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ABSTRACT OF THE DISSERTATION

Validation and Verification of Modular Software Applications

By

Negar Ghorbani

Doctor of Philosophy in Software Engineering

University of California, Irvine, 2022

Professor Sam Malek, Co-Chair
Assistant Professor Joshua Garcia, Co-Chair

Modular software applications are developed based on a software design technique that emphasizes

separating the program’s functionality into independent, interchangeable components. Each compo-

nent contains everything necessary to provide certain functionality. Building software systems using

modules introduces many benefits, including improving software quality, easier maintainability,

and better scalability, especially for large, complex, and long-running software systems. Although

a software system’s architecture is often conceptualized in terms of high-level constructs, e.g.,

software components, connectors, and interfaces, programming languages usually provide low-level

constructs, e.g., classes, methods, and variables. To bridge this gap, many widely used programming

languages, such as Java and C++, have recently incorporated the notion of module or component.

The increasing support of modularization in the modern programming languages, although offering

many benefits, introduces plenty of new challenges in all phases of software development and

execution, including at build-time, module installation-time, and run-time. Hence, the need for

effective validation and verification techniques has increased more than ever.

This dissertation proposes to advance validation and verification of modular applications through

investigating the static and dynamic behavior of modular applications and introducing automatic

validation, and verification techniques to (1) detect and repair architectural inconsistencies at both

xii



build- and run-time, and (2) test dynamic delivery failures at module installation-time.

All conducted experiments on real-world subject apps corroborate the effectiveness and efficiency

of the proposed approaches and their ability to validate and verify the behavior of modular software

applications at all different phases of their development and execution.
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Chapter 1

Introduction

A software system’s architecture comprises the principal design decisions employed in the system’s

construction [194]. The architecture of a system is often conceptualized in terms of high-level

constructs, such as software components, connectors, and their interfaces. However, programming

languages usually provide low-level constructs, such as classes, methods, and variables. To that

end, the software engineering research community has previously advocated for architecture-based

development, whereby a programming language (e.g., ArchJava [57]) or a framework (e.g., C2 [195])

provides the implementation constructs for realizing the architectural abstractions.

Research over the past decade has revealed that modeling software architecture at the level of com-

ponents and connectors is useful in a growing variety of contexts. This has led to the development

of a plethora of notations for representing software architectures, each focusing on different aspects

of the systems being modeled, i.e., Architecture Description Languages (ADLs)[93].

In spite of this prior work in the academic community, until recently, most popular programming

languages lacked extensive support for architecture-based development. However, this has changed

with many widely used programming languages, e.g., Java, and C++, incorporating the notion of

modules or components representing an architectural construct.

1



One example of newly introduced modularization construct is Java Platform Module System

(JPMS) in Java. Java, arguably the most popular programming language over the past two decades,

has introduced JPMS in its 9th version. JPMS makes it easier for developers to construct large

applications and improve the encapsulation, security, and maintainability of Java applications in

general as well as the JDK itself [7]. Using Java’s module system, the developer explicitly specifies

the system’s components (i.e., modules in Java) as well as the specific nature of their dependencies.

Developers can also determine the level of access granted to each module and determine which

modules should be packaged together for deployment.

As another example of modern modularization constructs, consider the notion of App Bundle in

Android. Android, as the leading mobile operating system worldwide [32], has recently introduced

a new publishing format, called Android App Bundle [29]. One of the main goals of app bundles is

to enable Dynamic Delivery [46], i.e., enhance modularization so that developers can customize

their apps based on user requirements and deliver optional features, as separate modules, on a user’s

demand. To that end, each app bundle consists of several cohesive modules that together implement

an app’s full functionality. Specifically, the base module of the app bundle implements the core

functionality of the app, configuration modules include device-specific resources, and Dynamic

Feature Modules (DFMs) implement optional features. When users install an app for the first time,

they, in fact, install only the base module and a configuration module specific to their devices.

DFMs can be downloaded later based on the user’s demand.1

The support of modularization in programming languages help developers with architecture-based

development, hence, improved software quality, easier maintainability, and better scalability. Despite

all the benefits, it introduces new challenges in different phases of development and execution of

the modular software application, including build-time, module installation-time, and run-time.

Regarding the build-time, for instance, developers may introduce architectural inconsistencies while

1Developers define how and when users can download different Dynamic Features on devices running Android 5.0
(API level 21) or higher.
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defining the modules and their dependencies. These inconsistencies can have severe security and

performance consequences. On the other hand, software applications can face different challenges

during the installation of modules. A module installation request can fail due to various reasons,

leading to unexpected behavior or run-time exceptions in software applications. Furthermore, new

modules could be introduced, loaded, and unloaded during the software applications’ run-time.

Loading and unloading modules define new dependencies or modify the existing dependencies.

Hence, the dynamic architecture of software applications will change, and it may lead to dynamic

architectural inconsistencies.

To address these challenges, first, I have formally defined defect models, describing the undesired

implementations and behaviors of modular software applications in different phases of their devel-

opment and execution. Then, using the defect models, I have developed validation and verification

approaches that detect the undesired behaviors in software applications, properly test them under

various relevant conditions, or repair them. In the remainder of this section, I will explain the related

background and challenges of modular software applications in more detail.

1.1 Java Platform Module System

JPMS enables the specification of a system’s architecture in terms of key architectural elements—

specifically components in the form of Java modules, architectural interfaces, and resulting depen-

dencies among components. JPMS aims to enable reliable configuration, stronger encapsulation,

and modularity of the Java Development Kit (JDK) and Java Runtime Environment (JRE) to solve

the problems faced by engineers when developing and deploying Java applications [185].

JPMS provides software designers and developers with strong encapsulation in their systems by

modularizing and allowing explicit specification of interfaces and dependencies. Software architects

or developers can specify which of a module’s public types are accessible or inaccessible to other
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modules [177]. The more refined accessibility control in JPMS reduces the points at which a Java

application may be susceptible to security attacks leading to more elegant and logical architecture

designs[96].

The Java platform used to be a monolith consisting of a massive number of packages, making it

challenging to develop, maintain, and evolve. With the introduction of JPMS, the Java platform

is now modularized into 95 modules. As a result, JPMS allows software developers could easily

choose a subset of the JDK as a platform for their applications. This significantly reduces the

potential of software bloat and points of attack for malicious agents.

Using JPMS, Java developers can create lightweight custom JREs consisting of only modules they

need for their application or the devices they target. As a result, the Java platform can more easily

scale down to small devices, which is important for microservices or IoT devices [97].

Although JPMS allows for the specification of systems’ architectures, the implementation of a Java

application may be inconsistent with the specified architecture. Such inconsistencies may arise

at both build- and run-time. Build-time architectural inconsistencies occur due to architects’ or

developers’ misunderstanding of a software system’s architecture (e.g., an architect mistakenly

specifies a more accessible interface than he intended), or simply due to mistaken implementations

(e.g., a developer neglects to use a module’s interface, even though the architect intended such

a use). JPMS also allows developers to modify Java applications at run-time. More specifically,

developers can dynamically load or unload modules into a running Java application [153]. Loading

and unloading modules at run-time change the system’s architecture and may introduce new

architectural inconsistencies at run-time.

Architectural inconsistencies can result in (1) a poorly encapsulated architecture, making an appli-

cation harder to understand and maintain; (2) bloated software; or (3) insecure software. In terms

of security, for instance, one of the potential problems is granting unnecessary access to internal

classes and packages, potentially resulting in security vulnerabilities. In terms of software bloat,
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inconsistent dependencies can compromise the scalability and performance of Java software (e.g.,

requiring many unnecessary modules from the JDK).

In JPMS, a module is a uniquely named, reusable group of related packages, as well as resources

(such as images and XML files)[7]. Each module has a descriptor file, module-info.java, which

contains meta-data, including the declaration of a named module. A named module should specify

(1) its dependencies on other modules, i.e.a, the classes and interfaces that the module needs or

expects, and should specify (2) which of its own packages, classes, and interfaces are exposed to

other modules.

The module declaration file consists of a unique module name and a module body. Any module

body can be empty or contain one or more module directives, which specify a module’s exposure to

other modules or the modules it needs access to.

Figure 1.1 shows an example of a project with two modules: foo and bar. Figure 1.1a and 1.1b

describe the declaration of modules foo and bar, respectively, provided in their module-info.java

file. A module declaration can utilize combinations of five module directives [119], which specify

module interfaces and their usage: the requires directive specifies the packages that a module needs

access to, the exports and opens directives make packages of a module available to other modules,

the provides directive specifies the services a module provides, and the uses directive specifies the

services a package consumes.

Figure 1.1c is a diagram that depicts both the specified and actual dependencies of modules foo

and bar within the project based on their declarations and implementations. The arrows between

the modules indicate the actual dependencies extracted from the implementations of packages

and classes of the modules. The specified dependencies marked by red rectangles are excess

dependencies where the module either exposes more of its internals than are used (with exports) or

requires internals of other modules that it never uses (with requires). These excess dependencies

are examples of architectural inconsistencies which can result in security threats and reduce the
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1 module foo {
2 requires java.logging;
3
4 exports com.example.foo.utils;
5
6 opens com.example.foo.network;
7 }

(a) The declaration of module foo.

1 module bar {
2 requires foo;
3
4 requires java.desktop;
5
6 exports com.bar.lang;
7 }

(b) The declaration of module bar.

Module: foo

com.foo.utils
com.foo.network

module-info file

Module: bar

com.bar.lang

module-info file

JDK Module
java.logging

JDK Module
java.desktop

module bar {
requires foo;
requires java.desktop;
exports com.bar.lang; 

}

module foo {
requires java.logging;
exports com.foo.utils;
opens com.foo.network;

}

(c) The architectural inconsistencies within the foo and bar modules.

Figure 1.1: Two example modules with their inter-dependencies

performance and maintainability of the software application.

First, to resolve architectural inconsistencies, all the inconsistencies between the specified and

implemented dependencies must be detected at both build- and run-time. Then, to repair the

inconsistencies, each module’s specification should be modified in a way that makes it consistent

with the module’s implemented dependencies. Manually detecting and repairing architectural

inconsistencies requires detailed knowledge of the system’s architecture, the system’s specified and

implemented dependencies, and their differences. Therefore, it is a highly time-consuming task and

may be inaccurate. Chapters 3 and 5 describe the details of our approach for automatic detection

and repair of architectural inconsistencies at build- and run-time, respectively.
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1.2 Android Dynamic Delivery

Android app bundle, as a new publishing format, consists of several cohesive modules, including

the base module implementing the core functionalities of the app, several configuration modules

containing device-specific resources, and several Dynamic Feature Modules (DFMs) implementing

optional features of the app. The main goal of Android app bundle is to enable Dynamic Deliv-

ery [46], where DFMs can be downloaded and installed on the fly, upon users’ demands. When

users install an app for the first time, they, in fact, install only the base module and a configuration

module specific to their devices, which significantly reduces the initial size of the app.

To install a DFM, i.e., an optional feature, the app’s base module should send an installation request

to Google Play through Play Core API (the app’s runtime interface with Google Play). Once Google

Play accepts the request, the app downloads the requested DFM and installs it on the user’s device.

The lifecycle of an installation request is not always straightforward, and, in fact, such requests may

fail due to several reasons. As a result, developers should monitor the state of an installation request

from start to finish and adjust the behavior of an app if a failure happens.

As an illustrative example, I use an Android app called K9Mail [31]. In this subsection, I briefly

describe the functionality of K9Mail, a defect in the app associated with dynamic delivery, and how

a test can reveal the defect.

App: K9Mail is an email client app whose main functionalities are viewing and sending emails

as well as managing email accounts. In addition to these core functionalities, K9Mail offers an

optional feature for encrypting emails to provide an additional level of security. Since most users do

not use this feature, it is encapsulated into a DFM that can be installed on-demand by users.
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Encrypt

Installation
Success

Installation
Failure

Figure 1.2: Installation of a new DFM on K9Mail

Defect Scenario: Figure 1.2 shows three steps that lead to installation of the Encryption DFM.

First, the user clicks on an email’s menu—denoted by three dots—to access more options. Clicking

on the “Encrypt” option on the menu initiates the installation of the Encryption DFM. If the module

installation is successful, the user will see a dialog to enter the password required for the encryption

key and confirms the encryption. Otherwise, if the installation request fails for any reason (see

Section 4.3), e.g., there is no network connection available to send the request, K9Mail goes to

the initial screen without notifying the users about the failure or instructing them to take proper

actions—potentially giving the user the false impression that the email is encrypted. A developer

may not detect this defect without a proper test to reveal the failure scenario.

Test: Figure 1.3 shows an Appium [40] system test that validates the behavior of K9Mail during

installation of the Encryption module when there is no network signal. Any network error [25]

that happens while DFM installation is in process, i.e., an app is downloading or installing a DFM,

will cause the installation to fail (see Section 4.3). As a result, the test disconnects the network
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1 #click on the "Security Alert" email’s menu icon
2 driver.find_element_by_xpath(path_to_icon).click()
3 #click on the "Encrypt" option
4 driver.find_element_by_xpath(path_to_encrypt).click()
5 #enter encryption password in the password field
6 driver.find_element_by_id(password_field_ID).
7 send_keys(password)
8 #repeat password
9 driver.find_element_by_id(password_confirm_field_ID).send_keys(password)

10 #click on "OK" button
11 driver.find_element_by_id(OK_button_ID).click()

Figure 1.3: An Appium test, written in Python, for validating dynamic delivery of testing scenario
of Figure 1.2

connection before clicking on the “Encrypt” option, making the installation request fail.

