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ABSTRACT OF THE THESIS
Deep-GUI: Towards Platform-Independent UI Input Generation with Deep Reinforcement

Learning

By

Faraz YazdaniBanafsheDaragh

Master of Science in Software Engineering

University of California, Irvine, 2020

Professor Sam Malek, Chair

Although many Android input generation tools with different paradigms have been proposed,

many of them fail to surpass even the simplest form of testing, i.e. random testing, in terms of

coverage. Moreover, almost all these tools assume specific structures about the environment

under the test. For instance, they require an XML encoding of the UI elements, or access

to the source code for static analysis. This, however, is not always possible, e.g. when an

application is simply a wrapper that uses a web-view to show content, or when the source

code is not available. Moreover, these assumptions prevent these tools from applying to

other platforms, such as web or iOS. In other words, unless a testing tool is truly black-box

and platform-independent, its applicability is greatly compromised.

In this work, we propose Deep-GUI as the first effort towards fully cross-platform and black-

box automated input generation. Using the power of deep learning, Deep-GUI learns the

valid interactions given only the applications’ screenshots, and therefore does not need any

implementation-specific information about the application under test. Moreover, since the

data collection, training, and inference processes are performed independently of the plat-

form, Deep-GUI can be used in other platforms. We implement our extension of Google

Monkey called Monkey++ that uses Deep-GUI, and show its effectiveness over Google Mon-

vii



key in crawling Android applications. Furthermore, we provide evidence for the ability of

Deep-GUI to operate across platforms without the need to re-train it, and explore future

directions that can use the idea behind Deep-GUI to give rise to the next generation of

automated input generation tools.
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Chapter 1

Introduction

Automatic input generators for Android applications have been a hot topic for the past

decade in software engineering community, simply because there are many applications to

them. They can not only be used for automatically testing the applications, but also for

crawling thousands of applications, which is useful in large scale studies as well as for app

stores that need to ensure the security of the applications on their platform. Based on the

exact usage in mind, input generator tools can be very generic, and simply crawl applications

[10, 16, 18], or can be specifically looking for some certain criteria to be fulfilled, such as

reaching activities with specific attributes [6]. Nevertheless, however these tools try to do

this, they always use some pieces of information specific to the platform. For instance, many

tools use static analysis to find the right combination of interactions with the application

under test (AUT) [4, 6, 15, 30], while other tools depend on the GUI layout model that the

platform provides to find and interact with the widgets [2, 19, 3, 8, 11, 5, 13, 28, 31, 7].

While this enables these tools with great potential for efficiently exploring apps in platforms

that provide these types of information, it is also an obstacle for using these tools in new

environments. For instance, almost none of the mentioned tools can be used for platforms

other than Android without re-implementing the majority of their code, if possible at all.
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This is simply because they rely on syntax and semantics of specific pieces of information

they process. Moreover, in tools such as A3E [4] , the tools systematically depend on the

design choices of Android, which makes them very much limited to only this operating

system, and might even stop working in the next updates of it. Another type of limitation is

when the AUT has some non-native components to it, e.g. activities that are just wrappers

for websites. In these situations, unless explicitly being taken care of, the tools are unable

to perform fully operational.

Because of such limitations, it is reasonable to invest in black-box and platform-independent

input generation tools. Google Monkey is the only tool that operates without structural

dependency on the platform, although it is explicitly implemented for Android. While this

tool is basically a random input generator, many studies suggest Google Monkey outperforms

many of the existing white/gray box tools [9]. This essentially means that there is much

potential in exploring black-box input generation options, in that it appears the information

coming from the platform does not add much to the input generation ability. However,

Google Monkey is the most basic form of black-box input generation. It blindly interacts

with the screen without knowing if its action is a valid one. This might work quite well in

many applications where the probability of randomly choosing an action that makes sense

is high, but not in other applications. For instance, take Figure 1.1. In Figure 1.1a, since

most of the screen contains buttons, almost all of the times that Google Monkey decides to

touch, it touches on something valid and therefore tests a functionality. However, in Figure

1.1b, it is much less probable for Google Monkey to successfully touch the one button that

exists on the screen, and therefore it takes much longer for it to test its functionality.

