
A Framework for Ensuring and Improving
Dependabil i ty in Highly Distributed Systems

Sam Malek, Nels Beckman, Marija Mikic-Rakic, and Nenad Medvidovic

Computer Science Department
University of Southern California

Los Angeles, CA 90089-0781
{malek,nbeckman,marija,neno}@usc.edu

Abstract. A distributed software system’s deployment architecture can have
a significant impact on the system’s dependability. Dependability is a func-
tion of various system parameters, such as network bandwidth, frequencies
of software component interactions, power usage, and so on. Recent studies
have shown that the quality of deployment architectures can be improved sig-
nificantly via active system monitoring, efficient estimation of the improved
deployment architecture, and system redeployment. However, the lack of the
appropriate tools for monitoring, analyzing, and effecting redeployment at
the architectural level makes improving a system’s deployment architecture
a very challenging problem. To cope with these challenges, developers typi-
cally resort to ad hoc solutions that decrease the potential for reuse and un-
derstandability. In this paper, we first present an extensible framework that
guides the design and development of solutions for this type of problem, en-
ables the extension and reuse of the solutions, and facilitates autonomic anal-
ysis and redeployment of a system’s deployment architecture. We then dis-
cuss a suite of extensible and integrated tools that help developers in realizing
the framework.

1 Introduction

Consider the following scenario, representative of a large number of modern distributed
software applications. The scenario addresses distributed deployment of personnel in
cases of natural disasters, search-and-rescue efforts, and military crises. A computer at
“Headquarters” gathers information from the field and displays the current status: the
locations and status of the personnel, vehicles, and obstacles. The headquarters compu-
ter is networked to a set of PDAs used by “Commanders” in the field. The commander
PDAs are connected directly to each other and to a large number of “troop” PDAs.
These devices communicate and help to coordinate the actions of their distributed users.
Such an application is frequently challenged by network disconnections during system
execution. Even when the hosts are connected, the bandwidth fluctuations and the un-
reliability of network links affect the system’s properties such as availability and laten-
cy.

For any such large, distributed system many deployment architectures (i.e., distri-
butions of the system’s software components onto its hardware hosts) will be typically
possible. Some of those deployment architectures will be more dependable than others.

For example, a distributed system’s availability can be improved if the system is de-
ployed such that the most critical, frequent, and voluminous interactions occur either lo-
cally or over reliable and capacious network links.

Finding a deployment architecture that exhibits desirable system characteristics
(e.g., low latency, high availability) or satisfies a given set of constraints (e.g., the
processing requirements of components deployed onto a host do not exceed that host’s
CPU capacity) is a challenging problem: (1) many system parameters (e.g. network
bandwidth, reliability, frequencies of component interactions, etc.) influence the selec-
tion of an appropriate deployment architecture; (2) these parameters are typically not
known at system design time and/or may fluctuate at run time; (3) the space of possible
deployment architectures is extremely large, thus finding the optimal deployment is
rarely feasible [12]; and (4) different desired system characteristics may be conflicting
(e.g., a deployment architecture that satisfies a given set of constraints and results in
specific availability may at the same time exhibit high latency).

The above problem is further complicated in the context of the emerging class of
decentralized systems, which are characterized by limited system-wide knowledge and
the absence of a single point of control. In decentralized systems, selection of a globally
appropriate deployment architecture has to be made using incomplete, locally-main-
tained information.

The work described in this paper builds on our previous work [10,12,13,14], where
we have identified and addressed a subset of the above challenges in the context of dis-
connected operation. We discuss a framework that provides high-level guidelines for
devising solutions addressing the challenges identified above. The framework’s objec-
tive is to provide a library of reusable, pluggable, and customizable components that can
be leveraged in addressing a variety of distributed system deployment scenarios. We
then describe a suite of integrated tools that help us realize the framework. The tools are
extensible along several dimensions and allow for: (1) inclusion of arbitrary system pa-
rameters (hardware host properties, network link properties, software component prop-
erties, software interaction properties); (2) inclusion of appropriate monitors to extract
these parameters from a running system; (3) specification of desirable system charac-
teristics (e.g., high availability, low latency, desired level of security); (4) pluggability
of different algorithms targeted at improving the desired characteristics; (5) multiple
visualizations of the running system and its properties; and (6) flexible support for both
centralized and decentralized systems. Finally, we demonstrate our approach on both a
centralized and a decentralized example scenario.

The remainder of the paper is organized as follows. Section 2 briefly outlines the
related work. Section 3 presents the deployment improvement framework. Section 4
briefly describes our supporting tools and discusses the specific characteristics of the
tools that make them suitable for realizing the framework. Finally, Section 5 demon-
strates our approach on two example scenarios. The paper concludes with an outline of
our future work.

2 Related Work

One of the techniques for improving a system’s dependability is (re)deployment, which
is a process of installing, updating, and/or relocating a distributed software system. Car-
zaniga et. al. [2] provide an extensive comparison of existing software deployment ap-
proaches. They identify several issues lacking in the existing deployment tools, includ-
ing integrated support for the entire deployment life cycle. An exception is Software
Dock [5], which is a system of loosely coupled, cooperating, distributed components.
Software Dock provides software deployment agents that travel among hosts to perform
software deployment tasks. Unlike our approach, however, Software Dock does not fo-
cus on extracting system parameters, visualizing, or evaluating a system’s deployment
architecture, but rather on the practical concerns of effecting a deployment.

The problem of improving a system’s deployment architecture has been studied by
several researchers:

• I5 [1], proposes the use of the binary integer programming model (BIP) for gen-
erating an optimal deployment of a software application over a given network,
such that the overall remote communication is minimized. Solving the BIP model
is exponentially complex in the number of software components, rendering I5 ap-
plicable only to systems with very small numbers of software components and
target hosts. Furthermore, the approach is only applicable to the minimization of
remote communication.

