
IEEE TRANSACTIONS ON SOFTWARE ENGINEERING 1

A Learning-Based Framework for Engineering

Feature-Oriented Self-Adaptive Software Systems
Naeem Esfahani, Ahmed Elkhodary, and Sam Malek, Member, IEEE

Abstract—Self-adaptive software systems are capable of adjusting their behavior at runtime to achieve certain functional or

quality of service goals. Often a representation that reflects the internal structure of the managed system is used to reason

about its characteristics and make the appropriate adaptation decisions. However, runtime conditions can radically change the

internal structure in ways that were not accounted for during their design. As a result, unanticipated changes at runtime that

violate the assumptions made about the internal structure of the system could degrade the accuracy of the adaptation

decisions. We present an approach for engineering self-adaptive software systems that brings about two innovations: (1) a

feature-oriented approach for representing engineers’ knowledge of adaptation choices that are deemed practical, and (2) an

online learning-based approach for assessing and reasoning about adaptation decisions that does not require an explicit

representation of the internal structure of the managed software system. Engineers’ knowledge, represented in feature-models,

adds structure to learning, which in turn makes online learning feasible. We present an empirical evaluation of the framework

using a real world self-adaptive software system. Results demonstrate the framework’s ability to accurately learn the changing

dynamics of the system, while achieving efficient analysis and adaptation.

Index Terms— Self-Adaptive Software, Autonomic Computing, Feature-Orientation, Machine Learning

—————————— � ——————————

1 INTRODUCTION

HE unrelenting pattern of growth in size and com-
plexity of software systems that we have witnessed
over the past few decades is likely to continue well

into the foreseeable future. As software engineers have
developed new techniques to address the complexity as-
sociated with the construction of modern-day software
systems, an equally pressing need has risen for mecha-
nisms that automate and simplify the management and
modification of software systems after they are deployed,
i.e., during runtime. This has called for the development
of self-adaptive software systems [1]. A self-adaptive soft-
ware system is capable of modifying itself at runtime to
achieve certain functional or Quality of Service (QoS) ob-
jectives. While over the past decade researchers have
made significant progress with methodologies and
frameworks [1–6] that target the development of such
systems, numerous challenges remain [7]. In particular,
engineering the adaptation logic poses the most difficult
challenge as further discussed below.

The state-of-the-art [1], [7] in engineering self-adaptive
software systems is to employ an architectural representa-
tion of the software system (e.g., component-and-
connector view [8]) for reasoning about the adaptation
decisions. We refer to this as the white-box approach, since
it requires knowledge of the managed system’s internal
structure. The adaptation decisions are thus made at the
architectural level, often in terms of structural changes,
such as adding, removing, and replacing software com-
ponents, changing the system’s architectural style [9], re-
binding a component’s interfaces, and so on. This para-

digm is commonly referred to as architecture-based adapta-
tion [1], [6], [8]. At design-time engineers create analytical
models using this architectural representation. The ana-
lytical model is then used to assess the system’s ability to
satisfy an objective using the monitoring data obtained at
runtime. The result produced by an analytical model thus
serves as an indicator for making adaptation decisions.
For instance, Queuing Network models [10] and Hidden
Markov models [11] have been used previously for as-
sessing the system’s performance and reliability proper-
ties, respectively.

While state-of-the-art approaches have achieved note-
worthy success in many domains, they suffer from key
shortcomings when faced with the following issues:
1. Concept drifts. White-box approaches, in general,

make simplifying assumptions or presume certain
properties of the internal structure of the system
that may not bear out in practice. They cannot
cope with the runtime changes (i.e., concept drifts
[12], [13]) that were not accounted for during their
formulation. In practice, the internal structure of a
managed software system may not be completely
known at design time. Even when known, runtime
conditions may radically change the structure or
properties of the system in ways that were not ac-
counted for during design. Thus, unanticipated
changes at runtime that violate the design-time as-
sumptions could make the analysis and hence the
adaptation decisions inaccurate.

2. Dependencies. To make the construction of self-
adaptive systems manageable, majority of the ex-
isting approaches assume adaptation can be local-
ized in atomic structural changes that can be car-
ried out independently, while in practice changes
in different parts of the architecture need to occur

————————————————

• N. Esfahani, A. Elkhodary, and S. Malek are with the Department of
Computer Science, George Mason University, Fairfax, VA 22030-4444,
USA. E-mails: { nesfaha2, aelkhoda, smalek}@gmu.edu

T

2 IEEE TRANSACTIONS ON SOFTWARE ENGINEERING

in concert. Thus, ensuring the correct functioning
during and after the adaptation is difficult using
such approaches, in particular when changes
crosscut the software system.

3. Efficiency. The efficiency of analysis and planning
is of utmost importance in most self-adaptive
software systems that need to react quickly to sit-
uations that arise at runtime. But, often searching
for an optimal configuration (i.e., solution) at the
architectural-level is computationally very expen-
sive. In fact, many architecture-based optimization
algorithms are shown to be NP-hard [5], [14]. We
argue this is because architectural models do not
provide an effective medium for representing the
engineer’s knowledge of practical alternatives,
hence forcing the automated analysis to explore a
large number of invalid configurations.

In this paper, we provide a comprehensive description
of a black-box approach for engineering self-adaptive sys-
tems that was first introduced in our prior work [15]. By
black-box we mean that the adaptation decisions are made
using abstractions that do not require knowledge of the
internal structure of the software system. From the per-
spective of Kramer and Magee’s reference architecture for
self-management [1], a black-box approach results in a
clear separation of models used for goal management and
those used for change management. Although to map the
abstractions used for goal management to those used for
change management, knowledge of the system’s internal
structure is likely to be needed.

The approach brings about two innovations for solving
the aforementioned challenges: (1) a new method of mod-
eling and representing self-adaptive software systems
that builds on the notion of feature-orientation from the
product line literature [16], and (2) a new method of as-
sessing and reasoning about adaptation decisions through
online learning [17]. The result of this research has been a
framework, entitled FeatUre-oriented Self-adaptatION
(FUSION), which combines feature-models with online
machine learning. Domain expert’s knowledge, repre-
sented in feature-models, adds structure to online learn-
ing, which in turn improves the accuracy and efficiency of
adaptation decisions. The key contributions of the FU-
SION framework are as follows:

1. FUSION copes with the changing dynamics of the
system, even those that are unforeseen at design
time, through incremental observation and induc-
tion (i.e., online learning).

2. By encapsulating the engineer’s knowledge of the
inter-dependencies among the system’s constitu-
ents, FUSION can ensure stable functioning and
protect system goals during and after adaptation.

3. FUSION uses features and inter-feature relation-
ships to significantly reduce the configuration
space of a sizable system, making runtime analysis
and learning feasible.

This paper describes several new non-trivial exten-
sions to the preliminary version of FUSION described in
[15]: (1) a more expressive feature-modeling language
that incorporates several additional commonly used fea-

ture-modeling notations, (2) incorporation of additional
machine learning techniques, in particular one that is ap-
plicable to discrete values, (3) a brand new algorithm that
uses the learned knowledge to manage the adaptation of
software, while minimizing disruptions to the system, (4)
a prototype of an environment that supports building of
self-adaptive software systems that are managed via FU-
SION, and (5) additional empirical evaluations to assess
the new algorithms and capabilities. On top of these tech-
nical contributions, the paper provides an in-depth de-
scription of FUSION, such as a section on alternative
means of realizing features in a software system, a de-
tailed discussion on how feature-oriented adaptation
makes learning possible, and a revamped discussion of
FUSION in the context of related research.

The rest of this paper is organized as follows. Section 2
motivates the problem using a system that also serves as a
running example in this paper. Section 3 provides an
overview of FUSION. Sections 4, 5, and 6 detail FUSION’s
feature-oriented model of adaptation, learning method,
and adaptation planning, respectively. Sections 7, 8, and 9
present the implementation of FUSION, experiment set-
up, and evaluation details respectively. The paper con-
cludes with a discussion of the threats to validity, an
overview of the related work and avenues of future re-
search.

2 MOTIVATION

For illustrating the concepts in this paper, we use an
online Travel Reservation System (TRS) that provides a
web portal for making travel reservations remotely. Fig-
ure 1c shows a subset of this system’s software architec-
ture using the traditional component-and-connector view
[8]. TRS aims to provide the best airline ticket prices in
the market. To prepare a price quote for the user, TRS
takes the trip information, and then discovers and queries
the appropriate travel agent services. The travel agents
reply with their itinerary offers, which are then sorted
and presented in ascending order of the quoted price.

In addition to the functional goals, such a system is re-
quired to attain a number of QoS objectives, such as per-
formance, security, and accountability. To that end, solu-
tions for each QoS concern are developed, e.g., caching
for performance, authentication for security, and logging
of transactions for accountability purposes.

A system such as TRS needs to be self-adaptive to deal
with unanticipated situations, such as traffic spikes or
security attacks. To that end, the adaptation logic of TRS
would need to select from the available adaptation choic-
es. For instance, enable caching to improve performance
during a traffic spike, strengthen authentication to thwart
a security attack, and adjusting the logging level to ensure
non-repudiation of transactions (i.e., accountability). To
do so, heterogeneous analytical models are required. For
example, security engineers may use attack graphs to
prevent intrusions and find the best counter measures,
while performance engineers may use queuing network
models to assess the latency goals. For a complex system,
engineers may need to connect analytical models at mul-

ESFAHANI ET AL.: A LEARNING-BASED FRAMEWORK FOR ENGINEERING FEATURE-ORIENTED SELF-ADAPTIVE SOFTWARE SYSTEMS 3

tiple layers of abstraction (i.e., network, software, user,
etc.) to characterize the system’s behavior. The construc-
tion of adaptation logic for a system in this way is chal-
lenging for the following reasons.
Concept Drifts. Consider a Queuing Network (QN)

model that quantifies the impact of an adaptation deci-
sion on the response time of receiving price quotes from
travel agents (thick arrows in Figure 1c). Such a model
would inevitably make simplifying assumptions based on
what the engineers believe to be the main sources of delay
in the system. For instance, if a particular architectural
layout is assumed, such a model may be unaware of the
delay/overhead of communication and estimate the re-
sponse time simply as summation of the execution time
associated with the participating components. A more
elaborate model would also include the hardware layer
details, but potentially for a presumed architectural lay-
out (e.g., physical hardware versus Virtual Machines de-
ployed on a shared pool of hardware), and so on. Since
the underlying characteristics of complex dynamic sys-
tems change at runtime, design-time assumptions on the
structure of the system may not hold, making the analysis
and hence the adaptation decisions inaccurate.
Dependencies. Ensuring the correct functioning of the

software system during and after the adaptation is a chal-
lenging task. This is often dependent on the application
and cannot be represented effectively in the general-
purpose architectural description languages [18]. For in-
stance, consider the problem of representing a constraint
in TRS that requires the same authentication protocol to
be used on an end-to-end execution flow from the Web
Portal all the way to the Travel Agent and back (thick lines
in Figure 1c). Prior to switching to a new protocol, the
system is required to negotiate new credentials among all
of the components involved in the execution flow. The
fact that this authentication protocol crosscuts multiple
components is difficult to represent and enforce using

architectural constructs (i.e., by introducing separate
components and connectors).
Efficiency. To satisfy multiple goals, self-adaptation

logic needs to search in a configuration space that is
equivalent to the combined complexity of all possible
architectural choices. As an example, consider how a hy-
pothetical system would make use of N authentication
components for authenticating the network traffic be-
tween its M software components, which may be de-
ployed on P different hardware platforms. In this case,
analyzing the impact of authentication alone on the sys-
tem’s goals would require exploring a space of (MP possi-
ble deployments) N possible ways of authentication = MNP possible configu-
rations. Such a problem is computationally expensive to
solve at runtime for any sizable system. This is while au-
thentication is only one concern out of many in a typical
system.

These difficulties motivate our work, which instead of
a pre-specified analytical model uses a feature-oriented
representation of the system to continuously learn the
impact of adaptation choices on system’s goals and adjust
the induced models.

3 FUSION OVERVIEW

Figure 2 depicts the framework as it adapts a running
system composed of a number of features. We assume the
running system is variable in the sense that features can
be “selected” and “deselected" on demand. FUSION
makes new feature selections to resolve QoS tradeoffs and
satisfy as many goals as possible. For example, if the TRS
system violates Quote Response Time goal, it is adapted to
a new feature selection that brings down the response
time and keeps other goals satisfied. The details of how
features and goals are modeled are discussed in Section 4.

As depicted in Figure 2, FUSION makes such adapta-
tion decisions using a continuous loop, called adaptation

Figure 1. Travel Reservation System: (a) goals are quantified in terms of utility obtained for a given level of metric; (b) subset of available
features, where features with thick borders are selected; and (c) software architecture corresponding to the selected features, where the
thick lines represent an execution scenario associated with goal G1 (i.e., Quote Response Time).

4 IEEE TRANSACTIONS ON SOFTWARE ENGINEERING

cycle. The adaptation cycle collects metrics (measure-
ments) and optimizes the system by executing three activ-
ities in the following sequence:

• Based on the metrics collected from the running
system, Detect calculates the achieved utility (i.e.,
measure of user’s satisfaction) to determine if a
goal violation has occurred.

• When a goal is violated, Plan searches for an opti-
mal configuration (i.e., feature selection) that max-
imizes the overall system utility.

• Given a new feature selection, Effect determines a
set of adaptation steps (i.e., enabling/disabling of
features) to minimize disruptions that negatively
impact the system’s goals.

FUSION uses learning cycle (depicted in Figure 2) to
learn the impact of adaptation decisions in terms of fea-
ture selection on the system’s goals. The first execution of
learning cycle occurs before the system’s initial deploy-
ment. The system is either simulated or executed in of-
fline mode and metrics corresponding to each feature
selection are collected. This data is used to train FUSION
to induce a preliminary model of the system’s behavior.

At runtime, the learning cycle continuously executes,
and as the dynamics of the system and its environment
change, the framework tunes itself. For example, when
FUSION adapts TRS to resolve a Quote Response Time vio-
lation, it keeps track of the gap between the expected and
the actual outcome of the adaptation. This gap is an indi-
cator of the new behavioral patterns in the system. Learn-
ing cycle collects such indicators and tunes itself by exe-
cuting the following two activities in sequence:

• Based on the measurements collected from the
system, Observe detects any emerging patterns of
behavior. An emergent pattern is detected when
predictions set wrong expectations (i.e., inaccurate
forecast of the impact of adaptation on utility).

• Induce learns the new behavior by applying ma-
chine learning on recently collected data and
stores a refined model of the behavior in the
knowledge base, which is then used to make (more)
informed adaptation decisions in future cycles.

The input to the various activities in both learning and
adaptation cycles is the knowledge base, which is com-
prised of all the models relating to the managed system,
including the current configuration (feature selection),
QoS goals, and automatically inferred functions relating
the impact of features on metrics. In the following three
sections, we describe FUSION’s underlying model, learn-
ing cycle, and adaptation cycle.

4 FUSION MODEL

We first describe FUSION’s modeling methodology,
which forms the centerpiece of our approach. As we
demonstrate later in this paper, FUSION’s feature-
oriented models enable effective learning and analysis by
allowing engineers to specify key factors in the software
system that affect the system goals. Such factors can be at
the domain, architecture, or execution platform levels.

4.1 Feature-Oriented Adaptation

In FUSION, the unit of adaptation is a feature. A feature is
an abstraction of a capability provided by the system. A
feature is traditionally used during the requirements en-
gineering phase to model a variation point in the software
system [16]. During software construction, the engineer
develops a mapping for each feature to a part of the soft-
ware system that realizes it. A feature may also affect the
system’s non-functional properties (e.g., response time).
We propose an additional role for features at runtime. We
use features as the units of adaptation.