There are two main challenges in designing such tests: (1) Installation request failures depend on the

contextual settings in which a test is executed and cannot be achieved simply through GUI actions.

(2) The position of the injected events in the test event sequence is critical. If the test disables the

network connection at a wrong location in the test events, the app’s behavior might change and

undermine the test as a whole. Chapter 4 describes the above-mentioned example and our automatic

approach for dynamic delivery testing of Android in more detail.

1.3 Dissertation Structure

The rest of this dissertation is organized as follows. Chapter 2 presents the research problem, the

thesis statement, and three research hypotheses. Chapter 3 explains the architectural inconsistencies

in Java applications in-depth and presents DARCY, an automatic technique for detection and repair

of architectural inconsistencies in Java at build-time. Chapter 4 describes dynamic delivery failures

in Android applications and explains the details of DELTADROID, an automatic technique for

testing dynamic delivery in Android applications. Chapter 5 addresses the run-time architectural

inconsistencies and introduces DARCY+ that detects and repairs architectural inconsistencies not

only statically at build-time but also dynamically at run-time, which may arise due to dynamic

changes occurring to software systems at run-time. Chapter 6 explores the adaptation capabilities
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of modularized Java applications, inspired by their run-time behavior, and presents ACADIA, a

framework that allows any Java 9+ software system to be adapted architecturally at run-time,

followed by a conclusion in Chapter 7.
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• Negar Ghorbani, Joshua Garcia, and Sam Malek, ”Detection and Repair of Architectural

Inconsistencies in Java,” 2019 IEEE/ACM 41st International Conference on Software Engi-
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• Negar Ghorbani, Reyhaneh Jabbarvand, Navid Salehnamadi, Joshua Garcia, and Sam Malek,

”DELTADROID: Dynamic Delivery Testing in Android,” ACM Transactions on Software

Engineering and Methodology (TOSEM), 2022.

• Negar Ghorbani, Tarandeep Singh, Joshua Garcia, and Sam Malek, ”Darcy: Automatic
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• Hamid Bagheri, Jianghao Wang, Jarod Aerts, Negar Ghorbani, and Sam Malek, ”Flair:

Efficient Analysis of Android Inter-Component Vulnerabilities in Response to Incremental

Changes,” Empirical Software Engineering (EMSE) 2021.
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Chapter 2

Research Problem

2.1 Problem Statement

The increasing support of modularization in modern programming languages, although offering

many benefits, introduces plenty of new challenges in all phases of software development. Software

developers need to make sure that they are defining and using the modules correctly without

creating additional errors or vulnerabilities. They should also have appropriate tests to assess the

modules’ behavior throughout the software’s execution. Hence, the need for effective validation

and verification techniques has increased more than ever. The challenges caused by the lack of

validation and verification techniques to effectively and efficiently analyze and test modular software

applications can be summarized as follow:

“The rising support of modular software constructs by modern programming languages has motivated

the need to further investigate the static and dynamic behavior of software applications under the

impact of multiple modules being installed or uninstalled. More specifically, there is a demand for

practical techniques that ensure the architectural consistency between the designed application

and the implemented one at both build- and run-time, which further protects and optimizes the
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application in various architectural metrics. Additionally, effective testing and analysis techniques

are required to assess the behavior of modular applications under different conditions, both at

the module installation- and run-time. However, unfortunately, there is a lack of appropriate

frameworks and techniques among state-of-the-art and state-of-the-practice that can effectively

ensure the quality of the modular software application leveraging both static and dynamic program

analysis techniques.”

2.2 Research Hypothesis

This research investigates the following hypotheses:

Before developing modular software applications, developers need to identify the system’s compo-

nents (i.e., modules) and the nature of their dependencies. This will form the system’s prescriptive

architecture. Programming languages supporting modular constructs allow developers to define the

system’s prescriptive architecture. For instance, using Java’s module system, developers explicitly

specify Java modules and all their dependencies in a file called module-info.java.

The prescriptive architecture should match the architecture reflected in the system’s implementa-

tion, known as the descriptive architecture. Inconsistencies between prescriptive and descriptive

architectures are of utmost concern in any software project since architecture is the primary determi-

nant of a software system’s key properties. However, programming languages do not necessarily

provide mechanisms to ensure the specified prescriptive architecture is, in fact, consistent with the

descriptive architecture of the implemented software. For instance, in the case of modular Java

applications, Java does not validate whether the declared dependencies in the module-info file are

accurately reflecting the implemented dependencies among the system’s components.

Build tools use the module declarations to determine the level of access granted to each module

and which modules should be packaged together for deployment. As a result, inconsistencies
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between prescriptive and descriptive architecture in modular applications have severe security

and performance consequences. These inconsistencies also affect the engineers’ ability to use the

prescriptive architecture to understand the system’s properties or to make maintenance decisions.

Hypothesis 1: An automated and efficient static analysis framework can be devised that accurately

detects and robustly repairs the architectural inconsistencies within a modular software application.

One of the many benefits of modular programming is that modules can be installed or uninstalled

throughout the execution of the software application. This decision can be based on user demands,

dynamic storage consumption, or optimization measures. The lifecycle of a module installation

process is not always straightforward, and, in fact, module installations may fail due to many

reasons. As a result, developers should monitor the state of the software applications during the

module installation process from start to finish and adjust the application’s behavior if a failure

happens.

To ensure the proper behavior of software applications during the installation of a module, developers

should have tests that initiate all module installations in the application and verify the app’s behavior

under any condition that can induce a module installation failure. The challenge here lies in the fact

that such failures happen under peculiar conditions, e.g., environmental and contextual situations.

Since these conditions can be out of the scope of the applications and cannot be effectively produced

through GUI actions, most existing testing techniques that target GUI testing are unsuitable for such

a purpose.

Hypothesis 2: A testing technique that considers the module installation lifecycle and their fault

models can be developed to effectively test the behavior of software applications during module

installations.

The capability of modules being loaded or unloaded dynamically at run-time impacts the software
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systems’ architecture. The dynamic nature of a modular application might introduce potential

architectural inconsistencies that can impair the systems’ security, maintainability, and memory

consumption. To address this challenge, developers should constantly monitor the state of software

applications during their run-time to analyze the systems’ dynamic architecture and ensure the

conformance between the systems’ intended and implemented architecture.

Hypothesis 3: An automated and efficient framework can be devised that continuously monitor the

dynamic architecture of modular software applications at run-time, accurately detect any emerging

architectural inconsistencies, and robustly repair them in real-time with low overhead.

2.3 Thesis Statement

The problem statement described in Section 2.1 and the key insights described in Section 2.2

motivate the need for novel techniques and tools that (1) accurately detect and robustly repair the

architectural module inconsistencies at both build- and run-time, and (2) automatically test module

installation failures with high coverage fault detection.

To that end, regarding architectural inconsistencies, I defined a novel defect model consisting

of 8 types of architectural inconsistencies in Java 9+ applications. Moreover, I propose DARCY

and DARCY+, automated frameworks that leverage the defect model and custom static analyses

to automatically detect and repair the identified inconsistencies within Java applications both

statically at build-time and dynamically at run-time. More specifically, I developed a custom

static analysis that identifies different types of package dependencies, including the reflective

dependencies. The static analysis approach uses a backwards analysis that follows the use-def chain

of the corresponding invoked methods, e.g., reflective method of java.lang.reflect.Method.

Furthermore, regarding testing module installation failures, I propose DELTADROID, an approach

for dynamic delivery testing of Android. DELTADROID is a test-suite augmentation approach that
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leverages static and dynamic analysis techniques to (1) identify tests that reach Dynamic Feature

Modules (DFMs) installation requests and (2) modify the identified tests with a combination of GUI

and system actions to generate new test cases that induce different conditions, which may cause a

DFM installation request to fail.

Overall, I can state my thesis statement as follows.

This dissertation improves the state-of-the-art in verification and validation of modular software

systems by presenting (1) novel defect models for Android and Java 9+ applications that represent

the complications caused by modularization in these platforms, (2) the first automated approach

that detects and repairs the modular inconsistencies with 100% accuracy in the case of Java 9+

applications at both build- and run-time, and (3) the first automated approach that tests module

installation failures in the case of Android applications with the highest fault coverage known so far.

A variety of techniques have previously focused on bridging the gap between the prescriptive and

descriptive architecture of software systems with different strategies, including focusing only on the

descriptive architecture [105, 140, 150, 133, 117, 114, 165, 183, 90, 175, 187, 160, 105, 140, 71],

obtaining the descriptive and prescriptive architecture and checking its conformance with the

prescriptive architecture [168, 161, 201, 169, 197, 55, 219, 180, 100, 182, 142, 142, 86, 141, 124,

77], providing architectural constructs in code [57, 79, 121, 154, 59, 176, 186, 198], and detecting

and fixing different types of dependency conflicts [206, 208, 145, 207, 205, 204, 148]. Despite other

state-of-the-art techniques, DARCY and DARCY+ are the first approaches that support architectural-

implementation conformance, at both build- and run-time, and include repairing non-conforming

architectures rather than just determining inconsistencies. In addition, DARCY and DARCY+ are

the only approaches for architecture-implementation mapping that focuses on software bloat and

attack-surface reduction. I manually checked the correctness of DARCY and DARCY+’s detection

of architectural inconsistencies, and all the discovered inconsistencies were correct, i.e., 100%

accurate. I also manually verified the robustness of DARCY and DARCY+’s repairs, i.e., repairing

without introducing any fault or unexpected behavior, as well as ensuring the same test passing rate
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before and after the repairs.

Regarding testing module installation failures, I evaluated DELTADROID’s fault coverage by compar-

ing it against a baseline static analysis approach as well as random and model-based state-of-the-art

and state-of-the-practice testing techniques [39, 123, 50]. DELTADROID resulted in the highest

coverage in inducing installation failures and revealed the most number of installation failures

among all other approaches.
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Chapter 3

Detection and Repair of Architectural

Inconsistencies in Java

Java is one of the most widely used programming languages. However, the absence of explicit sup-

port for architectural constructs, such as software components, in the programming language itself

has prevented software developers from achieving the many benefits that come with architecture-

based development. To address this issue, Java 9 has introduced the Java Platform Module System

(JPMS), resulting in the first instance of encapsulation of modules with rich software architectural

interfaces added to a mainstream programming language. The primary goal of JPMS is to con-

struct and maintain large applications efficiently—as well as improve the encapsulation, security,

and maintainability of Java applications in general and the JDK itself. A challenge, however, is

that module declarations do not necessarily reflect the actual usage of modules in an application,

allowing developers to mistakenly specify inconsistent dependencies among the modules. In this

chapter, I formally define 8 inconsistent modular dependencies that may arise in Java-9 applications.

I also present DARCY, an approach that leverages these definitions and static program analyses

to automatically (1) detect the specified inconsistent dependencies within Java applications and

(2) repair those identified inconsistencies. The results of our experiments, conducted over 38
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open-source Java-9 applications, indicate that architectural inconsistencies are widespread and

demonstrate the benefits of DARCY in automated detection and repair of these inconsistencies.

3.1 Introduction

A software system’s architecture comprises the principal design decisions employed in the system’s

construction [194]. Although every system has an architecture, the architecture of many systems is

not explicitly documented, for instance in the form of UML models. Ensuring that the architecture as

documented or intended, known as the prescriptive architecture, matches the architecture reflected in

the system’s implementation, known as the descriptive architecture, remains a major challenge [194].

The architecture of a system is often conceptualized in terms of high-level constructs, such as

software components, connectors, and their interfaces, while programming languages provide

low-level constructs, such as classes, methods, and variables, making it a non-trivial task to map

one to the other.

Inconsistencies between prescriptive and descriptive architectures are of utmost concern in any

software project since architecture is the primary determinant of a software system’s key properties.

One promising approach for abating the occurrence of architectural inconsistencies is to make it

easier to bridge the gap between architectural abstractions and their implementation counterparts.

To that end, the software engineering research community has previously advocated for architecture-

based development, whereby a programming language (e.g., ArchJava [57]) or a framework (e.g.,

C2 [195]) provides the implementation constructs for realizing the architectural abstractions.

In spite of this prior work in the academic community, until recently, Java—arguably one of

the most popular programming languages over the past two decades—lacked extensive support

for architecture-based development. This all changed with the introduction of Java Platform
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Module Systems (JPMS) in Java 9 and subsequent versions1. Modules are intended to make it

easier for developers to construct large applications and improve the encapsulation, security, and

maintainability of Java applications in general as well as the JDK itself [7].

Using Java’s module system, the developer explicitly specifies the system’s components (i.e., mod-

ules in Java) as well as the specific nature of their dependencies in a file called module-info.