This article proposes Deep Generation of UI Inputs (Deep-GUI), a deep-learning-based tool

that helps in such situations. Deep-GUI is able to filter out the parts of the screen that

are irrelevant with respect to a specific action, such as touch, and therefore increases the

probability of correctly interacting with the application. For example, given the screenshot

2



(a) (b)

(c) (d) (e)

Figure 1.1: Two examples where it is respectively easy (a) and difficult (b) for Google Monkey
to find a valid action, as well as the heatmaps generated by Deep-GUI associated with (b) for
touch (c), scroll (d), and swipe (e) actions respectively. Note that in (c) the model correctly
identifies both the button and the hyperlink –and not the plain text– as touchable.
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shown in Figure 1.1b, Deep-GUI first produces the heatmap in Figure 1.1c, which shows

for each pixel the probability of that pixel belonging to a touchable widget. Then it uses

this heatmap to touch the pixels with higher values more often, hence increasing the chance

of touching the button. In order to produce such heatmaps, Deep-GUI undertakes a deep

learning approach. Moreover, what makes it unique is that Deep-GUI uses a completely

black-box and cross-platform method to collect data, learn from it, and produce the men-

tioned heatmaps, and hence supports all situations, applications, and platforms. It also uses

the power of transfer learning to make its training more data-efficient and faster. Our evalu-

ations show that Deep-GUI is able to increase Google Monkey’s performance on applications

where Google Monkey struggles to find the valid actions. Also, we show that we can take a

Deep-GUI model that is trained on Android, and use it on other platforms for efficient input

generation. In summary, this article makes these contributions:

1. We propose Deep-GUI, a platform-independent method for automatically crawling an

environment. To the best of our knowledge, this is the first tool that uses a completely

black-box and cross-platform approach for data collection, training, and inference.

2. We provide Monkey++, an extension to Google Monkey that uses Deep-GUI to en-

hance the performance of Google Monkey in crawling Android applications.

3. We provide evaluations of Deep-GUI.
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Chapter 2

Method

We here formally explain our definition of the problem of automatically generating inputs

in an environment. Suppose that at each timestep t, the environment provides us with its

state st. This can be as simple as the screenshot, or can be a more complicated content such

as the UI tree. Also, suppose we define A = {α1, ...αN} as the set of all possible actions that

can be performed in the environment at all timesteps. For instance, in Figure 1.1b, all of

the touch events associated with all pixels on the screen can be included in A. Note that

these actions are not necessarily valid. We define a valid action as an action that results

in triggering a functionality (like touching the send button) or changing the UI state (like

scrolling down a list). Let us define rt = r(st, at) to be 1 if at is valid when performed on

st, and 0 otherwise. Our goal is to come up with a function Q that, given st, produces the

probability of validity for each possible action. That is, Q(st, at) identifies how probable it

is for at to be a valid action when performed on st. Therefore, Q is essentially a binary

classifier (valid vs. non-valid) conditioned on st independently for each action in the set A.

For simplicity, we also define Q(st) as a function that, given an action α, returns Q(st, α).

That is, Q(st)(α) = Q(st, α)

5



Figure 2.1: Overview of components comprising Deep-GUI & Monkey++

In Deep-GUI, we consider st to be the screenshot of AUT at each timestep. Set A consists of

touch, up and down scroll, and right and left swipe events, on all of the pixels of the screen.

We also define rt as follows:

r(st, at) =


0 if equals(st, st+1)

1 o.w.

That is, if the screenshot undergoes a legitimate change after an action, we consider it to be

a valid action in that screen. We define what a legitimate change means below. Note that

we defined st, A, and rt independent of the platform on which AUT operates. Therefore,

this approach can be used in almost all existing environments.

This work consists of four components:

A. Data collection: This component helps in collecting necessary data to learn from.

B. Model: At the core of this component is a deep neural network that processes st

and produces a heatmap Q(st) for all possible actions at, such as the ones shown in

Figure 1.1. The neural network is initialized with weights learned from large image

classification tasks to provide faster training.
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C. Inference: After training, and at the inference time, there are multiple readout mecha-

nisms available for using the produced heatmaps and generating a single action. These

mechanisms are used in a hybrid fashion to provide us with the advantages of all of

them.

D. Monkey++: This is the only component that is specialized for Android, and its ap-

plication is to fairly compare Deep-GUI with Google Monkey. Also, it provides a fast

medium to use Deep-GUI in Android platforms as it can replace Google Monkey and

be used almost the same way.