A feature provides a granular abstraction of an adapta-
tion point (i.e., runtime variability) in the software sys-
tem, and since it may crosscut the software system’s im-
plementation, it could be used to address the consistency
issues during the adaptation. Moreover, since a feature
model incorporates the engineer’s knowledge of the sys-
tem (i.e., the interrelationships among the system’s func-
tional capabilities), it could be used to reduce the space of
valid configurations, and thus make the runtime analysis
very efficient. In that sense, features in our approach be-
long to the solution domain (i.e., software design and
construction phase) rather than the problem domain (i.e.,
requirements phase), where they have traditionally been
used in the software product line literature [16]. This no-
tion of features belonging to the solution domain is close-
ly aligned with how features have been used in the dy-
namic software product line literature [19–21].

The use of feature as an abstraction makes the FUSION
framework independent of how adaptation choices are
realized, and thereby allows FUSION to treat the man-
aged system as a black-box. For example, features may
correspond to configuration parameters that are ex-
pressed in configuration files as in Figure 3a. Features
may be realized using aspects that are weaved to the run-
ning system dynamically when the corresponding feature

Figure 2. Overview of the FUSION framework.

ESFAHANI ET AL.: A LEARNING-BASED FRAMEWORK FOR ENGINEERING FEATURE-ORIENTED SELF-ADAPTIVE SOFTWARE SYSTEMS 5

is enabled [22] as in Figure 3b. In this paper, we adopt a
particular realization of a feature: a feature represents an
extension of the architecture at well-defined variation
points as in Figure 3c. A feature maps to a subset of the
system’s software architecture. For example, Figure 1b
shows the mapping of Evidence Generation feature to a
subset of the TRS architecture, which then maps to the
platform specific representations of the running system.

Figure 1b shows a simple feature model for TRS. There
are seven features in the system and one common core.
The features in the example use two kinds of relation-
ships: dependency and mutual exclusion. The dependency
relationship indicates that a feature requires the presence
of another feature. For example, enabling the Evidence
Generation feature requires having the core feature enabled
as well. Mutual exclusion is another relationship, which
implies that if one of the features in a mutual group is en-
abled, the others must be disabled. For example, Per-
Request Authentication and Per-Session Authentication can-
not be enabled at the same time. Several other types of
feature relationships supported in FUSION are zero-or-
all-of, zero-or-one-of, at-least-one-of, and exactly-one-of.
Interested reader may find description of these relation-
ships in [16]. Section 7 demonstrates how features are
specified and mapped to the underlying software archi-
tecture in a tool support chain.

At runtime, the feature model is used to identify the
current system configuration in terms of a feature selec-
tion string. In a feature selection string, enabled features
are set to “1” and disabled features are set to “0”. For ex-
ample, one possible configuration of TRS would be
“1101111”, which means that all features from Figure 1b
would be enabled except Per-Request Authentication.

4.2 Goals

In FUSION, a goal represents the user’s functional or QoS
objectives for a particular execution scenario. A goal con-
sists of a metric and a utility. A metric is a measurable
quantity (e.g., response time) that can be obtained from a

running system. We revisit the issue of how metrics can
be obtained from the running system in Section 7.

A utility function is used to express the user’s prefer-
ences (satisfaction) for achieving a particular metric. For
instance, goal G1 in Figure 1a specifies the user’s degree of
satisfaction (U) with achieving a specific value of Quote
Response Time (M). FUSION places one constraint on the
range of utility functions: they need to return a value less
than zero for the metric values that are not acceptable to
the user. As will be discussed in Section 6.1, when a utili-
ty is less than or equal to zero, FUSION considers it as the
violation of the associated goal and initiates adaptation.

Elicitation of user’s preferences, while an important
prerequisite for using the framework, is a topic that has
been investigated extensively in the existing literature
[23], [24], and considered to be outside the focus of this
paper. FUSION is independent of the type of utility func-
tions and the approach employed in eliciting them. We
rely on these works in the development of FUSION’s
support for the elicitation of user’s QoS preference. Some
possible methods of eliciting user’s preferences include:
(1) discrete—select from a finite number of options (e.g., a
certain level of QoS for a given service is excellent, good,
bad, or very bad), (2) relative—a simple relationship or
ratio (e.g., 10% improvement in a given QoS has 20% util-
ity), and (3) constant feedback—input preferences based
on the delivered QoS at runtime (e.g., given a certain QoS
delivered at runtime ask for better, same, or ignore).

4.3 Contextual Factors

In FUSION, a contextual factor is a property of the compu-
tational environment that affects the system goals. A typi-
cal example of a contextual factor is the system’s work-
load. Workload affects performance related QoS goals,
such as response time. Security related goals may also be
sensitive to contextual factors. For instance, in the TRS
example, the location of a travel reservation agency is
used to change the type of authentication. In Section 5.2,
we describe how FUSION incorporates the impact of such
contextual factors in the management of software.

Figure 3. Features can be realized in many ways: (a) configuration parameters modified by the self-management layer at runtime and read by
running system; (b) aspects that are weaved into the running system when the corresponding feature is enabled; and (c) architecture mapping,
which then modifies the running system by adding/removing components.

6 IEEE TRANSACTIONS ON SOFTWARE ENGINEERING

4.4 Implications of Feature-Oriented Adaptation

In FUSION, the features serve as the interface between
the adaptation logic and the managed system. Figure 4
depicts how feature-orientation reduces the software ad-
aptation space. In the conventional architecture-based
adaptation (i.e., white-box approach), adaptation logic
operates on the full architectural configuration space, where
a vast majority of the configurations are either invalid or
simply not practical. Often the architectural configuration
space is exponential. For instance, recall from Section 2
that a system with N authentication protocols, M software
components, which may be deployed on P different
hardware platforms, is comprised of (MP possible deploy-
ments) N possible ways of authentication = MNP possible configurations.
Learning in such a large exponential space is infeasible.
That is because the number of possible configuration is
very large, applying machine learning techniques to infer
a predictive model that can determine the impact of a
given configuration on multiple quality attributes be-
comes impossible. Moreover, a large number of configu-
rations in such a setting are not even valid or practical.

In FUSION, instead of operating on the full architec-
tural configuration space, we use features to expose only
the configurations that the engineer deems practical and
eliminate others. The engineer represents the sensible
variation points as features. As mentioned in Section 4.1,
features take on boolean values (i.e., a feature can be ei-
ther “1” = enabled or “0” = disabled). Thus, the full adap-
tation space is limited to 2F, where F represents the set of
all the features exposed in the system. In addition, feature
relationships are used to constrain the space to those
combinations that are valid. This produces the valid fea-
ture selection space that provides a codification of the engi-
neer’s knowledge of practical adaptation choices.

In practice, the valid feature selection space is several or-
ders of magnitude smaller than the set of all possible con-
figurations for a software system. The key benefit of this
reduction is that learning becomes possible. On the other
hand, the feature-oriented adaptation limits the scope of
runtime adaptation to variations points that have been
deemed practical by the engineer prior to system’s de-
ployment. Therefore, feature-oriented adaptation exposes
only a subset of all possible ways in which a software
system can be adapted. These differences are due to the
tradeoffs between white-box and black-box adaptation,
and each approach has its own advantages. Since our ob-

jective in FUSION has been the ability to automatically
learn the impact of adaptations on system’s properties,
we have chosen the black-box adaptation model.

5 FUSION LEARNING CYCLE

FUSION copes with the changing dynamics of the system
through learning. Learning discovers relationships be-
tween features and metrics. Each relationship is repre-
sented as a function that quantifies the impact of features,
along with any other relevant contextual variables, on a
metric. In the subset of TRS depicted in Figure 1, for ex-
ample, the result of learning would be four functions, one
function for each of the four metrics MG1 through MG4.
Each function takes a feature selection and relevant con-
textual variables as input and produces an estimated val-
ue for the metric as output.

Learning is typically a computationally intensive pro-
cess. In particular, learning at the architectural-level is
infeasible for any sizable system, which is the reason why
its application in existing architecture-based adaptation
approaches has been limited. FUSION’s feature-oriented
model offers two opportunities for tackling the complexi-
ty of learning:

1. Learning operates on feature selection space, which
is significantly smaller than the traditional architec-
tural configuration space. The features in FUSION
encode the engineer’s domain knowledge of the
practical variation points in a given application.
For instance, the engineer may only consider a
small reasonable subset of MNP authentication
driven architectural choices (recall Section 2). Fig-
ure 1b shows two authentication strategies mod-
eled as features in TRS: F3 and F4. These two fea-
tures represent what the TRS security engineer
envisioned to be the reasonable applications of au-
thentication in the system.

2. By using the inter-feature relationships (e.g., mu-
tual exclusions, dependencies), one can signifi-
cantly reduce the feature selection space. For in-
stance, Figure 1b shows a mutual exclusion rela-
tionship between F3 and F4. This relationship is
manifestation of the domain knowledge that ap-
plying two authentication protocols to the same
execution scenario is not appropriate. Such rela-
tionships significantly reduce the feature selection
space down to the invalid ones, further aiding FU-
SION to learn their tradeoffs with respect to goals.

For instance, the feature model in Figure 1b yields a
space of 48 valid feature selections. Without considering
the inter-feature relationships to prune the invalid selec-
tions, the space of feature selection would have been
2number of features = 27= 128.

The rest of this section describes the two activities that
take place to populate and fine-tune the knowledge base.

5.1 Observe

As depicted in Figure 2, Observe starts the learning cycle.
Observe is a continuous execution of two activities: (1)
normalize raw metric values to make them suitable for

Figure 4: FUSION uses a feature model to incorporate the engi-
neers’ knowledge of configurations for the software system that are
both valid and practical.

ESFAHANI ET AL.: A LEARNING-BASED FRAMEWORK FOR ENGINEERING FEATURE-ORIENTED SELF-ADAPTIVE SOFTWARE SYSTEMS 7

learning, and (2) test the accuracy of learned functions.
We describe each of these activities below.

Learning in terms of raw data hampers the accuracy
when outliers are present. For instance, consider the fact
that some metric readings obtained from executing the
software system under a given feature selection may be
starkly different from the normal values due to a tempo-
rary usage spike.

To address this issue, Observe takes raw metric data
through an automated normalization process prior to
storing them as observation records. Normalized data
captures the relative relationship between configurations
with respect to a given metric, and thus reduces the effect
of outliers. Many normalization techniques can be ap-
plied to transform the learning inputs into a representa-
tion that is less sensitive to such temporary fluctuations.
In Table 1, observation records were normalized using
studentized residual [25] as follows: ����	����	 −	��/�,
where � and � are the mean and the standard deviation of
the collected data, respectively. Normalization using stu-
dentized residuals does not require knowledge of popula-
tion parameter, such as absolute min-max values and
population mean. It only requires knowledge of mean
and standard deviation for sample data.

Once a preliminary set of functions are learned (details
provided in the next section), Observe continuously tests
the accuracy of functions against the latest collected ob-
servations. Accuracy is defined as the difference between
predicted value of a metric using the learned functions
and actual observed value. For that purpose, we use the
learning error ratio provided by the learning algorithm
itself. Note that the majority of learning algorithms pro-
vide an error ratio that indicates the noise in learned func-
tions. On top of this, one may specify an additional mar-
gin of inaccuracy that can be tolerated, in cases where
running the learning algorithm frequently is too costly for
example. If the accuracy test fails, Observe takes this as an
indicator that either learning is incomplete or new pat-
terns of behavior are emerging in the system and, thus,
notifies the Induce activity to fine-tune the learned func-
tions using the latest set of observations.

5.2 Induce

Based on the collected observations, Induce (recall Figure
2) constructs several functions that estimate the impact of
making a feature selection on the corresponding metrics
at a given execution context. Induce executes two steps.

The first step is a significance test that determines the
features with the most significant impact on each metric.
This allows us to reduce the number of independent vari-
ables that learning needs to consider for each metric (also
known as feature extraction). After the significance test,
we apply the learning, which derives relationships be-
tween metrics and features using the normalized observa-
tions.

FUSION is not tied to a particular learning algorithm.
One particular algorithm that we have extensively used in
our implementation and evaluation is M5 model tree
(MT) [26], which is a machine learning technique with
three important properties: (1) ability to eliminate insig-
nificant features automatically, (2) fast training and con-
vergence, and (3) robustness to noise. Here, we describe
the approach assuming the use of MT, but later revisit
situations in which the metrics are discrete and such algo-
rithm is not applicable.

Table 2 shows an example of how the induced func-
tions look like. For the moment we have eliminated con-
textual factors (e.g., workload) from the table to simplify
the demonstration of the approach, but revisit this later in
the section. The empty cells correspond to insignificant
features. The information in this table can be represented
as a set of functions. For instance, a function estimating
the impact of features on MG1 corresponds to the second
column of the table as follows: ���=1.553F1– 0.673F2+0.709F3+0.163F1F3–0.843 (1)

Each feature is assigned a coefficient that is effective
only when the feature is enabled (i.e., it is set to “1”). For
example, the expected value of MG1 for a feature selection
where only F1 and F3 are enabled (i.e., feature selection is
“1010000”) can be calculated as follows: ���=1.553×1– 0.673×0+0.709×1+0.163×1×1– 0.843
 = 1.482

(2)

When making adaptation decisions, values obtained
from the induced functions (e.g., 1.482 from Eq. 2 above)
would need to be denormalized by using the inverse of
normalization equation presented in the previous section.
The denormalized value for a metric is then plugged into
the corresponding utility function to determine the im-
pact of feature selection on the goal.

Note that Induce could also learn the impact of feature
interactions on metrics. For example, Eq. 1 specifies that
enabling both F1 (Evidence Generation) and F3 (Per-Request

TABLE 1. NORMALIZED OBSERVATION RECORDS.

Independent Variables Dependent Variables

F1 F2 F3 F4 .. MG1 MG2 MG3 MG4 ..

..

0 0 0 1 .. -0.842 -0.308 1.432 0 ..

1 0 0 1 .. 0.650 0.513 1.371 2 ..

0 1 0 1 .. -1.470 -0.719 1.378 1 ..

0 0 1 0 .. -0.132 -0.103 0.740 0 ..

0 0 0 1 .. -0.736 -1.335 1.103 1 ..

1 0 1 0 .. 1.574 1.951 0.550 2 ..

1 1 0 1 .. 0.153 0.513 1.090 2 ..

1 1 1 0 .. 0.804 -0.513 0.562 2 ..

..

TABLE 2. LEARNED METRIC FUNCTIONS. AN EMPTY CELL MEANS

THE CORRESPONDING FEATURE HAS NO SIGNIFICANT IMPACT.

Significant

Variables

Induced Functions

MG1 MG2 MG3 MG4 ..

Core -0.843 -0.161 1.332 0 ..

F1 1.553 1.137 2 ..

F2 -0.673 -0.938 ..

F3 0.709 -0.672 ..

F4 -0.174 1 ..

F5

4 …

F6

0.244

…

F7

0.591

…

F1F3 0.163 ..

..

8 IEEE TRANSACTIONS ON SOFTWARE ENGINEERING

Authentication) increases	���. This is because according to
Table 2, F1F3 increases the response time by 0.163, which
decreases the utility of G1 (utility of G1 is shown in Figure
1a). Using Figure 1c we can explain this feature interac-
tion effect as follows. F1 introduces a delay by adding a
mediator connector, called Log, which records the transac-
tions with remote travel agents. At the same time, F3
changes the behavior of the Log, as it causes an additional
delay in mediating the exchange of per-request authenti-
cation credentials. Enabling the two features at the same
time has a negative ramification that is beyond the indi-
vidual impact of each.

