figure 3) in the
virtual machine layer, irrespective of whether the Event is allocated
from the heap or from a memory pool.

4.4. Programming Language Interoperability
As mentioned in the introduction of Section 4, the MIDAS subsys-
tem running on the PDAs was developed using the Java version of
Prism-MW. However, since it had to interact with the C++ applica-
tion running on gateways and hubs, we faced a new type of hetero-
geneity at the level of PL that was not abstracted away by the MVM.
This was due to the difference between the representation of objects
in Java and C++. For example, a Java character is represented as
two bytes, but in standard C++ a character is represented as one1. To make an object serializable, in Java the application developer simply

implements the Serializable interface.

Figure 3. Layers of the Prism-MW architecture.

plication developers to produce platform-independent
code. A resource abstraction is realized via its imple-
mentation, which may use OS or hardware specific li-
braries. For a given target host the executable image of
MVM is created by building the MVM source code
with the appropriate implementation files included.
Note that many of these abstractions correspond to fa-
cilities provided by a JVM, which are installed on a tar-
get platform as Dynamically Linked Libraries and in-
voked when Java native methods are executed.

To further understand the role of MVM in the
“porting” of Prism-MW from Java to C++ consider the
support it provides for threads (shown in Figure 3). In
the Java version of Prism-MW, we relied on Java’s na-
tive thread and thread synchronization mechanisms.
However, in C++ software engineers typically have to
use the OS’s support for threads. Similarly, for thread
synchronization they have to rely on the host OS sema-
phore or mutex libraries. Therefore, to remove this de-

which often lack a convenient I/O interface (e.g., monitor, disk
drive, keyboard) that could be used for download and installation of
software. Therefore, support for software deployment is an essential
feature of a middleware geared to this domain. Unlike many tradi-
tional middleware platforms, which support software installation at
the granularity of executable software image or patch, an architec-
tural middleware can provide support for deployment at the more
appropriate level of architectural components and connectors. In
developing our deployment capability we have leveraged Prism-
MW’s support for architectural reflection, as further detailed below.

Prism-MW components communicate by exchanging applica-
tion-level events. Prism-MW also allows components to exchange
ExtensibleEvents, which may contain architectural elements (com-
ponents and connectors) as opposed to data. In order to migrate the
desired set of architectural elements onto a set of target hosts, we as-
sume that a skeleton configuration is preloaded on each host. The
skeleton configuration consists of Prism-MW’s Architecture object
that contains an Admin Component with a DistributionEnabledPort
(i.e., an ExtensiblePort with the appropriate implementation of Ab-
stractDistribution installed on it) attached to it. An Admin Compo-
nent is an ExtensibleComponent with the Admin implementation of
AbstractDeployment installed on it (shown in Figure 1). Since the
Admin Component on each device contains a pointer to its Architec-
ture object, it is able to effect runtime changes to its local subsys-
tem’s architecture: instantiation, addition, removal, connection, and
disconnection of components and connectors. Admin Components
are able to send and receive from any device to which they are con-
nected the ExtensibleEvents that contain application components
and connectors.

For component deployment we needed a mechanism to load the
components at runtime. However, unlike Java, C++ does not pro-
vide a mechanism for dynamic class loading. Therefore, to address
this shortcoming, we first compiled each component's implementa-
tion either as a Dynamic Link Library (DLL) for Windows or as a
Shared Library for Linux. We then used the file serialization facility
implemented in the C++ version of Prism-MW for serializing the

DLL or Shared Library file into byte-array format. Finally, the byte-
array was transmitted over the network to its target host, deserial-
ized, and stored as a DLL or a Shared Library locally. When the
software system is started, the application’s implementation encap-
sulated within the DLL or Shared Library is bound to the middle-
ware facilities.

4.6. Runtime Analysis and Adaptation
Very often engineers do not know a priori the properties of the tar-
get hardware platform, and early on make decisions that may not be
appropriate within the context of the actual running system. This is
of particular concern in a mobile embedded system such as MIDAS
that is affected by unpredictable movement of target hosts (e.g.,
PDA users) and fluctuations in the quality of wireless network links
(e.g., bandwidth, reliability). In the case of MIDAS, we realized that
different deployments of the software components onto hardware
platforms (i.e., different deployment architectures) had a significant
impact on the resulting quality-of-service provided by the system.
However, the engineers did not have sufficient knowledge of runt-
ime properties that could be used to determine a good deployment
of the system. To solve this problem we leveraged Prism-MW’s ar-
chitectural facilities as well as our interactive deployment analysis
environment, called DeSi [11] (shown in Figure 4a). DeSi provides
the ability to model the system’s deployment architecture, visualize
and assess the architecture, and improve it via one of its redeploy-
ment algorithms.2

Figure 4b depicts an example distributed system of 5 hosts and
35 components that is monitored and deployed on top of Prism-
MW. We have already discussed Admin’s role in the deployment
and dynamic adaptation of a system’s architecture. To monitor the
various system properties, we leveraged Prism-MW’s Abstract-
Monitor class, which is associated through the Scaffold with every
Brick (recall Figure 1). This allows for autonomous, active monitor-

2. While the architectural analysis issues captured by the redeployment
algorithms have been a major focus of our research to date, we are
unable to elaborate on them in this paper due to space constraints.