Figure 2.1 shows an overview of these four components and how they interact.

2.1 Data Collection

As we showed, we reduced the problem to a classification problem, therefore each datapoint

in our dataset needs to be in the form of a three-way tuple (st, at, rt), where our model tries to

classify the pair (st, at) into one of the two values that rt represents, i.e. whether performing

the action at on the state st is valid or not. Since training a deep neural network requires

a large amount of data, we cannot create this dataset manually. Therefore, we propose an

automatic method to generate this dataset.

As defined above, we considered rt to represent if the screen has a legitimate change after

an action. We here define legitimate change as a change that does not involve an animated

part of the screen. In other words, if specific parts of the screen change even in case of no

interaction with the application, we filter those parts out when computing rt. For instance,

in Android, when focused on a textbox, a cursor keeps appearing and disappearing every

second. But we filter out the pixels corresponding to the cursor.
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For data collection, we first dedicate a set of applications to be crawled. Then, for each

application, we randomly interact with the application with the actions in the set A and

record the screenshot, the action, and whether the action resulted in a legitimate change.

In order to filter out animated parts of the screen, before each action, we first record the

screen for 5 seconds and consider all pixels that change during this period animated pixels.

While this method does not fully filter all of illegitimate changes 1, as the results suggest, it

is adequate.

A keen observer would realize that this method of data collection is a very natural choice

to make. For instance, consider Android applications. For years, people have used Google

Monkey to crawl Android applications for different purposes, but they never store the valu-

able data that it comes up with. Because of this, even if a particular application has already

been crawled by Google Monkey thousands of times before by other researchers, when a new

researcher uses Google Monkey on that application, it still crawls randomly and makes all

the mistakes that it has already seen hundreds of thousands of times. The collection method

described here is an attempt to share these experiences by training a model and making the

model available to future researchers, as we discuss next.

2.2 Model

While, as discussed above, the problem is to classify the validity of a single action at when

performed on st, it does not mean that each datapoint (st, at, rt) cannot be informative about

actions other than at. For instance, if touching a point results in a valid action, touching

adjacent points may also result in a valid action with high probability. This can make our

training process much faster and more data-efficient. Therefore, we need a model that can

capture such logic.
1For instance, if an accumulative progress bar is being shown, this method does not work.
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2.2.1 Input and Output

As the first step in order to do so, in our model, we define the input and output as follows.

The input is a 3-channel image that represents st, the screenshot of the AUT at time t.

For the output, we require our model to perform the classification task for all the actions,

and not just at. While we do not directly use the prediction for other actions to generate

gradients when training, this enables us to 1. use a more intuitive model 2. use the model at

inference time by choosing the action that is most confidently classified to be valid. We use a

T -channel heatmap to represent our output, T being the number of action types, i.e. touch,

scroll, swipe. Note that we do not differentiate between up/down scroll or left/right swipe at

this stage. Each channel is a heatmap for the action type it represents. For each action type,

the value at (i, j) of the heatmap associated with that action type represents the probability

that the model assigns to the validity of performing that action type on location (i, j). For

instance, in Figure 1.1, the three heatmaps 1.1c, 1.1d, 1.1e show the model’s confidence in

performing touch, scroll, and swipe, respectively, at different locations of the screen.

2.2.2 UNet

We also would need a model that can intuitively relate the input and output, as defined

above. We use a UNet architecture, as it has shown to be effective in applications such

as image segmentation where the output is an altered version of the input image [23]. In

this architecture, the input image is first processed in a sequence of convolutional layers

known as the contracting path. Each of these layers reduces the dimensionality of the

data while potentially encoding different parts of the information relevant to the task at

hand. The contracting path is followed by the expansive path, where various pieces of

information at different layers are combined using transposed convolutional layers 2 to expand
2In some references these are referred to as deconvolutional layers.
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Figure 2.2: The deep neural network architecture used in Deep-GUI. The layers’ names
shown in MobileNetV2 are from Tensorflow [1] implementation of the architecture. ConvT is
a transpose convolutional layer.

the dimensionality to the suitable format required by the problem. In our case, the output

would be a 3-channel heatmap. In order for this heatmap to produce values between 0 and 1

(as explained above), it is processed by a sigmoid function in the last step of the model. As

one can notice, because of the nature of convolutional and transposed convolutional layers,

adjacent coordinate pairs are processed more similarly than other pairs. This makes it easier

for the network to make deductions about all actions, and not just at. Moreover, the entire

model seems to have an intuitive design: First, the relevant parts of information are extracted

and grouped in different layers, and then combined to form the output. This is similar to

how the UI elements are usually represented in software applications as a GUI tree.