In some cases, learning may need to incorporate some
contextual factors as independent variables, due to their
impact on metrics. Consider a system with drastically
different workloads. In that case, the result of learning
would be a set of equations that estimate the impact of
feature selection in different contexts. For example, the
following equations estimate the impact of feature selec-
tion on MG1 under different workloads (�):
��� = � �. ���1 − �. ���2 + �. ��3 � ≤ 1.21�. � �1 − �. �!�2 + �. ��3 1.21 < � ≤ 1.29$. ���1 + $. !!�3 + $. ���1�3 � > 1.29

Where � is the average inter-arrival time between re-
quests in milliseconds; lower inter-arrival time implies
higher workload. Here, the generated functions indicate
that TRS reaches saturation when � is in the range of
1.21–1.29 milliseconds. Since the impact of features on
MG1 changes dramatically in that range, the learning algo-
rithm produces a separate equation targeted at that.
These equations do not necessarily need to be linear, and
may be of the type (e.g., linear, sigmoid, exponential, etc.)
that best captures the impact of context on the system.

Other methods of representing feature-metric relation-
ships (i.e., induced functions) are needed in the case of
discrete metrics. Here, classification-based algorithms [27]
are more suitable, as they can efficiently represent such
relationships in the form of decision trees [28]. For exam-
ple, in TRS, the accountability metric (G4 in Figure 1a) can
take on five discrete values: Very-Low=0, Low=1, Medi-
um=2, High=3, and Very-High=4. FUSION uses a classifi-
cation-based learning algorithm, such as decision trees,
which produce a set of rules in the form of implications.
In order to be able to apply a utility function to such met-
rics, they must be converted to a branch function:

��& = '(�) = 1) → 4(�� = 1) → 2(�& = 1) → 1	��	 → 0

In the above example, the learning algorithm has in-
ferred that selecting features F5, F1, and F4 set the ac-
countability metric to values Very-High=4, Medium=2, and
Low=1, respectively, while other features have no signifi-
cant impact on accountability. Given the step function
representing the corresponding utility function (MG4 in
Figure 1a), selection of F5, F1, or F4 results in the same
outcome, as they all achieve the maximum utility of 1.
When we have a combination of continuous and discrete
metrics, FUSION leverages sophisticated learning algo-

rithms, such as CART [29] and MARSplines [30], which
automatically combine the decision tree functions with
regressed functions to arrive at regression tree functions
that can be used to simultaneously reason about both con-
tinuous and discrete metrics.

6 FUSION ADAPTATION CYCLE

In this section, we describe how Detect, Plan and Effect use
the learned knowledge to adapt a software system in FU-
SION. The underlying principle guiding the adaptation
strategy in FUSION is: if the system works (i.e., satisfies the
user), do not change it; when it breaks, find the best fix for only
the broken part. While intuitive, this approach sets FU-
SION apart from many of the existing works that either
attempt to continuously optimize the entire system, or
solely solve the constraints (i.e., violated goals). FUSION
adopts a middle ground, which we believe to be the most
sensible, and achieves the following objectives:

1. Reduce Interruption: Adaptation typically inter-
rupts the system’s operation (e.g., transient una-
vailability of certain functionality). In turn, even if
at runtime a solution with a higher utility is found,
one may opt not to adapt the system to avoid such
interruptions. FUSION reduces interruptions by
adapting the system only when a goal is violated.

2. Efficient Analysis: Often in runtime adaptation, the
performance of analysis is crucial. FUSION uses
the learned knowledge to scope the analysis to on-
ly the parts of the system that are affected by the
adaptation, hence making it significantly more ef-
ficient than assessing the entire system.

3. Stable Fix: Given the overhead and interruption as-
sociated with adaptation, effecting solutions that
provide a temporary fix is not a desirable ap-
proach. We would like FUSION to minimize re-
current adaptation of the system caused by the
same problem. To that end, instead of simply satis-
fying the violated goals, FUSION finds a near op-
timal solution that is less likely to be broken due to
fluctuations in the system.

6.1 Detect

The adaptation cycle is initiated as soon as Detect deter-
mines a goal violation. This is achieved by monitoring the
utility functions (recall Section 4.2). A utility function
serves two purposes in the adaptation cycle: (1) when the
metric values are unacceptable, returns zero or a negative
value greater than “– 1” to indicate a violated goal, and
(2) when the metrics satisfy the minimum, returns a posi-
tive value less than “1” to indicate the user’s preference
for improvement. Therefore, utility in FUSION has dual
purpose: not only is it used to initiate adaptation, but to
also perform tradeoff analysis between feature selections,
such that an optimization of the system can be achieved.

6.2 Plan

To achieve the adaptation objectives, FUSION relies on
the knowledge base to generate an optimization problem
tailored to the running software:

ESFAHANI ET AL.: A LEARNING-BASED FRAMEWORK FOR ENGINEERING FEATURE-ORIENTED SELF-ADAPTIVE SOFTWARE SYSTEMS 9

• Given a violated goal, we use the knowledge base
to eliminate all of the features with no significant
impact on the goal. We call the list of features that
may affect a given goal Shared Features. Consider a
situation in the TRS where G2 is violated. By refer-
ring to column MG2 in Table 2, we can eliminate
features F3, F5, F6, and F7 since they have no impact
on G2’s metric. In this example Shared Fea-
tures={F1,F2,F4}.

• Shared Features represent our adaptation parame-
ters. These features may also affect other goals, the
set of which we call the Conflicting Goals. To detect
the conflicts, again we use the knowledge base, ex-
cept this time we backtrack the learned functions.
For each feature in the Shared Features we find the
corresponding row in Table 2, and find the other
metrics that the feature affects. In the above exam-
ple, we can see that features F1, F2, and F4 also af-
fect metrics MG1 and MG4, and hence the corre-
sponding goals, G1 and G4.

By using the knowledge base, FUSION generates an
optimization problem customized to the problem in the
running software system. The objective is to find a selec-
tion of Shared Features, F*, that maximizes the system’s
overall utility for the Conflicting Goals given the set of all
features F: �∗ = ��/0�12	∈	456789286:;78< = >?(�?(�))∀?∈ABCDEFG:FC?�B6E<

Where 	>? represents the utility function associated
with the metric 	�? for goal / (recall Figure 1a). Since we
do not want the solution to violate any of the conflicting
goals, the problem is subject to: ∀/ ∈ HIJK�LMNLJ/OI���, 	>?(�?(�)) > 0

Note that we do not need to include the goals that are
unaffected by Shared Features. We then apply feature
model constraints to the optimization problem. Table 3
demonstrates formulation of additional feature model
constraints. For example, to prevent feature selections
that violate the mutual exclusion, we specify the follow-
ing constraint for each exactly-one-of-group: = KG = 1∀DQ∈	8R6G:ESTBC8TBDT?7B;U

Here, when more than one feature from the same mu-
tually exclusive group is selected, the left hand side of the
inequality brings the total to greater than 1 and violates
the constraint. Similarly, we ensure the dependency rela-
tionship as follows: ∀KG5FE9 ∈ Vℎ��	X�	�N��	�, KU678C: − KG5FE9 ≥ 0

The above inequality does not hold if a dependent fea-
ture is enabled without its parent being enabled. Apply-
ing this formulation to the TRS scenario in which G2 is
violated generates the following optimization problem:

Shared features = {F1, F2, F4} ��/0�1(2)>��(���(�)) + >�Z(��Z(�)) + >�&(��&(�))
Subject to >��(���(�)) > 0 >�Z���Z(�)� > 0 >�&���&(�)� > 0 �[+ �& ≤ 1
Where MG1=1.553 F1- 0.673 F2+0.709 F3+0.163 F1F3- 0.843

MG2=1.137 F1 - 0.938 F2 - 0.174 F4- 0.161

��& = '(�) = 1) → 4(�� = 1) → 2(�& = 1) → 1	��	 → 0

By eliminating F3, F5, F6, and F7, as well as >�[from the
optimization problem, we obtain a smaller problem that
is tailored to the violated goals. The customized problem
has less number of features and goals than the original
problem. As will be shown in Section 8, in large software
systems, by pruning the features and goals from the op-
timization problem, FUSION achieves significant perfor-
mance gains with negligible degradation in the quality
(accuracy) of adaptation decisions. By representing each
feature with a binary decision variable, we solve the op-
timization problem using well-known Integer Program-
ming Solvers [31], which provision the optimal solution.
Stochastic algorithms, such as greedy and genetic [32], that
rely on FUSION specific heuristics can also be used for
providing near-optimal solutions very fast. However,
stochastic algorithms are outside the scope of this paper.

Note that feature interaction terms (e.g., F1F3) make the
optimization problem nonlinear. If such terms are present
in the tailored problem, we use conventional techniques,
such as replacing them with auxiliary variables (e.g.,
[33]), to obtain a linear version of the problem.

TABLE 3. CONSTRAINTS FOR ENCODING THE FEATURE RELATIONSHIPS IN THE OPTIMIZATION PROBLEM GENERATED BY PLAN.

Feature Relation Optimization Constraint Variability Type

«zero-or-one-of-group» = KG ≤ 1∀DQ∈	\87BTB7TBC8TBDT?7B;U Optional

«exactly-one-of-group» = KG = 1∀DQ∈	8R6G:ESTBC8TBDT?7B;U Mandatory

«at-least-one-of-group» = KG ≥ 1∀DQ∈	6:TE86<:TBC8TBDT?7B;U Mandatory

«zero-or-all-of-group» = KG∀DQ∈		\87BTB7T6EETBDT?7B;U 0IX] = 0 Optional

Feature Dependency ∀KG5FE9 ∈ Vℎ��	X�	�N��	�, KU678C: − KG5FE9 ≥ 0 Based on type of “Child” feature

10 IEEE TRANSACTIONS ON SOFTWARE ENGINEERING

6.3 Effect

Once the Plan activity has found a new feature selection,
it is passed to Effect for placing the system in the target
configuration (recall Figure 2). Effect is responsible for
choosing a path containing several adaptation steps (i.e.,
enable/disable features) towards the new feature selec-
tion. Depending on how features are mapped to the run-
ning software system, each step in turn may require mak-
ing several changes to the running software. Since there
are many possible paths to reach a target feature selec-
tion, Effect is responsible for picking a path that satisfies
feature model constraints in addition to system goals. In
our prior work [15], the managed system was transitioned
to the target configuration without considering the impli-
cations on the goals during the adaptation process. This
resulted in transient degradation of metrics and subse-
quently violating the goals until the system reached the
target configuration. In this section, we present a novel
algorithm, based on A* search algorithm [32], that uses
the learned knowledge to find a path that altogether elim-
inates, and if not possible minimizes the extent of, goal
violations during the adaptation process.

Figure 5 presents the Effect algorithm—a heuristics-
based search algorithm that finds a suitable adaptation
path. The function calls that are underlined are either
simple functions with straightforward implementation
and descriptive names (i.e., createNode and backtrack) or
described in the following paragraphs (i.e., expand).

There are many possible paths to reach a target feature
selection. Some of these paths may create inconsistent
feature selections. For instance, in the TRS example, ena-
bling F3 and F4 at the same time produces a feature selec-
tion that violates the mutual exclusion relationship in the
feature model. If two features are mutually exclusive, the
system should never be in a state where both features are
enabled. Similarly, dependent features should never be
enabled without their prerequisites being enabled. The
Effect algorithm uses expand to create candidates for each
step of the path. Since expand adheres to feature model
constraints, there are no invalid feature selection along
the path calculated by Effect.

More formally, each step has a different type (N ∈ ^)
such as, enable or disable for an optional feature, or swap of
two features for a mutually exclusive group. Recall from
Section 6.2, set � corresponds to the adaptation units. In
turn, we define the set of all possible adaptation steps as V = ^⨂�. Note that some adaptation steps may not be
valid for a given feature selection. For instance, when an
optional feature is already enabled it cannot be enabled
again. We call a set of consecutive adaptation steps an
adaptation path, denoted as π, which transitions the cur-
rent feature selection towards another feature selection: a = b�bZb[…b|e|: (bF ∈ V).

As shown below, we can reduce the problem of find-
ing such path to a graph search problem. To model the
problem as a graph, we first define the set of nodes (g)
and edges (h). We define each node � ∈ g to be a feature
selection. Similar to Table 1, we encode each feature selec-
tion as a binary string i�iZ…iC;jk87	BD	D86:;78<, where

each bit reflects the status of corresponding feature
(il = 1 if Fj is enabled and il = 0 if Fj is disabled). We de-

fine edge 	 ∈ h to be an adaptation step that transitions
one feature selection to another: 	 = �<7G m→ �9<:, where b ∈ V. A simple path through this graph is defined as �<7G mn→ �� …�oT� mpqr �9<:, assuming none of the nodes are
repeated (we are not interested in cycles or paths with
cycles in them). If we call this path π, we have a =b�bZ…bo and |a| = s. In other words, a path through this
graph corresponds to an adaptation path, which transitions
the system from the feature selection encoded in the
source node �<7G towards the feature selection encoded in
the destination node �9<:.

To search through the graph, we have developed an
algorithm with an admissible heuristic. A heuristic is ad-
missible (also known as optimistic) if it is no more than
the lowest-cost path to the goal [32]. As a result, although
our algorithm is heuristic-based and does not search the

//src: Source feature selection

//dst: Destination feature selection

//insig: Insignificant features

//featureModel: The feature model

List<Node> effect(src, dst, insig, featureModel) {

 visited = new Set<Node>

 queue = new PriorityQueue<Node>

 Node source = createNode(src, featureModel)

 Node destination = createNode(dst, featureModel)

 source.parent = null

 queue.push(source)

 while (! queue.isEmpty()) {

 Node extracted = queue.pop()

 if (extracted.equals(destination))

 return backtrack(extracted)

 //expand preserves the feature model constraints

 //it does not consider insignificant features

 List<Node> neighborhood =

 expand(extracted, featureModel, insig)

 for each (Node v in neighborhood) {

 if (visited.contains(v))

 continue

 if (! queue.contains(v)) {

 v.parent = extracted

 queue.push(v)

 } else {

 Node n = queue.get(v)

 if (g(extracted) + 1 < g(n)) {

 queue.remove(n)

 n.parent = extracted

 queue.push(n)

 }

 }

 }

 visited.push(extracted)

 }

 return failure

}

Node{

 String features

 Node parent

 boolean equals(that) {

 return this.features.equals(that.features)

 }

}

Figure 5. Effect heuristics-based path search algorithm.

ESFAHANI ET AL.: A LEARNING-BASED FRAMEWORK FOR ENGINEERING FEATURE-ORIENTED SELF-ADAPTIVE SOFTWARE SYSTEMS 11

entire space, it is guaranteed to find a solution that is op-
timal. The search is based on the following values: 1. Minimum distance h(�F) represents the total number

of features required in the best case to go from the
current feature selection �F to target �9<:. We can
simply calculate this by counting the number of
ones after applying bitwise XOR operator on the
binary representations of those feature selections.
For example, given �F= 1110111 and a target con-
figuration �9<:= 0010111, h(1110111)=2, since 1110111⨁	0010111=1100000.	

2. Adaptation cost /(π) represents the inconvenience
due to adaption of a software system. One such
inconvenience is the interruption to the operations
of a running software system, e.g., delay due to
the queuing of messages sent to the component be-
ing adapted. For the sake of simplicity, we define
the cost of a path to be the number of its steps: /(π) = |π|. However, FUSION could be extended
to use more complicated path cost functions.

3. Utility loss u(π) represents the extent to which sys-
tem goals are violated during the adaptation path π. Based on the knowledge we obtained in the
learning cycle (recall Table 2), we can calculate the
utility loss as follows: v(�F) = |w >?(�F)∀?∈xFBE6:89	�B6E< |, where Violated

Goals are goals that have a utility less than zero at
vertex �F. Intuitively, y takes the absolute value of
the sum of all negative utilities at a given feature
selection. We define the utility loss of a path to be
the utility loss of the worst adaptation step in that
path: u(π) = max|}F}|~| v(�F).