Figure 4. Deployment and runtime analysis suport: a) DeSi's tabular view of system's
deployment data, b) a system running on top of Prism-MW that is monitored and
managed by meta-level components.

Admin

34

31

18

2 615

16

4 12

21

Admin

8

3 9

29 1

Admin

28

20
30

17

14

0
Admin

22
26

13

27

10
33

7

24

25

32

19

23

11

Deployer

Distributed System

5

Prism-MW
Adapter
DeSi

Monitor

DeSi
Effector

Monitoring Data

Redeployment Data

Event freq.
monitorPlatform

Architecture

Network
reliability
monitorConfig.

Pointer to
Architecture

i

Comp

Legend:

Skeleton

Deployer
/Admin

a) b)byte. To support this type of heterogene-
ity, we leveraged Prism-MW’s extensi-
bility support: we created a new imple-
mentation of AbstractDistribution called
JavaToC++InteropDistribution which
translates an event message from the
C++ message format to Java format and
vice versa. This experience showed that
an architectural middleware’s extensibil-
ity and flexibility are essential to cope
with the kinds of heterogeneity that are
not abstracted away by a virtual machine
layer (e.g., application- or PL-level het-
erogeneity).

4.5. Deployment
One of the greatest challenges faced by
the engineers of heterogeneous embed-
ded systems is the lack of available tools
to support the deployment and verifica-
tion of software. This problem is further
exacerbated in highly distributed and
pervasive systems such as MIDAS,

ing of a Brick’s runtime behavior. Once the monitoring data on each
device becomes stable, the corresponding Admin forwards the data
to a centralized Admin component, called Deployer, for aggregating
the monitored data. As shown in Figure 4b, we integrated DeSi with
Prism-MW, by wrapping DeSi’s Monitor and Effector components
via a Prism-MW Adapter. Once the Deployer component has re-
ceived the monitoring data from all the Admin components, it sends
the data to DeSi, which populates its model. At that point, one of the
algorithms provided by DeSi is selected and executed for improving
the system’s deployment architecture. Finally, the result is reported
back to the Deployer, which coordinates the redeployment of the
system with the help of the Admin components.

4.7. Resource Discovery
MIDAS gateways and sensors may become unavailable or unreach-
able for many reasons: network disconnection, hardware and soft-
ware failure, or running out of battery power. Therefore, there was
a need for a facility that supports recovery from such scenarios by
(re)discovering the orphan sensors (i.e., sensors that have lost their
connection to a gateway) or (re)discovering services that reside on
a gateway. As shown in Figure 3 and discussed further below, we
leveraged Prism-MW’s architectural constructs to implement re-
source discovery. In the context of MIDAS a service corresponds
roughly to a component interface. We developed an implementation
of AbstractServiceDiscovery that provides the support for recording
and retrieval of services (as shown in Figure 1). An ExtensibleCom-
ponent with an implementation of AbstractServiceDiscovery in-
stalled on it acts as a service discovery agent on the host on which
it resides. The service discovery component can leverage Extensi-
bleComponent’s pointer to the architecture (recall Section 3.1) to
determine the services installed on the local host. Service discovery
components leverage DistributionEnabledPorts to communicate
with other service discovery components via Events. Supporting
service discovery via Prism-MW’s architectural constructs thus
provides location transparency at the level of architecture.

5. Lessons Learned
Our experiences with MIDAS, which is both more heterogeneous
and had more stringent requirements than other application sce-
nario to which Prism-MW had been applied, inspired us to reassess
some of our earlier assumptions and design decisions. In the pro-
cess, this has helped us to further understand the nature of architec-
tural middleware. In this section we discuss some of the more
salient lessons we have learned, which, in turn, we have used to
formulate the high-level architecture for an architectural middle-
ware platform shown in Figure 3 and discussed above.