• Coign [7] provides a framework for distributed partitioning of COM applications
across the network. Coign monitors inter-component communication and then se-
lects a distribution of the application that will minimize communication time, us-
ing the lift-to-front minimum-cut graph cutting algorithm. However, Coign can
only handle situations with two machine, client-server applications. Its authors
recognize that the problem of distributing an application across three or more ma-
chines is NP hard and do not provide approximative solutions for such cases.

• Kichkaylo et al. [9], provide a model, called component placement problem
(CPP), for describing a distributed system in terms of network and application
properties and constraints, and an AI planning algorithm, called Sekitei, for solv-
ing the CPP model. The focus of CPP is to capture a number of different con-
straints that restrict the solution space of valid deployment architectures. At the
same time, CPP does not provide facilities for specifying the goal, i.e., a criterion
function that should be maximized or minimized. Therefore, Sekitei only search-
es for a valid deployment that satisfies the specified constraints, without consid-
ering the quality of the found deployment.

• In our own prior work [10,12,14], we devised a set of algorithms for improving a
software system’s availability by finding an improved deployment architecture.
The novelty of our approach was a set of approximative algorithms that scaled
well to large distributed software systems with many components and hosts.
However, our approach was limited to a predetermined set of system parameters,
and a predetermined definition of availability, and was not extensible to problems
with different concerns. Furthermore, it did not consider decentralized systems.

While all of the above projects propose novel solutions for improving a system’s
properties through the redeployment of software components, the implementation and
evaluation of these solutions is done in an ad-hoc way, making it hard to adopt and reuse
their results. Furthermore, most of these approaches are aimed at improving specific
system properties, which may restrict their applicability.

Also related to our work is the research on architecture based adaptation frame-
works, examples of which are [4,16]. As opposed to general purpose architecture-based
adaptation frameworks, we are only considering a specific kind of adaptation (i.e., re-
deployment of components). Therefore, we are able to create a more detailed, and hope-
fully more practical framework that guides the developers in the design of their solu-
tions.

Finally, Haas et. al. [6] provide a scalable framework for autonomic service deploy-
ment in networks. This approach does not address the exponential complexity in the se-
lection of the most appropriate deployment, or that properties of services and hosts may
change during the execution.

3 Approach

We have developed a methodology for improving a distributed system’s availability via
(1) active system monitoring, (2) estimation of the improved deployment architecture,
and (3) redeployment of (parts of) the system to effect the improved deployment archi-
tecture. Based on this three-step methodology we developed a high-level deployment
improvement framework. In this section we describe the framework’s components, the
associated functionality of each component, and the dependency relationships that
guide their interaction. We also describe the framework’s instantiation for two classes
of solutions.

3.1 Framework Model
Figure 1 shows the framework’s
overall structure and the relation-
ships among its six high-level com-
ponents. Note that each of the frame-
work’s components can have an in-
ternal architecture that is composed
of one or more lower-level compo-
nents. Furthermore, the internal ar-
chitecture of each component can be
distributed (i.e., different internal
low-level components may commu-
nicate across address spaces). The
arrows represent the flow of data
among the framework components.

Model. This component maintains
the representation of the system’s

Figure 1. Deployment improvement framework.

Deployment Improvement Framework

Analyzer

Model

Effector

User InputMonitor

Algorithm

Implementation
Platform

System Architect

deployment architecture. The model is composed of four types of parts: hosts, compo-
nents, physical links between hosts, and logical links between components. Each of
these types could be associated with an arbitrary set of parameters. For example, each
host can be characterized by the amount of available memory, processing speed, battery
power (in case a mobile device is used), installed software, and so on. The selection of
a set of parameters to be modelled depends on the set of criteria (i.e., objectives) that a
system’s deployment architecture should satisfy. For example, if minimizing latency is
one of the objectives, the model should include parameters such as physical network
link delays and bandwidth. However, if the objective is to improve a distributed sys-
tem’s security, other parameters, such as security of each network link, need to be mod-
elled.

Algorithm. Each objective is formally specified and can either be an optimization
problem (e.g., maximize availability, minimize latency) or constraint satisfaction prob-
lem (e.g., total memory of components deployed onto a host cannot exceed that host’s
available memory). Given an objective and the relevant subset of the system’s model,
an algorithm searches for a deployment architecture that satisfies the objective. An al-
gorithm may also search for a deployment architecture that simultaneously satisfies
multiple objectives (e.g., maximize availability while satisfying the memory con-
straints).

In terms of precision and computational complexity, there are two categories of al-
gorithms for an optimization problem like this: exact and approximative. Exact algo-
rithms produce optimal results (e.g., deployments with minimal overall latency), but are
exponentially complex, which limits their applicability to systems with very small num-
bers of components and hosts. On the other hand, approximative algorithms in general
produce sub-optimal solutions, but have polynomial time complexity, which makes
them more usable.

In terms of centralization, there are also two classes of algorithms: centralized,
which are executed in a single physical location, or decentralized, which are executed
on multiple, synchronized hosts. In Section 5, we describe examples of both centralized
and decentralized algorithms in more detail.

Analyzer. Analyzers are meta-level algorithms that leverage the results obtained from
the algorithm(s) and the model to determine a course of action for satisfying the sys-
tem’s overall objective. In situations where several objective functions need to be sat-
isfied, an analyzer resolves the results from the corresponding algorithms to determine
the best deployment architecture. However, note that an analyzer cannot always guar-
antee satisfaction of all the objectives. Analyzers are also capable of modifying the
framework’s behavior by adding or removing low-level components from the frame-
work’s high-level components. For example, once an analyzer determines that the sys-
tem’s parameters have changed significantly, it may choose to add a new low-level al-
gorithm component that computes better results for the new operational scenario. Ana-
lyzers may also hold the history of the system’s execution by logging fluctuations of the
desired objectives and the parameters of interest. System’s execution profile allows the

analyzer to fine-tune the framework’s behavior by providing information such as sys-
tem’s stability, work load patterns, and the results of previous redeployments.