We let K(�F) = /(aF) + ℎ(�F) represent the admissible
heuristic for exploring the graph. Intuitively, K(�F) repre-
sents the overall cost of adaptation, where /(aF) represent
the cost so far (i.e., up to vertex �F), while ℎ(�F) represents
the expected minimum future cost (i.e., after vertex �F).
Alternatively, if the actual overhead of adaptation steps
are known (e.g., through benchmarking of the system),
one could use the actual adaptation costs in / and ℎ. For
the sake of simplicity, however, we assume all
adaptations have the same weight, and as becomes clear
later in this section, we use this to stir the algorithm away
from adaptation paths that are very long.

The feature selections that are steps of the path (i.e.,
nodes) toward the target feature selection are inserted in a
priority queue. The queue uses the following policy to
priorities the vertexes in the queue: Vertex �F has a higher
priority than vertex �l, if u(aF) < u�al�. However, if u(aF) =u�al�, vertex �F has a higher priority if K(�F) < K(�l). Other-
wise, in the case of a tie (i.e.,	u(aF) = u�al� and K(�F) =K(�l)), one of the nodes is non-deterministically selected.

The first item in this order is always the head of the
priority queue. The above heuristic gives priority to find-
ing a path that does not degrade the utility of the system,
while aiming to reduce the amount of changes required to
software system when there are no utility tradeoffs. Cur-
rently, and given the way u(π) is defined, FUSION aims
to reduce the most severe utility degradation in a path.

An alternative approach would be to reduce the accumu-
lated goal violation in a path.

Effect algorithm creates the graph gradually (directed
by the heuristic) as it progresses and does not assume a
complete graph to be present. Given the Conflicting Goals,
FUSION uses the knowledge base (recall Table 2) to elim-
inate the insignificant features. We can eliminate them,
since they are not going to have a significant impact on
the Conflicting Goals. This drastically reduces the neigh-
borhood size of each vertex, which as will be shown in
Section 8 improves the performance of the algorithm sub-
stantially.

Interested reader may find a detail example illustrating
the steps taken by Effect algorithm in managing TRS in
Appendix A.

7 IMPLEMENTATION ENVIRONMENT

Figure 6 shows snapshots of a prototype implementation
of FUSION. This figure closely matches the structure of
Figure 1 and illustrates the realization of the modeling
concepts in FUSION. Each part in Figure 6 is developed
using a dedicated editor as described in the remainder of
this section. As mentioned in Section 4.1, although other
realizations are possible, a feature in our approach is real-
ized as an extension of the software architecture at well-
defined variation points. For example, Adhoc Reports fea-
ture in Figure 6b is realized using the architectural frag-
ment Adhoc Reports in Figure 6c, which extends the TRS’s
base architecture. The TRS base architecture itself (depict-
ed on the left side of Figure 6c) is the realization of Travel
Reservation System core feature, which by default is pre-
sent in all possible configurations of TRS.

FUSION’s tool support is developed according to the
three-layer reference architecture from [1]. These layers
target the three kinds of concern in a self-adaptive soft-
ware system: goal management, change management, and
component control [1]. FUSION itself fits in the goal man-
agement layer (i.e., Figure 6a and Figure 6b). We have
realized support for the other two layers by building on
tools developed in the prior work. The change manage-
ment layer is realized on top of XTEAM [34]—an extensi-
ble architectural description and analysis environment (a
screen shot of which is depicted in Figure 6c). Finally, the
component control layer is realized on top of Prism-MW
[35]—a middleware environment aimed at architecture-
based software development, with extensive support for
runtime monitoring and runtime adaptation of the soft-
ware.

Since self-adaptation concerns reside at different levels
of abstraction, it is impractical to use a single modeling
language to capture all self-adaptation concerns. To that
end, our tool suite uses Online Model Driven Architecting
(Online MDA) to relate concepts at different layers of ab-
straction. The overall architecture of tool-suite is depicted
in Figure 7, where models and transformations are used
at runtime to realize a hierarchical control loop. For ex-
ample, enabling the AdHoc Reports feature in Figure 6b
triggers a transformation rule that effects the correspond-
ing AdHoc Reports architectural fragment in Figure 6c,

12 IEEE TRANSACTIONS ON SOFTWARE ENGINEERING

which then deploys the corresponding components and
connectors into the running system.

The following subsections describe the tool-suite in
more detail. We first provide an overview of the meta-
models representing the underlying semantics of the
models of the three layers of self-adaptation. Afterwards,
we describe how the changes propagate among the mod-
els through transformation rules that are defined at the
meta-model level (i.e., online transformations in Figure 7).
Interested reader could find additional details about the
tool support and the downloadable artifacts on FUSION’s
home page [44].

FUSION’s tool-suite has been developed to the extent
necessary to manage a few targets. We believe some effort
would be required to extend our tool support for manag-
ing applications that are different from those used as case
studies. For instance, the meta-models presented in the
following subsections could be customized and extended
with the additional properties that would need to be cap-
tured in different application domains.

7.1 Goal Management

As alluded to earlier, FUSION provides the goal man-
agement capabilities. Figure 8 depicts a portion of its me-
ta-model. An example of the corresponding concrete syn-
tax for the TRS system is depicted in Figure 6a and b. We
have realized FUSION’s modeling capabilities on top of
the Generic Modeling Environment (GME) [36]—a con-
figurable toolkit for creating domain-specific modeling
and program synthesis environments. GME provides an
extensible meta-meta-modeling language that could be
used to define a meta-model describing the semantic and

syntax of a domain-specific modeling language. GME
also provides the ability to compile the meta-models con-
structed in this way into an instantiated environment,
where models complying to the rules of the constructed
language can be developed using an editor. Domain-
specific models constructed in this way can be program-
matically accessed and manipulated using GME’s API.

The feature model editor developed in this way and
depicted in Figure 6b allows the engineer to develop the
feature models following the approach in [16]. FUSION’s
feature modeling language is comprised of Feature and
Feature Group elements. From Figure 8, we can see that
each Feature is associated with an attribute, called selected,
which is used to capture the runtime state of that feature.
If the feature is enabled, the selected attribute takes the
value of “1”; otherwise, it takes the value “0”.

A Feature can be of one of the following types: (1) Core:

Figure 6. Subset of TRS in our prototype implementation of FUSION: (a) goals and metrics; (b) feature model; and (c) implementations of
Core and Adhoc Reports features.

Figure 7. Self-Adaptation tool support using Online MDA.

ESFAHANI ET AL.: A LEARNING-BASED FRAMEWORK FOR ENGINEERING FEATURE-ORIENTED SELF-ADAPTIVE SOFTWARE SYSTEMS 13

must be enabled at all times; (2) Optional: may be ena-
bled/disabled at runtime; (3) Alternative: can be enabled
only when all features under mutual exclusive relation-
ship are disabled; (4) Default: a special kind of Alternative
feature that is enabled by default at system start up time.

Feature Group model elements are used to capture the
following feature inter-relationships: (1) Exactly-one-of-
group: captures a mutual exclusion relationship among all
features associated with it, where one-and-only-one fea-
ture must be enabled; (2) Zero-or-one-of-group: also cap-
tures a mutual exclusion relationship except in this case
the system can operate without any of the features ena-
bled; (3) At-least-one-of-group: captures a mandatory varia-
tion at which multiple features may be enabled; (4) Zero-
or-all-of-group: captures a mutual inclusion relationship,
that is either all features are enabled or none.

In addition, a number of consistency rules apply to the
feature model both at design time and runtime. Such con-
sistency rules are captured using the Object Constraint
Language (OCL). Some examples of design time con-
sistency rules that apply to the feature model are: core
feature cannot depend on an optional feature, Exactly-one-
of groups must include one Default feature, Optional fea-
tures shall not be part of an Exactly-one-of group, etc.

The goal model editor (depicted in Figure 6a) supports
two types of model elements. The first type of modeling
element is Goal, which can be of a number of subtypes
(i.e., Linear, Step-Function, Exponential, and Sigmoid),
corresponding to commonly used utility function tem-
plates. The second type of modeling element is Metric,
which can be either Continuous or Discrete. While the FU-
SION metal-model depicted in Figure 8 is rich enough to
represent the goals used in case studies in which FUSION
has been applied, it may not be enough to capture goals
that may arise in other application domains. In such a
case, the FUSION meta-model would need to be extended
using the GME’s meta-model editor.

7.2 Change Management

We have realized the support for Change Management by
extending XTEAM, an architectural modeling and analy-
sis environment developed in [34] for representation of
the system’s software architecture. XTEAM supports
modeling of a system’s software architecture using heter-
ogeneous Architectural Description Languages (ADLs)
[18], where each ADL is suitable for representing a par-
ticular concern. For instance, XTEAM supports Finite

State Processes (FSP) [37] and eXtensible Architectural
Description Language (xADL) [38] for modeling the be-
havioral and structural properties of software system,
respectively.

Notable portions of XTEAM’s meta-models are depict-
ed in Figure 9. The models are organized in Architecture-
Folders. Each ArchitectureFolder may contain one or more
Architectures. The internal structure of the architecture is
defined in terms of Components (i.e., independently de-
ployable software units) that interact using Connectors
(i.e., communication links). A snapshot of XTEAM’s
model for a subset of TRS is shown in Figure 6c. The
TRS’s ArchitectureFolders are: TRS Web, TRS Agents, and
TRS Backend. The TRS Backend architecture has three in-
terfaces: IQuote, IBooking, and IReport. Internally, TRS
Backend is composed of four components, which are
Quote Processor, Payment Processor, Agents Interface, and
Master Data Hub. Components interact through connector
links. Each Component implements several Finite State
Processes. An FSP contains a number of Activities that
process incoming messages from an interface of the com-
ponent. Activities essentially represent the system’s func-
tionalities. For example, as shown in Figure 6c, the TRS
Backend architecture contains two FSPs representing the
bookFlight and buildReport processes, handling messages
coming from the IBooking and IReports interfaces, respec-
tively.

We have extended XTEAM to provide the means for
change management. A Fragment, for instance, is an archi-
tectural snippet that can be weaved into the core architec-
ture at well-defined variation points using change man-
agement operators (i.e., <<create>> and <<delete>>). The
architectural fragment uses references to the model ele-
ments in the core architecture to specify the insertion
points for the changes using the technique developed in
MATA [22]. For example, Figure 6c shows the impact of
weaving the Adhoc Reports’ fragment on the core architec-
tural model, which results in the addition of Report Builder
and Report Generator components, some connector modifi-
cations, and the new Customize() step in the buildReport
activity of TRS Backend architecture. The stereotypes
<<create>> and <<delete>> in Figure 6c are realizations of
the two ChangeAction types depicted in Figure 9.

We have also extended XTEAM to capture runtime
state information. For instance, the enacted attribute of a

Figure 9. XTEAM change management meta-model.

Figure 8. FUSION goal management meta-model.

14 IEEE TRANSACTIONS ON SOFTWARE ENGINEERING

Fragment (runtime state information marked red in Figure
9) is used to identify if the fragment is weaved into the
base architecture. When weaved, it takes the value “1”;
otherwise, it takes the value “0”. Similarly, Interfaces that
are associated with the Gauge stereotype capture runtime
state information. Figure 6c highlights the Quote Response
Time interface, which acts as a Gauge that collects round-
trip time for request-response message exchange in the
architecture. The gauge captures round-trip response
time using the gaugeVal attribute depicted in Figure 9.
This value comes from the underlying component control
layer, as discussed next.

7.3 Component Control

We have provided support for component control layer
using Prism-MW [35]. Prism-MW is an architectural mid-
dleware platform, meaning it provides one-to-one map-
ping between the architectural concepts and their pro-
gramming-level counterparts. It provides programming-
level constructs for realizing the architectural concepts,
such as components, connectors, ports, architectural
styles, etc. It also serves as a container for managing their
lifecycle, with operations for creating, manipulating, and
destroying instances of those objects.

These programming-level abstractions enable direct
mapping between a system’s software architectural mod-
el and its implementation. To implement a software com-
ponent, the developer extends the Component class and
provides the application logic by overwriting some of its
abstract methods. Prism-MW also provides numerous off-
the-shelf facilities, such as Connectors, Ports, and event
handling and routing capabilities that the developer can
use in the construction of a software system. To bootstrap
a software system, the developer first instantiates an Ar-
chitecture object, which acts a container for the system,
and then uses its add and weld methods to create and con-
nect software components, respectively. A partial meta-
model of Prism-MW is depicted in Figure 10. For a more
detailed description of Prism-MW and its facilities, we
refer the interested reader to [35].

Prism-MW provides three key capabilities that make it
a suitable runtime platform for our research. First, it pro-
vides support for architecture-based development, which
makes it straightforward to map from XTEAM’s architec-
tural models to a software system executing on top of
Prism-MW. Second, it provides architecture-level dyna-
mism (e.g., adding/removing software compo-
nents/connectors), as well as support for ensuring those
adaptations do not jeopardize the system’s functionality
[39]. Third, it provides extensive instrumentation and
probing capabilities to monitor the system’s execution.

7.4 Runtime Integration Architecture

Each layer of self-adaptation has an online model based
on the corresponding meta-model that we discussed in
Sections 7.1, 7.2, and 7.3. As demonstrated in Figure 7, the
interactions between these layers are through transfor-
mations defined between these online models. Adapta-
tion is achieved through downward transformations,
while monitoring is done through upward transfor-

mations. As a result, the platforms used for each layer of
self-adaptation do not interface directly with each other.

Each transformation automatically detects changes in
its source model and incrementally propagates the
changes to the target model. Whenever the tagged-value
that corresponds to the state of a feature in FUSION mod-
el (i.e., selected attribute) is changed, a transformation rule
is triggered. The change is propagated down to XTEAM
by changing the state of the corresponding architectural
fragment (i.e., enacted attribute). As a result, XTEAM
weaves the new architectural elements that belong to the
fragment into the core architecture. The change further
cascades down to Prism-MW and results in modification
of the running system. Monitoring works in the reverse
order. When probeVal (recall Figure 10) changes, snapshot,
and in turn, gaugeVal (recall Figure 9) are updated. Final-
ly, as a result of change in gaugeVal, metricVal (recall Fig-
ure 8) is also changed to represent the most up-to-date
measurements.

The connection between goal management and change
management layers is realized through model-to-model
transformations, while the connection between change
management and component control layers is realized
through model-to-code transformations.

Model-to-model transformations are defined at the me-
ta-model level using QVT-Relations [40]. QVT-Relations
language enables a source model to be transformed into a
target model by applying a set of transformation rules.
Each rule is expressed declaratively as a relation between
two patterns (i.e., source and target patterns). A pattern
match is accomplished, if and only if, all variables depict-
ed in the pattern are bound to elements in the models.
The when construct is used to express a precondition for
the execution of the transformation rule. Transformation
rules can be either one-way (forward or backward) or bi-
directional. The efficiency of such incremental transfor-
mations and their feasibility for use at runtime has been
shown in [41].

Figure 11 depicts FUSION-to-XTEAM, which is the
transformation bridge that maps goal management con-
cepts to change management concepts in the two meta-
models. FeatureToFragment relation maps a Feature in FU-
SION to a Fragment in XTEAM. As a precondition, the
name of the ArchitecureFolder associated with the frag-
ment must match the name of the feature. For example,
the Adhoc Reports feature in Figure 6b maps to the Adhoc

Figure 10. Prism-MW component control meta-model.

ESFAHANI ET AL.: A LEARNING-BASED FRAMEWORK FOR ENGINEERING FEATURE-ORIENTED SELF-ADAPTIVE SOFTWARE SYSTEMS 15

Reports fragment in Figure 6c, since they both have the
same name. Note that the name of a fragment comes from
the name of the ArchitectureFolder to which the stereotype
is attached. Similarly, the MetricToGauge relation maps a
Metric in the FUSION models (e.g., M1: Quote Response
Time in Figure 6a) to a Gauge in the XTEAM models if the
names match.

