
 Improving Availabi l i ty in Large, Distributed
Component-Based Systems via Redeployment

Marija Mikic-Rakic2, Sam Malek1,3, and Nenad Medvidovic1

1University of Southern California, Computer Science Department, Los Angeles, CA, 90089,
USA. {malek, neno}@usc.edu

2Google Inc., Santa Monica, CA, 90405, USA. marija@google.com
3The Boeing Company, 5301 Bolsa Avenue, Huntington Beach, CA, 92647, USA.

sam.malek2@boeing.com

Abstract. In distributed and mobile environments, the connections among
the hosts on which a software system is running are often unstable. As a result
of connectivity losses, the overall availability of the system decreases. The
distribution of software components onto hardware nodes (i.e., the system’s
deployment architecture) may be ill-suited for the given target hardware en-
vironment and may need to be altered to improve the software system’s avail-
ability. The critical difficulty in achieving this task lies in the fact that deter-
mining a software system’s deployment that will maximize its availability is
an exponentially complex problem. In this paper, we present a fast approx-
imative solution for this problem, and assess its performance. In addition to
significantly improving availability, our solution, in general, also reduces the
overall interaction latency in the system. We evaluate our solution on a large
number of automatically generated application scenarios.

1 Introduction

The emergence of mobile devices, such as portable computers, PDAs, and mobile
phones, and the advent of the Internet and various wireless networking solutions make
computation possible anywhere. Applications involving these mobile devices are
highly dependent on the underlying network. Unfortunately, network connectivity fail-
ures are not rare: mobile devices face frequent and unpredictable connectivity losses
due to their constant location change and lack of network coverage; the costs of wire-
less connectivity often also induce user-initiated disconnection; and even the highly
reliable WAN and LAN connectivity is unavailable 1.5% to 3.3% of the time [24].

For this reason, highly distributed and mobile systems are challenged by the prob-
lem of disconnected operation [22], where the system must continue functioning in the
temporary absence of the network. This presents a major challenge for software sys-
tems that are highly dependent on network connectivity because each local subsystem
is usually dependent on the availability of non-local resources. Lack of access to a
remote resource can make a particular subsystem, or even the entire system unusable.

A software system’s availability is commonly defined as the degree to which a sys-
tem is operational and accessible when required for use [7]. In the context of highly
distributed, mobile environments, where the most common cause of (partial) system
inaccessibility is network failure [23], we quantify availability as the ratio of the num-
ber of successfully completed inter-component interactions in the system to the total
number of attempted interactions over a period of time.

In this context, a key observation is that the distribution of software components
onto hardware nodes (i.e., a system’s software deployment architecture, illustrated in
Figure 1.) greatly influences the system’s availability in the face of connectivity losses.
For example, in such cases it is desirable to collocate components that interact fre-
quently. However, the parameters that influence the optimal distribution of a system
(e.g., the reliability of network links) may not be known before the system’s deploy-
ment. For this reason, the (initial) software deployment architecture may be ill-suited
for the given target hardware environment. This means that a redeployment of the soft-
ware system may be necessary to improve its availability.

There are several existing techniques that can support
various subtasks of redeployment, such as monitor-
ing [4] to assess hardware and software properties of
interest, component migration [3] to facilitate rede-
ployment, and dynamic system manipulation [21] to
effect the redeployment once the components are
migrated to the appropriate hosts. However, the criti-
cal difficulty in achieving this task lies in the fact that
determining a software system’s deployment that will
maximize its availability (i.e., the optimal deploy-
ment) is an exponentially complex problem: in the
most general case the complexity is kn, where k is the
number of hardware hosts and n the number of soft-
ware components. Existing approaches that recog-
nize this (e.g., I5 [1]) still assume that all system
parameters are known beforehand and that infinite
time is available to calculate the optimal deployment.

Other approaches, such as Coign [6], restrict their solution to two hosts and client-
server architectures, thus decreasing the algorithm’s complexity, but also the resulting
solution’s usefulness.

For most practical cases finding the optimal deployment is infeasible: it requires an
exponentially-complex “exact” algorithm. This paper presents an approximative algo-
rithm, Avala, for increasing a system’s availability by estimating the system’s rede-
ployment architecture in polynomial time. We provide a detailed assessment of Avala’s
performance. Since for large systems the optimal redeployment cannot be calculated in
a reasonable amount of time, we compare the availability achieved via our solution to
the availability of a system’s “most likely” deployment. We present two additional
algorithms that we have developed to obtain the availability of the most likely deploy-
ment. Finally, in addition to significantly improving the overall system availability, we
show that Avala, in general, also reduces the overall interaction latency in the system.

The Avala algorithm is part of an integrated solution to increasing a system’s avail-
ability [13,17,12], which enables the three key redeployment tasks: (1) monitoring the
system to gather the data that influences its availability; (2) estimating the redeploy-
ment architecture; and (3) effecting that architecture.

The remainder of the paper is organized as follows. Section 2 defines the problem
our work is addressing and discusses a set of assumptions in our approach. Section 3
presents an overview of the related work and of our overall redeployment approach.
Section 4 describes the exact algorithm and discusses its complexity. Section 5

Figure 1. A sample deployment
architecture with five hardware

hosts and 40 software
components. Dotted lines

represent network connectivity,
while solid lines represent
interacting components.

Host 2Host 1

Host 3 Host 4

3
4

8
7

9

5

1 2

6

22

19

24
25

21

23 33

26

32

3029
31

28

10

20 27

18

11

17

1514
16

13

12

Host 5

37

34

39
4038

36
35

describes the Avala algorithm for the exponentially complex redeployment problem.
Section 6 presents our approach for evaluating Avala, the results of its assessment, and
our tool support. Section 7 discusses the characteristics as well as current limitations of
the Avala algorithm. The paper concludes with a discussion of future work.