Monitor. To determine the run time values of the parameters in the model, a monitor
is associated with each parameter. The monitor is implemented in two parts: a platform-
dependent part that “hooks” into the implementation platform and performs the actual
monitoring of the system, and a platform-independent part that interprets and may look
for patterns in the monitored data. For example, it determines if the data is stable enough
[14] to be passed on to the model. We will discuss an example of this in Section 5.

Effector. Just like monitors, effectors are also composed of two parts: (1) a platform-
dependent part that “hooks” into the platform to perform the redeployment of software
components; and (2) a platform-independent part that receives the redeployment in-
structions from the analyzer and coordinates the redeployment process. Depending on
the implementation platform’s support for redeployment, effectors may also need to
perform tasks such as buffering, hoarding, or relaying of the exchanged events during
component redeployment.

User Input. Some system parameters may not be easily monitored (e.g., security of a
network link). Also, some parameters may be stable throughout the system’s execution
(e.g., CPU speed on a given host). The values for such parameters are provided by the
system’s architect at design time. We are assuming that the architect is able to provide
a reasonable bound on the values of system parameters that cannot easily be monitored.
Furthermore, the architect also must be capable of providing constraints on the allowa-
ble deployment architectures. Examples of these types of constraints are location and
collocation constraints. Location constraints specify a subset of hosts on which a given
component may be legally deployed. Collocation constraints specify a subset of com-
ponents that either must be or may not be deployed on the same host.

3.2 Framework Instantiation
Figure 2 shows our framework’s instantiation for a centralized system. Centralized sys-
tems have a Master Host (i.e., central host) that has complete knowledge of the distrib-
uted system parameters. Master Host contains a Centralized Model, which maintains
the global model of the distributed system. The Centralized Model is populated by the
data it receives from Master Monitor and Centralized User Input. The Master Monitor
receives all of the monitoring data from the Slave Monitors on other hosts. Once all
monitoring data from all Slave Hosts is received, the Master Monitor forwards the mon-
itoring data to the Centralized Model. Each Slave Host contains a Slave Effector, which
receives redeployment instructions from the Master Effector, and a Slave Monitor,
which monitors the Slave Host’s Implementation Platform and sends the monitoring
data back to the Master Monitor. Finally, the Master Effector receives a sequence of
command instructions from the Centralized Analyzer and distributes the redeployment
commands to all the Slave Effectors.

Figure 3 shows our framework’s instantiation for a decentralized system. Unlike a
centralized software system, a decentralized system does not have a single host with the
global knowledge of system parameters. Each host has a Local Monitor and a Local Ef-

fector that are only responsible for the monitoring and redeployment of the host on
which they are located. Each host has a Decentralized Model that contains some subset
of the system’s overall model, populated by the data received from the Local Monitor
and the Decentralized Model of the hosts to which this host is connected. Therefore, if
there are two hosts in the system that are not aware of (i.e., connected to) each other,
then the respective models maintained by the two hosts do not contain each other’s sys-
tem parameters. Each host also has a Decentralized Algorithm that synchronizes with
its remote counterparts to find a common solution. Finally, in a similar way, the Decen-
tralized Analyzer on each host synchronizes with its remote counterparts to determine
an improved deployment architecture and effect it.

Figure 2. Framework’s centralized instantiation.

Master HostSlave Host

Framework Framework

Centralized Analyzer

Centralized Model

Master Effector

Centralized User
InputMaster Monitor

Centralized Algorithm

Master Host
Implementation

Platform System Architect

Slave Effector

Slave Monitor

Slave Host
Implementation

Platform

Host 2

Framework

Decentralized
Analyzer 2

Decentralized Model
2

Local Effector 2

Local User Input 1Local Monitor 2

Decentralized
Algorithm 2

Host 2
Implementation

Platform

Host 1

Framework

Decentralized
Analyzer 1

Decentralized Model
1

Local Effector 1

Local User Input 1Local Monitor 1

Decentralized
Algorithm 1

Host 1
Implementation

Platform System Architect 1 System Architect 2

Figure 3. Framework’s decentralized instantiation.

4 Tool Suite

While the framework’s design is independent of any specific tool or environment, ap-
propriate tool support facilitates the implementation, and automation, of specific de-
ployment improvement solutions using the framework. In this section we describe two
tools and their integration, which assist engineers in developing solutions that conform
to the framework.

4.1 DeSi
DeSi [13] is a visual deployment exploration environment that supports specification,
manipulation, and visualization of deployment architectures for large-scale, highly dis-
tributed systems. By leveraging DeSi, an architect is able to enter desired system pa-
rameters into the model, and also to manipulate those parameters and study their effects
(shown in Figure 9). For example, the architect is able to use a graphical environment
to specify new architectural constructs (e.g., components, hosts), parameters (e.g., net-
work bandwidth, host memory), and values for the parameters (e.g., available memory
on a host is 1MB). The architect may also specify constraints. For example, the maxi-
mum and minimum available resources, the location constraint that denotes the hosts
that a component can not be deployed on, and the collocation constraint that denotes a
subset of components that should not be deployed on the same host. DeSi also provides
a visualization environment for graphically displaying the system’s monitored data, de-
ployment architecture, and the results of analysis (shown in Figure 10).

Figure 4 shows the high-level architecture of DeSi. The centerpiece of the architec-
ture is a rich and extensible Model, which in turn allows extensions to the View (used
for model visualization) and Controller (used for model manipulation) subsystems.