The adapt relation in Figure 11 maps the selected attrib-
ute in FUSION to enacted attribute in XTEAM. To make
sure that the attributes on both sides correspond to each
other, a precondition is defined to verify that the owning
feature matches the owning fragment by chaining adapt
relation to FeatureToFragment relation. Note that adapt is
defined as an incremental transformation; it is triggered
to execute dynamically whenever the selected attribute of
a feature is modified without affecting other parts of the
model. As a result, only the corresponding enacted attrib-
ute in the XTEAM model will be updated to have the
same value.

Similarly, the monitor relation in Figure 11 maps the
guageVal attribute of a Gauge in XTEAM to a metricVal
attribute in FUSION, when the owning fragment and fea-
ture match. The key difference between monitor and adapt
is that monitor operates in the reverse direction. The rela-
tion listens to modifications of gaugeVal in XTEAM so that
it can propagate them to FUSION.

Table 4 shows some of the model-to-code transfor-

mation rules for connecting change management layer
(i.e., XTEAM) to component control layer (i.e., Prism-
MW). For instance, applying the <<create>> stereotype to
Report Builder component in the Adhoc Reports fragment
corresponds to generating a command in Prism-MW that
adds the component to the TRS Agent. The transformation
also keeps the model and the code in sync with respect to
runtime state information. When Prism-MW updates the
value of probeVal to capture the most recent readings, the
transformation passes the value upward to the snapshot
attribute in the XTEAM’s online model.

The online models at each layer of self-adaptation are
programmatically accessible. The activities depicted in
Figure 2 (e.g., Induce, Plan, Effect) are realized as inde-
pendently deployable programming modules that oper-
ate on the online FUSION model, as well as the
knowledge base stored in a relational database. These
modules also interact with a number of tools. For in-
stance, Induce uses WEKA API [42], which provides an
open-source implementation of learning algorithms.
Moreover, the transformation from snapshot to gaugeVal in
the XTEAM model is achieved by a programming mod-
ule, which implements a running average algorithm.

8 EXPERIMENT SETUP

We conducted our experiments on an extended version of
TRS, which consists of 78 features and 8 goals. Figure 12
depicts a portion of the system. TRS offers services in five
major business process areas (i.e., Flights, Hotels, Car Rent-
al, and Account Management). Each of the first three busi-
ness process area (i.e., Flights, Hotels, and Car Rentals),
involves four use cases that execute consecutively as fol-
lows:

1. Price Quotes: Collects trip details from the custom-
er, discovers travel agent service providers to get a
price quote, and returns a filtered list of quotes to
the customer.

2. Booking: Allows the user to select one of the
quotes, which is obtained from the previous use
case, and then proceeds with selecting detailed
preferences. In some cases, customer preferences,
such as choosing aisle/window seat, may involve
several rounds of interaction with the travel agent.

3. Payment Processing: Collects customer payment in-
formation and interacts with a credit card pro-
cessing service provider. Successful transactions
result in updating the user profile, which is main-
tained for each customer, to determine future dis-
counts and travel packages.

TABLE 4. TRANSFORMING A SUBSET OF XTEAM’S CHANGE
MANAGEMENT OPERATORS TO PRISM-MW CODE FRAGMENT.

Architecture Adaptation

Prism-MW Operation Adaptation

Operator

Type of

Artifact

<<create>> Component Architecture.add(Component c)

<<delete>> Component Architecture.remove(Component c)

<<create>> Connector
Architecture.weld(Component a,

Component b)

<<delete>> Connector
Architecture.unweld(Component a,

Component b)

Figure 11. FUSION-to-XTEAM transformation definition.

16 IEEE TRANSACTIONS ON SOFTWARE ENGINEERING

4. Travel Packages: Offers comprehensive travel pack-
ages (i.e., from other business process areas) to the
customer based on trip destination and user pro-
file history. Frequent customers qualify for addi-
tional discounts on travel packages.

For two of the business process areas (i.e., Flights and
Hotels), we identified four QoS goals that are critical for
the stakeholders of the system. Table 5 depicts the QoS
goals for the Flights business process area along with their
key characteristics, which are further described as fol-
lows:

1. Quote Response Time: aims to minimize the total
roundtrip time for obtaining a filtered list of
quotes for the customer (i.e., from initial request
by the customer to delivery of list of quotes).

2. Travel Agent Reliability: aims to maximize compli-
ance of travel agents to the price quotes issued by
them. Compliance is measured by comparing
Price at Quote time (Price@Quote) to Price at
Booking (Price@Booking) time. For instance, travel
agents that increase ticket at booking time force
the customer to go back to search again for other
quotes and, thus, result in customer dissatisfac-
tion. The utility function of this goal is designed to
welcome any decrease in the price at booking time
and not vice versa.

3. Quotes Quality: aims to maximize maturity of res-
ervations (i.e., price quotes that end with a pur-
chase/payment). Thus, a key indicator of custom-
er satisfaction of the Price Quote given to them is to
continue the process through Booking and eventu-

ally to final Payment Processing. Customers that
stop at the Price Quote use case and do not contin-
ue the process to the next step, which is Booking,
are most likely dissatisfied about the list of quotes
issued by the system. Therefore, TRS tracks the
progress of customers in the business process and
ranks quality of quotes accordingly (i.e., Quote
Produced=0, Booked=1, Payment Processed=2).

4. Accountability of Travel Agents: aims to maximize
the level of evidence generation by ensuring that
the parties are collecting logs of transaction. Col-
lecting evidence of transactions prevents any fu-
ture repudiation by both parties in case of a dis-
pute [43]. Therefore, transaction-level logs should
be generated for each transaction that involves ex-
ternal parties, such as Travel Agents. Ideally, evi-
dence generation involves establishing a trust
chain within which pairwise evidence can be vali-
dated by a commonly trusted 3rd party. However,
due to the overhead involved in such protocol, this
is not always feasible. A widely acceptable com-
promise is to obtain pairwise evidence with both
parties confirming receipt of log and acceptance of
its content. Hence, absence of pairwise evidence
renders the overall accountability of the system
low.

Goals for the Hotel business process operate in a very
similar manner and can be found in FUSION’s home page
[44].

For each goal, we analyzed each use case and identi-
fied practical adaptation choices (variations in the archi-
tectural configuration) that have a significant impact on
the system’s goals. To evaluate FUSION’s ability to learn
and adapt under a variety of conditions, we set up a con-
trolled environment. We used a prototype of the imple-
mentation environment described in Section 7. We devel-
oped stubs in Prism-MW to simulate the execution con-
text of the software (e.g., workload) as well as the occur-
rence of unexpected events (e.g., database indexing fail-
ure). However, note that neither the TRS software nor
FUSION was controlled, which allowed them to behave
as they would in practice. In all of our experiments, FU-
SION was running on a dedicated Intel Quad-Core pro-
cessor machine with 5GB of RAM.

We evaluated FUSION under four different execution
scenarios, which we believe correspond to one of the four
situations in which FUSION may find itself:
(NT) Similar context—the system is placed under

workload settings that are comparable to those the sys-
tem would face. We use a scenario, called Normal Traffic
(NT), in which the system is invoked with the typical
expected number of requests.
(VT) Varying context—the system is placed under a

workload that is different from that used during FU-
SION’s training. We use a scenario, called Varying Traffic
(VT), in which the system is invoked with a continuously
changing inter-arrival rate of price quote requests.
 (IF) Unexpected event with emerging pattern—the

system faces an unexpected change, which results in a
new behavioral pattern (i.e., impact of adaptation on

TABLE 5. QOS DIMENSIONS CONSIDERED FOR THE FLIGHTS
BUSINESS PROCESS.

QoS Goal Metric Utility

Quote

Response Time
M = Roundtrip Latency (ms) U = -0.0755M + 1.13

Travel

Agent Reliability
M = Price@Quote/Price@Booking U = 5.17M – 4.17

Quote Quality M = �$,											��IN		��IX�M	X�,																													�IIs	X�,				��v0	JN	��IM	��	X U = �$,											� = 0$. �,							� = 1�,											� = 2

Accountability M =

���
��$,																									�IM��	�I/�,													�IM��	�	����	��,																										��L��L�		�,																									3�X	���Nv�,						HI00IJ	3�X	���Nv

 U =

���
��$,											� = 0$. �,							� = 1$. �,							� = 2	$. �,						� = 3�,										� = 4

Figure 12. Structure of adaptation choices (i.e., Features) in TRS.

ESFAHANI ET AL.: A LEARNING-BASED FRAMEWORK FOR ENGINEERING FEATURE-ORIENTED SELF-ADAPTIVE SOFTWARE SYSTEMS 17

metrics) that can be learned. We use a scenario, called
database Indexing Failure (IF), in which the index of one
database table used by the Agent Discovery component
during the execution of the make quote workflow (recall
Figure 1) unexpectedly fails, and forces full table scan for
some parts of the database.
(DoS) Unexpected event with no pattern—the system

faces an unexpected change, which results in new ran-
dom behaviors that cannot be accurately learned. We use
a scenario, called Randomized DoS Traffic (DoS), in which
the system is flooded with totally randomized traffic, rep-
resentative of an online Denial of Service attack. The traf-
fic does not follow a typical skewed curve (i.e., exponen-
tial distribution).

9 EVALUATION

In this section, we provide an empirical evaluation of FU-
SION’s learning and adaptation cycles in terms of accura-
cy and efficiency. Unless otherwise stated, wherever 95%
confidence interval has been reported, it has been estab-
lished by executing the experiments 30 times.

9.1 Accuracy of Learning

Throughout this section, we use the term observation to
indicate an adaptation decision made by FUSION and its
effect on the system properties. Therefore, an observation
consists of: (1) a new feature selection, and (2) the pre-

dicted and actual impact of the feature selection on met-
rics. An observation error with respect to a metric is the
difference between predicted and actual impact of feature
selection on that metric. We refer to this as Absolute Differ-
ence Percentage (ADP), defined as: |(�F − �F) �F⁄ | ∗ 100,
where i is an adaptation decision, Pi is the predicted value
of the metric for that decision, and Ai is the actual value
that is collected from the running system after the deci-
sion is effected. In the experiments reported here, learn-
ing is initiated if the average ADP in 10 most recent ob-
servations is more than 5%. Other learning initiation poli-
cies could have been selected, each of which would pre-
sent a tradeoff (i.e., overhead versus accuracy).

Figure 13 shows the error rate of observations for the
Quote Response Time metric in the four scenarios described
earlier. Each data point corresponds to an observation
error at a particular point in time in the four evaluation
scenarios. For this particular metric, measurements are
collected based on the round trip time taken for a given
request from the point of entering the system to the point
of exiting. Then, a fixed control interval of 600 millisec-
onds is used to compute the average metric value which
is eventually used to calculate ADP. The Y-axis represents
ADP at a given observation.

We compared the results of FUSION against Queueing
Network (QN) models of the system. QN is representa-
tive of conventional analytical models for reasoning about

Figure 13. Accuracy of learned functions for “Quote Res. Time” metric (i.e., ADP): (a) Normal Traffic; (b) Varying Traffic; (c) Database Index-
ing Failure; and (d) Randomized DoS Traffic.

18 IEEE TRANSACTIONS ON SOFTWARE ENGINEERING

performance of the system. Note that since each feature
selection may result in a different architectural model,
and hence a different QN model, incorporating QN in our
experiments was challenging. In particular, a large num-
ber of QN models would have to be developed (we esti-
mated a total of 26×1012 valid feature selections from the
total search space of 278 ≈ 30×1022), which corroborates our
earlier assertion about the unwieldiness of building self-
adaptive systems by constructing tailored analytical
models. In the accuracy comparisons reported below for
TRS we constructed a subset of QN models that corre-
spond to the feature selections made by FUSION.

Concept drifts further exacerbate the problem as they
require generating a new QN model for a given feature
selection, whenever a concept drift takes place. To ad-
dress this issue, we employed online Queueing Network
models in our research, which take parametric changes in
the system into account (i.e., changes in workload). But
even online QN models cannot handle concept drifts that
are due to structural changes in the system, as opposed to
parametric changes.

Figure 13a shows the TRS system under the NT scenar-
io, where ADP for both FUSION and QN come within
5%, and often less. As expected, this indicates that both
FUSION and QN achieve good level of accuracy under
the expected conditions. QN’s level of accuracy was with-
in an average ADP of 2.9% and some spikes of 5-8%. This
is due to the fact that some service demands in TRS are
not fully compliant with the assumptions of the model.

Figure 13b shows the TRS system under the VT scenar-
io. This shows that even when the workload changes fre-
quently, FUSION’s ADP remains within 5% on average.
As a result, a new behavioral pattern sufficient for
runtime learning never emerges. On the contrary, in the
case of QN, operating outside of steady state condition
combined with the wrong assumptions about some of the
service demands exacerbate the prediction errors.

Figure 13c shows the TRS system under the IF scenar-
io. It shows the fact that FUSION is capable of learning
the new behavior, when concept drifts exist in the system.
FUSION’s ADP increases up to an average of 54% for the
first 10 observations. This error is attributed to the fact
that the model did not anticipate the impact of database
access and associated software contentions, when the ta-
ble scans were taking place. Software contentions were
estimated to be responsible for 35% of FUSION’s average
ADP. Gradually, FUSION fine-tunes the coefficient of
Caching and other features in the learned functions. As a
result, average ADP goes down to less than 5%. In con-

trast, the average ADP of QN reaches 80%, since the QN
model formulation presumes the existence of a function-
ing DB indexing system.

Note that it would be difficult to implement active
monitoring of changes for service demands that are asso-
ciated with database access. Active monitoring in such
cases relies on probing a dedicated table with a function-
ing index reserved for measuring service demand time,
which could give misleading readings if the DB indexing
systems fails partially on a selective subset of tables. Con-
sequently, online QN models may give wrong predictions
due to false service demand readings.

Figure 13d shows the TRS system under the DoS sce-
nario. The random nature of network traffic makes it im-
possible for FUSION to converge to an induced model
that can consistently predict the behavior of the system
within 5% average ADP. As soon as a new model is in-
duced, the execution conditions change, making the pre-
diction models inaccurate. As a result, FUSION’s learning
cycle is periodically invoked. Even though FUSION does
not reach the same level of accuracy as in the other execu-
tion scenarios, it is still capable of masking transient ef-
fects and reducing errors significantly. This can be at-
tributed to the fact that FUSION is benefiting from the
continuous tuning, although it loses accuracy in the ab-
sence of a stable pattern.

9.2 Adaptation in Presence of Concept Drift

Clearly the quality of adaptation decisions depends on
the accuracy of induced model. However, when the un-
foreseen behaviors emerge, the model is forced to make
some adaptation decisions under inaccuracy, which are in
turn used to fine-tune the induced models and account
for the emerging behavior. An important concern is
whether the adaptation decisions made during this peri-
od of time (i.e., using an inaccurate model) could further
exacerbate the violated goals or not. Figure 14 shows the
normalized impact of enabling F3 on metrics MG1 and MG3
in the first observation for each of the four scenarios of
Figure 13. Recall that the first observation for VT, IF, and
DoS corresponds to a situation where there is a high-level
of inaccuracy. In all cases, FUSION disables F3 with the
purpose of increasing MG1 and reducing MG3. While due
to the inaccuracy of the induced model FUSION fails to
predict accurately the magnitude of impact on these met-
rics, it gets the general direction of impact (i.e., positive
vs. negative) correctly. This result is reasonable since a
given feature typically has a similar general direction of
impact on metrics. For instance, one would expect an au-
thentication feature to improve the system’s security,
while degrading its performance. Hence, even in the
presence of inaccurate knowledge, FUSION does not
make decisions that worsen the goal violations as it has
learned the semantic underlying each feature. In other
words, FUSION makes decisions that improve the sys-
tem’s properties, but not necessarily optimal, until the
knowledge base is refined as will be demonstrated in the
next section.

Figure 14. Impact of Feature Per-Request Authentication on Metrics
Quote Response Time and Quote Quality.