2 The Redeployment Problem

The distribution of software components onto hardware nodes (i.e., a system’s soft-
ware deployment architecture) greatly influences the system’s availability in the face of
connectivity losses. For example, components located on the same host will be able to
communicate regardless of the network’s status, which is not the case with components
distributed across different hosts. However, the reliability of connectivity (i.e., the rate
of failure) among the “target” hardware nodes on which the system is deployed is usu-
ally not known before the deployment. The frequencies of interaction among software
components may also be unknown. Hence, the initial software deployment architecture
may be ill-suited for the given target hardware environment. This means that a rede-
ployment of the software system may be necessary to improve its availability.

The critical difficulty in achieving this task lies in the fact that determining a soft-
ware system’s deployment architecture that will maximize its availability (referred to
as optimal deployment architecture) is an exponentially complex problem.

2.1 Problem Definition
In addition to the characteristics of hardware connectivity and software interaction,

there are other constraints on a system’s redeployment, including: (1) the available
memory on each host; (2) the required memory for each software component; and (3)
possible restrictions on component locations (e.g., two CPU-intensive components
may not be allowed to reside on the same host).

Figure 2. shows a formal model that captures the system properties and constraints,
and a formal definition of the problem. The memcomp function captures the required
memory for each component. The frequency of interaction between any pair of compo-
nents is captured via the freq relation. Each host’s available memory is captured via the
memhost function. The reliability of the link between any pair of hosts is captured via
the rel relation. Using the loc relation, deployment of any component can be restricted
to a subset of hosts, thus denoting a set of allowed hosts for that component. Using the
colloc relation constraints on collocation of components can be specified.

The definition of the problem contains the criterion function A, which formally
describes a system’s availability as the ratio of the number of successfully completed
interactions in the system to the total number of attempted interactions. Function f rep-
resents the exponential number of the system’s candidate deployments. To be consid-
ered valid, each candidate deployment must satisfy the three conditions. The first
condition in the definition states that the sum of memories of the components that are
deployed onto a given host may not exceed the available memory on that host. The sec-
ond condition states that a component may only be deployed onto a host that belongs to
a set of allowed hosts for that component, specified via the loc relation. Finally, the
third condition states that two components must be deployed onto the same host (or on
different hosts) if required by the colloc relation.

2.2 Assumptions
The problem defined in Section 2.1 is an instance of the more general redeployment

problem, described in [16]. In this paper, we consider a subset of all possible con-
straints, and a specific criterion function, which is to maximize the system’s availabil-
ity. Through the loc and colloc functions, one can include other constraints (e.g.,
security, CPU, bandwidth), not directly captured in our problem description. However,
if multiple resources, such as bandwidth and CPU, are as restrictive as memory in a
given system, then capturing them only via the loc and colloc functions will not be suf-
ficient. In [16] we describe how such cases could be addressed, by introducing addi-
tional system parameters into the model and introducing additional constraints that a
valid deployment should satisfy. For example, for systems where the network band-
width and volume of exchanged data severely restrict the number of possible deploy-
ments, the formal problem statement would need to include two additional constraint
relations and an additional condition: (1) relation evt_size to capture the average size of
data exchanged between a pair of components; (2) relation bw to capture the bandwidth

Figure 2. Formal statement of the problem.

Model
Given:
(1) a set C of n components (Cn =), a relation ℜ→×CCfreq : , and a function ℜ→Cmemcomp :

≠
=

=
jiji

ji
ji ccifcandcbetweenioncommunicatoffrequency

ccif
ccfreq

0
),(

cformemoryrequiredcmemcomp =)(

(2) a set H of k hardware nodes (Hk =), a relation ℜ→× HHrel : , and a function ℜ→Hmemhost :

≠

=
=

jiji

ji

ji

ji

hhifhandhbetweenlinktheofyreliabilit
htoconnectednotishif

hhif
hhrel 0

1
),(

hhostonmemoryavailablehmemhost =)(

(3) Two relations that restrict locations of software components }1,0{: →×HCloc }1,0,1{: −→×CCcolloc

=
ji

ji
ji hontodeployedbecannotcif

hontodeployedbecancif
hcloc

0
1

),(

−
=

ji

ji

ji

ji

candcofncollocatioonnsrestrictionoarethereif
cashostsametheonbetohascif
cashostsametheonbecannotcif

cccolloc
0
1
1

),(

Definition
Problem:
Find a function HCf →: such that the system’s overall availability A defined as

()

∑∑

∑∑

= =

= =

∗
= n

i

n

j
ji

n

i

n

j
jiji

ccfreq

cfcfrelccfreq
A

1 1

1 1

),(

))(),((),(

is maximized, and the following three conditions are satisfied:

(1)

≤=∈∀∈∀ ∑
j

ihostjcompij hmemcmemhcfnjki)())()(],1[],1[

(2) 1))(,(],1[=∈∀ jj cfclocnj

(3)],1[],1[nlnk ∈∀∈∀))()(()1),((lklk cfcfcccolloc =⇒=

))()(()1),((lklk cfcfcccolloc ≠⇒−=

In the most general case, the number of possible functions f is
nk . However, note that some of these

deployments may not satisfy one or more of the above three conditions.

between a pair of hosts; and (3) the following condition:

This condition states that, for each network link between a pair of hosts, the total
volume of data exchanged across that link does not exceed the link’s effective band-
width. The algorithm presented in this paper would need to be altered to ensure the sat-
isfaction of this condition.

Our definition of availability considers all inter-component interactions equally
important. For systems in which this may not be the case, the same model and algo-
rithm can still be used: the freq relation can be changed to correspond to the product of
interaction frequency and importance of data, and the remainder of the model and
problem definition would remain unchanged.