2.2.3 Transfer Learning

While Google Monkey might struggle in finding valid actions when crawling an application,

and while other tools might need to use other information such as GUI tree to detect such

actions, humans find the logic behind a valid action pretty intuitive, and can learn it within
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minutes of encountering a new environment. The reason behind this “intuition" lies in the

much more elaborate visual experience that humans have that goes beyond the Android

environments. Since birth, we see a myriad of objects in a myriad of contexts, and we learn

to distinguish objects from their backgrounds. This information helps us a lot to distinguish

a button in the background of an application, even if the background itself is a complicated

image. Because of this, we humans do not need thousands of examples to learn to interact

with an environment.

How can we use this fact to get the same training performance with fewer data in our tool?

Research in machine learning has shown us that transfer learning can do this job [21]. In

transfer learning, instead of a randomly initialized network, an existing model previously

trained on a dataset for a potentially different but related problem is used as the starting

point of all or some part of the network. This way, we “transfer" all the experience related

to that dataset, without having invested time to actually process it. Therefore, training is

more data-efficient. This is in particular important for us because, as discussed, the data

collection process is very time-consuming given that the tool needs to monitor the screen for

animations before collecting each datapoint.

The contracting path of the UNet seems like a perfect candidate for transfer learning be-

cause, unlike the expansive path, it is more related to how the network processes the input,

rather than how it produces the output. This means that any trained model that exists for

processing an image can be a candidate for us to use its weights.

In this work, as the contracting path, we used part of the network architecture MobileNetV2

[26] trained on the ImageNet dataset [25]. We chose MobileNetV2 because it is powerful

and yet lightweight enough to be used inside mobile phones if necessary. Figure 2.2 shows

how MobileNetV2 interacts with our expansive path to build the model used in Deep-GUI.

Note that in order for the screenshot to be compatible with the already trained MobileNetV2

11



model, we first resize it to 224× 224. Also, because of computational reasons, the produced

output is 56× 56, and is later upsampled linearly to the true screen size.

2.2.4 Training

At the training time, for each datapoint (st, at, rt), the network first produces Q(st) as the

described heatmaps. Then, using the information about the performed action at, it indexes

the network’s prediction for the action to get Q(st)(at) = Q(st, at). Finally, since this is a

classification task, we use a binary crossentropy loss between rt and Q(st, at) to generate

gradients and train the network. Please note that while we used an existing trained model

as the initialization of the contracting path, we do train the weights on that path too.

2.3 Inference

Once we have the trained model, we want to be able to use it to pick an action given a

screenshot of an application at a specific state. Therefore, we require a readout function

that can sample an action from the produced heatmaps. Here, we propose two readouts,

and we explain how we use both in Deep-GUI.

The simplest possible readout is one that samples actions based on their relative prediction.

That is, the more probable the network thinks it is for the action to be a valid one, the more

probable it is for the action to be sampled. For this to happen, we need to normalize the

heatmaps to a probability distribution over all actions of all types. Formally:

p(at = α|st) = f(Q(st, α))∑
α′∈A f(Q(st, α′))

12



where f identifies the kernel function. For instance if f(x) = exp(x), we have a softmax

normalization. In our work, we chose to use the linear kernel f(x) = x. Using the probability

distribution that the linear kernel produces, we then sample an action. We call this method

the weighted_sampling readout.

However, humans usually interact with applications differently. We see widgets rather than

pixels, and interact with those widgets as a whole. The weighted_sampling readout does

not take this into account as it treats each pixel independently. Take Figure 2.3a as an

example. The “Enable delivery reports" checkbox is potentially as important as the send

button, because if it is checked a new functionality can be tested. However, because the

button is larger than the checkbox, it takes the weighted_sampling readout longer to finally

toggle the checkbox and test the new functionality.