Model. DeSi’s Model subsystem is reactive and accessible to the Controller via a sim-
ple API. The Model currently captures three different system aspects in its three com-
ponents: SystemData, GraphViewData, and AlgoResultData. SystemData is the key
part of the Model and represents the software system itself in terms of the architectural
constructs and parameters: numbers of components and hosts, distribution of compo-
nents across hosts, software and hardware topologies, and so on. GraphViewData cap-
tures the information needed for visualizing a system’s deployment architecture: graph-
ical (e.g., color, shape, border thickness) and layout (e.g., juxtaposition, movability,
containment) properties of the depicted components, hosts, and their links. Finally, Al-
goResultData provides a set of facilities for capturing the outcomes of the different de-
ployment estimation algorithms: estimated deployment architectures (in terms of com-
ponent-host pairs), achieved availability, algorithm’s running time, estimated time to
effect a redeployment, and so on.

View. DeSi’s View subsystem exports an API for visualizing the Model. The current
architecture of the View subsystem contains two components—GraphView and Ta-
bleView. GraphView is used to depict the information provided by the Model’s Graph-
ViewData component. TableView is intended to support a detailed layout of system pa-
rameters and deployment estimation algorithms captured in the Model’s SystemData

and AlgoResultData components. The decoupling of the Model’s and corresponding
View’s components allows one to be modified independently of the other. For example,
it allows us to add new visualizations of the same models, or to use the same visualiza-
tions on new, unrelated models, as long as the component interfaces remain stable.

Controller. DeSi’s Controller subsys-
tem comprises four components. The Gen-
erator, Modifier, and AlgorithmContainer
manage different aspects of DeSi’s Model
and View subsystems, while the Middle-
wareAdapter component provides an inter-
face to a, possibly third-party, system im-
plementation, deployment, and execution
platform (depicted as a “black box” in Fig-
ure 4). The Generator component takes as
its input the desired number of hardware
hosts, software components, and a set of
ranges for system parameters (e.g., mini-
mum and maximum network reliability,
component interaction frequency, available memory, and so on). Based on this infor-
mation, Generator creates a specific deployment architecture that satisfies the given in-
put and stores it in Model subsystem’s SystemData component. The Modifier compo-
nent allows fine-grain tuning of the generated deployment architecture (e.g., by altering
a single network link’s reliability, a single component’s required memory, and so on).
Finally, the AlgorithmContainer component invokes the selected redeployment algo-
rithms (examples of algorithms will be presented in Section 5) and updates the Model’s
AlgoResultData. In each case, the three components also inform the View subsystem
that the Model has been modified; in turn, the View pulls the modified data from the
Model and updates the display.

The above components allow DeSi to be used to automatically generate and manip-
ulate large numbers of hypothetical deployment architectures. The MiddlewareAdapter
component, on the other hand, provides DeSi with the same information from a running,
real system. MiddlewareAdapter’s Monitor subcomponent captures the run-time data
from the external MiddlewarePlatform and stores it inside the Model’s SystemData
component. MiddlewareAdapter’s Effector subcomponent is informed by the Control-
ler’s AlgorithmContainer component of the calculated (improved) deployment archi-
tecture; in turn, the Effector issues a set of commands to the MiddlewarePlatform to
modify the running system’s deployment architecture. The details of this process are
further illuminated below.

4.2 Prism-MW
Prism-MW [11] is an extensible middleware platform that enables efficient implemen-
tation, deployment, and execution of distributed software systems in terms of their ar-
chitectural elements: components, connectors, configurations, and events [17]. For
brevity, Figure 5 shows the elided class design view of Prism-MW. Brick is an abstract

DeSi Model DeSi View

DeSi Controller
Middleware

Platform

TableView GraphView
System

Data
AlgoResult

Data

GraphView
Data

Generator

Algorithm
Container

Modifier

Middleware
Adapter

Monitor

Effector

Legend:
Data
flow

Control
flow

Figure 4. DeSi’s architecture.

class that encapsulates common features of its subclasses (Architecture, Component,
and Connector). The Architecture class records the configuration of its components and
connectors, and provides facilities for their addition, removal, and reconnection, possi-
bly at system run-time. A distributed application is implemented as a set of interacting
Architecture objects, communicating via DistributionConnectors across process or ma-
chine boundaries. Components in an architecture communicate by exchanging Events,
which are routed by Connectors. Finally, Prism-MW associates the IScaffold interface
with every Brick. Scaffolds are used to schedule and dispatch events using a pool of
threads in a decoupled manner. IScaffold also directly aids architectural self-awareness
by allowing the run-time probing of a Brick’s behavior, via different implementations
of the IMonitor interface.

To support various aspects of architectural self-awareness, we have provided the
ExtensibleComponent class, which contains a reference to Architecture. This allows an
instance of ExtensibleComponent to access all architectural elements in its local config-
uration, acting as a meta-level component that can automatically effect run-time chang-
es to the system’s architecture.

In support of monitoring and redeployment, the ExtensibleComponent is augment-
ed with the IAdmin interface. We provide two implementations of the IAdmin interface:
Admin, which supports system monitoring and redeployment effecting, and Admin’s
subclass Deployer, which also provides facilities for interfacing with DeSi. We refer to
the ExtensibleComponent with the Admin implementation of the IAdmin interface as
AdminComponent; analogously, we refer to the ExtensibleComponent with the Deploy-
er implementation of the IAdmin interface as DeployerComponent.

As indicated in Figure 5,
both AdminComponent and De-
ployerComponent contain a ref-
erence to Architecture and are
thus able to effect run-time
changes to their local subsys-
tem’s architecture: instantiation,
addition, removal, connection,
and disconnection of compo-
nents and connectors. With the
help of DistributionConnectors,
AdminComponent and De-
ployerComponent are able to
send and receive from any de-
vice to which they are connected
the events that contain applica-
tion-level components (sent be-
tween address spaces using the
Serializable interface).