However, Java does not provide any mechanism to ensure the prescriptive architecture specified

in the module-info file is, in fact, consistent with the descriptive architecture of the implemented

software, i.e., whether the declared dependencies in the module-info file are accurately reflecting

the implemented dependencies among the system’s components. Inconsistencies between the pre-

scriptive and descriptive architectures in Java 9+ matter. The Java platform uses the module-info

file to determine the level of access granted to each module and which modules should be packaged

together for deployment. As a result, inconsistencies between prescriptive and descriptive architec-

ture in Java have severe security and performance consequences. These inconsistencies also affect

the engineers’ ability to use the prescriptive architecture to understand the system’s properties or to

make maintenance decisions.

In this chapter, we formally define 8 types of modular inconsistencies that may occur in Java 9+

applications. we present DARCY, an approach that leverages these definitions and static analyses to

automatically (1) detect the specified inconsistencies within Java 9+ applications at their build-time

and (2) repair them. DARCY is also publicly available [52].

The results of our experiments, conducted over 52 open-source Java 9+ applications, indicate that

architectural inconsistencies are widespread and demonstrate the benefits of DARCY in automated

detection and repair of these inconsistencies. DARCY found 567 instances of inconsistencies at

build-time among 38 Java applications in our dataset. By automatically fixing these inconsistencies,

DARCY was able to measurably improve various attributes of the subject applications’ architectures

by reducing the attack surface of applications by 56.37%, improving their encapsulation by 24.23%,

1We may refer to Java 9 and subsequent versions as Java 9+ in this paper.
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and producing deployable applications that consume 16.45% less memory.

The remainder of this chapter is organized as follows. Section 3.2 introduces the module system

of Java and its design goals. Section 3.3 presents a defect model consisting of the architectural

inconsistencies in the context of Java 9+. Section 3.4 provides details of our approach and its

implementation. Section 3.5 presents the experimental evaluation of the research. Section 3.6

includes the threats to validity of our approach. The chapter concludes with an outline of related

research and future work.

3.2 Java Platform Module System

To aid the reader with understanding architectural specification in Java, we introduce the new

module system, called Java Platform Module System (JPMS). We overview JPMS’s goals and

the architectural risks that arise from its misuse. We then discuss the details of modules in Java—

including module declarations and module directives.

3.2.1 JPMS Goals and Potential Misuse

JPMS enables specification of a prescriptive architecture in terms of key architectural elements—

specifically components in the form of Java modules, architectural interfaces, and resulting depen-

dencies among components. JPMS aims to enable reliable configuration, stronger encapsulation,

modularity of the Java Development Kit (JDK) and Java Runtime Environment (JRE) to solve the

problems faced by engineers when developing and deploying Java applications [185].

Software designers and developers can achieve strong encapsulation in their Java-9 systems by

modularizing them and allowing explicit specification of interfaces and dependencies. Encapsulation

in JPMS is achieved by allowing architects or developers to specify which of a Java-9 module’s
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public types are accessible or inaccessible to other modules [177]. A module must explicitly declare

which of its public types are accessible to other modules. A module cannot access public types

in another module unless those modules explicitly make their public types accessible. As a result,

JPMS has added more refined accessibility control—allowing architects and developers to decrease

accessibility to packages, reduce the points at which a Java application may be susceptible to

security attacks, and design more elegant and logical architectures [96].

Prior to Java 9, the Java platform was a monolith consisting of a massive number of packages,

making it challenging to develop, maintain, and evolve. Software developers could not easily choose

a subset of the JDK as a platform for their applications. This results in software bloat and more

potential points of attack for malicious agents. With the introduction of JPMS in Java 9, the Java

platform is now modularized into 95 modules. Furthermore, many internal APIs are hidden from

apps using the platform [177], potentially reducing problems involving software bloat and security.

Using JPMS, Java developers can create lightweight custom JREs consisting of only modules they

need for their application or the devices they are targeting. As a result, the Java platform can

more easily scale down to small devices, which is important for microservices or IoT devices [97].

For example, if a device does not support GUIs, developers could use JPMS to create a runtime

environment that does not include the GUI modules, significantly reducing the runtime memory

size[96].

Although JPMS allows for specification of prescriptive architectures, the descriptive architecture of

a Java application may be inconsistent with the prescriptive architecture. Such inconsistencies may

arise due to architects or developers misunderstanding of a software systems’ architectures (e.g.,

an architect mistakenly specifies a more accessible interface than he intended), or simply due to

mistaken implementations (e.g., a developer neglects to use a module’s interface, even though the

architect intended such a use). This can result in (1) a poorly encapsulated architecture, making an

application harder to understand and maintain; (2) bloated software; or (3) insecure software. In

terms of security, for instance, one of the potential problems is the granting of unnecessary access to
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internal classes and packages, potentially resulting in security vulnerabilities. In terms of software

bloat, inconsistent dependencies can compromise scalability and performance of Java software (e.g.,

requiring many unnecessary modules from the JDK).

3.2.2 Understanding JPMS Modules

In JPMS, a module is a uniquely named, reusable group of related packages, as well as resources

(such as images and XML files)[7]. Each module has a descriptor file, module-info.java, which

contains meta-data, including the declaration of a named module. A named module should specify

(1) its dependencies on other modules, i.e., the classes and interfaces that the module needs or

expects, and should specify (2) which of its own packages, classes, and interfaces are exposed to

other modules.

A module can be a normal module or an open module. A normal module allows access from other

modules at compile time and run time to only explicitly exported packages; an open module allows

access from other modules (1) at compile time to only explicitly exported packages and (2) at run

time to all its packages [119].

The module declaration file consists of a unique module name and a module body. Any module

body can be empty or contain one or more module directives, which specifies a module’s exposure

to other modules or the modules it needs access to.

Figure 3.1 shows an example of a project with three modules: bar, foo, and service. The declara-

tions of each module provided in its module-info.java file is described in Figure 3.1a. Figure

3.1b is a diagram that depicts the relationship between the same modules based on dependencies in

their declarations.

A module body can utilize combinations of the following five module directives [119], which specify

module interfaces and their usage: the requires directive specifies the packages that a module needs
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1 module bar {
2 requires java.desktop;
3 requires service;
4
5 exports com.example.bar.lang;
6 exports com.example.bar.http to foo;
7
8 provides com.example.service.Srv with com.example.bar.impl.ImplService;

}
9

10 module foo {
11 requires service;
12 requires java.logging;
13 requires transitive bar;
14
15 exports com.example.foo.utils;
16 exports com.example.foo.internal to bar;
17
18 opens com.example.foo.network;
19 opens com.example.foo.exnet to bar;
20
21 uses com.example.service.Srv;}
22
23 module service {
24 exports com.example.service;}
25

(a) Module declarations and their directives provided in their module-info.java files.

com.example.foo.utils

Module: foo

com.example.foo.internal

com.example.foo.network

com.example.foo.exnet

com.example.bar.lang

Module: bar

com.example.bar.http

com.example.bar.impl

com.example.service

Module: service

JDK Module: java.logging JDK Module: java.desktop

requires requires

exports exports

Requires transitive

exports to

exports to

opens to

uses, requires provides, requires

Packages

opens

Packages

Package

(b) Specified dependencies between modules based on their directives

Figure 3.1: Three example modules with their inter-dependencies
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access to, the exports and opens directives make packages of a module available to other modules,

the provides directive specifies the services a module provides, and the uses directive specifies the

services a package consumes. These directives can be declared as described below:

• The requires directive with declaration requires m2 of a module m1 specifies the name of a

module m2 that m1 depends on. m2 can be a user-defined module or a module within the JDK. For

example, in Figure 3.1, module bar requires module java.desktop. The requires declaration of

a module m1 may be followed by the transitive modifier, which ensures that any module m3

that requires m1 also implicitly requires module m2. As an example, in Figure 3.1, module foo

requires module bar and any module that requires foo also implicitly requires bar.

• The exports directive with declaration exports p of a module m1 specifies that m1 exposes

package p’s public and protected types, and their nested public and protected types, to all other

modules at both runtime and compile time. For example, in Figure 3.1, the module bar exports

the package com.example.bar.lang. We can also export a package specifically to one or more

modules by using the exports p to m2,m3, ...,mn declaration. In this case, the public and

protected types of the exported package are only accessible to the modules specified in the to

clause.

As an example, in Figure 3.1, module foo exports com.example.foo.internal to the module

bar.

• The opens directive with declaration opens p specifies that package p’s nested public and

protected types, and the public and protected members of those types, are accessible by other

modules at runtime but not compile time. This directive also grants reflective access to all types

in p, including the private types, and all its members, from other modules.

For example, in Figure 3.1, module foo makes package com.example.foo.network available

to other modules only at runtime, including through reflection.

This directive may also be followed by the to modifier, resulting in the opens p to m2,m3, ...,mn
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declaration. In this case, the public and protected types of p are only accessible to the modules

specified in the to clause. For instance, in Figure 3.1, module foo uses opens directive and makes

package com.example.foo.exnet available only at runtime, including through reflection, to

the module bar. Unlike the other directives that can only be used in the body of a module’s

specification, open can be used in both the body of a module’s specification and in its header (i.e.,

before the module’s name). The latter usage is a shorthand way of denoting all packages in the

module are open.

• The provides with directive with declaration provides c1 with c2,c3, ...,cn of module m1

specifies that a class c1 is an abstract class or interface that is provided as a service by m1. The with

clause specifies one or more service provider classes for use with java.util.ServiceLoader.

A service is a well-known set of interfaces and (usually abstract) classes. A service provider

is a specific implementation of a service. java.util.ServiceLoader<S> is a simple service-

provider loading facility. It loads a provider implementing the service type S [2]. For instance

in Figure 3.1, module bar provides the abstract class com.example.service.Srv as a service

using the com.example.bar.impl.ImplService class as the service’s implementation.

• The uses directive with declaration uses c1 of a module m1 specifies that m1 uses a service object

of an abstract class or interface, c1, provided by another module. For this purpose, the module

should discover providers of the specified service via java.util.ServiceLoader. As an exam-

ple from Figure 3.1, module foo uses the service object of class com.example.service.Srv,

which is provided by module bar.

Note that, as depicted in Figure 3.1, both provides with and uses directives need the module

being declared to require the service module as well.
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3.3 Inconsistent Module Dependencies

Based on the module directives described in Section 3.2.2, inconsistencies may arise when using

modules. Insufficiently specified dependencies (e.g., a module that attempts to use a package it

does not have a requires directive for) are already checked by the Java platform. However, excess

dependencies, where a module either (1) exposes more of its internals than are used or (2) requires

internals of other modules that it never uses, are not handled by Java. These inconsistencies can

affect various architectural attributes:

A1: Encapsulation and Maintenance—Requiring unneeded functionalities of other modules

increases the complexity of the module unnecessarily, compromises its encapsulation, and decreases

its maintainability.

A2: Software Bloat and Scalability—Requiring unneeded modules, especially from JDK, can

result in bloated software, which compromises scalability of the application.

A3: Security—Excessively exposing the internals of a module can result in errors or security issues

arising in the module.

To achieve a systematic and comprehensive coverage of all types of inconsistent module depen-

dencies, we studied all potential inconsistencies resulting from developers’ misuse of each type of

module directive. In the remainder of this section, we focus on specifying eight types of incon-

sistent dependencies that may arise when using JPMS and the functions needed to specify those

dependencies.

Table 3.1 includes 11 functions that directly model different variations of the five module directives

in JPMS. To describe a class loading a service using java.util.ServiceLoader API, we define

the LoadsService function. For actual code usage among packages, as opposed to those specified

through module directives, we define the Dep function.
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Table 3.1: Functions describing dependencies based on module directives of JPMS

Function Description

Req(m1,m2) Module m1 requires module m2.

ReqJDK(m1,m jdk) Module m1 requires the JDK module m jdk.

ReqTransitive(m1,m2) Module m1 requires transitive module m2.

Exp(m, p) Module m exports package p.

ExpTo(m1, p1,{m2,m3, . . .}) Module m1 exports package p1 to the set of modules {m2,m3, . . .}.

Open(m) Module m is open.

Opens(m, p) Module m opens package p.

OpensTo(m1, p,{m2,m3, . . .}) Module m1 opens package p to the set of modules {m2, m3, . . . }.

Uses(m,s) Module m uses Service s.

ProvidesWith(m,s,{c1,c2, . . .}) Module m provides service s with the set of classes {c1, c2, . . . }.

LoadsService(c,s) Class c loads Service s via the java.util.ServiceLoader API.

Dep(p1, p2) Source code in package p1 uses classes of package p2.

Re f lDep(p1, p2) Source codes in package p1 uses classes of package p2 via reflection.

By leveraging the functions in Table 3.1, we introduce eight types of excess inconsistent depen-

dencies: requires, JDK requires, requires transitive, exports(to), provides with, uses, open, and

opens(to) modifiers. For each inconsistent dependency type, there is a dependency explicitly defined

in a module-info file which is not actually used in the source code of the module. Using these

formal definitions, Section 3.4 detects and repairs the following inconsistent dependencies.

Inconsistent Requires Dependency: This scenario describes an inconsistent requires dependency

in which (1) module m1 explicitly declares that it requires another module m2 and (2) no class of

m1 actually uses any class inside exported packages of m2. As a result, this inconsistency mostly

affects attribute A1. It can also affect attribute A2.