(a) (b)

Figure 2.3: a: An example of a screen with
equally important widgets of different sizes. b:
The touch channel of the produced heatmap.
The pixels belonging to different clusters that
the cluster_sampling readout detects are
colored with maroon, red, and white, depend-
ing on the cluster they belong to.

To address this issue, we use the cluster_sampling

readout. In this approach, we first filter

out all the actions α for which the pre-

dicted Q(st, α) is less than a certain thresh-

old. This way, we make sure only the ac-

tions that are highly probable to be valid are

considered. In Deep-GUI this threshold is

0.99. Then, for each channel in Q(st), we use

agglomerative clustering as implemented in

python library scikit-learn [22] to cluster

the pixels into widgets. Figure 2.3b shows

the clustering result for the touch channel of

the heatmap corresponding to Figure 2.3a.

After detecting the clusters, we first ran-

domly choose one of the action types, and

13



then randomly choose one of the clusters (i.e. widgets) in the channel associated with that

action type. Finally, we choose a random pixel that belongs to that cluster and generate at.

While configurable, in our experiments we used a hybrid readout that uses weighted_sampling

in 30% of the times, and cluster_sampling in 70% of the times. This way, we exploit the

benefits that cluster_sampling offers, while we make sure we do not completely abandon

certain valid actions because of the imperfections of the tool.

The discussed readouts identify the action type and the location of it on the screen. However,

scroll and swipe also require other parameters such as direction or length. Deep-GUI chooses

these parameters randomly. Also, because swipe and scroll are mostly used to discover other

buttons, while touch is actually the action that triggers the functionality of the buttons, we

configure the described readouts so that they are more biased towards choosing the touch

action.3

2.4 Monkey++

While touch, swipe, and scroll are the most used action types when interacting with an

environment, there are other actions that may affect the ability of a tool to crawl Android

applications. In order to cover those actions as well, and also in order to be able to compare

Google Monkey with our proposal fairly in Android environments, we introduce Monkey++,

which is an extension to Google Monkey. Monkey++ consists of a server side, which responds

to queries with Deep-GUI, and a client side, which is implemented inside Google Monkey.

Google Monkey works as follows. First, it randomly chooses an action type (based on the

probabilities provided to it when starting it), and then randomly chooses the parameters
3In weighted_sampling, we multiply each heatmap belonging to touch, scroll, and swipe with 1, 0.3, and

0.1 respectively. In cluster_sampling, when randomly choosing an action type from the available ones, we
use the same three numbers to bias the probability.
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for those actions (such as the location to touch). Monkey++ works the same as Google

Monkey with one exception. If the chosen action type is touch or gesture (which represents

all types of movement, including scroll and swipe), instead of proceeding with the standard

random procedure in Google Monkey, it sends a query to the server side. Using the inference

procedure described above, Deep-GUI samples an action and returns to the client, which is

then performed on the device. Algorithm 1 shows how Monkey++ works.

Algorithm 1: Monkey++ algorithm
while Google Monkey is running do

get action type t from Google Monkey;
if t is touch or gesture then

get action a from Deep-GUI server
else

continue with Google Monkey and get action a
end
perform a

end

15



Chapter 3

Evaluation

We evaluated Deep-GUI with respect to the following research questions:

RQ1. What are the situations in which Monkey++ can surpass Google Monkey in terms of

coverage?

RQ2. Is Deep-GUI actually cross-platform?

RQ3. How much is transfer learning helping Deep-GUI in learning better and faster?

We used the applications in the Androtest benchmark [9] as our pool of applications. Out

of 66 applications available 1, we randomly chose 28 for training, 6 for validation, and 31 for

testing purposes. We also eliminated one of the applications because of its incompatibility

with our data collection procedure.2

To support a variety of screen sizes, we collected data from virtual devices of size 240× 320

and also 480 × 854, and trained a single model that is used in the experiments explained
1Three applications caused crashes in the emulators and hence were not used.
2Application org.jtb.alogcat keeps updating the screen with new logs from the logcat regardless of the

interactions with it, which highly deviates from the behavior of a normal Android application.
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in sections RQ1 and RQ2. We collected an overall amount of 210,000 data points. Virtual

devices, both for data collection and the Android experiments, were equipped with a 200MB

virtual SD card, as well as 4GB of RAM. For data collection, training, and the experiments,

we used an Ubuntu 18.04 LTS workstation with 24 Intel Xenon CPUs and 150GB RAM.