Figure 5. Elided UML class design view of Prism-
MW. The four dark gray classes are used by the
application developer. Only the relevant middleware
classes are shown.

Architecture

Scaffold

Brick
Connector

Component

DeployerAdmin

IMonitor

IAdmin

IScaffold

Serializable

Event

ExtensibleComponent

Distribution
Connector

EvtFrequency
Monitor

NetworkReliability
Monitor

4.3 Tool Support for the Framework
To integrate DeSi with Prism-
MW, we have wrapped Monitor
and Effector components of DeSi
(shown in the Middleware Adapt-
er of Figure 4) as Prism-MW
components that are capable of
receiving Events containing the
monitoring data from Prism-
MW’s DeployerComponent, and
issuing events to the Deployer-
Component to enact a new de-
ployment architecture. Once the
monitoring data is received, DeSi
updates its own system model.
This results in the visualization of
an actual system, which can now
be analyzed and its deployment
improved by employing different
algorithms. Once the outcome of
an algorithm is selected by the
Analyzer, DeSi issues a series of
events to Prism-MW’s DeployerComponent to update the system’s deployment archi-
tecture.

DeSi and Prism-MW are directly leveraged to in realizing our framework, as illus-
trated in Figure 6. DeSi provides the facilities for implementing User Input, Model, Al-
gorithm, and Analyzer components, while Prism-MW supports implementation of Mon-
itor and Effector components. In this section we discuss our realization of each one of
the framework components, and their support for pluggability, extensibility, explorabil-
ity, and adaptability. These characteristics allow the tool suite to be easily tailored to the
variation points that arise across different problems.

Model. We leverage DeSi’s extensible model to implement the Model Component of
the framework. DeSi’s extensible representation of the system’s deployment architec-
ture makes it possible to add or remove new system properties at run-time. The model
and the accompanying graphical support make it easy to configure the tool to applica-
tion scenarios with different concerns and objectives. Once the appropriate model is de-
fined and specified, it is populated with the actual data from a system. The data is pro-
vided either at run-time or at design time. Some properties are known at design time
(e.g., initial deployment of the system, available memory on each host, etc.), and can be
captured in architectural description of the system. To this end, DeSi has been integrat-
ed with xADL 2.0 [3], an extensible architecture description language (xADL). Proper-
ties that are not available at design time (e.g., reliability of network links, available net-
work bandwidth) are provided by the Monitor component, discussed below.

Figure 6. Realization of the framework via integration
of Prism-MW and DeSi.

Algorithm. DeSi provides a pluggable environment for addition and removal of algo-
rithms that run on the model. In order to effectively support reusability and extensibility
within different redeployment algorithms, we have identified the following three vari-
ation points:

• The objective function (e.g., maximizing availability, increasing security, etc.)
that is specified based on the system parameters defined in the model.

• The constraints on the parameters, reflecting the limited resources in the system
(e.g., available bandwidth, available memory, etc.), which need to be satisfied by
the algorithms when searching for a valid solution.

• The coordination that occurs in decentralized algorithms. There are many decen-
tralized cooperative protocols (e.g., distributed voting [8], auction-based [18]).

We have used these variation
points in developing extensible
and reusable algorithms in DeSi
(as shown in Figure 7). Each al-
gorithm provides an implementa-
tion of an abstract API, which is
used by DeSi for interfacing with
the algorithm. The algorithms are
composed of a main body that de-
notes the algorithm’s approach
(e.g., greedy algorithm, genetic
algorithm, etc.), an objective
function, and the relevant con-
straint functions. Decentralized algorithms are also associated with an implementation
of a coordination approach. The above methodology for developing algorithms simpli-
fies the adoption of existing solutions to new problems. The developer first creates the
model of the system (as discussed earlier) using the graphical interface, specifies the ob-
jective function based on the system parameters, and finally associates the appropriate
implementations of the constraint and coordination functions with the algorithm.

Analyzer. DeSi’s visualisation of the deployment architecture and the exploratory
utilities allow an engineer to rapidly investigate the space of possible deployments for
a given system (real or postulated), and determine the deployments that will result in
greatest improvements (while, perhaps, requiring the smallest changes to the current de-
ployment architecture). A user can easily assess a system’s sensitivity to changes in spe-
cific parameters (e.g., the reliability of a network link) and create deployment con-
straints (e.g., two components must be located on different hosts). However, while the
analysis by a human user may be possible in small centralized systems with few objec-
tives, it is certainly infeasible for large and/or decentralized systems with multiple (and
potentially conflicting) objectives. Furthermore, given a deployment improvement
problem, there are many decisions and trade-offs associated with improving the deploy-
ment architecture: scheduling the time to (re)examine the deployment architecture, se-
lecting the algorithm(s) to run, comparing the results, resolving conflicts, determining
the best result, and scheduling the time to effect the solution. Therefore, autonomic so-

Figure 7. Class diagram of algorithm development
methodology in DeSi for a greedy algorithm.

GreedyAlgorithm

AbstractAlgorithm

ObjectiveQuantifierConstraintChecker CoordinationImplementation

lutions for the analysis and conflict resolution are needed. DeSi supports these kind of
meta-level algorithms via an API for the modification of DeSi’s internal architecture.
The API allows for addition and removal of algorithms, modification of the model, and
access to DeSi’s internal data structure that holds the results of executing algorithms.
Via this API, a meta-level algorithm is capable of keeping a profile of the system’s his-
tory (by monitoring the system’s performance), determining the best configuration for
the tool, and selecting the result of the best algorithm. Furthermore, in complicated de-
centralized scenarios, the meta-level algorithms may leverage a decentralized negotia-
tion technique to coordinate their actions with other remote analyzers. Some examples
of different analyzers are discussed in Section 5.