The problem presented in Section 2.1 is also based on the assumption that system
parameters are stable over a given period of time T, during which we want to improve
the system’s availability.1 It also relies on the assumption that the time required to per-
form the system’s redeployment is negligible with respect to T. Otherwise, the system’s
parameters would be changing too frequently and the system would undergo continu-
ous redeployments to improve the availability for parameters that change either before
or shortly after the redeployment is completed.We believe this to be a reasonable
assumption, which is reflective of a number of existing systems (e.g., see [20]).

Finally, our approach relies on the assumption that the given system’s deployment
architecture is accessible from some central location. We realize that this assumption
may not be justified in a class of software systems that are decentralized, and have
developed a decentralized solution that is complementary to this work [11]. However,
in a centralized system, the algorithm can leverage the availability of global knowledge
about system parameters on a central host to run more efficiently than a decentralized
algorithm (in terms of required computational and communicational resources). There-
fore, when dealing with a centralized system, it is preferable to use a centralized solu-
tion instead of a more generally applicable decentralized solution.

3 Background and Related Work

In this section we present a brief overview of disconnected operation approaches,
and provide an in-depth look at three approaches that have specifically focused on the
system redeployment problem. Additionally, to provide the context for Avala, we
present an overview of our overall approach.

3.1 Disconnected Operation
We have performed an extensive survey of existing disconnected operation

approaches, and provided a framework for their classification and comparison [18].
The most commonly used techniques for supporting disconnected operation are cach-
ing [9], hoarding [10], queueing remote interactions [6], and multi-modal components

1. We do not require that system parameters be constant during T, but assume that each parameter can
be approximated with its average over T, with an error no greater than a given threshold ε [14,17].

),(*),(),(_
),(_*),(),(_

),(_),(_

)()(
]),1[],1[(

]),1[],1[(

,

yxyxyx

yxyxyx

ml
jiml

jmil

hhbwhhrelhhbweffectiveand
ccsizeevtccfreqccvoldatawhere

hhbweffectiveccvoldata

hcfhcfwhere
nlmnl

kijki

=
=

≤

=∧=

+∈∀∈∀

+∈∀∈∀

∑

[22]. None of these techniques changes the system’s deployment architecture. Instead,
they strive to improve the system’s availability by sacrificing either correctness (in the
case of replication) or service delivery time (queueing), or by requiring implementa-
tion-level changes to the existing application’s code [22].

3.2 Redeployment
I5 [1] proposes the use of the binary integer programming model for generating an

optimal deployment of a software application over a given network. I5 is applicable
only to systems with very small numbers of software components and target hosts, and
to systems whose characteristics, such as frequencies of component interactions, are
known at design time and are stable throughout the system’s execution.

Coign [6] provides a framework for distributed partitioning of COM applications
across the network. Coign employs the lift-to-front minimum-cut graph cutting algo-
rithm to choose a deployment architecture that will result in minimal overall communi-
cation time. However, Coign can only handle situations with two-host, client-server
applications. Coign recognizes that the problem of distributing an application across
three or more hosts is NP hard and does not provide solutions for such cases.

Kichkaylo et al. [8], provide a model, called component placement problem (CPP),
for describing a distributed system in terms of network and application properties and
constraints, and an AI planning algorithm, called Sekitei, for solving the CPP model.
CPP does not provide facilities for specifying the goal, i.e., a criterion function that
should be maximized or minimized. Therefore, Sekitei only searches for any valid
deployment that satisfies the specified constraints, without considering the quality of a
found deployment.

3.3 Our Overall Approach
The Avala algorithm described in this paper is part of an integrated solution for

increasing the availability of a distributed system during disconnection [14,15,17,12],
without the shortcomings of the existing approaches. For instance, unlike [22] our
approach does not require any recoding of the system’s existing functionality or human
intervention; unlike [9] it does not sacrifice the correctness of computations; in com-
parison to [6] it minimizes service delivery delays; finally, unlike any of the existing
redeployment approaches, our approach scales to very large systems with arbitrary
topologies. We directly leverage a software system’s architecture in accomplishing this
task. We support runtime redeployment to increase the software system’s availability
by (1) monitoring the system, (2) estimating its redeployment architecture, and (3)
effecting the estimated redeployment architecture. We provide lightweight facilities for
runtime monitoring [17,12] to extract the system’s model (recall Figure 2.). The moni-
toring information is then used by Avala to estimate the improved deployment archi-
tecture. Finally, we provide a set of automated deployment facilities [15,12] to effect
the estimated architecture.

4 Exact Algorithm

One can ensure that she will find a system’s optimal deployment by trying all possi-
ble deployments of components onto hosts. The selected deployment is the one that has
the maximum availability (referred to as exact maximum) and that satisfies the con-
straints posed by memory and restrictions on the locations of software components.
This “exact” algorithm guarantees at least one optimal deployment. The complexity of

this algorithm in the general case (i.e., with no restrictions on component locations) is
O(kn), where k is the number of hardware hosts, and n the number of software compo-
nents. By fixing a subset of m components to selected hosts, the complexity of the
exact algorithm reduces to O(kn-m). Even with this reduction, this algorithm may be
computationally too expensive unless the number of hardware nodes and unfixed soft-
ware components is very small. For example, even for a relatively small deployment
architecture (15 components, 4 hosts), a Java JDK 1.4 implementation of the exact
algorithm runs for more than eight hours on a mid-range PC.

5 The Avala Algorithm

Given the complexity of the exact algorithm, we had to devise an approximative
algorithm that would significantly reduce this complexity while exhibiting good per-
formance. In this section, we describe and assess the performance of Avala, an approx-
imative algorithm with polynomial time complexity. Avala leverages a greedy
approach [2].