We did not use GPU at any stage of this work. The entire source code for this work, the

experiments, and the analysis is available at https://github.com/Feri73/deep-gui.

3.1 RQ1. Line Coverage

In order to test the ability of Monkey++ in exploring Android applications, we ran both

Monkey++ and Google Monkey on each application in the test set for one hour, and mon-

itored line coverage of the AUT every 60 seconds using Emma [24]. We ran 9 instances of

this experiment in parallel, and calculated the average across different executions of each

tool. Table 3.1 shows the final coverage for the applications in the test set. While in many

applications Monkey++ and Google Monkey perform similarly, in some applications such as

com.kvance.Nectroid Monkey++ outperforms Google Monkey significantly. We hypothe-

size that this is directly related to an attribute of applications we call non-trivial availability

(NTA).

NTA identifies if an application offers anything to explore. Different factors can affect this

value. For instance, if the majority of the application’s code is executed at the startup

there is not much available in the application to explore. As another example, consider

applications that require signing in to an account to access their main functionality. Unless

it is explicitly supported by the tools (which is not in this study), not much can be explored

within the application.
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Table 3.1: The applications in the test set as well as their final performances of Monkey++
and Google Monkey in them, sorted by NTA.

Application NTA (bits) Monkey++ G Monkey
es.senselesssolutions.gpl.weightchart 2.8 %67 %65
com.hectorone.multismssender 2.6 %64 %67
com.templaro.opsiz.aka 2.4 %72 %66
com.kvance.Nectroid 2.3 %65 %50
com.tum.yahtzee 2.3 %67 %61
in.shick.lockpatterngenerator 2.2 %86 %84
net.jaqpot.netcounter 2.2 %71 %69
org.waxworlds.edam.importcontacts 2.0 %41 %34
cri.sanity 1.8 %25 %23
com.chmod0.manpages 1.7 %72 %63
com.google.android.divideandconquer 1.5 %85 %88
com.example.android.musicplayer 1.3 %71 %71
ch.blinkenlights.battery 1.3 %91 %93
org.smerty.zooborns 1.2 %34 %33
com.android.spritemethodtest 1.2 %71 %87
com.android.keepass 1.1 %7 %8
org.dnaq.dialer2 1.0 %39 %39
hu.vsza.adsdroid 1.0 %24 %24
com.example.anycut 0.9 %71 %71
org.scoutant.blokish 0.9 %45 %46
org.beide.bomber 0.8 %89 %88
com.beust.android.translate 0.7 %48 %48
com.addi 0.6 %18 %18
org.wordpress.android 0.5 %5 %5
com.example.amazed 0.3 %82 %81
net.everythingandroid.timer 0.2 %65 %65
com.google.android.opengles.spritetext 0.1 %59 %59
aarddict.android 0.0 %14 %14
com.angrydoughnuts.android.alarmclock 0.0 %6 %6
com.everysoft.autoanswer 0.0 %9 %9
hiof.enigma.android.soundboard 0.0 %100 %100
com.tum.yahtzee: This is a dice game with fairly complicated logic and several buttons,
each activating different scenarios over time.
org.waxworlds.edam.importcontacts: This application imports contacts from the SD
card. There are multiple steps to reach to the final activity, and each contains multiple
options that change the course of actions that the application finally takes.
hu.vsza.adsdroid: The only functionality of this application is to search for and list the
data-sheets of electronic items. The search activity contains one drop-down list for search
criteria, and a search button.
org.wordpress.android: This application is for management of WordPress websites. At
the startup, it either requires a login or opens a web container, which does not affect the
line coverage.
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We hypothesize that Monkey++ outperforms Google Monkey in applications with high NTA.

In order to test this, we define NTA as the uncertainty in coverage when randomly interacting

with an application. That is, if random interactions with an application always result in a

similar trace of coverage, it means that the available parts of the application are trivial to

reach and will be executed with high certainty, and therefore, not much NTA is offered by

the application. To compute uncertainty (and hence NTA) for an application, we take all

line coverage information for that application in all timesteps of all experiments involving

Google Monkey (as a random interaction tool), and calculate the entropy of the distribution

of these coverage values. Table 3.1 shows the NTA (in binary bits) for each application, and

discusses some examples of applications with high and low NTA. As one can notice, most of

the applications in which Monkey++ achieves better coverage have higher NTA.