Req(m1,m2)∧ (@ p1 ∈ m1, p2 ∈ m2 : Dep (p1, p2)) (3.1)

Inconsistent JDK Requires Dependency: This scenario describes an inconsistent requires depen-

dency in which module m1 explicitly declares that it requires a module inside the Java JDK, m jdk.

However, none of the classes inside m1 uses any class inside exported packages of m jdk. Hence,
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it affects attribute A1, and more importantly A2. We distinguish this scenario from the previous

one because an inconsistency involving JDK modules has a greater effect on portability than the

previous more generic scenario.

Req(m1,m jdk)∧ (@p1 ∈ m1, p2 ∈ m jdk : Dep(p1, p2)) (3.2)

Inconsistent Requires Transitive Dependency: An excess transitive modifier in a requires de-

pendency consists of the following (1) a module m1 explicitly declares in its module-info file

that it transitively requires another module m2—which means any module that requires m1 also

implicitly requires m2; and (2) no class of a module that requires m1 actually uses any class in m2.

This type of inconsistency mostly affects attribute A1, but also affects A2.

ReqTransitive(m1,m2)∧ (∀ m : Req(m,m1),

∀ p ∈ m,∀ p2 ∈ m2 : ¬Dep(p, p2))

(3.3)

Inconsistent Exports/Exports to Dependency: An inconsistent exports dependency occurs when

a module m1 explicitly exports a package p1 to all other modules, while no package in those other

modules use p1.

Exp(m1, p1)∧ (∀ p /∈ m1 : ¬Dep(p, p1)) (3.4)

For an exports to directive, this inconsistency occurs when m1 exports the package p1 to a specific

list of modules M, while no class outside m1, or inside module list M, uses any class inside p1.

ExpTo(m1, p1,M)∧ (∀ p ∈M : ¬Dep(p, p1)) (3.5)

These inconsistencies mostly affect attribute A3 by granting unnecessary access to classes and

packages. They also affect attribute A1 due to complicating the architecture.
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Inconsistent Provides With Dependency: An inconsistent provides with dependency has two key

parts: (1) a module m explicitly declares that it provides a service s, which is an abstract class

or interface that is extended or implemented by a set of classes E = {c1,c2, ...,ck} inside m; and

(2) none of the classes inside other modules uses service s via the java.util.ServiceLoader

API. Consequently, this inconsistency type—similar to inconsistent requires dependency—affects

attribute A1 and A2 because the provides with dependency necessitates a requires directive as

well. Additionally, this inconsistency type grants unnecessary access to a subset of the application’s

classes via the ServiceLoader API which affects attribute A3.

ProvidesWith(m,s,E)∧ (∀m′ 6= m : ¬Uses(m′,s)) (3.6)

Inconsistent Uses Dependency: An inconsistent uses dependency occurs when (1) a module m

explicitly declares in its module-info.java file that it uses a service s and (2) none of the classes

inside m actually use the service s via the java.util.ServiceLoader API. This inconsistency

type, similar to the previous type, will affect attribute A1 and A2, due to adding an additional

requires directive.

Uses(m,s)∧ (∀ c ∈ m : ¬ LoadsService(c,s)) (3.7)

Inconsistent Open Modifier: An excess open modifier occurs in the following scenario: (1) a

module m declares that it opens all its packages to all other modules—recall from Section 3.2.2 that

unlike the other directives, open can be used in the header of a module’s specification to denote

all its packages are open; and (2) there is at least one package p inside m that no class outside

m reflectively accesses. As a result, any such package p is potentially open to misuse through

reflection, e.g., external access to private members of a class that should not be allowed by any other

class. This inconsistency type will affect attribute A3—and make the architecture inaccurate and
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more complicated, affecting attribute A1.

Open(m)∧ (∃p ∈ m : ∀p′ /∈ m : ¬Re f lDep(p′, p) (3.8)

Inconsistent Opens/Opens To: An inconsistent opens dependency occurs when a module m

declares that it opens a package p to all other modules via reflection, while none of the classes

outside m reflectively accesses any classes of package p.

Opens (m, p)∧∀ p′ /∈ m : ¬Re f lDep(p′, p) (3.9)

Similarly, for opens to, the to modifier specifies a list of modules M for which module m opens a

package p to access via reflection, while no package of m reflectively accesses p.

OpensTo(m, p,M)∧∀ p′ ∈M : ¬Re f lDep(p′, p) (3.10)

For these inconsistency types, private members of p are open to dangerous misuse through undesired

access and reflection, affecting attribute A3, and can also affect attribute A1 due to unnecessarily

complicating the architecture.

3.4 DARCY: Framework Overview

In the previous section, we introduced various types of inconsistent dependencies. This section

describes how we leverage these definitions to design and implement DARCY. Figure 3.2 depicts

a high-level overview of DARCY comprised of two phases, Detection and Repair. DARCY is

implemented in Java and Python.
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Figure 3.2: A high-level overview of DARCY

3.4.1 Detection

The detection phase takes a Java application as input and identifies any instance of the eight

inconsistent dependencies described in Section 3.3.

To identify the implemented dependencies of an input Java application, DARCY relies on static

analysis, represented as Package Dependency Analysis in Figure 3.2. In the implementation of

DARCY, we leveraged Classycle [106] for Package Dependency Analysis. More precisely, the

information about the implemented dependencies in the source code of the input application is

collected by running Classycle, which provides a complete report of all dependencies in source

code of a Java application at both the class and package levels. we only need the extracted

dependencies among packages since the dependencies defined in modules are at the package level.

Package Dependency Analysis’s results are stored in Implemented Dependencies, which is a database

component.

A Java application may contain multiple modules, each with a module-info file describing the

module’s dependencies. For extracting a prescriptive architecture, we developed Module-Info

Scanner which examines all module-info.java files within the input Java application and extracts
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all specified dependencies which are defined at the package level. The collected information of

specified dependencies are stored in another database component, Specified Dependencies.

Java Reflection Analysis leverages a custom static analysis [113], which we have implemented using

the Soot framework [200], to identify usage of reflection in the input application. The traces of any

actual usage of reflection in the Java application is then stored in Implemented Dependencies.

Java Reflection Analysis extracts reflective invocations that occur in cases where non-constant

strings, or inputs, are used as target methods of a reflective call. Reflective invocation of a method,

for both constructor and non-constructor methods, occurs in three stages: (1) class procurement (i.e.,

a class with the method of interest is obtained) (2) method procurement (i.e., the method of interest

to be invoked is identified), and (3) the method of interest is actually invoked. Java Reflection

Analysis attempts to identify information at each stage.

1 ClassLoader cl = MyClass.getClassLoader();
2 try { Class c = cl.loadClass("NetClass");
3 ...
4 Method m = c.getMethod("getAddress",...);
5 ...
6 m.invoke(...); }
7 catch { ... }

Figure 3.3: Reflective method invocation example

A simple example, based on those found in real-world apps, of reflective method invocation, not

involving constructors, is depicted in Figure 3.3. In this example, a ClassLoader for MyClass

is obtained (line 1), which is responsible for loading classes. The NetClass class is loaded using

that ClassLoader (line 2). The getAddress method of NetClass (line 4)—which performs

network operations—is retrieved and eventually invoked using reflection (line 6).

Our analysis identifies reflectively invoked methods using a backwards analysis. That analysis

begins by identifying all reflective invocations (e.g., line 6 in Figure 3.3). Next, the analysis follows

the use-def chain of the invoked java.lang.reflect.Method instance (e.g., m on line 6) to

identify all possible definitions of the Method instance (e.g., line 4). Our analysis considers various
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methods that return Method instances, i.e., using getMethod or getDeclaredMethod of

java.lang.Class.

The analysis then records each identified method name. If the analysis cannot resolve the name, this

information is also recorded. In this case, the analysis conservatively indicates that any method of

the package opened for reflection can be accessed.

For constant strings, the analysis attempts to identify the class name that is being invoked. Similar to

the resolution of method names, the analysis follows the use-def chain of the java.lang.Class

instance from which a java.lang.Class is retrieved (e.g., following the use-def chain of c

on line 4). we model various means of obtaining a java.lang.Class instance. For example,

the class may be loaded by name using a ClassLoader’s loadClass(...) method (e.g.,

line 2), using java.lang.Class’s forName method, or through a class constant (e.g., using

NetClass.class). The analysis then records the class name it can find statically, or stores that

it could not resolve that name. Note that our analysis considers any subclass of ClassLoader.

Our reflection analysis involving constructors works in a similar manner by analyzing invocations

of java.lang.reflect.Constructor and invocations of its newInstance method.

Similar to our analyses for reflectively invoked methods, we perform analyses for any set*

methods of java.lang.reflect.Field (e.g., setInt(...)) or get*Field* methods

of java.lang.Class (e.g., getDeclaredField(String)).

For extracting the implemented dependencies of type uses we implemented ServiceLoader Usage

Analysis which leverages a custom static analysis using the Soot framework to identify usage of

java.util.ServiceLoader in the input application. The traces of any actual usage of a

service is then stored in Implemented Dependencies.

An application obtains a service loader for a given service by invoking the static load method

of ServiceLoader API. A service loader can locate and instantiate providers of the given

service using the iterator or stream method [18], through which an instance of each of
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the located service providers can be created. As an example, Figure 3.4 depicts the code that

obtains a ServiceLoader for MyService (line 1). The ServiceLoader loads providers

of MyService (line 2) and can instantiate any of the located providers of this service using

its iterator—created by the for loop in line 3. In this example, the service provider with the

getService method is desired (line 4).

1 ServiceLoader<MyService> loader;
2 loader = ServiceLoader.load(MyService.class);
3 for (MyService s : loader) {
4 if (s.getService != null){... } }

Figure 3.4: Service loader example

Our analysis identifies the usage of the ServiceLoader API using a backward analysis by

following the use-def chain of ServiceLoader instances (e.g., s on line 4) to identify all possible

definitions of a ServiceLoader (e.g, line 2 in Figure 3.4). The results of the ServiceLoader

API usage is then stored in Implemented Dependencies.

Java Inconsistency Analysis’s main goal is to identify all types of inconsistency scenarios described

in Section 3.3. For each directive in a module-info.java file, Java Inconsistency Analysis explores

implemented and specified dependencies, stored in their respective database components, to identify

any occurrence of an inconsistent dependency defined in Section 3.3. If a matching instance is found,

Java Inconsistency Analysis reports the identified architectural inconsistency, the module affected,

and the specific directive involved. The component then stores the identified inconsistencies in

Inconsistent Dependencies, which are then used in the repair phase.

3.4.2 Repair

To repair inconsistent dependencies, Module-Info Transformer deletes or modifies the explicit

dependencies defined in the module-info files. Inconsistencies found in the previous phase are

all unnecessarily defined dependencies among an application’s modules and packages. There-
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fore, Module-Info Transformer needs to omit those inconsistent dependencies specified in the

module-info files.

The result of the detection phase includes the type and details of identified inconsistencies. For

instance, in the case of an inconsistent exports dependency, one result stored in Inconsistent

Dependencies includes the module in which this dependency is specified, the type of the inconsistent

dependency (exports in this case), and the package that is unnecessarily exported. The repair phase

takes the results of the detection phase as input. For each module, the repair phase finds the related

records of inconsistent dependencies defined in that module and modifies the affected lines in

module-info.

For this purpose, we leveraged ANTLR [10] to transform the module-info.java files to repair

the inconsistent dependencies. ANTLR is a parser generator for reading, processing, executing, or

translating a structured text. Hence, we generated a customized parser using Java-9 grammar so that

we can modify it to check the records of inconsistent dependencies found in the detection phase of

DARCY.

More precisely, we have implemented the generated parser so that, if it finds any match between

the tokens of module-info files and the inconsistent dependencies, it skips or modifies the specific

token with respect to the type of the inconsistency. As a result, depending on the type of dependency,

the corresponding line in the module-info file is omitted or modified.

Module-Info Transformer repairs each type of inconsistent dependency. In most cases, Module-

Info Transformer deletes the entire statement. However, for requires transitive, Module-Info

Transformer only removes the token transitive.

In case of inconsistencies involving open module m (Equation 3.8 in Section 3.3), the open modifier

is removed from the header of the module declaration. However, there may be some packages in m

that other modules reflectively access. For each of these packages, Module-Info Transformer adds

an opens to statement that make private members of the package accessible to the modules that
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reflectively access the package. If there is no package in m that is reflectively accessed by other

modules, no statement will be added to the module’s body.

In certain situations, the DARCY user may disagree with the way it repairs and modifies the specified

dependencies because DARCY is not aware of the architect’s or developer’s intentions. For example,

this situation may occur if the user wants to develop a library and export some packages for

further needs or even allow other modules to reflectively access the internals of some classes and

packages. DARCY warns the developers and architects about potential threats caused by architectural

inconsistencies in their Java application, and allows them to override DARCY prior to application of

repairs.

3.5 Evaluation

To assess the effectiveness of DARCY, we study the following research questions:

RQ1: How pervasive are inconsistent, architectural dependencies in practice?

RQ2: How accurate is DARCY at detecting inconsistent, architectural dependencies and repairing

them at build-time?

RQ3: To what extent does DARCY reduce the attack surface of Java modules?