5.1. Design of an Architectural Middleware
The initial design of Prism-MW leveraged many abstraction facili-
ties provided by JVM. However, as a result of implementing MI-
DAS primarily in C++, it became clear that some of our initial as-
sumptions were not generally applicable. We realized that an archi-
tectural middleware is composed of three distinct layers of
functionality, as shown in Figure 3: at the very bottom is a virtual
machine layer that allows the middleware to be deployed on heter-
ogeneous platforms efficiently; the abstraction facilities provided
by the virtual machine are leveraged by the middleware's architec-
tural constructs that lay on top of it; finally, these architectural con-
structs are leveraged to implement various advanced domain-spe-
cific facilities.

We also realized that there are a number of advanced facilities
that should be supported by an architectural middleware in the em-
bedded systems domain. We already discussed some of those in the
context of the MIDAS project: deployment, runtime analysis, adap-
tation, and resource discovery. The common guiding design deci-
sion behind these services has been their implementation using the
architectural constructs provided by Prism-MW. This approach has
a number of advantages. First of all, it helps to keep the middle-
ware’s core small and efficient. Furthermore, it allows us to reap all
the benefits of using an architectural middleware for these facilities
as well. For example, we can modify a distributed system’s service
discovery mechanism, by dynamically swapping the service discov-
ery component (recall Section 4.7) with another implementation of
it. Finally, the technique allows for efficient monitoring and adap-
tation of the system via the architectural awareness capability pro-
vided by Prism-MW.

5.2. Flexibility and Extensibility
Another important observation is that there are sources of heteroge-
neity other than those of the underlying hardware and system soft-
ware. An example of this, discussed in Section 4.4, dealt with het-
erogeneity at the level of PL. Similar sources of heterogeneity can
also be found in other aspects of a middleware. For example, there
are different protocols for establishing trust and determining group
membership among hosts in an ad-hoc environment. Therefore,
while a virtual machine layer such as MVM can abstract away the
heterogeneity of the hardware and system software, it is not suffi-
cient by itself. Rather, the middleware should be flexible and exten-
sible, such that heterogeneity at the level of application can also be
resolved by adapting and extending each of the three middleware
layers appropriately.

5.3. Efficiency versus Configuration Complexity
Recall from Section 4.1 that MVM’s resource factories were lever-
aged to manage the utilization of system resources. In fact, since all
of the architectural constructs are treated as resources and are pre-
allocated from the memory pool, we are able to estimate a system’s
resource consumption from its software architectural models (even
at design-time). This in turn allows us to analyze and inspect the im-
pact of architectural change on resource usage. This level of control
over resources is extremely important in resource-constrained sys-
tems. However, it also has a drawback, as it increases the complex-
ity of system configuration. For example, consider some of the con-
figuration parameters required in the C++ version of Prism-MW:
• size of the event queue;
• number of pre-allocated system resources: semaphore, mutex,

file, DLL, etc.;
• number of pre-allocated architectural constructs: Component,

Connector, Port, etc.;
• size of the memory buffer used by the network sockets; and
• size of pre-allocated memory pool used by the application-level

variables.
On the other hand, in the Java version of Prism-MW, there are only
two configuration “knobs”: size of event queue and thread pool.
However, as mentioned earlier, the Java version of Prism-MW in-
curs an overhead due to the dynamic allocation of resources. Fur-
thermore, it is also highly unpredictable, which makes it harder to
estimate and control an application’s resource usage at the level of
architecture.

The above discussion indicates that there is a trade-off between
resource utilization control and the configuration complexity of a
middleware solution. Increased control over resource utilization al-
lows for the development of more efficient systems. On the other
hand, increased complexity in a middleware hampers its ease of use
and validation. This suggests that developing a “one size fits all” so-
lution is impractical; instead, it is the software engineer’s responsi-
bility to determine the appropriate middleware solution based on the
characteristics of the given application domain.

5.4. Validation and Verification
One of the greatest challenges we faced in the MIDAS project was
validation and verification of an application on the target platforms.
Early on it became clear that manual testing, debugging, and instal-
lation of software is infeasible. Every time a bug was fixed, an up-
dated version of the software had to be installed manually on the
various devices, which resulted in an extremely time consuming
and redundant task for the software developers. Advanced facilities,
such as deployment and runtime analysis support, proved to be es-
sential as they allowed for rapid deployment, automatic monitoring,
and analysis to ensure that the system is functioning correctly.

Another reason that validation and verification in this domain
is hard can be attributed to the fact that the underlying virtual ma-
chine abstractions may not actually be able to abstract away com-
pletely the behavioral variations in the computing substrates. For
example, in the MIDAS project, we initially developed and tested
the software targeted for the gateways on top of Windows. We re-
lied on the MVM layer to insulate us from OS-level variations such
as different API used for thread synchronization. After testing the
application on Windows, we ported it to the gateway platforms run-
ning Linux (with the Linux version of MVM) for the final evalua-
tion. However, the application kept failing on the gateways. Even-
tually, we found the source of failure to be the variations among the
two OSs’ thread synchronization policies: Windows allows for the
invocation of two consecutive lock operations on the same sema-
phore, while Linux prevents this by throwing an exception.