Figure 3.1: The progressive line coverage of Monkey++
and Google Monkey on the top 10 Android applications
with regards to their NTA

To further demonstrate the abil-

ity of Monkey++ in crawling com-

plex applications with high NTA,

we analyzed the progressive cover-

age of the top 10 applications with

regards to NTA. Figure 3.1 shows

that Monkey++ achieves better re-

sults compared to Google Mon-

key, and does so faster. This

superiority is statistically signifi-

cant in all timesteps, as calculated

by a one-tail Kolmogorov–Smirnov

(KS) test (p-value < 0.05).3

3To calculate the error bars in Figure 3.1 and the p-value for KS-test, first for each application, the
mean performance of Google Monkey on that application is subtracted from the performance of both Google
Monkey and Monkey++, and then the error bars and the significance are computed with regards to this
value across all applications.
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3.2 RQ2. Cross-Platform Ability

Figure 3.2: The progressive performance of Deep-GUI
and random agent in web crawling. The difference be-
tween the three tools is statistically significant in all
timesteps, as calculated by one tail KS-tests between
all pairs (similar to the procedure described in footnote
3).

Since the method we proposed is

completely blind with regards to

the application’s implementation

or the platform it runs on, we hy-

pothesize it is applicable not only

in Android but in other platforms

such as web or iOS. Moreover, we

claim that since UI design across

different platforms is very similar

(e.g. buttons are very similar in

Android and web), we can take a

model trained on one platform and

use it in other platforms. This is

particularly useful when developers

want to test different implementa-

tions of the same application in different platforms.

To test whether our approach is truly cross-platform, we implemented an interface to use

Deep-GUI for interacting with Mozilla Firefox browser4 using Selenium web driver [27], and

compared it against a random agent5. Note that we did not re-train our model, and used

the exact same hyper-parameters and weights we used for the experiments in RQ1, which

are learned from Android applications.

For the web experiments, we used the top 15 websites in the US [12] as our test set, and ran

each tool on each website 20 times, each time for 600 steps. To measure the performance,
4We used Responsive Design Mode in Mozilla Firefox with the resolution of 480× 640
5The random agent uses the same bias for action types that is explained in footnote 3.
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Table 3.2: The performance of Deep-GUI and random agent on each web site

Website Deep-GUI Random
google.com 17.4 12.9
youtube.com 94.3 12.1
amazon.com 13.2 15.2
yahoo.com 15.4 21.8
facebook.com 3.2 7.1
reddit.com 5.3 5.1
zoom.us 4.6 6.9
wikipedia.org 41.1 40.6
myshopify.com 3.6 6.0
ebay.com 13.4 11.4
netflix.com 5.1 4.8
bing.com 32.5 25.5
office.com 16.9 15
live.com 2.7 2.5
twitch.tv 65.6 30.1

we counted the number of distinct URLs visited in each website, and averaged this value for

each tool. Figure 3.2 and table 3.2 show that our model outperforms random agent, and

confirms that our model has learned the rules of UI design, which is indeed independent of

the platform.

3.3 RQ3. Transfer Learning Effect

As described, we used transfer learning to make the training process more data-efficient, i.e.

we crawl fewer data and train faster. To study if using transfer learning was actually helpful,

we repeated the web experiments, with the only difference that instead of using the model

trained with transfer learning, we trained another model with random initial weights. Figure

3.2 shows that without transfer learning, the model’s performance significantly decreases.

To see why this happens, take Figures 3.3b. This figure shows the initial output of the neural

network on the screen in Figure 3.3a before training, when initialized with the ImageNet
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weights. As one can see, even without training, the buttons stand out from the background

in the heatmap, which gives the model a significant head-start compared to the randomly

initialized model, and makes it possible for us to train it with a small amount of data.

(a) (b)

Figure 3.3: A screenshot and its correspond-
ing heatmap generated by the model before
training.
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Chapter 4

Background & Related Work

4.1 Android Input Generation

Many different input generation techniques with different paradigms have been proposed in

the past decade. However, they can be classified into two broad categories:

4.1.1 Context-Blind

The tools in this category process information in each action independent of other actions.