Pseudo-code of Avala is provided in Figure 3. Avala incrementally assigns software
components to the hardware hosts. At each step of the algorithm, the goal is to select
the assignment that will maximally contribute to the availability function. This is
achieved by selecting the “best” host and “best” software component at each step.

Avala starts by ranking all hardware nodes and software components. The initial
ranking of hardware nodes is done by calculating initHostRank for each hardware node
i, as follows:

where a and b are calibration factors that denote the respective contributions of link
reliability and memory to the selection of the “best” host. In Section 6 we discuss how
varying a and b influences the algorithm’s performance.

The ranking of software components is done by calculating initCompRank for each
component i, as follows:

where d and e denote the respective contributions of event frequency and memory to
the selection of the “best” component. In Section 6 we also discuss how varying d and
e influences the algorithm’s performance.

After the initial ranking is performed, the host with the highest value of initHos-
tRank is selected as the current host h. A component with the highest value of initCom-
pRank that satisfies the mem and loc constraints (conditions 1 and 2 in Figure 2.) is
selected and assigned to h. The next software component(s) to be assigned to h are the
ones with smallest required memory whose placement on h would maximally contrib-
ute to the availability function, i.e., the components with the highest volumes of inter-
action with the component(s) already assigned (mapped) to h. The selection is
performed by calculating the value of compRank for each unassigned component as
follows:

where mC(j) is shorthand for mappedComponents(j). The selected component is the
one with the highest value of compRank that satisfies memory, loc, and colloc con-
straints with respect to the current host h and components already assigned. This pro-
cess repeats until h is full (i.e., there is no component small enough to fit on h).

)(*),(*
1

ihost

k

j
jii hmembhhrelankinitHostRa += ∑

=

)(
),(*

1 icomp

n

j
jii cmem

eccfreqdnkinitCompRa += ∑
=

()
)(

)))((,(*))(,(*),(
1 icomp

dCompsnumOfMappe

j
ii cmem

ejmCfhreljmCcfreqdhccompRank += ∑
=

The next host to be selected is the one with the highest memory capacity and highest
link quality (i.e., highest value of hostRank) with the host(s) already selected:

The process of selecting software components repeats, until all the components
have been assigned to a host.

The complexity of the Avala algorithm in the most general case (i.e., when the num-
ber of components fixed to a single host is zero, and there are more components than
hosts) is O(n3), derived as follows:
O(Avala_algorithm) = O((n-1) * (O(next_comp) + O(next_host))) =
O((n-1) * (n * O(compRank) + k * O(hostRank)) = O((n-1) * (n * n + k * k)) =
O(n3 + n * k2) = O(n3), if n>k

 Note that if there are few or no constraints on component location, and total avail-
able memory on hosts is significantly above the total required memory by the compo-
nents, some of the hosts will get filled to their capacity, while others may contain few
components or even be empty. The uneven distribution of components among hosts
results in higher overall availability of the system since it utilizes the maximum reli-
ability for interactions between components residing on the same host. However, it
may also result in undesirable effects on the system, such as overloading the CPUs on
hosts with large numbers of components, or overloading the used subset of network
links. The Avala algorithm currently addresses this concern only via the loc and colloc
constraints (e.g., by assigning a UI component to each host). However, as described in
Section 2.2, both the problem statement and the algorithm could be modified to take
other criteria (e.g., CPU, bandwidth) into consideration.

The contributions of Avala are two fold. By separating the component and host
selection process from the remaining algorithm’s logic, we can easily extend the algo-
rithm to include other system parameters and constraints. Secondly, by parameterizing
the selection process for components and hosts along two separate dimensions (mem-
ory and frequency in the case of components, and memory and reliability in the case of
hosts) the algorithm can automatically adapt to variations in input parameters.

6 Evaluation

Due to the exponential nature of the deployment problem, evaluating Avala’s results
against the exact solution is only feasible for very small systems (e.g., less than 15
components and 4 hosts). In these cases, the exact algorithm can also produce the aver-
age availability of all the deployments (referred to as exact average), thus providing an
additional criterion for evaluation. However, we still need to assess how well the Avala
algorithm performs for systems with (much) larger numbers of components and hosts.
To that end, we use two additional algorithms discussed below.

6.1 Evaluation Criteria
We have developed a stochastic algorithm (called unbiased stochastic algorithm)

that randomly selects a subset of all possible deployments, and uses the availabilities of
these deployments to estimate the average availability of a given system. The obtained
average availability corresponds to the system’s “most likely” availability. The unbi-
ased stochastic algorithm generates different deployments by randomly assigning each
component to a single host from the set of available hosts for that component. If the

)(*))(,(*)(
1

ihost

dHostsnumOfMappe

j
ii hmembjmappedHosthrelahhostRank += ∑

=

randomly generated deployment satisfies all the constraints, the availability of the pro-
duced deployment architecture is calculated. This process repeats a given number of
times, and the average availability (referred to as unbiased average) and maximum
availability (referred to as unbiased maximum) are calculated. The complexity of cal-
culating the availability for each valid deployment is quadratic (recall Figure 2.),
resulting in the same complexity of the overall unbiased stochastic algorithm (O(n2)).

In addition to this
algorithm, for the sake of
completeness we also
compare Avala’s results
against another stochas-
tic algorithm (called
biased stochastic algo-
rithm) that we have
developed and assessed
previously [14]. The
biased stochastic algo-
rithm randomly orders
the hosts and randomly
orders the components.
Then, going in order, it
assigns as many compo-
nents to a given host as
can fit on that host (due
to memory constraints),
also ensuring that the loc
and colloc constraints are
satisfied. Once the host is
full, the algorithm pro-
ceeds with the same pro-
cess for the next host in
the ordered list of hosts,
and the remaining unas-
signed components in the
ordered list of compo-
nents, until all compo-
nents have been
deployed. This process
repeats a given number
of times, and the average
availability (referred to
as biased average) and maximum availability (referred to as biased maximum) are cal-
culated. The complexity of this algorithm is also polynomial, since we need to calcu-
late the availability for every deployment, and that takes O(n2) time.