RQ4: To what extent does DARCY enhance encapsulation of Java modules?

RQ5: To what extent does DARCY reduce the size of runtime memory?

RQ6: What is DARCY’s runtime efficiency in terms of execution time?

To answer these research questions, we selected a set of Java applications from GitHub [11], a

large and widely used open-source repository of software projects, all of which are implemented

in Java 9+. For this purpose, we crawled GitHub using a Python script that leverages Beautiful

Soup [1], i.e., a web scraping library and GitHub’s API. The script assigns a query to the original

GitHub URL, where it increments pages and filters Java applications by containing a file named
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Table 3.2: Subject applications

No. Application # Modules # Packages # Directives
Name

1 Auto-sort 3 35 13
2 Ballerina-lang 65 4486 532
3 Blynk-Server 9 742 122
4 BunnyHop 2 22 28
5 Codersonbeer-app 4 5 9
6 Constantin 4 15 9
7 Eclipse Jetty 56 10437 413
8 Java-9-lab 5 6 15
9 Java-9-modularity 4 5 11
10 Java-Bookstore 6 11 17
11 Java-SPI 6 6 26
12 Java9-demo 4 12 10
13 Java9-junit 3 15 13
14 Java9-labs 4 6 10
15 java9-modules 2 2 5
16 Java9-TLB-modules 5 8 12
17 JavaUtils 6 39 36
18 Jigsaw-resources 2 2 5
19 Jigsaw-tst 4 5 11
20 Jwtgen 2 9 13
21 Logback 2 1250 65
22 Meetup 4 4 14
23 Music-UI 3 7 15
24 Number-to-text 3 11 11
25 Practical-Security 4 8 20
26 Quasar 4 783 42
27 QuestDB 2 3222 65
28 Rahmnathan-utils 3 16 14
29 RecolInline-Server 7 73 42
30 Rhizomatic-IO 7 111 58
31 Sense-nine 6 48 31
32 Sirius 7 392 37
33 Spring-mvn-java9 3 6 18
34 Springuni-java9 3 2 6
35 Tascalate-Javaflow 10 258 56
36 The-Message 3 32 16
37 TRPZ 4 20 19
38 Vstreamer 6 6 25

module-info.java. Subsequently, we filtered GitHub repositories with more than one module

that could have been successfully built. Our search covered thousands of GitHub repositories, and

our final evaluation dataset resulted in 52 Java 9+ applications, avoiding any selection bias toward

our approach. DARCY detected 567 instances of architectural inconsistencies in 38 applications.

Table 3.2 includes these 38 subject applications, their number of modules, packages, and directives.
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3.5.1 RQ1: Pervasiveness

Table 3.3 shows, for each application in our dataset, the total number of inconsistent dependencies

DARCY found and separates them by their type. 73% of applications in our dataset (38 out of 52)

have a total number of 567 inconsistent dependencies. Recall that even one existing inconsistent

dependency could cause undesired behaviors or issues with encapsulation, security, or memory

utilization (see Section 3.3.)

Table 3.3: Identified inconsistencies and robustness results

Application # Total Inconsistencies Types % Correct Compiled Test Passing Rate (%)
Name Incons. R R.J. R.T E O P U Incons. (After Repair) Before After

Auto-sort 1 - - - 1 - - - 100 X 97 97
Ballerina-lang 115 21 4 - 88 1 1 - 100 X 100 100
Blynk-Server 26 - - - 26 - - - 100 X 100 100
BunnyHop 17 - 1 2 11 3 - - 100 X - -
Codersonbeer-app 4 1 - - 2 1 - - 100 X - -
Constantin 5 - - 1 4 - - - 100 X 100 100
Eclipse Jetty 147 3 1 90 49 - 4 - 100 X 100 100
Java-9-lab 1 - - - 1 - - - 100 X - -
Java-9-modularity 1 - - 1 - - - - 100 X - -
Java-Bookstore 3 - - 2 - - 1 - 100 X - -
Java-SPI 5 - - 1 4 - - - 100 X - -
Java9-demo 1 - - - 1 - - - 100 X - -
Java9-junit 1 - - - 1 - - - 100 X - -
Java9-labs 4 - - - 4 - - - 100 X - -
java9-modules 1 - - - 1 - - - 100 X - -
Java9-TLB-modules 1 - - - 1 - - - 100 X - -
JavaUtils 29 14 9 6 - - - 100 X - -
Jigsaw-resources 1 - - - 1 - - - 100 X - -
Jigsaw-tst 1 - - - 1 - - - 100 X - -
Jwtgen 2 1 - - 1 - - - 100 X - -
Logback 30 - - 3 26 - 1 - 100 X 100 100
Meetup 6 - - - 3 - 3 - 100 X - -
Music-UI 4 - - 1 1 2 - - 100 X - -
Number-to-text 4 - - - 4 - - - 100 X 100 100
Practical-Security 4 - 1 - 3 - - - 100 X - -
Quasar 22 - 1 4 17 - - - 100 X 100 100
QuestDB 34 - - 1 33 - - - 100 X 100 100
Rahmnathan-utils 7 - 1 - 6 - - - 100 X - -
RecolInline-Server 20 4 6 2 6 2 - - 100 X - -
Rhizomatic-IO 3 - - - 2 - - 1 100 X 100 100
Sense-nine 10 2 2 3 3 - - 100 X - -
Sirius 9 2 - 4 3 - - - 100 X - -
Spring-mvn-java9 8 2 - - 6 - - - 100 X - -
Springuni-java9 3 2 - - 1 - - - 100 X - -
Tascalate-Javaflow 17 - - 12 5 - - - 100 X - -
The-Message 9 - - - 9 - - - 100 X - -
TRPZ 5 - - - 3 2 - - 100 X - -
Vstreamer 6 1 - - 2 - - 3 100 X - -
Total 567 39 31 133 336 14 10 4
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As depicted in Table 3.3, most of the inconsistent dependencies are of types exports or requires

because these two types of directives are used more frequently than others. The high frequency of

inconsistent exports dependencies indicates that granting unnecessary access to internal packages

are quite common in Java 9+ applications, which could cause security vulnerabilities. Furthermore,

different types of inconsistent requires dependencies impair the applications’ encapsulation and

comprise their maintainability. Additionally, the requires JDK inconsistency increases the risk of

loading unnecessary JDK modules and compromising portability.

Table 3.3 indicates that a few applications have inconsistent dependencies of type provides with,

and only two applications have an inconsistent uses dependency. In fact, these directives are rare

compared to other directives. For provides with and uses, Java checks most of the requirements

for avoiding inconsistent dependencies at build-time. Therefore, the possibility of defining an

inconsistent provides with and uses dependencies decreases. Nevertheless, DARCY covers the

inconsistent dependencies corresponding to these two directives because they are risky and may

appear more frequently in future usage of JPMS.

3.5.2 RQ2: Correctness

To answer RQ2 for DARCY’s detection capability at build-time, we ran the detection phase for each

Java application in our evaluation dataset before running them and assessed whether DARCY can

accurately detect inconsistent dependencies. To that end, we manually checked the inconsistent

dependencies found by DARCY to ensure their correctness. More precisely, we compared the

corresponding record in both Implemented Dependencies and Specified Dependencies to verify the

correctness of the inconsistencies discovered by the detection phase. As described in Table 3.3, the

result shows that all inconsistent dependencies found by DARCY at build-time are correct.

To evaluate DARCY’s ability to correctly resolve inconsistencies at build-time, we ran the repair

phase of DARCY for each Java application in our evaluation dataset before running them and assessed
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whether DARCY repairs the detected inconsistencies without introducing any unexpected behavior.

To assess the correctness of a repair, we (1) check if each application compiles successfully after

running the repair phase and (2) if the application contains a test suite, determine if the application

obtains the same test passing rate, i.e., the ratio of the number of passing test cases to the total

number of test cases, both before and after repairs. We also ran the detection phase after the repair

actions. The result showed zero inconsistencies within the transformed Java applications.

The results for compilation after the repair phase are shown in Table 3.3, indicating that all trans-

formed Java applications compiled successfully. This confirms that the inconsistent dependencies

have been robustly resolved in a way that does not prevent compilation of the applications. Addi-

tionally, eleven applications in our study contain a test suite. The passing rate for each of these test

suites remains the same both before and after DARCY repairs, demonstrating that DARCY does not

negatively affect the expected behavior of repaired applications.

3.5.3 RQ3: Security

To assess DARCY’s ability to enhance security, we consider the attack surface of Java 9+ applications.

The attack surface of a system is the collection of points at which the system’s resources are

externally visible or accessible to users or external agents. Manadhata et al. introduced an attack-

surface metric to measure the security of a system in a systematic manner [155, 156, 157]. Every

externally accessible system resource can potentially be part of an attack and, hence, contributes

to a system’s attack surface. This contribution reflects the likelihood of each resource being

used in security attacks. Intuitively, the more actions available to a user or the more resources

that are accessible through these actions, the more exposed an application is to security attacks

[155, 156, 157].

For a Java 9+ application, the main resource under consideration is a Java module. As a result,

we define the attack surface of an application as the number of packages that are accessible from
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Table 3.4: Result for attack-surface reduction at build-time

Application # exposed # exposed Attack Surface
Name pckg (before) pckg (after) Reduction (%)

Auto-sort 2 1 50.00%
Ballerina-lang 195 106 45.64%
Blynk-Server 58 32 44.83%
BunnyHop 16 2 87.50%
Codersonbeer-app 4 1 75.00%
Constantin 4 0 100.00%
Eclipse Jetty 117 68 41.88%
Java-9-lab 3 2 33.33%
Java-9-modularity 2 2 0.00%
Java-Bookstore 4 4 0.00%
Java-SPI 6 3 50.00%
Java9-demo 2 1 50.00%
Java9-junit 4 3 25.00%
Java9-labs 5 1 80.00%
java9-modules 2 1 50.00%
Java9-TLB-modules 5 4 20.00%
JavaUtils 7 1 85.71%
Jigsaw-resources 2 1 50.00%
Jigsaw-tst 3 2 33.33%
Jwtgen 1 0 100.00%
Logback 50 24 52.00%
Meetup 4 1 75.00%
Music-UI 5 2 60.00%
Number-to-text 4 3 25.00%
Practical-Security 4 3 25.00%
Quasar 22 5 77.27%
QuestDB 52 19 63.46%
Rahmnathan-utils 6 0 100.00%
RecolInline-Server 17 9 47.06%
Rhizomatic-IO 13 11 15.38%
Sense-nine 6 1 83.33%
Sirius 14 11 21.43%
Spring-mvn-java9 6 0 100.00%
Springuni-java9 1 0 100.00%
Tascalate-Javaflow 11 6 45.45%
The-Message 10 9 10.00%
TRPZ 5 3 40.00%
Vstreamer 3 1 66.67%
Avg. Attack Surface Reduction 56.37%

outside its modules. To measure the attack surface of Java 9+ applications, we count the number

of packages exposed by exports (to) and open(s to) directives. These directives make internals of

packages accessible to other modules.
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As shown in Table 3.4, 36 out of 38 applications had an average attack-surface reduction of about

56% at their build-time. DARCY was able to totally eliminate the attack surface in 5 applications.2

Although eliminating the module-based attack surface does not result in perfect security, DARCY can

maximize protection to the asset (i.e., Java packages) through a module’s interfaces by eliminating

all unnecessary exports and opens directives of the module—other attack vectors (e.g., IPC over

network sockets) still remain but are out of scope for DARCY.
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Figure 3.5: Cumulative distribution function (CDF) of the attack surface reduction at build-time

Figure 3.5 shows a cumulative distribution function (CDF) of the ratio of attack surface reduction

by DARCY among the applications in our dataset at build-time. It indicates that in 60% of the

applications, DARCY was able to reduce the applications’ attack surface up to about 50% at build-

time. Furthermore, in 80% of the applications, the repairs by DARCY reduced the applications’

attack surface up to 80%, which means that for the remaining 20% of the applications, it reduced

the applications’ attack surface by even more than 80% at their build-time.

The relatively large reduction of the attack surface in applications achieved by DARCY indicates

that it can significantly curtail security risks in Java 9+ applications.

2These applications are essentially software utilities or libraries including different modules that provide functionali-
ties for different situations, but do not have any dependency on one another.
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3.5.4 RQ4: Encapsulation

To evaluate the ability of DARCY to enhance the encapsulation of Java 9+ applications, we leveraged

two metrics selected from an extensive investigation by Bouwers et al. [72] about the quantifica-

tion of encapsulation for implemented software architectures. we selected metrics that involve

architectural dependencies and are appropriate for the context of modules in JPMS and Java 9+

applications.

The first metric we selected is Ratio of Coupling (RoC) [74], which measures coupling among an

application’s modules. For Java 9+ modules, RoC is the ratio of the number of existing dependencies

among modules to the number of all possible dependencies among modules. Ideally, the value of

RoC would be low, meaning that only a small part of all possible dependencies among modules

is actually utilized—making it less likely that faults, failures, or errors introduced by changes or

additions to modules will propagate across modules.