ESFAHANI ET AL.: A LEARNING-BASED FRAMEWORK FOR ENGINEERING FEATURE-ORIENTED SELF-ADAPTIVE SOFTWARE SYSTEMS 19

9.3 Quality of Feature Selection

We evaluate the quality of solution (feature selection)
found by FUSION against two competing techniques. The
first technique is Traditional Optimization (TO), which
maximizes the global utility of the system, and includes
all of the feature variables and goals in the optimization
problem. That is, it does not use feature reduction heuris-
tics that result from significance testing. The second tech-
nique is Constraint Satisfaction (CS), which finds a feature
combination that satisfies all of the goals, regardless of
the quality of the solution. As you may recall from Sec-
tion 6, FUSION adopts a middle ground with two objec-
tives: (1) find solutions with comparable quality to those
provided by TO, but at a fraction of time it takes to exe-
cuting TO, and (2) find solutions that are significantly
better in quality than CS (i.e., stable fix), but with a com-
parable execution time.

Figure 15a plots the global utility obtained from run-
ning the optimization at the 3 different points in time for
each of the NT, VT, and IF evaluation scenarios discussed
earlier. We do not show the results for DoS case, because
as mentioned in Section 9.1, it represents the case where
learning is not possible due to the random behavior
caused by the simulated denial of service attack. Each
data point represents the global utility value (recall the
objective function in Section 6.2) obtained for each exper-
iment. FUSION produces solutions that are only slightly
less in quality than TO in all of the experiments. The mi-
nor difference in quality is due to impact of features that
are deemed to be insignificant. This demonstrates that
our feature space pruning heuristics do not significantly
impact the quality of found solutions. Table 6 shows the
average number of features that are considered for solv-
ing each of the experiments, which is only a small fraction

of the entire feature space. Figure 15a also shows that FU-
SION finds solutions that are significantly better than CS.
In turn, this corroborates our assertion in Section 6 that
FUSION produces a stable fix to goal violations by plac-
ing the system in a near-optimal configuration. On the
other hand, since CS may find borderline solutions that
barely satisfy the goals, due to slight fluctuations in the
system, goals may be violated and thus frequent adapta-
tions of the system ensue.

9.4 Efficiency of Optimization

In Section 9.3, we compared the quality of FUSION with two
approaches: Traditional Optimization (TO) and Constraint
Satisfaction (CS). In this section, we evaluate the perfor-
mance of FUSION’s planning algorithm. As you may recall
from Section 6.2, FUSION achieves efficient planning by
using the knowledge base to dynamically tailor an optimiza-
tion problem to the violated goals in the system. In compari-
son, TO conducts a full optimization problem where the
complexity of the problem is O(2F).

Figure 15b shows the execution time for solving the op-
timization problem in FUSION, TO, and CS for the same
instances of TRS as those shown in Figure 15a. Note that the
execution time of FUSION is comparable to CS and is signif-
icantly faster than TO. This in turn along with the results
shown in the previous section demonstrate that FUSION is
not only able to find solutions that are comparable in quality
to those found by TO, but achieves this at the speed that is
comparable to CS. Note that since TO runs exponentially in
the number of features, for systems with slightly larger
number of features, TO could take several hours for comple-
tion, which would make it inapplicable for use at runtime.

9.5 Protecting System Goals During Adaptation

FUSION leverages its knowledge base to find adaptation
paths that minimize violation of system goals during ad-
aptation. We compare FUSION against two alternatives.

The first technique, referred to as Feature Constraints
(FC), uses a path search formulation that enforces feature
model constraints during adaptation, but does not lever-
age the knowledge base to prune the search space. The

TABLE 6. SIZE OF SIGNIFICANT SPACE IN NUMBER OF FEA-

TURES.

Experiment NT1 NT2 NT3 VT1 VT2 VT3 IF1 IF2 IF3

FUSION 5 5 5 5 7 7 5 7 8

CS/TO 78

Figure 15. The result of optimization for different scenarios: (a) impact on global utility and (b) execution time.

20 IEEE TRANSACTIONS ON SOFTWARE ENGINEERING

second technique, referred to as Knowledge and Feature
Constraints (K+FC), uses a path search formulation that is
identical to FC, except it leverages the knowledge base (K)
to prune the search space. As you may recall from Sec-
tion 6.3, FUSION exhibits three characteristics: (1) It finds
a path that satisfies feature constraints, (2) It leverages
knowledge base to prune the search space, and (3) It picks
a path that minimizes utility loss.

Figure 16a shows the utility loss from the paths ob-
tained using the three alternative formulations. Each data
point represents utility loss in the system at the designat-
ed point in time. In the NT scenario, all approaches are
comparable in terms of utility loss, since most adaptation
steps in the shortest path do not violate additional goals.
However, FC and K+FC produce paths that worsen the
utility loss and violate additional goals in scenarios VT
and IF. FUSION produces paths that minimize utility loss
in all 3 scenarios NT, VT, and IF. This demonstrates the
FUSION’s ability to leverage the inferred knowledge to
produce adaptation paths that minimize the utility loss
while enforcing feature model constraints.

9.6 Efficiency of Path Search

We evaluate the performance of FUSION’s path search algo-
rithm described in Section 6.3. As the reader may recall, FU-
SION achieves efficient planning by using the knowledge
base to dynamically tailor a search problem that is relevant
to the violated goals. FUSION also takes into consideration
the objective of minimizing utility loss during adaptation,
which is ignored in the FC and K+FC approaches.

Figure 16b shows the execution time of the path search
for the same experiments reported in Figure 16a. Incorporat-
ing knowledge improves the efficiency of the path search
process by as much as 10 times in NT and IF scenarios. In the
VT scenario, the path search process becomes more exten-
sive due to the number of features being changed.

 Note that execution time of FUSION is not far behind
K+FC despite the inclusion of utility loss function as a sec-
ond objective. Utility loss function adds the burden of mini-
mizing goal violation throughout the adaptation path. For

instance, in VT3, the system is running at a peak workload in
which no adjacent feature selection satisfies all goals. As a
result, a long adaptation path comprised of additional
neighboring feature selections had to be explored. Yet, FU-
SION execution time remains comparable to K+FC and
clearly superior to FC. This in turn demonstrates that finding
paths that minimize utility loss can be achieved efficiently.

9.7 Overhead of Learning

FUSION enables adjustment of the system to changing
conditions by continuously incorporating observation
records in the learning process. An important concern is
the execution overhead of the online learning. One of the
principle factors affecting learning overhead is the num-
ber of observations required to develop accurate models
of system behavior. Table 7 lists the execution time for a
given number of observations. Simple linear regression
takes insignificant amount of time with large number of
observations, which makes it an appealing choice when
the number of observations is large (e.g., initial training at
design-time). In our experiments FUSION performed
online learning using the M5 Model Trees algorithm on a
maximum increment of 30 observations, which from Ta-
ble 7 could be verified to have presented an insignificant
overhead of less than 60 ms. This efficiency is due to the
pruning of the feature space and significance test de-
scribed in Section 5.

10 THREATS TO VALIDITY

In this section, we discuss the threats to the validity of our
experimental results by studying factors that could im-
pact the performance and accuracy of FUSION. This dis-
cussion in turn helps us frame the types of systems that
could benefit from FUSION, and explicitly describe the
assumptions and limitations of the approach.

TABLE 7. INDUCE EXECUTION TIME IN MILLISECONDS.

of Observations 50 500 528 822 903 1227 1389

Linear Regression 20 30 30 50 60 70 80

M5Model Tree 60 110 130 130 130 160 230

SVM Regression 190 2310 3230 7330 8740 18700 29830

Figure 16. The result of path search for different scenarios: (a) impact on utility loss and (b) execution time.

ESFAHANI ET AL.: A LEARNING-BASED FRAMEWORK FOR ENGINEERING FEATURE-ORIENTED SELF-ADAPTIVE SOFTWARE SYSTEMS 21

10.1 Impact of Feature-Metric Coupling

As you may recall from Figure 2, the behavior of the
managed software system is modeled in the knowledge
base. As we elaborated in earlier sections, these models
are mainly in terms of feature-metric relationships. Con-
sequently, in FUSION, the level of coupling between fea-
tures and metrics is a key indicator of the level of com-
plexity in the behavior of the system.

Figure 17 depicts the lowest (Figure 17a) and highest
(Figure 17b) levels of coupling in a hypothetical system.
In the simplest case, the value of each metric is deter-
mined by only one feature. On the other hand, in the most
complex case, the value of each metric is determined by
considering all features in the system. Feature-metric
coupling, which represents the extent to which metrics
are affected by features, impacts several parts of FUSION,
as discussed in the remainder of this section.

This coupling directly impacts the Induce activity (re-
call Section 5.2). When the number of features impacting
the value of a given metric increases, the complexity of
the corresponding function predicting the impact of fea-
tures on metrics increases. Therefore, learning algorithms
will need more observations and more time to converge
(i.e., reduce the error to an acceptable threshold). In such
cases, FUSION may need to adopt more complex (e.g.,
nonlinear) models for learning the functions.

Note that increasing the number of metrics does not
increase the complexity of the learning exponentially.
This is due to the fact that inducing the function corre-
sponding to each metric is an independent task.

Coupling also affects Plan activity. As you may recall
from Section 6.2, the first step in fixing a violated goal is
to build the set of features that affect it. This set is called
Shared Features and determines the size of the optimiza-
tion problem for resolving that goal violation. When cou-
pling increases, the difference between Shared Features
and set of all features converges to an empty set. This
means that for any goal violation the entire system would
need to be optimized, which increases the execution time
of the planning algorithm.

The second step for fixing a goal violation is to find
other goals that are also affected by the same features. As
you may recall from Section 6.2, the set of these goals is
called Conflicting Goals. When coupling increases, the dif-
ference between Conflicting Goals and set of all goals con-
verges to an empty set. In other words, for fixing any goal
violation, trade-offs between all the goals should be con-
sidered. In addition to forcing optimization of the entire
system in the extreme cases, this also decreases the num-
ber of viable solutions for fixing a goal violation.

Since Effect (recall Section 6.3) is invoked after Plan ac-
tivity, it is impacted by the coupling in the same two
ways. First, increase in the size of Shared Features decreas-
es the size of insig parameter passed to the Effect algo-
rithm (recall Figure 5). As a result of this, the number of
viable options at each step of the search increases. Second,
the increase in the size of Conflicting Goals will make it
more likely to have Utility loss (i.e., u(π) > 0). This means
that the chance of getting a longer path for solution in-
creases. In other words, the amount of disruption for exe-

cuting the plan as well as the chance of temporary goal
violation during the transition increases.

Extreme cases, such as Figure 17b, also challenge other
existing approaches. Manually deriving quantitative
models in such settings is exacerbated when there is a
high-degree of coupling between adaptation choices and
affected metrics. Our experiences (e.g., [4], [33], [39], [45–
48]) with the construction of numerous adaptive software
systems over the past decade, in the context of this project
as well as others, indicate that the coupling in most sys-
tems is not as extreme as that depicted in Figure 17b, but
rather somewhere in between that and Figure 17a.

By doing the significance test before running the learn-
ing algorithm (recall Section 5.2), FUSION already reduc-
es feature-metric coupling. FUSION could be extended to
use more complex learning algorithms that produce more
complex functions, although this has not been necessary
in the systems that we have come across so far. Finally, in
extreme cases, using heuristic-based algorithms (e.g.,
greedy or genetic algorithms [32]), which provide near-
optimal solutions very fast, could help with improving
the performance at the expense of accuracy.

10.2 Impact of Feature Model’s Structure

Feature model is the key enabler of learning in FUSION,
as feature inter-relationships (e.g., dependency, mutual
exclusion) could be used to represent the engineer’s
knowledge of the valid adaptation choices.

To illustrate the impact of feature model’s structure on
FUSION, consider the two hypothetical feature models in
Figure 18. One of the features is the core feature, which is
always enabled in the system. The remaining 10 features
are optional that can be either enabled or disabled. The
two feature models are different in terms of dependencies
between the features. All optional features in Figure 18a
are dependent on the core feature and can be ena-
bled/disabled independent of each other. Therefore, fea-
ture model constraints do not reduce the feature space,
and hence, the total number of features combinations for
feature model of Figure 18a is 210=1024. On the other
hand, optional features in Figure 18b form a chain of de-

Figure 17. The lowest (part a) and highest (part b) levels of feature-
metric coupling in a hypothetical system with 7 features and 7
metrics.

22 IEEE TRANSACTIONS ON SOFTWARE ENGINEERING

pendencies and cannot be enabled/disabled independent
of each other. As a result, the feature space is reduced to
11 total feature combinations, which is almost a ten-fold
reduction.

The size of feature space influences same aspects of
FUSION that was discussed in Section 10.1 (i.e., Induce,
Plan, and Effect). Smaller number of valid feature combi-
nations implies a smaller learning space. As a result, for
learning the behavior of the system fewer observations
would be required. Moreover, it is more likely for the
learning algorithms to converge in a short amount of
time. In the case of Effect, smaller number of valid feature
combinations implies smaller number of nodes in the
search tree. Therefore, the total memory and time, which
is required for finding an adaptation path, is reduced.

The reduction in the size of the feature space in Plan is
achieved through adding more constraints in the optimi-
zation problem (recall Section 6.2). At first blush, this
seems to imply smaller solution space and faster optimi-
zation. However, in some cases, additional constraints
may transform the shape of the solution space into an
irregular convex. As a result, finding the optimal solution
becomes more complex, and in turn, will need more time
[49]. Therefore, making a general statement about the
influence of the size of the feature space on Plan is not
possible.

The two feature models in Figure 18 are intended to
show the two extremes, and are unlikely to occur in prac-
tice. Feature models usually have many interdependen-
cies between the features, which reduce the number of
valid feature combinations, although not to the extent of
forming a chain. As a result, a typical feature model fits
somewhere between these two extremes.

10.3 Impact of Feature Interactions

The effects of features on a given metric are not always
independent of each other. As you may recall from Sec-
tion 5.2, features may have a combined effect on a metric,
also known as feature interaction.

During learning, FUSION models feature interactions
that pass the significance test as separate variables (recall
Table 2). This in turn means that more observations are
necessary to accurately learn the impact of features on
metrics. Hence, Induce will need more time to converge.

As we mentioned in Section 6.2, feature interactions
make the optimization problem in Plan nonlinear. There-

fore, FUSION needs to transform them into linear prob-
lems by introducing auxiliary variables and additional
constraints. Larger solution space (more variables) and
more constraints increase the complexity of the optimiza-
tion problem. In other words, feature interactions increase
the execution time of the planning algorithm.

Our observations indicated that usually limited num-
ber of feature interactions per metric pass the significance
test and become significant variable. Moreover, the inter-
action of more than two features rarely has significant
effect on metrics. Therefore, although feature interactions
affect complexity in FUSION, in practice the increase in
the complexity is usually very limited. Finally, note that
feature interactions do not impact Effect.

10.4 Assumptions and Limitations

There are several assumptions underlying FUSION that
delineate the scope of its applicability, which we describe
explicitly in this section:

• FUSION relies on precise and accurate collection
of metrics from the managed software system.
Otherwise, the behavior of the system cannot be
observed, and in turn learned in terms of feature-
metric couplings. We are assuming that the system
is running in an environment in which metrics of
interest can be observed and collected. Such basic
facilities are usually provided at the system level
and/or by the modern middleware platforms, one
of which was described in our implementation
prototype (recall Section 7.3).

• FUSION assumes a mapping from the features to
software elements that realize the features is estab-
lished, and that changes in the software can be ex-
ercised at runtime. Recall from Figure 3 that FU-
SION is independent of how this mapping is real-
ized, as long as the change management and com-
ponent control layers provide the means for effect-
ing those changes in a consistent fashion. In our
implementation prototype, we have developed
one approach to realizing this mapping, and used
existing tools for exercising those changes at
runtime. However, the problem of mapping fea-
tures to the software artifacts is one that deserves
additional attention to increase the scope of sys-
tems where FUSION can be employed. The re-
search in dynamic software product lines (e.g.,
[19], [20]) has made significant progress through
tools and techniques for establishing the mappings
between feature variability and implementation-
level artifacts.