Monitor. Prism-MW provides the IMonitor interface associated through the Scaffold
class with every Brick. This allows for autonomous, active monitoring of a Brick’s run-
time behavior. For example, the EvtFrequencyMonitor records the frequencies of dif-
ferent events the associated Brick sends, while NetworkReliabilityMonitor records the
reliability of connectivity between its associated DistributionConnector and other, re-
mote DistributionConnectors using a common “pinging” technique. A meta-level Ad-
minComponent (recall Section 4.2) on any device is capable of accessing the monitor-
ing data of its local components via its reference to Architecture. In order to minimize
the time required to monitor the system, monitoring is performed in short intervals of
adjustable duration. Once the monitored data is stable (i.e., the difference in the data
across a desired number consecutive intervals is less than an adjustable value ε), the Ad-
minComponent sends the description of its local deployment architecture and the mon-
itored data (e.g., event frequency, network reliability, etc.) in the form of serialized
Prism-MW Events to the DeployerComponent. Figure 8 depicts an application running
on top of Prism-MW with the monitoring and deployment facilities instantiated and as-
sociated with the appropriate architectural constructs. Our assessment of Prism-MW’s
monitoring support suggests that monitoring on each host may induce as little as 0.1%
and no greater than 10% in memory and efficiency overheads. Note that Prism-MW’s
extensible design allows for addition of new monitoring capabilities via new implemen-
tations of IMonitor interface.

Effector. Once a new deployment architecture is selected by one of DeSi’s algorithms
based on the monitoring data supplied by Prism-MW, DeSi informs the DeployerCom-
ponent (recall Section 4.2) of the desired deployment architecture, which now needs to
be effected. The effecting process requires coordination among different hosts (e.g., en-
suring architectural consistency, synchronization, etc.), which is an implementation
platform-independent task. Prism-MW’s support for coordination is implemented in its
Admin and Deployer Components:

• The DeployerComponent sends events to inform AdminComponents of their new
local configurations, and of the remote locations of software components required
for performing changes to each local configuration.

• Each AdminComponent determines the difference between its current and new
configurations, and issues a series of events to remote AdminComponents re-
questing the components that are to be deployed locally. If devices that need to

exchange components are not directly connected, the relevant request events are
sent to the DeployerComponent, which then mediates their interaction.

• Each AdminComponent that receives an event requesting its local component(s)
to be deployed remotely, detaches the required component(s) from its local con-
figuration, serializes them, and sends them as a series of events via its local Dis-
tributionConnector to the requesting device.

• The recipient AdminComponents reconstitute the migrant components from the
received events and invoke the appropriate methods on its Architecture object to
attach the received components to the local configuration.

Other coordination techniques can also be incorporated into Prism-MW in a similar
manner via different implementations of the DeployerComponent and AdminCompo-
nent.

User Input and Visualization. Once the monitoring data is gathered from all the
hosts, the user may invoke one of DeSi’s visualization windows to explore the system’s
deployment architecture and its relevant parameters. Figure 9 shows the table-oriented
page of the DeSi editor. This page is divided into five sections. In the Parameters table,
the properties of every host, component, or link within a software system can be viewed
and modified, e.g., to assess the sensitivity of a deployment architecture to specific pa-
rameter changes. In the Constraints panel, the user can specify different constraints on
component locations (e.g., fixing a component to a selected host). Using the set of but-

Figure 8. An example of a distributed system running on top of Prism-MW that is monitored.

Legend:

Event frequency
monitor

Platform
Architecture

Network reliability
monitor

Skeleton
Configuration

Deployer
/Admin Pointer to

Architecture

i Component

Admin

34

31

18

2 615

16

4 12

21

Admin

8

3 9

29 1

Admin

28

20
30

17

14

0
Admin

22
26

13

27

10
33

7

24

25

32

19

23

11

Deployer

Distributed System

5

Prism-MW
Adapter

DeSi
Monitor

DeSi
Effector

tons in the Algorithms panel, different algorithms can be invoked and the results dis-
played in the Results panel. Figures 10a and b show the graph-oriented page of the DeSi
editor. The thumbnail view in the upper left displays the entire architecture at once and
allows users to quickly navigate to any of its portions. Since our framework can support
large distributed systems with many hosts and components, DeSi supports the ability to
zoom in and out on a visualized system. Hosts are depicted as white boxes while soft-
ware components are depicted as shaded boxes. The solid black lines between hosts rep-
resent physical (network) links and the thin black lines between components represent
logical (software) links. At the bottom of the screen, the property sheet allows users to
view or modify the properties of the link, host, or component that is currently selected.
Components can also be “dragged-and-dropped” from one host to another. In this way,
a user can manually create a new system deployment and analyze its effect on system
properties (e.g., availability, latency, etc.).

5 Example Scenarios

In this section, we describe our experience with the implementation of both the cen-
tralized and the decentralized instantiation of the framework targeted at (1) maximizing
a distributed system’s overall availability, and (2) minimizing the system’s overall la-
tency.

Figure 9. DeSi’s editable tabular view of the system’s deployment architecture.

Figure 10. DeSi’s graphical view of a system’s deployment architecture: (a) zoomed out
view showing multiple hosts; (b) zoomed in view of the same architecture.

a)

b)

5.1 Centralized Configuration
In order to achieve the objective of maximizing a system’s availability and minimizing
the latency we first created an appropriate model. The model is composed of a hierar-
chical structure of components and hosts that includes the following properties:

• Each component has a required memory size.
• Each host has an available memory.
• Each logical link between components is modelled with a frequency of interac-

tion and an average event size.
• Each physical link among hosts is modelled with a particular network reliability,

bandwidth, and transmission delay.
• The system’s model contains the location and collocation constraints, discussed

in Section 3.1, that restrict the space of valid deployments.