The second metric we selected is a variant of Cumulative Component Dependency (CCD) [143]

which is the sum of all outgoing dependencies for a component. For Java 9+ modules, outgoing

dependencies are requires and uses dependencies of each module. The specific variant we used is

Normalized CCD (NCD), which is the ratio of CCD for each module to the total number of modules.

Ideally, the value of CCD, or NCD, is low, indicating lower coupling and better encapsulation.

Table 3.5 presents the amount of RoC and NCD change in 38 Java 9+ applications with inconsistent

dependencies at build-time. Across all 38 applications, the amount of RoC is reduced by an average

of about 28%, and up to about 81% at build-time. The amount of NCD is also reduced in 24

applications by an average of about 21%, and up to 79% at build-time.

Figure 3.6 shows the cumulative distribution function (CDF) of the RoC reduction followed by

the DARCY’s repairs at build-time. It indicates that, ay build-time, in about 70% of applications,

DARCY was able to reduce the RoC up to 40%.
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Table 3.5: Results for encapsulation improvement at build-time

Application # Directives RoC NCD
Name (before) % Change % Change

Auto-sort 13 7.69% -
Ballerina-lang 532 21.43% 7.46%
Blynk-Server 122 21.31% -
BunnyHop 28 60.71% 25.00%
Codersonbeer-app 13 30.77% 12.50%
Constantin 9 55.56% 20.00%
Eclipse Jetty 413 35.59% 34.18%
Java-9-lab 15 6.67% -
Java-9-modularity 11 9.09% 12.50%
Java-Bookstore 17 17.65% 16.67%
Java-SPI 26 15.38% 5.56%
Java9-demo 10 10.00% -
Java9-junit 13 7.69% -
Java9-labs 10 40.00% -
java9-modules 5 20.00% -
Java9-TLB-modules 12 8.33% -
JavaUtils 36 80.56% 79.31%
Jigsaw-resources 5 20.00% -
Jigsaw-tst 11 9.09% -
Jwtgen 13 15.38% 8.33%
Logback 65 46.15% 21.43%
Meetup 14 42.86% -
Music-UI 15 26.67% 10.00%
Number-to-text 11 9.09% -
Practical-Security 20 10.00% 7.69%
Quasar 42 52.38% 25.00%
QuestDB 65 52.31% 8.33%
Rahmnathan-utils 14 50.00% 12.50%
RecolInline-Server 42 47.62% 48.00%
Rhizomatic-IO 58 5.17% 2.44%
Sense-nine 31 29.03% 16.00%
Sirius 37 24.32% 26.09%
Spring-mvn-java9 18 44.44% 16.67%
Springuni-java9 6 50.00% 40.00%
Tascalate-Javaflow 56 30.36% 26.67%
The-Message 16 6.25% -
TRPZ 19 10.53% -
Vstreamer 25 16.00% 20.00%
Total # of Affected Systems (RoC) 28
RoC Reduction Avg. 25.34%
Total # of Affected Systems (NCD) 15
NCD Reduction Avg. 20.73%

Figure 3.7 demonstrates the cumulative distribution function (CDF) of DARCY’s NCD reduction

rate at build-time. It shows that resolving the inconsistencies in 80% of the applications could
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Figure 3.6: Cumulative distribution function (CDF) of the Ratio of Coupling (RoC) reduction at
build-time
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Figure 3.7: Cumulative distribution function (CDF) of the Normalized Cumulative Component
Dependency (NCD) reduction at build-time

reduce the NCD up to 22%.

These results indicate that DARCY can successfully enhance the encapsulation of Java 9+ applica-

tions by a significant amount.
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3.5.5 RQ5: Software Bloat

To answer this research question, we measured the runtime memory needed by each application

before and after DARCY’s repair phase. Recall the fact that in Java 9+, with the JDK being

modularized, we are able to create a lightweight custom Java Runtime Environment (JRE), reducing

software bloat. More specifically, the size of a custom JRE may be reduced after a repair if the

application has inconsistent dependencies of type requires JDK (Equation 3.2 of Section 3.3).

Table 3.6: Results for software-bloat reduction

Application Runtime Memory
Name Reduction (%)

Ballerina-lang 8.29%
BunnyHop 54.72%
Eclipse Jetty 16.83%
Java-SPI 6.04%
JavaUtils 21.87%
Practical-Security 0.76%
Quasar 4.55%
Rahmnathan-utils 0.12%
RecolInline-Server 50.70%
Sense-nine 0.63%
Avg. Memory Reduction 16.45%

Table 3.6 shows the reduction of software bloat in terms of the reduction in the size of the JRE

image of affected applications after removing inconsistent requires JDK dependencies at build-time.

According to the results, the reduction is about 16% in 10 applications and up to 55%.

Figure 3.8 demonstrates the cumulative distribution function (CDF) of DARCY’s software bloat

reduction rate at build-time. The figure shows that in 80% of the applications DARCY could reduce

the size of the JRE image up to about 22% by resolving the module inconsistencies at build-time.

Such results are particularly substantial for deployment and scalability goals in microservices or

IoT devices that contain very little memory.
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Figure 3.8: Cumulative distribution function (CDF) of software bloat reduction at build-time

3.5.6 RQ6: Performance

As described in Section 3.4, DARCY builds on three tools, Classycle[106], Soot [200], and ANTLR

[10]. As a result, to assess DARCY’s performance we answer RQ6 in terms of these underlying

tools’ as well as DARCY’s execution time.

Table 3.7: Results for execution time

Component Avg. Execution Time (ms)
Class Dependency Analyzer (Classycle) 7428
Java Reflection Analysis 328
ServiceLoader Usage Analysis 315
Java Inconsistency Analysis 250
Repair 453
Total 8774

Table 3.7 describes the average execution times for DARCY. Results for Classycle are shown

separately from results for other components since Classycle dominates the execution time. On

average, DARCY takes under 9 seconds for any system to execute at build-time, which is highly

time-efficient for both detection and repair.
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3.6 Threats to Validity

In terms of accuracy, the main threat to internal validity is the risk of false positives or negatives

of the static analysis tools used in the implementation. False positives or negatives in the results

of the static analysis tools may cause DARCY to miss some inconsistencies in the detection phase

or report false inconsistencies, which may lead to compilation errors or harming functionality of

the application after the repair phase. Since DARCY takes Classycle’s results as an input for the

Java inconsistency analysis, it inherits all of Classycle’s limitations. The accuracy of detecting the

inconsistent dependencies is affected by the accuracy of the static analysis tool we use. However,

Classycle has been used and in development for over years and leveraged by other state-of-the-art

tools for software architecture and antipattern analysis [184, 220, 89, 147, 114, 150, 88]. A similar

threat to internal validity exists for our use of Soot; however, Soot is a widely used[130, 144]

and actively maintained framework [19] for static analysis of Java programs. we further manually

determine whether every identified inconsistency is correct to ensure that any unforeseen issues

with underlying static analyses do not compromise DARCY’s accuracy.

One of the main threats to external validity is the selection and number of Java applications in the

evaluation dataset. To mitigate this threat, we selected open source Java 9+ applications from many

developers and about a hundred pages of search results on GitHub, one of the largest and most

widely used open-source repositories online. Another threat to external validity is whether the types

of inconsistencies we identify comprehensively cover those that may exist. To alleviate this threat,

we considered the architectural inconsistencies based on all types of module directives defined in

Java 9+.

Another threat to external validity is that DARCY may identify some architectural inconsistencies

which was intentionally defined by developers, e.g., in case of Java libraries a developer may export

some packages that might not be used internally by the library itself. In these situations, DARCY

cannot be aware of the developers or architects’ intention and they may disagree with DARCY’s
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repairs. To mitigate this threat, we keep the developers in the loop and let them override DARCY’s

decision before the repair phase, as explained in Section 3.4.

DARCY’s evaluation on only one programming language, i.e., Java, is another threat to external

validity. This threat is alleviated by the fact that Java is one of the most widely used languages in the

world [22, 21]. Furthermore, the general idea behind DARCY can be extended to any other languages

with modular programming constructs that utilize provides and requires interfaces advocated by

software architecture-based development and design [202, 162, 146].

3.7 Related Work

The most closely related literature in this area bridges the gap between the prescriptive and descrip-

tive architecture. There are a variety of different types of strategies to address this issue: focusing

only on the descriptive architecture by reverse engineering it; obtaining the descriptive architecture

and the prescriptive architecture, followed by checking their conformance; ensuring that early

in the software lifecycle that the descriptive and prescriptive architectures conform by providing

architectural constructs in code; and approaches that ensure conformance of the descriptive and

prescriptive architecture from the beginning and into maintenance.

Many approaches address the architecture-implementation mapping issue by ignoring the prescrip-

tive architecture and simply trying to obtain the most accurate descriptive architectures possible

[105, 140, 150, 133, 117, 114, 165, 183, 90, 175]. A large number of these approaches rely on

software clustering to determine components from implementations [187, 160, 105, 140, 71]. More

recently, Hammad et al. [126] have developed a tool-assisted approach that relies on component re-

covery techniques and converts object-oriented Java apps, i.e., pre-Java-9, to component-based Java

9+ apps that properly use the JPMS constructs with the least privileged architecture specification.

A series of approaches detect inconsistencies between architecture and implementation by reverse
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engineering the descriptive architecture from the code and comparing it with the prescriptive

architecture[168, 161, 201, 169, 197, 55, 219, 180, 100, 182, 142, 86, 141, 124]. Murphy et

al. introduced the software reflexion method which helps an engineer compare prescriptive and

descriptive architectures in a manual manner [168]. A number of these approaches extend the

reflexion method with automated architecture recovery techniques [142, 86, 141]. Moreover,

Buckley et al. [77] proposed JITTAC, a tool that uses a real-time Reflexion Modeling approach to

provide developers with Just-In-Time architectural consequences of their implementation actions

and promote consistency between the prescriptive and descriptive architecture.

Other approaches provide implementation-level constructs that represent architectural elements (e.g.,

customizable programming-language classes representing components) that help ensure architectural

conformance from a forward-engineering perspective [57, 79, 121, 154, 59, 176, 186, 198]. Many

of these approaches support various notions of software architectural connectors or interfaces, rather

than just components.

Certain approaches achieve architecture-implementation mapping from both a forward-engineering

(e.g., code generation) and reverse-engineering perspective, i.e., round-trip engineering [227, 226,

188]. 1.x-way mapping [227] allows manual changes to be initiated in the architecture and a

separated portion of the code, with architecture-prescribed code updated solely through code

generation. 1.x-line mapping [226] extends 1.x-way mapping to product-line development. Song et

al. [188] introduce a runtime approach for architecture-implementation mapping from a roundtrip-

engineering perspective.

Another series of approaches focus on detecting and fixing different types of dependency conflicts

in software systems, e.g., conflicts in referencing third-party libraries [206, 208, 145, 207, 205, 204,

148]. Wang et al. focus on the semantic conflicts caused by the dependency conflicts and proposed

an automated testing technique that attempts to identify inconsistent behaviors of the APIs in

conflicting library versions [208] as well as creating the corresponding stack trace [207]. They also

proposed techniques to monitor dependency conflicts for Python library ecosystem [205] and detect
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dependency conflicts in Golang, as well as suggesting proper fixes [204]. Furthermore, Lambers et al.

[145] developed a technique that detects all dependency conflicts on multiple granularity levels based

on graph transformation. Additionally, Li et al. [148] proposed an automated technique to repair

dependency issues where changes in software systems violate package dependency constraints.

Despite other techniques, DARCY (described in chapter 3.4) is the first approach that supports

architectural-implementation conformance checking in a mainstream programming language using

architectural constructs built directly into the programming language by its creators. Furthermore,

our approach includes repairing non-conforming architectures rather than just determining inconsis-

tencies. In addition, DARCY is the only approach for architecture-implementation mapping that

focuses on software bloat and attack-surface reduction.

The only existing framework similar to JPMS is OSGI [3]. The major differences between OSGI

and JPMS are as follows. OSGI was not able to modularize the JDK, preventing the construction

of customized runtime images with a minimized JDK, which JPMS enables. Additionally, OSGI

cannot handle reflective access to modules’ internal packages. Similar dependency-analysis facilities

for OSGI are limited to removing unused dependencies of type import, which represents the require

dependency, and cannot cover the other 7 types of inconsistencies in JPMS applications previously

introduced in section 3.3. Therefore, there is no similar facility for OSGI that repairs all types of

inconsistent dependencies as DARCY does.

3.8 Discussion

This chapter formally defines 8 types of architectural inconsistencies in Java 9+ applications and

introduces DARCY, an approach for automatic detection and repair of these types of inconsistencies.