6.2 Testing Environment
To assess Avala’s performance, we have leveraged DeSi [15], a visual deployment

next _host (unmappedHosts)
bestHostRank 0
bestHostIndex -1
for idx to unmappedHosts.length

thisHostRank hostRank(unmappedHosts[idx])
if bestHostRank < thisHostRank

bestHostIndex idx
bestHostRank thisHostRank

if bestHostIndex=-1 return NULL
else return unmappedHosts[bestHostIndex]

O(k2)

next_comp(comps, unmappedComps, currentHost)
bestCompRank 0
bestCompIndex -1
mappedComps comps – unmappedComps
for idx to unmappedComps.length

if (unmappedComps[idx].memory <= currentHost.memory
and unmappedComps[idx] sastisfies loc

and colloc constraints with mappedComps)
thisCompRank compRank(unmappedComps[idx],

currentHost)
if bestCompRank < thisCompRank

bestCompIndex idx
bestCompRank thisCompRank

if bestCompIndex=-1 return NULL
else return unmappedComps[bestCompIndex]

O(n2)

avala_algorithm (hosts, comps)
numOfHosts hosts.length
numOfComps comps.length
numOfMappedComps 0
unmappedComps comps
h host with max(initHostRank)
unmappedHosts hosts – h
numOfMappedHosts 1
c component with max(initCompRank where loc(c,h)=1)
while (numOfMappedComps < numOfComps
and numOfMappedHosts < numOfHosts and h<>-1)

while (h.memory>c.memory
and numOfMappedComps < numOfComps and c<>-1)

unmappedComps unmappedComps – c
numOfMappedComps numOfMappedComps + 1
h.memory h.memory – c.memory
deployment deployment U (deploy c to h)
c next_comp(comps,unmappedComps,h)

h next_host(unmappedHosts)
unmappedHosts hosts – h
numOfMappedHosts numOfMappedHosts + 1

if numOfMappedComps= numOfComps return deployment
else NO DEPLOYMENT WAS FOUND

O(n3)

Figure 3. Pseudo-code of the Avala algorithm (left)
and its complexity (right).

environment that supports specification, manipulation, visualization, and (re)estima-
tion of deployment architectures for large-scale, highly distributed systems. DeSi pro-
vides users with a graphical front-end to input values for numbers of hosts and
software components as well as the ranges for available memory on the hosts, required
memory for the components, frequency of interaction between components, and reli-
ability of connectivity between hosts. DeSi uses this information to randomly generate
a redeployment problem by fixing all hardware and software parameters needed as
inputs to the algorithms. DeSi provides the ability to invoke different redeployment
algorithms and display their results. Finally, the algorithms can be benchmarked a
given number of times: DeSi iteratively generates different redeployment problems a
specified number of times using the same set of ranges for input data, invokes each one
of the algorithms for each problem, and calculates the average results.

DeSi provides a number of additional facilities for visualizing and graphically
manipulating a system’s deployment architecture, as well as several host- and compo-
nent-specific views. A discussion of these facilities is outside the scope of this paper,
however, and can be found in [15].

6.3 Evaluation Results
We have assessed the performance of the Avala algorithm by comparing it against

the exact algorithm and the two stochastic algorithms for systems with small numbers
of components and hosts (i.e., less than 13 components, and less than 5 hosts).

In large numbers of ran-
domly generated redeploy-
ment problems, the Avala
algorithm invariably found a
solution that was at least
90% of the optimal (i.e., the
exact maximum). In Table 1,
we present results of 5 differ-
ent redeployment problems,
as well as the average results
for 30 different randomly
generated problems (using
the DeSi’s benchmark option
and shown in the right-most
column).1 The average
improvement of availability
by Avala over the exact aver-
age was 34.7%.

For larger problems,
where the exact algorithm is
infeasible, we have com-
pared the results of Avala against the results of the stochastic algorithms. In [19], we
demonstrated that increasing the number of iterations beyond 10,000 does not signifi-
cantly change the average availability of the two stochastic algorithms. Thus, the sto-
chastic algorithms were executed with 10,000 iterations for larger deployment

1. The highlighted columns in Tables 1 and 2 will be discussed further in Section 7.

Table 1: Comparing the performance of Avala for
different architectures with 10 components and 4 hosts.

10
 c

om
ps

4
ho

st
s

1
ite

ra
tio

n
10

 c
om

ps
4

ho
st

s
1

ite
ra

tio
n

10
 c

om
ps

4
ho

st
s

1
ite

ra
tio

n
10

 c
om

ps
4

ho
st

s
1

ite
ra

tio
n

10
 c

om
ps

4
ho

st
s

1
ite

ra
tio

n

10
 c

om
ps

4
ho

st
s

30
 it

er
at

io
ns

Unbiased maximum 0.790 0.732 0.636 0.763 0.932 0.742

Unbiased average 0.560 0.558 0.605 0.516 0.581 0.585

Biased maximum 0.621 0.701 0.615 0.679 0.745 0.738

Biased average 0.572 0.551 0.606 0.544 0.633 0.626

Exact maximum 0.895 0.800 0.733 0.985 0.983 0.820

Exact average 0.558 0.555 0.628 0.513 0.580 0.585

Avala 0.854 0.792 0.673 0.984 0.962 0.788

% improvement over
the exact averagea

a. calculated as 100% * (Avala – exact average) / exact average

53.0 42.7 7.2 91.8 65.9 34.7

% improvement over
the unbiased averageb

b. calculated as 100% * (Avala – unbiased average) / unbiased average

52.5 41.9 11.2 90.6 65.5 34.7

% of the exactc

c. calculated as 100% * Avala / exact maximum

95.4 99 91.8 99.9 97.9 96.1

problems.
Table 2 illustrates the results of 6 different benchmarks where the number of com-

ponents was varied between 30 and 1000 and number of hosts between 7 and 100. The
average relative improvement of availability produced by Avala was 33.9% over the
unbiased average, 30% over the unbiased maximum, 28% over the biased average, and
11% over the biased maximum. Avala also produced its results quickly. For illustration,
it took 38 seconds to solve the largest problem (100 hosts and 1000 components) on a
mid-range PC; by comparison, the exact algorithm would require over 101984 years to
determine the optimal deployment. Solving the same problem on a high-end computer
(2.8GHz Pentium 4) reduces Avala’s running time over 10-fold.