• Another assumption in FUSION is that sufficient
data is available about the system’s execution un-
der different feature configuration to allow for
machine learning techniques to infer an accurate
model of the system’s behavior. For instance, in
the case of TRS case study, we first benchmarked
the software system to collect this data, before de-
ploying it. The runtime learning is mainly intend-
ed to fine-tune the knowledge base as opposed to
construct it from scratch. We believe this is a prac-

Figure 18. Two Feature Models with the same number of features
but different relationships among them.

ESFAHANI ET AL.: A LEARNING-BASED FRAMEWORK FOR ENGINEERING FEATURE-ORIENTED SELF-ADAPTIVE SOFTWARE SYSTEMS 23

tical assumption, as most systems can be bench-
marked prior to deployment and changes at
runtime are not going to be so drastic that the en-
tire knowledge base becomes useless. If that is not
the case, then other techniques would need to be
employed for the management of software.

• During a concept drift (i.e., at a point where the
knowledge base is not accurate with respect to un-
anticipated changes that have occurred in the sys-
tem) FUSION makes adaptation decisions based
on stale knowledge. As demonstrated in Sec-
tion 9.2, decisions made using stale knowledge
typically do not exacerbate violation of goals, as a
given feature maintains the same general direction
of impact on metrics. Here, we assume the system
could be managed sub-optimally, until enough da-
ta is collected from the modified system to allow
for refinement of knowledge base. In systems
where this is not acceptable, such as high-risk and
mission critical systems, FUSION as well as other
prior techniques would be inapplicable.

• Finally, FUSION assumes prior to system’s de-
ployment engineers are able to identify useful fea-
tures that could resolve the issues that may arise at
runtime. This means that FUSION’s scope of man-
agement is limited to issues that can be addressed
with a set of preconceived features. FUSION may
not be able to resolve an issue that could be re-
solved through runtime adaptation, simply be-
cause the engineers have not included the appro-
priate features.

11 RELATED WORK

Over the past decade, researchers and practitioners have
developed a variety of methodologies, frameworks, and
technologies intended to support the construction of self-
adaptive systems [1], [7], [50], [51]. We provide an over-
view of the most notable research in this area and exam-
ine them in the light of FUSION.

11.1 Modeling Software Adaptation Space

Ryutov et al. [52] provide a security framework that sup-
ports adaptive access control and trust negotiation
through parameterization. Similarly, Bennani et al. [53]
propose a parameterized model (i.e., an online analytical
model) for estimating the system’s performance by incor-
porating system characteristics (e.g., workload) that be-
come known at runtime. While parameterization has the
advantage of simplicity, it lacks support for large-scale
adaptation at the system level.

Component-based adaptation [1], [5], [6], [8], is at the
architectural level, often in terms of structural changes,
such as adding, removing, and replacing software com-
ponents, changing the system’s architectural style, rebind-
ing a component’s interfaces, and so on. This enables
large-scale adaptation at the system-wide level by swap-
ping distributed components at runtime. Since these
works serve as the foundation for our work, we further

discuss this paradigm and how it relates to architecture-
based reasoning in Section 11.3.

Aspect Oriented Modeling is used to build adaptation
paradigms for addressing crosscutting concerns that are
related to non-functional requirements. In past work [22],
we presented MATA, a UML aspect-oriented modeling
technique, that uses graph transformations to change a
system’s software architecture at runtime. Aspects reduce
the configuration space significantly and make runtime
analysis feasible. Aspects are causally connected; howev-
er, aspect-oriented approaches do not support specifying
user-defined inter-aspect relationships and interactions.

Feature-orientation has been used as a method of
modeling the requirements of a dynamic product line
[19]. Lee et al. [20] break the existing feature model of a
system into several subsets, which correspond to the ma-
jor functionalities of the system. They call these subsets
feature binding units. By enabling and disabling these
units, they reconfigure the system at runtime. Cetina et al.
[21] show how adaptations can be made possible by reus-
ing the existing feature models at runtime. Although
these works have adopted a similar model of adaptation
as FUSION, none has explored the opportunities it pre-
sents for online learning and decision making.

DiVA project [54] has resulted in a framework for
building adaptive systems. Two branches from this pro-
ject are relevant to FUSION. The first branch, which is
based on aspect oriented modeling, uses aspects as
course-granular units of adaptation [55] to tame the com-
binatorial explosion in the configuration space. The sec-
ond branch, which is based on MDA, uses feature orient-
ed representations to model variability in the system and
its context [56]. The feature model is also used to model
relationships in the domain. These two branches are
merged to bring the best of aspect oriented modeling and
MDA together [57]. FUSION adopts a similar modeling
methodology. However, in addition to this, features are
units of runtime learning and reasoning in FUSION.

11.2 Approaches for Analytical Modeling

Analytical models differ in the way knowledge about the
behavior of the system is represented. From this perspec-
tive, analytical models fall under two broad categories:
white-box and black-box. The former requires an explicit
model of the internal structure of the software system
(i.e., typically an architectural model), while the latter
does not require such knowledge.

Queuing Network (QN) [10] is a mathematical model
used for performance analysis of a software system, rep-
resented as a collection of Queues (i.e., system resources)
and Customers (i.e., user requests). Markov model [11] is
often used for reliability analysis. It is comprised of a sto-
chastic model that captures the state of the system using
random variables that change overtime according to the
probability distribution of the previous state. These
white-box approaches require an explicit model of the
internal structure of the software system. Such models are
typically used at design time to analyze the tradeoffs of
different architectural decisions before implementation,
but recently these models are used at runtime to dynami-

24 IEEE TRANSACTIONS ON SOFTWARE ENGINEERING

cally analyze the system properties [58]. However, the
structure of these models cannot be easily changed at
runtime in ways that were not accounted for during their
formulation (e.g., addition of new queues in a QN due to
emerging software contentions).

Artificial Neural Network (ANN) is an effective way of
solving a large number of nonlinear estimation problems.
Model tree is based on regression trees and associate
leaves with multiple regression models (i.e., M5 Model
Trees [59] and Multivariate Adaptive Regression Splines
(MARS) [30]). As a black-box analytical modeling family,
these approaches do not require knowledge of the inter-
nal structure of the system. But, they require sufficient
sampling of the input/output parameters to construct an
approximation of the relationship between the inputs and
outputs. A key advantage of black-box approaches is that
they can be used to detect concept drifts (i.e., changes to
the underling properties of a software system over time).
FUSION follows the black-box approach.

11.3 Architecture-Based Reasoning

Kramer and Magee [1] state that software architectures
provide an appropriate level of abstraction for modeling
and reasoning about dynamic adaptation. They define a
three-layer model (component control, change manage-
ment, and goal management) to address the challenges
associated with the development of self-adaptive systems.

Oreizy et al. pioneered the architecture-based ap-
proach to runtime adaptation and evolution management
in their seminal work [6], [60]. Runtime adaptation is fa-
cilitated using the C2 architectural style that uses con-
nectors to route messages among components through
implicit invocation, thus minimizing interdependencies.

Garlan et al. presented the Rainbow framework [2], a
style-based approach for developing reusable self-
adaptive systems. In Rainbow, an architectural model is
used to monitor and detect the need for adaptation in a
system. The self-adaptation language describes rule-like
constructs (condition-action). When the condition is met,
the appropriate action is executed to adapt the system.

Malek et al. [33] provide a generic framework for im-
proving the QoS of a distributed software system by
changing its deployment architecture at runtime. De-
ployment architecture denotes the allocation of software
components to the hardware nodes. Domain experts ex-
press QoS properties using a generic architecture-based
representation of the system.

Inverardi et al. [61] tackle the variability associated
with context and evolution of requirements in context-
aware adaptive systems. To that end, they use features for
consistent evolution of component-based service-oriented
systems, where a feature is a dynamic unit representing
the smallest part of a service that the user can perceive.

All of the above approaches, including many others
(e.g., see [7]), share three traits: (1) use white-box analyti-
cal models for making adaptation decisions, and (2) rely
on architectural representation for the analysis, and (3)
effect a new solution through architecture-based adapta-
tion. As manifested by the key role of architecture in FU-
SION, the above approaches form the basis of our work.

However, similar to Inverardi et al., FUSION adopts a
feature-oriented black-box approach to reasoning and
adaptation, which not only makes the runtime analysis
efficient, but also reduces the effort required in applying
FUSION to existing systems. Moreover, unlike these ap-
proaches, FUSION is capable of coping with unanticipat-
ed changes through online learning.

11.4 Machine Learning Approaches

Gambi et al. [62] proposed the use of online machine
learning using surrogate models to limit violations of SLA
of software applications within Virtualized Data Centers
(VDCs). However, their approach does not apply any
state space pruning heuristics to reduce the learning
space and improve runtime convergence.

Tesauro et al. [63] have proposed a hybrid approach
that combines white-box analytical modeling (i.e., QN
models) with Reinforcement Learning. Online learning
uses a simplified black-box representation of the running
system, while the white-box QN model is used as a train-
ing facility. A key assumption of the work is that white-
box QN model of the system is available and can accu-
rately predict its behavior under different adaptation de-
cisions. The approach is also focused on the problem of
managing redeployment of applications in Data Centers.

Kim and Park [64] propose a reinforcement learning
approach to online planning for robots. Their work focus-
es on improving the robot’s behavior by learning from
prior experience and by dynamically discovering adapta-
tion plans in response to environmental changes.

Zhao et al. [65] use a hybrid Supervised Reinforce-
ment Learning approach that combines the merits of Su-
pervised Learning and Reinforcement Learning to devel-
op an adaptive real-time cruise control system.

The work by Rieck et al. [66] and Sabhnani et al. [67]
demonstrate the use of several machine-learning algo-
rithms on cyber-attacks. The algorithms were used to de-
tect the drift of a system from its normal patterns of be-
havior, which is typically a sign of misuse of the system.

FUSION’s objective is to provide a general-purpose
approach for self-adaption of the software systems, which
is fundamentally different from the above works that are
concerned with a specific problem. Due to the malleabil-
ity of software applications, adaption space can be enor-
mously large. Thus, FUSION combines a number of tech-
niques (i.e., feature-based knowledge, significance testing,
heuristic search, etc.) to make online reasoning feasible.

12 CONCLUSION

We presented a black-box approach for engineering self-
adaptive systems that brings about two innovations for
solving the aforementioned challenges: (1) a new method
of modeling and representing a self-adaptive software
systems that builds on the notions of feature-orientation
from the product line literature, and (2) a new method of
assessing and reasoning about adaptation decisions
through online learning. FUSION uses features and inter-
feature relationships to significantly reduce the configura-

ESFAHANI ET AL.: A LEARNING-BASED FRAMEWORK FOR ENGINEERING FEATURE-ORIENTED SELF-ADAPTIVE SOFTWARE SYSTEMS 25

tion space of a sizable system, making runtime analysis
and learning feasible.

We also presented an empirical evaluation of the ap-
proach using a real-world self-adaptive software system
to demonstrate the feasibility of FUSION and the quality
and efficiency of learning and adaptation decisions.

Currently we are working on two extensions to FU-
SION: (1) in some real world systems, waiting until a goal
violation occurs and then reacting to it may be very cost-
ly, thus we are investigating techniques for proactive ad-
aptation on top of Fusion; and (2) we are extending the
Effect algorithm to use additional information (e.g., actual
cost of each adaptation step) in the path search process. In
addition, currently FUSION assumes a single stakeholder.
An interesting avenue of future research would be to ex-
tend the framework to model multiple users’ preferences
in terms of multi-dimensional utility functions.

APPENDIX A, EFFECTING CHANGE EXAMPLE

This appendix demonstrates the application of Effect’s
heuristic-based path search algorithm (recall Figure 5) via
an example. It shows a situation in which the initial fea-
ture selection of the TRS system before adaptation is
“1110111”, meaning that all of the features expect F4 (i.e.,
Per-Session Auth.) are enabled, and the target feature se-
lection is 0010111.

Figure 19a shows the start of the algorithm at the cur-
rent feature selection, which is added to a priority queue.
In each iteration, a vertex, indicated by black oval is ex-
tracted from the head of the queue and its neighboring
vertexes (i.e., reachable with one valid adaptation step
and calculated by the call to expand in Figure 5) are added
to the queue. If any of the recently added vertexes to the
queue is the target, the algorithm stops as the target is
reached. The extracted vertex is then added to the visited
list. We also keep a record of the visited vertexes to be
able to backtrack the path.

In Figure 19, assuming we are concerned about G2 and
G3 (i.e., Agent Reliability and Quote Quality), we can prune

F3, F4 and F7 (i.e., Per-Request Auth., Per-Session Authentica-
tion, and Semantic), as they do not impact those goals. In-
significant features in Figure 19 are indicated using a
strikethrough line.

ACKNOWLEDGEMENT

This work is supported in part by awards W911NF-09-1-
0273 from the Army Research Office, D11AP00282 from
the Defense Advanced Research Projects Agency, and
CCF-1252644 and CCF-1217503 from the National Science
Foundation. We would like to thank the anonymous re-
viewers for their constructive feedbacks which led to the
improvement of the paper.

REFERENCES

[1] J. Kramer and J. Magee, “Self-Managed Systems: an Architec-
tural Challenge,” in Int’l Conf. on Software Engineering, Minne-
apolis, Minnesota, 2007, pp. 259–268.

[2] D. Garlan, S. W. Cheng, A. C. Huang, B. Schmerl, and P. Steen-
kiste, “Rainbow: Architecture-Based Self-Adaptation with Re-
usable Infrastructure,” IEEE Computer, vol. 37, no. 10, pp. 46–54,
Oct. 2004.

[3] J. O. Kephart and D. M. Chess, “The Vision of Autonomic
Computing,” IEEE Computer, vol. 36, no. 1, pp. 41–50, Jan. 2003.

[4] S. Malek, G. Edwards, Y. Brun, H. Tajalli, J. Garcia, I. Krka, N.
Medvidovic, M. Mikic-Rakic, and G. S. Sukhatme, “An architec-
ture-driven software mobility framework,” Journal of Systems
and Software, vol. 83, no. 6, pp. 972–989, Jun. 2010.

[5] D. A. Menascé, J. M. Ewing, H. Gomaa, S. Malek, and J. P. Sou-
sa, “A framework for utility-based service oriented design in
SASSY,” in Joint WOSP/SIPEW Int’l Conf. on Performance engi-
neering, San Jose, California, 2010, pp. 27–36.

[6] P. Oreizy, N. Medvidovic, and R. N. Taylor, “Architecture-
based runtime software evolution,” in Int’l Conf. on Software En-
gineering, Kyoto, Japan, 1998, pp. 177–186.

[7] B. Cheng, R. de Lemos, H. Giese, P. Inverardi, J. Magee, J. An-
dersson, B. Becker, N. Bencomo, Y. Brun, B. Cukic, G. M. Se-
rugendo, S. Dustdar, A. Finkelstein, C. Gacek, K. Geihs, V.
Grassi, G. Karsai, H. M. Kienle, J. Kramer, M. Litoiu, S. Malek,
R. Mirandola, H. A. Muller, S. Park, M. Shaw, M. Tichy, M.
Tivoli, D. Weyns, and J. Whittle, “Software Engineering for
Self-Adaptive Systems: A Research Roadmap,” in Software En-
gineering for Self-Adaptive Systems, 2009, pp. 1–26.

Figure 19: Effect finds the best path within the significant feature space.

26 IEEE TRANSACTIONS ON SOFTWARE ENGINEERING

[8] R. N. Taylor, N. Medvidovic, and E. M. Dashofy, Software Ar-
chitecture: Foundations, Theory, and Practice. Wiley, 2009.