The values for the host’s available memory, component’s required size, location
and collocation constraints are all entered into the model by the user via the DeSi tool.
All the modelled properties that are not entered by the user are monitored at run time
and added to the model automatically.

We have used three centralized algorithms, called Exact, Stochastic, and Avala
[12]. The objective of all these algorithms is to maximize the system’s availability by
finding a deployment architecture such that the most critical, frequent, and voluminous
interactions occur either locally or over reliable and capacious network links. Below we
provide a high-level overview of these algorithms.

The Exact algorithm tries every possible deployment, and selects the one that re-
sults in maximum availability and satisfies the constraints posed by the memory, band-
width, and restrictions on software component locations. The Exact algorithm guaran-
tees at least one optimal deployment (assuming that at least one deployment is possi-
ble). The complexity of this algorithm in the general case (i.e., with no restrictions on
component locations) is O(kn), where k is the number of hardware hosts, and n the
number of software components. By fixing a subset of m components to selected hosts,
the complexity reduces to O(kn-m).

The Stochastic algorithm randomly orders all the hosts and all the components.
Then, going in order, it assigns as many components to a given host as can fit on that
host, ensuring that all of the constraints are satisfied. Once the host is full, the algorithm
proceeds with the same process for the next host in the ordered list of hosts, and the re-
maining unassigned components in the ordered list of components, until all components
have been deployed. This process is repeated a desired number of times, and the best
obtained deployment is selected. Since it needs to calculate the availability and latency
for every deployment, the complexity of this algorithm is O(n2).

Avala is a greedy algorithm that incrementally assigns software components to the
hardware hosts. At each step of the algorithm, the goal is to select the assignment that
will maximally contribute to the objective function, by selecting the “best” host and
“best” software component. Selecting the best hardware host is performed by choosing
a host with the highest sum of network reliabilities and bandwidths with other hosts in

the system, and the highest memory capacity. Similarly, selecting the best software
component is performed by choosing the component with the highest frequency of in-
teraction with other components in the system, and the lowest required memory. Once
found, the best component is assigned to the best host, making certain that the location
and collocation constraints are satisfied. The algorithm proceeds with searching for the
next best component among the remaining components, until the best host is full. Next,
the algorithm selects the best host among the remaining hosts. This process repeats until
every component is assigned to a host. The complexity of this algorithm is O(n3).

Our framework’s analyzer component automatically decides which one of the algo-
rithms to run based on the following factors:

• The size of the architecture — For example, the Exact algorithm finds the optimal
solution, but due to its complexity it can only be used for architectures with very
small numbers of hosts (on the order of 5) and components (on the order of 15).
Therefore, for large architectures either of the other two algorithms is used.

• The system’s availability profile — Analyzer holds a record of the fluctuations in
the system’s availability (caused by changes in system parameters) that is used to
determine when the system should be redeployed and what algorithm should be
invoked. For example, the analyzer selects a more expensive algorithm to run if
the system is stable (i.e., the system’s availability does not fluctuate significant-
ly). On the other hand, if the system is unstable, the analyzer runs a less expensive
algorithm that could produce faster results for the immediate improvement of the
system’s availability.

• The system’s overall latency — The algorithms used in this scenario also typical-
ly decrease the system’s overall latency [12]. However, in rare situations where
this is not the case, the analyzer either disallows the results of the algorithms to
take effect or modifies the solution such that it does not significantly increase the
system’s overall latency.

Once the analyzer selects the most appropriate deployment architecture, it creates the
appropriate set of redeployment instructions and sends it to the Master Effector. The
Master Effector then forwards the instructions to the appropriate Slave Effectors, which
leverage Prism-MW’s support for the redeployment of software components in the
manner described earlier.

5.2 Decentralized Configuration
In the development of the decentralized solution, we were able to reuse the centralized
model by extending it to include the notion of “awareness”. Awareness denotes the ex-
tent of each host’s knowledge about the global system parameters. The Decentralized
Model on each hosts synchronizes its local model with the remote hosts of which it is
aware of (i.e., to which it is directly connected), by sending streams of data whenever
the model is modified.

Unlike the centralized solution, getting the user input and monitoring is done sepa-
rately and independently on each host. Similarly to the centralized solution, we leverage
DeSi and Prism-MW in gathering data about the system parameters.

We have used a decentralized algorithm, called DecAp [10], that is based on an auc-
tion-based protocol to find a solution that significantly improves the system’s overall
availability. In DecAp, each Decentralized Algorithm component acts as an agent and
may conduct or participate in auctions. Each host’s agent initiates an auction for the re-
deployment of its local components, assuming none of its neighboring (i.e., connected)
hosts is already conducting an auction. The auction initiation is done by sending to all
the neighboring hosts a message that carries information about a component to be rede-
ployed (e.g., name, size, and so on). The agents receiving this message have a limited
time to enter a bid on the component before the auction closes. The bidding agent on a
given host calculates an initial bid for the auctioned component, by considering the fre-
quency and volume of interaction between components on its host and the auctioned
component. Once the auctioneer has received all the bids, it calculates the final bid
based on the received information. The host with the highest bid is selected as the win-
ner and the component is redeployed to it. The complexity of this algorithm is O(k*n3).

The functionality of the decentralized analyzer remains very similar to the central-
ized version, except that the analyzer uses either the voting or the polling protocol to
decide on the appropriate course of action. Once a redeployment decision is made by
the analyzers, the redeployment instructions are sent out to the Local Effectors, which
collaborate in performing the redeployment by leveraging Prism-MW’s support for re-
deployment.