The following observa-
tions have further increased
our confidence that Avala is
finding nearly-optimal solu-
tions for large systems: (1)
for small systems (Table 1)
the unbiased average was
always very close to the
exact average, denoting that
the unbiased average pre-
cisely calculates the most
likely availability; (2) the
average improvement over
the unbiased average for
both small and large systems
was quite similar (e.g., note
the rightmost, i.e., benchmark columns of Tables 1 and 2); and (3) Avala’s results for
small systems were at least 90% of the optimal.

6.4 Calibrating the Avala Algorithm
As described in Section 5, Avala can be fine-tuned by assigning different values to

the calibration factors a, b, d, and e. These factors denote the level of contribution of
different parameters (link reliability, frequency of interaction, and memory of hosts and
components) to the selection of the “best” host or “best” component. There are at least
three different possibilities for selecting these factors: (1) predefined, constant values;
(2) values selected and varied by a human user; or (3) automatically calculated values.
We have implemented a generation facility for these factors that has been demonstrated
experimentally to be quite effective. We have observed that, with the increase of the
ratio of average host memory to average component memory, better results are
obtained if more emphasis is placed on memory factors (i.e., increasing b and e) than
on frequency and reliability factors (i.e., decreasing a and d). Experimentally we have
obtained the best results for systems where the number of hosts is smaller than the
number of components (i.e., k<n), calculating the calibration factors as:
b = e = 0.1 * (average host memory * k) / (average comp memory * n) and a = d = 1-b

The benchmarks shown in Tables 1 and 2 are obtained using the above formulas for
the calibration factors. Table 3 shows the benchmark data for the calibration factors
using four different, randomly generated systems with varying numbers of components
and hosts, and varying ranges for host and component memory. The “Auto” value cor-

Table 2: Comparing the performance of the Avala
algorithm for larger deployment problems.

10
0

co
m

ps
10

 h
os

ts
1

ite
ra

tio
n

20
0

co
m

ps
20

 h
os

ts
1

ite
ra

tio
n

10
00

 c
om

ps
 1

00
 h

os
ts

 1
 it

er
at

io
n

10
0

co
m

ps
 4

0
ho

st
s

 1
 it

er
at

io
n

30
 c

om
ps

 7
 h

os
ts

 1
 it

er
at

io
n

30
0

co
m

ps
 7

0
ho

st
s

30
 it

er
at

io
ns

Unbiased maximum 0.580 0.562 0.503 0.534 0.602 0.520

Unbiased average 0.521 0.535 0.502 0.527 0.512 0.508

Biased maximum 0.696 0.691 0.527 0.590 0.828 0.610

Biased average 0.574 0.564 0.506 0.539 0.610 0.532

Avala 0.787 .780 0.576 0.704 0.906 0.680

 % improvement over
the unbiased averagea

a. calculated as 100% * (Avala – unbiased average) / unbiased average

51.1 31.2 14.7 33.6 77.0 33.9

responds to the factors calculated using the above formula, while the remaining rows of
the table correspond to manually assigned factors. The resulting availability of auto-
matically generated factors was within 1% of the best availability obtained with any
other combination of factors.

7 Discussion

Here we discuss the characteristics as
well as current limitations of the Avala
algorithm, and suggest possible direc-
tions for addressing these limitations.

7.1 Interaction Latency
For certain distributed systems, avail-

ability may not be the only, or the most
crucial property. In fact, networked sys-
tems have traditionally focused on mini-
mizing communication latencies as a key
goal. Latency is commonly defined as
the time taken to deliver a data packet
from the source to the receiver [5].
While minimizing latency was not our
primary goal in developing Avala, the
algorithm’s objective does naturally
result in significant reductions of compo-
nent communication latencies. The rea-
son for this is two-fold. First, by
increasing the overall system availability, some interactions that could not be success-
fully completed before now can be, thereby effectively reducing their latency from
infinity to some finite time. Secondly, by employing the strategy of deploying fre-
quently interacting components on the same host whenever possible, the latencies of
those components’ interactions are significantly reduced.

In order to compare the average interaction latency of a system’s initial deployment
to the deployment produced by Avala, we would have to average over all interaction
latencies in the system in both deployments. Since in both cases there may be interac-
tions that do not complete successfully due to network disconnections, those interac-
tion latencies will be infinite, thus preventing us from comparing the average latency of
the two deployments. For this reason, we will assume that network reliability of all
host-to-host links is 1, i.e., that each component interaction successfully completes.

Latency of a single interaction depends on the following parameters: (1) startup
latency, which is the constant communication overhead incurred in sending a zero
length message [5], (2) network bandwidth of a link through which the interaction is
performed, and (3) the size of message exchanged. To calculate the average latency in
a given system, we use the following formula:

where delay represents the startup latency of a given network link between two

Table 3: Comparing the performance of
Avala for different values of calibration

factors, including their automatic generation.