That is, when choosing a new action, they do not consider the previous actions performed,

and do not plan for future actions. Tools such as Google Monkey [10] and DynoDroid [16]

lie in this category. These tools are fast and require very simple pre-processing, but they

cannot guarantee to not miss activities or functionalities, as this requires more contextual

information, such as maintaining the activities already visited.
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4.1.2 Context-Aware

These tools integrate different aspects of local information in each activity to build a context,

which is then used to plan for input generation. Most of the proposed input generation tools

lie in this category. For instance, Sapienz [17] uses a genetic algorithm to learn a generic

notion of context, which represents how certain sequences of actions can be more effective

than the others. Tools that use different types of static analysis of the source code or GUI

to model the information flow globally also lie in this category.

4.2 Cross-Platform and Black-Box UI Input Genera-

tion

Not many tools have explored black-box and/or cross-platform options for gathering informa-

tion to be used for input generation, either with a context-aware or context-blind approach.

Google Monkey is the only widely used tool that does not depend on any application-specific

or platform-specific information. However, it is the most simple type of testing. Humanoid

[14] is an effort towards becoming less platform-dependent while also generating more in-

telligent inputs. However, it is still largely dependent on the UI transition graph and the

GUI tree extracted from the operating system. Also, since it depends on an existing dataset

for Android, it would not be easy to train it for a new platform. The study of White et.

al [29] is the most similar to this work. They study the effect of machine-learning-powered

processing of screenshots in generating inputs with random strategy. However, because

they generate artificial applications for training their model, their data collection method is

limited in expressing the variety of screens that the tool might encounter, and is also still

platform-dependent.
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Deep-GUI uses deep learning to improve context-blind input generation, while also lim-

iting the processed information to be black-box and platform-independent. This enables

Deep-GUI to be as versatile as Google Monkey in the Android platform, while being more

intelligent.
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Chapter 5

Discussion & Future Work

Deep-GUI is the first attempt towards making a fully cross-platform test input generation

tool. However, there are multiple areas in which this tool can be improved. The first

limitation of the approach described here is the time-consuming nature of its data collection

process which limits the number of collected data points and may compromise the dataset’s

expressiveness. By using transfer learning, we managed to mitigate this limitation to some

degree. Also, the complex set of hyperparameters (such as hybrid readout probabilities)

and the time-consuming nature of validating the model on applications makes it difficult

to fine-tune all the hyperparameters systematically, which is required for optimizing the

performance to its maximum potential.

Deep-GUI limits itself to context-blind information processing, in that it does not con-

sider the previous interactions with AUT when generating new actions. However, it uses a

paradigm that can easily be extended to take context into account as well. We believe this

paradigm should be explored more in the future of the field of automated input generation.

Take our definition of the problem. If we call st the state of the environment, at the action

performed on the environment in that state, rt the reward that the environment provides
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in response to that action, and Q(st, at) the predictions of the model about the reward

that the environment provides when performing at in st, then this is essentially a single-

step reinforcement learning (RL) definition of the problem of test input generation, with a

deep Q-Learning [20] solution to it. Looking at the problem this way enables researchers in

the area of automatic input generation to benefit from the rich and active research in the

reinforcement learning community, and explore different directions in the future such as the

followings:

5.1 Multi-Step Cross-Platform Input Generation

Deep-GUI uses the RL definition of the problem in a context-blind manner. However, by

re-defining st to include more context (such as previous screenshots, as tried in Humanoid)

and expanding the definition of rt to express a multi-step sense of reward, one can use the

same idea to train models that not only limit their actions to only the valid ones (as this

tool does), but also plan ahead and perform complex and meaningful sequences of actions.

5.2 Smarter Processing of Information

Even if a tool does not want to limit itself to only platform-independent information, it can

still benefit from using a Q-Learning solution. For instance, one can define st to include the

GUI tree or the memory content to provide the model with more information, but also use

Q-Learning to process this information more intelligently.
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5.3 Regression Testing and Test Transfer

While this work presents a trained model that targets all applications, it is not limited to

this. Developers can take a Q-Learning model such as the one described in this work, collect

data from the application (or a family of related applications) they are developing, and train

the model extensively so that it learns what actions are valid, what sequences of actions

are more probable to test an important functionality, etc. This way, when new updates of

the application are available, or when the application becomes available in new platforms,

developers can quickly test for any fault in that update without having to re-write the tests.
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