6 Conclusion

A distributed software system’s deployment architecture can have a significant impact
on the system’s dependability, and will depend on various system parameters (e.g., re-
liability of connectivity among hosts, security of links between hosts, and so on). Im-
proving the deployment architecture such that it exhibits desirable system characteris-
tics is a challenging problem. The lack of a common design framework for improving
the system’s deployment architecture exacerbates the complexity of this problem. Ex-
isting deployment approaches focus on providing support for installing and updating
the software system but lack support for extracting, visualizing, and analyzing different
parameters that influence the quality of deployment.

In this paper we have presented a design framework for analyzing and improving
distributed deployment architectures. We also discussed the integration of Prism-MW,
a lightweight architectural middleware that supports system monitoring and run-time
reconfiguration, and DeSi, an environment that supports manipulation, visualization,
and (re)estimation of deployment architectures for large-scale, highly distributed sys-
tems. In concert, Prism-MW and DeSi provide a rich capability for developing solutions
that comply to the framework’s rules and structure. Our experience has indicated that
by leveraging the tool suite to develop solutions we are able to increase the potential for
creating pluggable, extensible, and reusable components that could be used to improve
deployment architectures in many different scenarios. In our future work we will focus
on improving system characteristics beyond availability and latency, such as security,
durability, and throughput. We also plan to devise mitigating techniques for situations
where different desired system characteristics may be conflicting. There are also many

unresolved issues in the decentralized setting that we plan to focus on in the future. For
example, modelling user preferences for multiple desired system characteristics in a de-
centralized environment, and devising decentralized algorithms for non-collaborative
hosts are challenging problems. For this we will leverage utility computing techniques
to determine a deployment architecture that maximizes the users’ overall satisfaction
with a distributed system. Furthermore, in the future we plan to extend our framework
and tool suite to enhance redeployment with other strategies (e.g., caching and hoarding
of data, queuing of remote calls, etc.). These tasks will provide a basis for further as-
sessment and evaluation of our framework and the tool suite.

7 Acknowledgements

This material is based upon work supported by the National Science Foundation under
Grant Numbers CCR-9985441 and ITR-0312780. Effort also partially supported by the
Jet Propulsion Laboratory.

8 Reference

[1] M. C. Bastarrica, et al. A Binary Integer Programming Model for Optimal Object Distri-
bution. 2nd Int’l. Conf. on Principles of Distributed Systems, Amiens, France, Dec. 1998.

[2] A. Carzaniga et. al. A Characterization Framework for Software Deployment Technolo-
gies. Technical Report, Dept. of Computer Science, University of Colorado, 1998.

[3] E. Dashofy, A. van der Hoek, and R. Taylor. An Infrastructure for the Rapid Development
of XML-based Architecture Description Languages. International Conference on Soft-
ware Engineering (ICSE’04), Orlando, Florida, May 2002.

[4] D. Garlan, S. Cheng, B. Schmerl. Increasing System Dependability through Architecture-
based Self-repair. In R. de Lemos, C. Gacek, A. Romanovsky, eds., Architecting Depend-
able Systems, 2003.

[5] R. S. Hall, D. Heimbigner, and A. L. Wolf. A Cooperative Approach to Support Software
Deployment Using the Software Dock. International Conference in Software Engineering
(ICSE’99), Los Angeles, CA, May 1999.

[6] R. Haas et. al. Autonomic Service Deployment in Networks. IBM Systems Journal, Vol.
42, No. 1, 2003.

[7] G. Hunt and M. Scott. The Coign Automatic Distributed Partitioning System. 3rd Sympo-
sium on Operating System Design and Implementation, New Orleans, LA, Feb. 1999.

[8] R. Kieckhafer, C. Walter, A. Finn, P. Thambidurai. The MAFT Architecture for Distribut-
ed Fault Tolerance. IEEE Transactions On Computers, Vol. 37, No. 4, April 1988, pp. 398-
405.

[9] T. Kichkaylo et al. Constrained Component Deployment in Wide-Area Networks Using AI
Planning Techniques. Int’l. Parallel and Distributed Processing Symposium, April 2003.

[10] S. Malek et. al. A Decentralized Redeployment Algorithm for Improving the Availability
of Distributed Systems. Technical Report USC-CSE-2004-506, 2004.

[11] M. Mikic-Rakic and N. Medvidovic. Adaptable Architectural Middleware for Program-
ming-in-the-Small-and-Many. ACM/IFIP/USENIX International Middleware Conference
(Middleware 2003), Rio de Janeiro, Brazil, June 2003.

[12] M. Mikic-Rakic, et. al. Improving Availability in Large, Distributed, Component-Based
Systems via Redeployment. Technical Report USC-CSE-2003-515, 2003.

[13] M. Mikic-Rakic et. al. A Tailorable Environment for Assessing the Quality of Deployment
Architectures in Highly Distributed Settings. 2nd Int’l Working Conf. on Component De-
ployment (CD 2004), Edinburgh, Scotland, May 2004.

[14] M. Mikic-Rakic and N. Medvidovic. Support for Disconnected Operation via Architectur-
al Self-Reconfiguration. Int’l Conf. on Autonomic Computing (ICAC'04), New York, May
2004.

[15] M. Mikic-Rakic and N. Medvidovic. Increasing the Confidence in Off-the-Shelf Compo-
nents: A Software Connector-Based Approach. 2001 Symposium on Software Reusability
(SSR 2001), Toronto, Canada, May 2001.

[16] P. Oreizy, N. Medvidovic, and R. N. Taylor. Architecture Based run time Software Evo-
lution. International Conference on Software Engineering (ICSE’98), Kyoto, Japan, April
1998.

[17] D.E. Perry, and A.L. Wolf. Foundations for the Study of Software Architectures. Software
Engineering Notes, Oct. 1992.

[18] C. A. Waldpurger, et. al. Spawn. A Distributed Computational Economy. IEEE Trans. on
Software Engineering, February 1992.