Va
lu

e
fo

r
fa

ct
or

s
a

an
d
c

Va
lu

e
fo

r f
ac

to
rs

b

an
d
e

10
0

co
m

ps
10

 h
os

ts
av

g
ho

st
 m

em
=8

5
av

g
co

m
p

m
em

=5
10

0
co

m
ps

10
 h

os
ts

av
g

ho
st

 m
em

=1
65

av
g

co
m

p
m

em
=1

1
15

 c
om

ps
5

ho
st

s
av

g
ho

st
 m

em
=6

0
av

g
co

m
p

m
em

=1
1

15
 c

om
ps

5
ho

st
s

av
g

ho
st

 m
em

=7
0

av
g

co
m

p
m

em
=1

1

0.9 0.1 0.739 0.759 0.75 0.85

0.8 0.2 0.745 0.775 0.772 0.86

0.7 0.3 0.739 0.769 0.773 0.858

0.6 0.4 0.737 0.757 0.772 0.856

0.5 0.5 0.732 0.738 0.74 0.853

0.4 0.6 0.722 0.728 0.734 0.837

0.3 0.7 0.699 0.717 0.706 0.837

0.2 0.8 0.672 0.706 0.642 0.837

0.1 0.9 0.66 0.701 0.622 0.832

Auto Auto 0.744 0.772 0.772 0.861

∑∑

∑∑

= =

= =

+

= n

i

n

j
ji

n

i

n

j ji

ji
jiji

ccfreq

cfcfbw
ccsizeevt

cfcfdelayccfreq

avgLatency

1 1

1 1

),(

))(),((
),(_

))(),((*),(

hosts.1 We assume that the latency of interaction for two components deployed onto
the same host is zero (i.,e., delay (h,h) =0 and bw(h,h)=).

We have per-
formed a series of
benchmark tests to
quantify the effect of
Avala’s results on
average component
interaction latency.
To that end, we have
extended our DeSi
environment with
random generation
of startup latencies
within a specified
range, and auto-
mated calculation of
average latencies for
both a system’s ini-
tial deployment and
the deployment cal-
culated by Avala. Figure 4. shows the results of these benchmarks. In most cases, rede-
ployments produced by Avala reduced the average interaction latency by 40% - 80%.

Avala, however, does not guarantee interaction latency reduction. In extreme cases,
where each host’s available memory is limited such that only a very small number of
components can be deployed onto the host, the benefit of co-locating components can-
not be leveraged. This case is illustrated in last column of Figure 4., where each host
could only contain a single component due to memory constraints. Furthermore, since
we are not assuming correlation between network reliability and bandwidth (e.g., a
highly reliable link may have low bandwidth and vice versa), in some cases Avala may
suggest deploying of components between hosts with high reliability and low band-
width links, thus resulting in increased latency. One way to address this situation is to
include bandwidth and event size as selection parameters for the “best” host and “best”
component in Avala. We are currently implementing and evaluating this solution and
its impact on both system availability and interaction latency.

7.2 Including the Constraints on Component Location
The benchmark results from Section 6.3 assess Avala’s performance without using

the loc and colloc constraints. We have also tested Avala with these constraints and
have observed that, by introducing a significant number of constraints, the obtained
availability starts to decrease. This is primarily due to the fact that the loc and colloc
constraints will render invalid some deployments with otherwise high availabilities.
For cases where either the size of the original problem or the reduction in the exact
algorithm’s complexity induced by the loc and colloc constraints enable us to invoke
the exact algorithm, we have observed that the difference between the exact maximum
and the availability produced by Avala actually decreases. The reason for this is that, as

1. Recall Section 2.2 for definitions of evt_size and bw.

∞

Figure 4. The effect of redeployment calculated by Avala on
average interaction latency. Each result was obtained by averaging

over 20 different, randomly generated redeployment problems.

a. calculated as (Avala_availability – initial_availability) /

-0.4

-0.2

0

0.2

0.4

0.6

0.8

1

1 2 3 4 5 6

Relative
improvement of
availability

Relative reduction
of latency

num comps
num hosts

event range (KB)
bw range (KB/s)

delay range (ms)

10 100 100 100 100 100
4 40 40 40 40 100
0.1-10 0.1-10 0.1-10 0.1-1000 1-5 1-5
30-1000 30-1000 30-50 0.01-1000 0.01-1000 0.01-1000
10-20 10-20 10-20 10-20 10-20 10-20

a

b

the system becomes more constrained in terms of component location and collocation,
the probability that Avala will divert significantly from the exact solution lessens.

7.3 Reducing the Memory Difference
By reducing the total available memory for hosts and/or increasing the total

required memory for components, both the number of valid deployments and the sys-
tem availability decrease. Again, this is due to the fact that a large number of deploy-
ments with otherwise high availabilities become invalid. In Tables 1 and 2 the
highlighted columns are illustrative examples that correspond to these types of situa-
tions. For the system shown in Table 1, the total available memory for hosts was only
6% greater than the total required memory for components, resulting in 980 valid (out
of over 1,000,000 possible) deployments. The relative improvement over the unbiased
average was 11%, which was substantially lower than in other, less memory con-
strained systems. At the same time, the achieved availability was still more than 90%
of the optimal availability. A similar situation can be observed in Table 2, although in
that case the only available comparisons are to the unbiased and biased averages.

If the reduction of the total available memory for hosts and/or increase in the total
required memory for components results in a very small number of valid deployments,
our algorithm does not always find a valid deployment. The reason is that Avala ini-
tially assigns the component with the highest initCompRank to the host with the high-
est initHostRank. If this assignment leads to an invalid solution due to the limited
available memory (e.g., just by assigning that component to that host the remaining
components cannot be assigned), then our algorithm does not find a valid deployment.

One way to address this situation would be to detect cases when it occurs and try a
different initial assignment. The number of different initial assignments is k*n, thus
increasing the algorithm’s complexity to O(k*n4). However, this still does not guaran-
tee that the algorithm would find a valid deployment. We plan to assess this solution
and possibly use additional backtracking techniques to address this limitation of Avala.