[9] D. E. Perry and A. L. Wolf, “Foundations for the study of soft-
ware architecture,” Softw. Eng. Notes, vol. 17, no. 4, pp. 40–52,
Oct. 1992.

[10] D. Gross and C. M. Harris, Fundamentals of queueing theory (2nd
ed.). John Wiley & Sons, Inc., 1985.

[11] L. R. Rabiner, “A tutorial on hidden Markov models and se-
lected applications in speech recognition,” Proceedings of the
IEEE, vol. 77, no. 2, pp. 257–286, Feb. 1989.

[12] J. Z. Kolter and M. A. Maloof, “Dynamic Weighted Majority:
An Ensemble Method for Drifting Concepts,” J. Mach. Learn.
Res., vol. 8, pp. 2755–2790, Dec. 2007.

[13] G. Widmer and M. Kubat, “Learning in the presence of concept
drift and hidden contexts,” Mach. Learn., vol. 23, no. 1, pp. 69–
101, Apr. 1996.

[14] S. Malek, N. E. Beckman, M. Mikic-Rakic, and N. Medvidovic,
“A Framework for Ensuring and Improving Dependability in
Highly Distributed Systems,” in Wrkshp. on Architecting Depend-
able Systems, Florence, Italy, 2004, pp. 173–193.

[15] A. Elkhodary, N. Esfahani, and S. Malek, “FUSION: A Frame-
work for Engineering Self-Tuning Self-Adaptive Software Sys-
tems.,” in Int’l Symp. on the Foundations of Software Engineering,
Santa Fe, New Mexico, 2010, pp. 7–16.

[16] H. Gomaa, Designing Software Product Lines with UML: From
Use Cases to Pattern-Based Software Architectures, illustrated ed.
Addison-Wesley Professional, 2004.

[17] E. Alpaydin, Introduction to Machine Learning. The MIT Press,
2004.

[18] N. Medvidovic and R. N. Taylor, “A Classification and Com-
parison Framework for Software Architecture Description Lan-
guages,” IEEE Trans. Softw. Eng., vol. 26, no. 1, pp. 70–93, Jan.
2000.

[19] S. Hallsteinsen, M. Hinchey, S. Park, and K. Schmid, “Dynamic
software product lines,” IEEE Computer, vol. 41, no. 4, pp. 93–
95, 2008.

[20] J. Lee and K. C. Kang, “A Feature-Oriented Approach to De-
veloping Dynamically Reconfigurable Products in Product Line
Engineering,” in Int’l Software Product Line Conf., Baltimore,
Maryland, 2006, pp. 131–140.

[21] C. Cetina, P. Giner, J. Fons, and V. Pelechano, “Autonomic
Computing through Reuse of Variability Models at Runtime:
The Case of Smart Homes,” Computer, vol. 42, no. 10, pp. 37–43,
Oct. 2009.

[22] J. Whittle, P. Jayaraman, A. Elkhodary, A. Moreira, and J.
Araújo, “MATA: A Unified Approach for Composing UML
Aspect Models Based on Graph Transformation,” in Transac-
tions on Aspect-Oriented Software Development VI, 2009, pp. 191–
237.

[23] P. deGrandis and G. Valetto, “Elicitation and utilization of
application-level utility functions,” in Int’l Conf. on Autonomic
Computing, Barcelona, Spain, 2009, pp. 107–116.

[24] J. P. Sousa, R. K. Balan, V. Poladian, D. Garlan, and M. Satya-
narayanan, “User Guidance of Resource-Adaptive Systems,” in
Int’l Conf. on Software and Data Technologies, Porto, Portugal,
2008, pp. 36–44.

[25] C. Chatfield, The Analysis of Time Series: An Introduction, Sixth
Edition, 6th ed. Chapman and Hall/CRC, 2003.

[26] D. P. Solomatine, “Data-driven modelling: paradigm, methods,
experiences,” in Int’l Conf. on Hydroinformatics, Cardiff, UK,
2002, pp. 1–5.

[27] M. Kantardzic, Data Mining: Concepts, Models, Methods, and
Algorithms, 1st ed. Wiley-IEEE Press, 2002.

[28] J. R. Quinlan, “Induction of decision trees,” Machine Learning,
vol. 1, no. 1, pp. 81–106, 1986.

[29] L. Breiman, J. Friedman, C. J. Stone, and R. A. Olshen, Classifi-
cation and Regression Trees, 1st ed. Chapman and Hall/CRC,
1984.

[30] J. H. Friedman, “Multivariate adaptive regression splines,” The
Annals of Statistics, vol. 19, no. 1, pp. 1–67, Mar. 1991.

[31] L. A. Wolsey, Integer Programming, 1st ed. Wiley-Interscience,
1998.

[32] S. J. Russell and P. Norvig, Artificial intelligence: a modern ap-
proach, 3rd ed. Prentice hall, 2009.

[33] S. Malek, N. Medvidovic, and M. Mikic-Rakic, “An Extensible
Framework for Improving a Distributed Software System’s De-
ployment Architecture,” IEEE Trans. Softw. Eng., vol. 38, no. 1,
pp. 73–100, Feb. 2012.

[34] G. Edwards, S. Malek, and N. Medvidovic, “Scenario-Driven
Dynamic Analysis of Distributed Architectures,” in Int’l Conf.
on Fundamental Approaches to Software Engineering, Braga, Portu-
gal, 2007, pp. 125–139.

[35] S. Malek, M. Mikic-Rakic, and N. Medvidovic, “A Style-Aware
Architectural Middleware for Resource-Constrained, Distribut-
ed Systems,” IEEE Trans. Softw. Eng., vol. 31, no. 3, pp. 256–272,
Mar. 2005.

[36] “GME.” [Online]. Available:
http://www.isis.vanderbilt.edu/Projects/gme/. [Accessed: 08-
Mar-2009].

[37] J. Magee and J. Kramer, Concurrency: State Models and Java Pro-
grams, 2nd ed. Wiley, 2006.

[38] E. M. Dashofy, A. van der Hoek, and R. N. Taylor, “An infra-
structure for the rapid development of XML-based architecture
description languages,” in Int’l Conf on Software Engineering, Or-
lando, Florida, 2002, pp. 266–276.

[39] N. Esfahani and S. Malek, “Utilizing architectural styles to
enhance the adaptation support of middleware platforms,”
Journal of Information and Software Technology, vol. 54, no. 7, pp.
786–801, Jul. 2012.

[40] “QVT Final Specification.” [Online]. Available:
http://www.omg.org/cgi-bin/doc?ptc/2007-07-07. [Accessed:
06-Mar-2011].

[41] H. Giese and R. Wagner, “Incremental Model Synchronization
with Triple Graph Grammars,” in International Conference on
Model Driven Engineering Languages and Systems (MoDELS 2006),
2006, vol. 4199, pp. 543–557.

[42] “WEKA.” [Online]. Available:
http://www.cs.waikato.ac.nz/ml/weka/. [Accessed: 04-Mar-
2010].

[43] M. Gunestas, D. Wijesekera, and A. Elkhodary, “An evidence
generation model for web services,” in IEEE International Con-
ference on System of Systems Engineering, 2009. SoSE 2009, 2009,
pp. 1 –6.

[44] “FUSION Project.” [Online]. Available:
http://www.sdalab.com/projects/fusion. [Accessed: 14-Feb-
2013].

[45] S. Malek, “A user-centric approach for improving a distributed
software system’s deployment architecture,” Univ. of Southern
California, 2007.

[46] D. Cooray, S. Malek, R. Roshandel, and D. Kilgore, “RESISTing
Reliability Degradation through Proactive Reconfiguration,” in
Int’l Conf. on Automated Software Engineering, Antwerp, Belgium,
2010, pp. 83–92.

[47] N. Esfahani, E. Kouroshfar, and S. Malek, “Taming Uncertainty
in Self-Adaptive Software,” in Int’l Symp. on the Foundations of
Software Engineering, Szeged, Hungary, 2011, pp. 234–244.

[48] D. A. Menasce, J. P. Sousa, S. Malek, and H. Gomaa, “QoS
Architectural Patterns for Self-Architecting Software Systems,”
in Int’l Conf. on Autonomic Computing, Washington, DC, 2010,
pp. 195–204.

[49] S. Onn, “Convex Discrete Optimization,” in Encyclopedia of
Optimization, 2nd ed., vol. 1, C. A. Floudas and P. M. Pardalos,
Eds. Springer, 2009, pp. 513–550.

[50] M. Salehie and L. Tahvildari, “Self-adaptive software: Land-
scape and research challenges,” ACM Trans. Auton. Adapt. Syst.,
vol. 4, no. 2, pp. 1–42, May 2009.

ESFAHANI ET AL.: A LEARNING-BASED FRAMEWORK FOR ENGINEERING FEATURE-ORIENTED SELF-ADAPTIVE SOFTWARE SYSTEMS 27

[51] R. de Lemos, H. Giese, H. A. Muller, M. Shaw, J. Andersson, L.
Baresi, B. Becker, N. Bencomo, Y. Brun, B. Cikic, R. Desmarais,
S. Dustdar, G. Engels, K. Geihs, K. M. Goeschka, A. Gorla, V.
Grassi, P. Inverardi, G. Karsai, J. Kramer, M. Litoiu, A. Lopes, J.
Magee, S. Malek, S. Mankovskii, R. Mirandola, J. Mylopoulos,
O. Nierstrasz, M. Pezze, C. Prehofer, W. Schafer, W. Schlicht-
ing, B. Schmerl, D. B. Smith, J. P. Sousa, G. Tamura, L. Tahvil-
dari, N. M. Villegas, T. Vogel, D. Weyns, K. Wong, and J. Wutt-
ke, “Software Engineering for Self-Adpaptive Systems: A sec-
ond Research Roadmap,” in Software Engineering for Self-
Adaptive Systems, Dagstuhl, Germany, 2011.

[52] T. Ryutov, L. Zhou, C. Neuman, T. Leithead, and K. E. Sea-
mons, “Adaptive trust negotiation and access control,” in ACM
Symp. on Access control models and technologies, Stockholm, Swe-
den, 2005, pp. 139–146.

[53] M. N. Bennani and D. A. Menasce, “Assessing the Robustness
of Self-Managing Computer Systems under Highly Variable
Workloads,” in Int’l Conf. on Autonomic Computing, New York,
New York, 2004, pp. 62–69.

[54] “DiVA Project.” [Online]. Available: http://www.ict-
diva.eu/DiVA. [Accessed: 23-Oct-2012].

[55] B. Morin, O. Barais, G. Nain, and J.-M. Jezequel, “Taming Dy-
namically Adaptive Systems using models and aspects,” in Int’l
Conf. on Software Engineering, Vancouver, Canada, 2009, pp.
122–132.

[56] F. Fleurey and A. Solberg, “A Domain Specific Modeling Lan-
guage Supporting Specification, Simulation and Execution of
Dynamic Adaptive Systems,” in Int’l Conf. on Model Driven En-
gineering Languages and Systems, Denver, Colorado, 2009, pp.
606–621.

[57] B. Morin, F. Fleurey, N. Bencomo, J.-M. Jézéquel, A. Solberg, V.
Dehlen, and G. Blair, “An Aspect-Oriented and Model-Driven
Approach for Managing Dynamic Variability,” in international
conference on Model Driven Engineering Languages and Systems,
Toulouse, France, 2008, pp. 782–796.

[58] D. Ardagna, C. Ghezzi, and R. Mirandola, “Rethinking the Use
of Models in Software Architecture,” in Int’l Conf. on Quality of
Software-Architectures: Models and Architectures, Karlsruhe, Ger-
many, 2008, pp. 1–27.

[59] Y. Wang and I. H. Witten, “Induction of model trees for pre-
dicting continuous classes,” in European Conf. on Machine Learn-
ing, Prague, Czech Republic, 1997.

[60] P. Oreizy, M. M. Gorlick, R. N. Taylor, D. Heimbigner, G. John-
son, N. Medvidovic, A. Quilici, D. S. Rosenblum, and A. L.
Wolf, “An Architecture-Based Approach to Self-Adaptive Soft-
ware,” IEEE Intelligent Systems, vol. 14, no. 3, pp. 54–62, May
1999.

[61] P. Inverardi and M. Mori, “Feature oriented evolutions for
context-aware adaptive systems,” in Joint ERCIM Wrkshp on
Software Evolution and Int’l Wrkshp on Principles of Software Evo-
lution, Antwerp, Belgium, 2010, pp. 93–97.

[62] A. Gambi, G. Toffetti, and M. Pezze, “Protecting SLAs with
surrogate models,” in Proceedings of the 2nd International Work-
shop on Principles of Engineering Service-Oriented Systems, Cape
Town, South Africa, 2010, pp. 71–77.

[63] G. Tesauro, “Reinforcement Learning in Autonomic Compu-
ting: A Manifesto and Case Studies,” IEEE Internet Computing,
vol. 11, no. 1, pp. 22–30, Jan. 2007.

[64] D. Kim and S. Park, “Reinforcement learning-based dynamic
adaptation planning method for architecture-based self-
managed software,” in Workshop on Softw. Eng. For Adaptive and
Self-Managing Systems, Vancouver, Canada, 2009, pp. 76–85.

[65] D. Zhao and Z. Hu, “Supervised adaptive dynamic program-
ming based adaptive cruise control,” in Adaptive Dynamic Pro-
gramming And Reinforcement Learning, Paris, France, 2011, pp.
318 –323.

[66] K. Rieck and P. Laskov, “Language models for detection of
unknown attacks in network traffic,” Journal in Computer Virolo-
gy, vol. 2, no. 4, pp. 243–256, Feb. 2007.

[67] M. Sabhnani and G. Serpen, “Application of machine learning
algorithms to KDD intrusion detection dataset within misuse
detection context,” in Int’l Conf. on Machine Learning: Models,
Technologies, and Applications, Las Vegas, Nevada, 2003, pp. 209–
215.

Naeem Esfahani is a PhD can-
didate in the Department of
Computer Science at George
Mason University (GMU). His
current research mainly focuses
on software architecture, auto-
nomic computing, and mo-
bile/distributed software systems.
Esfahani received his MS degree
in Computer Engineering with
Software Engineering major from
Sharif University of Technology
(SUT) in 2008 and his BS degree
in Electrical and Computer Engi-
neering with Software Engineer-
ing major from University of Teh-

ran (UT) in 2005. Esfahani is a member of ACM SIGSOFT.

Ahmed Elkhodary is currently
working in Islamic Development
Bank (IDB). Elkhodary received
his PhD in Information Technolo-
gy from George Mason Universi-
ty (GMU) in 2011. He got his
bachelor’s degrees in Computer
Engineering from King Abdul-
Aziz University (KSA). He also
holds a Master of Science in
Software Engineering from
George Mason University
(GMU). His current research
mainly focuses on Software Ar-
chitecture, Software Product
Lines Engineering, Autonomic

Computing, and Online Machine Learning.

Sam Malek is an Associate Pro-
fessor in the Department of
Computer Science at George
Mason University (GMU). He is
also the director of GMU's Soft-
ware Design and Analysis La-
boratory, a faculty associate of
the GMU's Center of Excellence
in Command, Control, Commu-
nications, Computing and Intelli-
gence, and a member of the
Defense Advanced Research
Projects Agency's Computer
Science Study Panel. Malek's
general research interests are in
the field of software engineering,

and to date his focus has spanned the areas of software architec-
ture, autonomic software, and software dependability. Malek re-
ceived his PhD and MS degrees in Computer Science from the Uni-
versity of Southern California in 2007 and 2004, respectively, and his
BS degree in Information and Computer Science from the University
of California, Irvine in 2000. He has received numerous awards for
his research contributions, including the National Science Founda-
tion CAREER award (2013) and the GMU Computer Science De-
partment Outstanding Faculty Research Award (2011). He is a mem-
ber of the ACM, ACM SIGSOFT, and IEEE.