DARCY leverages custom static analysis, state-of-the art static analysis tools, and a custom parser

generator in its implementation to effectively detect and robustly repair architectural inconsistencies.
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The results of our evaluation indicates a pervasive existence of architectural inconsistencies among

open source Java 9+ applications. According to our experiment, DARCY’s automatic repair results in

a significant reduction of the attack surface, enhancement of encapsulation, and reduction of memory

usage for Java 9+ applications. In the future, we aim to expand DARCY to other programming

languages and improve it to (1) provide architectural visualization and (2) be used as a plug-in

for Java Integrated Development Environments (IDE) which helps developers avoid architectural

inconsistencies when developing Java applications.
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Chapter 4

Dynamic Delivery Testing in Android

Android is a highly fragmented platform with a diverse set of devices and users. To support the

deployment of apps in such a heterogeneous setting, Android has introduced dynamic delivery—a

new model of software deployment in which optional, device- or user-specific functionalities of an

app, called Dynamic Feature Modules (DFMs), can be installed, as needed, after the app’s initial

installation. This model of app deployment, however, has exacerbated the challenges of properly

testing Android apps. In this paper, we first describe the results of an extensive study in which

we formalized a defect model representing the various conditions under which DFM installations

may fail. We then present DELTADROID—a tool aimed at assisting the developers with validating

dynamic delivery behavior in their apps by augmenting their existing test suite. Our experimental

evaluation using real-world apps corroborates DELTADROID’s ability to detect many crashes and

unexpected behaviors that the existing automated testing tools cannot replicate.

53



4.1 Introduction

The Android framework runs on diverse types of devices that vary both in terms of hardware

properties, e.g., CPU architectures or hardware sensors, and software configuration, e.g., Android

version or default language. Due to this variability, developers need to customize features or offer

optional features for specific devices. More importantly, to ensure an app runs properly on different

devices, developers need to include various device-specific resources and features in their apps.

This strategy forces users to download larger apps with unnecessary code and resources specific to

other devices. Alternatively, developers can maintain and publish multiple device-specific APKs for

a single app, requiring them to spend additional effort to build, sign, upload, and manage several

APKs.

To address these issues, Android has recently introduced a new publishing format, called Android

App Bundle [29]. One of the main goals of app bundles is to enable dynamic delivery [46], i.e.,

enhance modularization so that developers can customize their apps based on user requirements

and deliver optional features on a user’s demand. To that end, each app bundle consists of several

cohesive modules that together implement an app’s full functionality. Specifically, the base module

of the app bundle implements the core functionality of the app, configuration modules include

device-specific resources, and Dynamic Feature Modules (DFMs) implement optional features.

When users install an app for the first time, they install only the base module and a configuration

module specific to their devices. DFMs can be downloaded later based on the user’s demand1.

To install a DFM, the app’s base module should send an installation request to the Android app

store operator through its runtime interface, i.e., the app store API. Once the app store operator

accepts the request, the app downloads the requested DFM and installs it on the user’s device. The

lifecycle of an installation request is not always straightforward. In fact, such requests may fail

due to several reasons and result in critical failures, e.g., crashes [47]. Android documentation has

1Developers define how and when users can download different dynamic features on devices running Android 5.0
(API level 21) or higher.
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provided instances of best practices regarding dynamic delivery [49], suggesting that developers

monitor the state of an installation request throughout its lifecycle and transparently communicate

to the user if a failure happens. More specifically, if a DFM installation fails, Android best practice

suggests that developers notify the user about the root cause of the failure and adjust the app’s

behavior.

As a result, to ensure an app’s proper behavior in dynamic delivery, developers require tests that (1)

reach the installation request in the code and (2) induce the contexts in which the installation request

fails. The challenge here lies in the fact that such failures happen under peculiar conditions, e.g.,

network disconnection, missing the proper permission, or no support for the app store API on the

requesting device. Since these conditions cannot be effectively produced through GUI actions, most

existing Android testing techniques (e.g., [39, 158, 123]) that target GUI testing are not suitable

for testing an app’s dynamic delivery. While Android documentation provides a list of conditions

that may cause an installation request to fail [46], the description of those conditions is both vague

and incomplete, making developers struggle with dynamic delivery testing and understanding the

conditions under which dynamic delivery fails [36, 27, 37, 34, 26, 35, 28, 23, 12, 13].

To overcome these challenges, we propose DELTADROID, an approach for Dynamic DELivery

Testing of AnDroid, i.e., a test-suite augmentation approach that leverages static and dynamic

analysis techniques to (1) identify tests that reach DFMs’ installation requests, and (2) modify the

identified tests with a combination of GUI and system actions to generate new test cases that induce

different conditions, which may cause a DFM installation request to fail. To identify proper actions,

it relies on a novel defect model that formally describes the contexts in which failures occur. Such

tests will help developers with the steps that lead to DFM installation failure, and they only need to

specify application-specific assertions.

Given the fact that Dynamic Delivery has been widely used in recent Android apps [30] (over

40% of all app releases on Google Play [45]), validating the correctness of Dynamic Delivery

is crucial. Our evaluation shows that while state-of-the-art [123] and state-of-the-practice [39]
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Android testing techniques, which mostly focus on GUI testing, are potentially able to generate

tests that can initiate the installation of DFMs, they are not capable of creating the proper conditions

to make an installation request fail. More specifically, we detected 44 critical dynamic delivery

failures, i.e., crashes, across 25 subject apps. After reporting these failures to developers, 18 of

them were verified to date.

This chapter makes the following contributions:

• Construction of a defect model representing Android dynamic delivery failure through the

formalization of failure conditions.

• A hybrid static and dynamic analysis technique for augmenting existing test suites with tests

that can validate Android dynamic delivery. An implementation of the proposed technique is

publicly available [51].

• An extensive empirical evaluation on real-world Android apps demonstrating DELTADROID’s

effectiveness in test augmentation.

The remainder of this chapter is organized as follows. Section 4.2 illustrates a motivating example.

Section 4.3 introduces the formal specifications of the defect model. Section 4.4 describes the

details of DELTADROID and its implementation. Section 4.5 presents the experimental evaluation

of the research. The chapter concludes with a discussion of the related research and avenues of

future work.

4.2 Illustrative Example

As an illustrative example, we use the Android app K9Mail [31]. We describe the functionality of

K9Mail, a defect in the app associated with dynamic delivery, and how a test can reveal the defect.
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App: K9Mail is an email client app whose main functionalities are viewing and sending emails,

managing multiple email accounts, searching, etc. In addition to these core functionalities, K9Mail

offers an optional feature for encrypting emails to provide an additional level of security. Since

most users do not use this feature, it is encapsulated into a DFM which users can install on-demand.

Encrypt

Installation
Success

Installation
Failure

Figure 4.1: Installation of a new DFM on K9Mail

Defect Scenarios: Figure 4.1 shows three steps that lead to installation of the Encryption DFM.

First, the user clicks on an email’s menu—denoted by three dots—to access more options. Clicking

on the “Encrypt” option initiates the installation of the Encryption DFM. If the module installation

is successful, the user will see a dialog to enter a password and confirms the encryption. Otherwise,

if the installation request fails due to a contextual reason (Section 4.3), K9Mail goes to the initial

screen without notifying the users about the failure or instructing them to take proper actions—

potentially giving users the false impression that the email is encrypted. Without a proper test to

reveal the failure scenario, a developer may not detect this defect. We describe two possible dynamic

57



1 #click on the "Security Alert" email’s menu icon
2 driver.find_element_by_xpath(path_to_icon).click()
3 #click on the "Encrypt" option
4 driver.find_element_by_xpath(path_to_encrypt).click()
5 #enter encryption password in the password field
6 driver.find_element_by_id(password_field_ID).
7 send_keys(password)
8 #repeat password
9 driver.find_element_by_id(password_confirm_field_ID).send_keys(password)

10 #click on "OK" button
11 driver.find_element_by_id(OK_button_ID).click()

Figure 4.2: An Appium test, written in Python, to test the installation success scenario of Figure 4.1

1 #click on the "Security Alert" email’s menu icon
2 driver.find_element_by_xpath(path_to_icon).click()
3 #disconnect network connection
4 driver.set_network_connection(0)
5 #click on the "Encrypt" option
6 driver.find_element_by_xpath(path_to_encrypt).click()
7 #restore network connection
8 driver.set_network_connection(1)
9 # check if network connection alert dialog is displayed

10 Assert.assertFalse(driver.find_element_by_id(Network_Alert_Dialog_ID).isEmpty())

Figure 4.3: An Appium test, written in Python, to test the installation failure scenario of Figure 4.1
due to no network connection

1 #click on the "Security Alert" email’s menu icon
2 driver.find_element_by_xpath(path_to_icon).click()
3 #Filling the storage of the device with a huge file
4 args = {"command": "df","args": ["/sdcard", "|", "grep", "\’data\’", "|", "awk", "-F", "\’ \’

", "\’{print $4}\’"]}
5 bytesAvailable = driver.execute_script("mobile: shell", args)
6 args = {"command": "dd","args": ["if=/dev/zero", "of=/sdcard/deleteme", "bs=1B", "count=" +

str(int(bytesAvailable))]}
7 result = driver.execute_script("mobile: shell", args)
8 #click on the "Encrypt" option
9 driver.find_element_by_xpath(path_to_encrypt).click()

10 #Deleting the huge file to free up the storage
11 args = {"command": "rm","args": ["/sdcard/deleteme"]}
12 driver.execute_script("mobile: shell", args)
13 # check if insufficient storage alert dialog is displayed
14 Assert.assertFalse(driver.find_element_by_id(Insufficient_Storage_Alert_Dialog_ID).isEmpty())

Figure 4.4: An Appium test, written in Python, to test the installation failure scenario of Figure 4.1
due to insufficient storage

delivery failures for this scenario, i.e., network disconnection [25] and insufficient storage [38]. We

further discuss properties of the required tests to identify such failures.

Tests: Figure 4.2 shows an Appium [40] system test to validate the behavior of K9Mail during

installation of the Encryption module. While this test can validate proper implementation of K9Mail

when the installation request is successful, it is unable to capture dynamic delivery failures occurring
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due to network disconnection or insufficient storage. Consequently, we need two additional tests to

validate proper handling of unsuccessful installation of the Encryption module. These new tests,

shown in Figure 4.3 and Figure 4.4, include adding system events to the test in Figure 4.2. The test

in Figure 4.3 disconnects the network connection before clicking on the “Encrypt” option (line

4), making the installation request fail, and then re-connects the network connection (line 8) after

clicking on the “Encrypt” option. The test then checks whether the desired alert dialog, notifying the

user about the network connection failure, is displayed. On the other hand, the test in Figure 4.4 fills

the storage of the device before clicking on the “Encrypt” option, making the installation request

fail due to insufficient storage (lines 4–7), and then revert it after clicking on the “Encrypt” option

(lines 11–12). The test then checks if the desired dialog, asking the user to remove unnecessary

files, is displayed. There are two main challenges to design such tests:

(1) Installation request failures depend on the contextual settings in which a test is executed and

cannot be achieved simply through GUI actions. To that end, developers need to inject additional

system or GUI events into the test event sequences to induce a failure. In the test case of Figure 4.3,

line 4 contains the system event that disables the network, making the installation request for the

Encryption DFM fail due to a network error (Section 4.3, Equation 4.1). To ensure that the change

in the state of the network only impacts the DFM installation and not the rest of the test, the network

connection is restored afterward.

(2) The position of the injected events in the test event sequence is critical. For example, if the

developer disables the network connection at the very beginning (line 2 in Figure 4.2), the test

cannot load the list of emails, cannot find the menu icon for the “Security Alert” email, and thus

fails without being able to execute the module installation, resulting in an invalid test. Similarly, if

the network connection is disabled after initiating the installation request (line 4 in Figure 4.2), the

test cannot observe the behavior of K9Mail when the installation request fails; therefore, it would

not be a useful test for validating the Encryption DFM’s behavior.
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4.3 Defect Model

The previous section’s defect scenario describes an installation request failure. Developers should

be aware of all the different situations causing the installation failure, two of which mentioned in

Section 4.2, and take appropriate actions to handle them. To identify the situations leading to an

installation failure, we first need to describe the process through which a DFM is installed.

Cancelling

Invalid Request

Cancelled

User 
Confirmation

Pending Downloading Installing

Downloaded

InstalledRequesting
(Not Installed)

Insufficient 
Storage

Access Denied Incompatible w/ 
Existing Session

Network Error

Session Not 
Found

App Store API 
Not Found

App Not Owned Active Sessions 
Limit Exceeded

Module 
Unavailable

API Not Available

Installation Failed StateInstallation Progress State Installation Completed State

Legend

Figure 4.5: The lifecycle of a DFM installation request

Once an Android app attempts to install a DFM, it creates an installation request that can go through

multiple states, as demonstrated in Figure 4.5. First, at the Requesting state, the app store API—the

app’s runtime interface with the app store services—sends the installation request to the app store

(e.g., Google Play [45]). In the Pending state, the request has been accepted by the app store

operator, and the download should start momentarily. Through Android dynamic delivery, DFMs
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are downloaded as separate APK files, called split APKs. During download time, the request is in

the Downloading state. Once the device completes the download, in case the app has SplitCompat2

installed, it can immediately access the DFM to install it, leading the request to the Installing state.

Otherwise, the request will go to the Downloaded state, where the DFM split APK is downloaded

but cannot yet be installed. As soon as SplitCompat is installed in the app, the DFM can be installed

in the background by the app store operator. Finally, if the installation finishes successfully, the

request is in the Installed state. During the Pending or Downloading states, the installation request

can be cancelled, leading to the Cancelling and Canceled states. After download, the Android

device automatically installs the DFM, which can be uninstalled by the user later. For modules that

are larger than 10MB, the installation requires user confirmation (the User Confirmation state). If

the user confirms the installation, the request follows the normal lifecycle. Otherwise, it goes to the

Cancelling and Canceled states [46].