8 Conclusions and Future Work

As the distribution, decentralization, and mobility of computing environments grow,
so does the probability that (parts of) those environments will need to operate in the
face of network disconnections. Our research is guided by the observation that, in these
environments, a key determinant of the system’s ability to effectively deal with net-
work disconnections is finding the appropriate deployment architecture. While the
redeployment problem has been identified in the existing literature, its inherent com-
plexity has either been ignored [1], thus making it infeasible for any realistic system, or
highly restricted [6], thus reducing the solution’s usefulness.

This paper has presented Avala, an efficient algorithm for improving a distributed,
component-based system’s availability via redeployment. Avala is part of an integrated
solution to increasing a system’s availability [14,15,17,12]. It has been thoroughly
assessed via a series of benchmarks. In addition to significantly improving system
availability Avala, in general, also reduces the overall interaction latency in the system.
While our experience thus far has been very positive, a number of pertinent questions
remain unexplored. Our future work will span issues such as (1) addressing situations
in which the system constraints highly restrict the solution space, and (2) expanding
our solution to include additional system parameters (e.g., battery power, display size,

system software available on a given host, and so on). These issues represent but a
small subset of related concerns that are emerging in the domain of distributed, mobile
computation and that will increasingly shape the software development of the future.

9 Acknowledgements

This material is based upon work supported by the National Science Foundation
under Grant Numbers CCR-9985441 and ITR-0312780. Effort also partially supported
by the Jet Propulsion Laboratory.

10 References
[1] M. C. Bastarrica, et al. A Binary Integer Programming Model for Optimal Object Distribution. 2nd

Int’l. Conf. on Principles of Distributed Systems, Amiens, France, Dec. 1998.
[2] T. H. Cormen, et. al. Introduction to Algorithms. MIT Press, Cambridge, MA, 1990.
[3] A. Fuggetta, et. al. Understanding Code Mobility. IEEE Trans. on Software Engineering, 1998.
[4] D. Garlan, et al. Using Gauges for Architecture-Based Monitoring and Adaptation. Working Conf.

on Complex and Dynamic Systems Arch., Brisbane, Australia, Dec. 2001.
[5] http://www.epcc.ed.ac.uk/HPCinfo/glossary.html
[6] G. Hunt and M. Scott. The Coign Automatic Distributed Partitioning System. 3rd Symposium on

Operating System Design and Implementation, New Orleans, LA, Feb. 1999.
[7] IEEE Standard Computer Dictionary: IEEE Standard Computer Glossaries. New York, NY: 1990.
[8] T. Kichkaylo et al. Constrained Component Deployment in Wide-Area Networks Using AI Plan-

ning Techniques. Int’l. Parallel and Distributed Processing Symposium. April 2003.
[9] J. J. Kistler and M. Satyanarayanan. Disconnected Operation in the Coda File System. ACM Trans-

actions on Computer Systems, vol. 10, no. 1, February 1992.
[10] G. H. Kuenning and G. J. Popek. Automated Hoarding for Mobile Computers. Proc. of the 16th

ACM Symp. on Operating Systems Principles, St. Malo, France, October, 1997.
[11] S. Malek, et. al. A Decentralized Redeployment Algorithm for Improving the Availability of Dis-

tributed Systems. In Proc. of the 3rd Int. Working Conference on Component Deployment (CD
2005), Grenoble, France, Nov. 2005.

[12] S. Malek, et. al. Prism-MW: A Style-Aware Architectural Middleware for Resource Con-
strained, Distributed Systems. IEEE Trans. on Software Engineering. Vol. 31, No. 3,
March 2005.

[13] N. Medvidovic, et al. Software Architectural Support for Handheld Computing. IEEE Computer,
September 2003.

[14] M. Mikic-Rakic and N.Medvidovic. Software Architectural Support for Disconnected Operation in
Highly Distributed Environments. CBSE7, Edinburgh, UK, May 2004.

[15] M. Mikic-Rakic, et. al. A Tailorable Environment for Assessing the Quality of Deployment Archi-
tectures in Highly Distributed Settings. 2nd International Working Conference on Component De-
ployment (CD 2004), Edinburgh, UK, May 2004.

[16] M. Mikic-Rakic, et. al. Improving Availability in Large, Distributed, Component-Based Systems
via Redeployment. Technical Report USC-CSE-2003-515, 2003.

[17] M. Mikic-Rakic and N. Medvidovic. Support for Disconnected Operation via Architectural Self-
Reconfiguration. Int. Conference on Autonomic Computing (ICAC'04), New York, May 2004.

[18] M. Mikic-Rakic and N. Medvidovic. Toward a Framework for Classifying Disconnected Operation
Techniques. ICSE WADS, Portland, OR, May 2003.

[19] M. Mikic-Rakic and N. Medvidovic. Software Architectural Support for Disconnected Operation
in Highly Distributed Environments. Tech. Report, USC-CSE-2003-506, 2003.

[20] Multi Router Traffic Grapher. http://scorpion77.cjb.net/mrtg/
[21] P. Oreizy et al. Architecture-Based run-time Software Evolution. ICSE’98, Japan, April 1998.
[22] Y. Weinsberg, and I. Ben-Shaul. A Programming Model and System Support for Disconnected-

Aware Applications on Resource-Constrained Devices. ICSE 2002, Orlando, FL.
[23] J. Weissman. Fault-Tolerant Wide-Area Parallel Computing. IPDPS 2000 Workshop, Cancun,

Mexico, May 2000.
[24] Y. Zhang, et.al. The Stationarity of Internet Path Properties: Routing, Loss, and Throughput. Tech-

nical Report, AT&T Center for Internet Research at ICSI, May 2000.