This example also demonstrates that, as we provide more facil-
ities in a middleware solution, it becomes harder to evaluate appli-
cations developed on top it. In fact, as we already hinted in the pre-
vious section, another culprit in making it harder to evaluate appli-
cations was the complexity of configuring the C++ version of
Prism-MW. For example, since the resources are pre-allocated at
system start-up, if at runtime Prism-MW runs out of available re-
sources, it will result in a software failure. This is clearly a trade-off
when compared to the Java implementation: Java will dynamically
allocate all the resources needed by an application hosted on Prism-
MW, but at a performance cost.

5.5. Advanced Facilities
As we already mentioned, a middleware’s support for architecture-
based development reduces the possibility of architectural erosion
during the software construction phase. However, since a large class
of embedded systems are long-lived and pervasive, they are con-
stantly evolving to the changing environment around them. There-
fore, an architectural middleware for this domain should not only
provide support for the implementation of a system in terms of its
architectural elements, but also facilities that minimize the potential
for software architectural erosion after the initial deployment. The
deployment and runtime analysis environment that we discussed
earlier are good examples of facilities that can be leveraged to keep

the system’s software architecture and the actual running system’s
software architecture in sync. For these tools to be applicable, they
have to be able to represent the dynamic nature of software archi-
tectures such that the architectures can be analyzed for their proper-
ties, and also have the ability to configure a running system based
on the results of the analysis. Our experience has showed that by
supporting these facilities on top of Prism-MW’s architectural facil-
ities, we can directly leverage the reflection and monitoring capa-
bilities provided by the middleware to change the running system.

6. Acknowledgement
This work is sponsored in part by the National Science Foundation
under Grant number ITR-0312780 and by Bosch.

7. References
[1] J.Aldrich, et. al. ArchJava: Connecting Software Architec-

ture to Implementation. International Conference on Soft-
ware Engineering, Orlando, Florida, May 2002.

[2] A.Chan, S. Chuang. MobiPADS: A Reflective Middleware
for Context-Aware Mobile Computing. IEEE Transactions
on Software Engineering, Vol. 29, No.12, December 2003.

[3] Orbix/E. http://www.iona.com/whitepapers/orbix-e-DS.pdf
[4] JXTA Project. http://www.jxta.org/
[5] LIME http://lime.sourceforge.net/
[6] S. Malek, et. al. Prism-MW: A Style-Aware Architectural

Middleware for Resource Constrained, Distributed Systems.
IEEE Trans. on Software Engineering, 31 (3), March 2005.

[7] C. Mascolo et. al. XMIDDLE: A Data-Sharing Middleware
for Mobile Computing. Personal and Wireless Communica-
tions, Kluwer.

[8] C. Mattmann, et. al. GLIDE: A Grid-based Lightweight In-
frastructure for Data-intensive Environments. European
Grid Conference, Amsterdam, Netherlands, February 2005.

[9] N. Medvidovic and M. Mikic-Rakic. Exploiting Software
Architecture Implementation Infrastructure in Facilitating
Component Mobility.Software Engineering and Mobility
Workshop , Toronto, Canada, May 2001.

[10] N. Medvidovic, et. al. Software Architectural Support for
Handheld Computing. IEEE Computer , September 2003.

[11] M. Mikic-Rakic et. al. A Tailorable Environment for Assess-
ing the Quality of Deployment Architectures in Highly Dis-
tributed Settings. 2nd Int’l. Working Conf. on Component
Deployment (CD 2004), Edinburgh, Scotland, May 2004.

[12] M. Mikic-Rakic and et. al. Adaptable Architectural Middle-
ware for Programming-in-the-Small-and-Many. Int’l. Mid-
dleware Conference, Rio De Janeiro, Brazil, June 2003.

[13] D.E. Perry, et.a l. Foundations for the Study of Software Ar-
chitectures. Software Engineering Notes, Oct. 1992.

[14] D. Schmidt. ACE. http://www.cs.wustl.edu/~schmidt/ACE-
documentation.html

[15] M. Shaw and D. Garlan. Software Architecture: Perspectives
on an Emerging Discipline. Prentice Hall, 1996.

[16] J. P. Sousa, et. al. Aura: an Architectural Framework for User
Mobility in Ubiquitous Computing Environments. Working
Conf. on Software Architecture, Montreal, August 2002.

[17] Sun Microsystems. JINI(TM) Network technology. http://
wwws.sun.com/software/jini/