An installation request may also terminate the normal lifecycle and go to any of the Failed states,

which is denoted by dashed lines in Figure 4.5. Based on the root cause of the failure, developers

need to handle it accordingly. For instance, if the request fails due to a network error, developers

should check the network connection and only resend the request if the network is stable. As another

example, if the request fails due to insufficient storage, which prevents the module from being

installed on the device, the developer should ask the user to free up some space, install the module,

and monitor for different root causes of the module installation failure.

While Android documentation briefly explains the Failed states and provides recommendations for

proper actions to handle failure of an installation request [46], it does not sufficiently describe the

context required to reach the Failed states for the purpose of testing. In fact, developers might have a

hard time understanding the root cause of each Failed state [36, 27, 37, 34, 26, 35, 28, 23, 12, 13, 24].

For instance, [24] states, “My application uses app bundle, but dynamic feature performs a very

poor rate of success when downloading, with a lot of error codes, and I cannot do anything for

2SplitCompat is an Android library class that enables immediate access to code and resources of the DFM split
APKs.
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it. I search the docs but no help!”. To overcome this challenge, we constructed a defect model

for Android dynamic delivery failures. This defect model formally defines a Failed State Context

as the context in which its associated Failed state will occur. The formulation will be used by

DELTADROID to augment existing tests to induce Failed states (Section 4.4).

To construct a comprehensive defect model, we explored multiple resources to understand the root

causes of dynamic delivery failures and to identify contextual factors that trigger them. Specifically,

we started from Android documentation and classified failures into 11 classes, based on the different

error messages Android framework generates upon the occurrence of each failure [47]. We then

explored issue repositories on GitHub [11] and discussion forums (e.g., StackOverFlow [48]) for

keywords related to installation errors and DFM install failures, such as dynamic feature module

installation failure, SplitInstallErrorCode, names of each specific error code and their messages

included in the Android documentation [47]. Additionally, we investigated many open-source

Android apps’ implementations for instances of SplitInstallErrorCode and the way developers

handle them using onFailureListeners upon the occurrence of different failures. Investigating

these resources, we identified the contextual factors contributing to the manifestation of dynamic

delivery. For a few cases where the mentioned resources were inconclusive, we exhaustively

examined all the relevant contextual factors that could produce the desired Failed state.

4.3.1 Failed State Context Definition

The manifestation of a Failed state depends on the properties of an app bundle, DFM, installation

request, and device configurations.

DEFINITION 4.1. The configuration of a device in which a DFM will be installed can be formally

specified as a tuple

Dev≡ 〈Android Version, App Store, Account, Network, Storage〉, where

• Android Version is the device’s Android version,
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• App Store is the device’s app store app (e.g., Play Store app),

• Account is the user’s app store account registered on the device,

• Network ∈ {true, f alse} is the network connection status of the device (true if connected and

false otherwise), and

• Storage is the amount of storage available on the device.

DEFINITION 4.2. An app bundle can be represented as a tuple AB≡

〈DFMs, Permissions, DownloadSource〉 where

• DFMs≡ {DFMi | i ∈ {1, ...,n}} is a set of all DFMs in the app bundle AB,

• Permissions is the set of permissions required to install DFMs, and

• DownloadSource is the source from where the app bundle has been downloaded, e.g., Google

Play Store.

DEFINITION 4.3. A DFM can be formally specified as a tuple DFM ≡

〈AB, Min SDK Version, Authorized Users, Size〉 where

• AB is the app bundle of DFM,

• Min SDK Version indicates the minimum API version of the Android device that the DFM is

compatible with, i.e., minSdkVersion in DFM build file,

• Authorized Users are a set of users’ app store accounts that have access to the DFM and

can install it, and

• Size is the necessary storage for installation of DFM.

DEFINITION 4.4. An installation request, i.e., request from an app to install a DFM is defined as a

tuple Req≡ 〈SessionID, DFM, State〉 where
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• SessionID is a unique identifier for a request assigned by the app store API to track the status

of the request,

• DFM is the dynamic feature module that will be installed through this request, and

• State ∈ {R,P,UC,Ding,Ded, Iing, Ied,Cing,Ced,F} is the current state of the installation re-

quest. As shown in Figure 4.5, the possible values are R (Requesting), P (Pending), UC (User

Confirmation), Ding (Downloading), Ded (Downloaded), Iing (Installing), Ied (Installed), Cing

(Cancelling), Ced (Canceled), and F (Failed).

With these definitions, we can represent a Failed State Context as a tuple FSC = 〈Dev, AB, Req〉

and identify the contextual settings in which a distinct Failed state happens.

4.3.2 Failed States

As shown in Figure 4.5, an installation request may terminate in ten different Failed states: Network

Error, Insufficient Storage, Access Denied, Incompatible With Existing Session, Active Sessions

Limit Exceeded, Module Unavailable, API Not Available, Session Not Found, App Not Owned, and

Invalid Request.

1. Network Error. An installation request goes to Network Error state if a network exception [25]

occurs when the request is in any of the Requesting, Pending, or Downloading states. For a dev : Dev

and req : Req, the contextual parameters that induce such failure are as follows:

FSCNetwork Error ≡ req.State ∈ {R,P,Ding} ∧ dev.Network Connection = f alse (4.1)

To ensure developers have considered a proper action when such failure happens, there should be a

test to disconnect network connection during the lifecycle of the request.
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2. Insufficient Storage. The Insufficient Storage failure happens when an app requests to install

a DFM, whose size is larger than available storage on the phone. More specifically, once an

installation request is initiated, the Android device checks its remaining storage before starting the

installation request, and in case of insufficient available storage it fails at the Requesting state. It

will only start downloading and installing in case the device has enough storage. For a dev : Dev

and req : Req, the contextual parameters that induce such failure are as follows:

FSCInsu f f icient Storage ≡ req.State ∈ {R} ∧ (req.DFM.Size > dev.Storage) (4.2)

Developers should handle this situation, e.g., show a proper notification informing the the user

about the space availability issue on the phone. To validate this behavior, a test needs to mock the

storage of the device as being full.

3. Access Denied. Without proper permissions to download a DFM, i.e., REQUEST INSTALL PACKAGES

permission, an installation request from the app store operator is denied in its inception, i.e., when in the

Requesting state. For an ab : AB and req : Req, the contextual parameters that induce such failure are as

follows:

FSCAccess Denied ≡ req.State ∈ {R} ∧ Request Install Packages /∈ ab.Permissions (4.3)

To ensure developers implement proper actions in response to this failure, test suites should have either a

test that permanently revokes the app’s REQUEST INSTALL PACKAGES permission or temporarily revokes it

by taking the app to the background.3

4. Incompatible With Existing Session. Installation of a DFM might be accessible from different paths in

the program. Thus, more than one installation request can be sent to the app store operator for the same

DFM. Specifically, consider the case where an installation request of a DFM is in progress and the DFM

is not installed yet, and meanwhile, another installation request attempts to install the same DFM. In this

3From Android 11, an app’s permission can be temporarily revoked while it is not in the foreground.
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case, the second request will terminate and reach the Incompatible With Existing Session state. This failed

state happens while the first request is in any of the Requesting, Pending, Downloading, or Installing states,

and the second request is in the Requesting state. For a dev : Dev, req1 : Req, and req2 : Req, the contextual

parameters that induce such failure are as follows:

FSCIncompatible With Existing Session ≡

req1.DFM = req2.DFM

∧ req1.SessionID 6= req2.SessionID

∧ req1.State ∈ {R,P,Ding, Iing} ∧ req2.State ∈ {R}

(4.4)

To ensure the app implements proper means of accounting for this failure, a test should simultaneously

initialize at least two installation requests for the same DFM.

5. Active Sessions Limit Exceeded. While the previous situation includes multiple requests for the same

DFM, an installation request for a DFM is also rejected if there is already an active installation request for

another DFM. This failed state occurs while the first request is in any of the Pending, Downloading, or

Installing states, and the second request is in the Requesting state. For a dev : Dev, req1 : Req, and req2 : Req

the contextual parameters that induce such failure are as follows:

FSCActive Sessions Limit Exceeded ≡

req1.DFM 6= req2.DFM ∧

req1.State ∈ {P,Ding, Iing} ∧ req2.State ∈ {R}

(4.5)

If the app contains multiple DFMs in the bundle, installing any of them may result in Active Session Limit

Exceeded failed state. Since the implementation of these DFMs might be distributed in the code, different

test cases executing different parts of the code are required to induce this failed state.

It is worth to note that Active Session Limit Exceeded state does not subsume Incompatible with Existing

Session, as the SessionID of req1 and req2 might be the same in the former. To ensure developers implement

proper actions to account for this failure, a test should simultaneously initialize installation requests for
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different DFMs.

6. Module Unavailable. This failed state can occur due to two possible causes: (1) For each DFM installation

request, the app store API checks whether the minSdkVersion of the DFM matches that of the Android

system running on the device. Module Unavailable failed state occurs if the Android version running on the

device is less than the minSdkVersion in the DFM’s build file, i.e., mismatches the required API Version

of the DFM. (2) In some cases, the developer might not make the DFM available to all users. If a DFM

is unavailable for the user’s app store account on the device, the request reaches the Module Unavailable

state. This failed state happens while the request is in the Requesting state. For a dev : Dev and req : Req, the

contextual parameters that induce such a failure are as follows:

FSCModule Unavailable ≡ req.State ∈ {R} ∧

( dev.Android Version < req.DFM.Min SDK Version ∨

dev.Account /∈ req.DFM.Authorized Users )

(4.6)

To validate the app implements proper means of handling this failure, a test suites should include a test that

either changes the Android version of the device or the app store account on the device.

7. API Not Available. App bundles and thus on-demand DFMs are available on Android versions 5 (API

level 21) or higher. For older versions, developers should change the configuration of DFMs, such that they

can be downloaded with the base APK. This allows the app to support downloading all modules of an APK,

similar to a monolithic APK from Android versions that do not support DFMs. Otherwise, users of devices

with older versions can only download the base APK. Attempts of an app to violate this by trying to download

a DFM results in the installation request terminating with the API Not Available error. This failed state occurs

while the request is in the Requesting state. For a dev : Dev and req : Req, the contextual parameters that

induce such failure are as follows:

FSCAPI Not Available ≡ req.State ∈ {R}∧dev.Android Version < Android 5 (4.7)

A test to validate the proper action to account for this failure should mock the Android version running on the
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device.

8. App Store API Not Found. This Failed state happens when the app store (e.g., Play Store app) is either

not installed or not the official version. This failed state occurs while the request is in the Requesting state.

For a dev : Dev and req : Req, the contextual parameters that induce such failure are as follows:

FSCApp Store API Not Found ≡ req.State ∈ {R}∧dev.App Store 6= O f f icial App Store app (4.8)

A test to validate an app’s behavior in response to this failure should mock a device that does not have the

official app store installed.

9. Session Not Found. This Failed state happens when session ID generated by the app store operator for

an installation request is not valid, i.e., does not correspond to an active session in the app store services.

This failed state occurs while the request is in any of the Pending, Downloading, or Installing states. For a

req : Req, the contextual parameters that induce such failure are as follows:

FSCSession Not Found ≡ req.State ∈ {P,Ding, Iing}∧ req.SessionID = invalid (4.9)

10. App Not Owned. This Failed state happens when the app has not been installed by the designated app

store and the feature cannot be downloaded. This failed state occurs while the request is in the Requesting

state. For a req : Req, the contextual parameters that induce such failure are as follows:

FSCApp Not Owned ≡ req.State ∈ {R}∧ab.DownloadSource 6= O f f icial App Store app (4.10)

11. Invalid Request. This Failed state happens when the app store received the installation request, but the

request is not valid., i.e., the information included in the request is not complete or accurate. This failed state

occurs while the request is in the Requesting state. For an ab : AB and a req : Req, the contextual parameters

that induce such a failure are as follows:

FSCInvalid Request ≡ req.State ∈ {R} ∧ (req.SessionID = invalid ∨ req.DFM = invalid) (4.11)
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A test to validate an app’s behavior in response to the last three failures should mock the app store operator

API to generate an invalid session ID for an installation request, e.g., SessionID = null, or an invalid source

of download for an app bundle.

4.4 DELTADROID: Framework Overview

Figure 4.6 depicts a high-level overview of DELTADROID, consisting of two major components: Test-Suite

Analysis and Test-Suite Augmentation.

Test-Suite Analysis takes an Android app bundle and the corresponding initial test suite as inputs and produces

the Baseline Test Cases—representing those tests that initiate a DFM installation—and the associated

Metadata—data about the specific test step in which a DFM is installed. The Baseline Test Cases are

subsequently reused in the creation of new tests.

Test-Suite Augmentation takes the Baseline Test Cases and associated Metadata together with the Defect

Model, which formally defines the contexts in which a DFM installation request can fail, as inputs and

generates additional tests that are effective for dynamic delivery validation. Specifically, this component

creates new tests by first replicating a baseline test and then modifying it with a combination of system and

GUI events to induce the context that may manifest installation request failures. The newly generated tests

create all the failure scenarios that an app should handle. In the remainder of this section, we provide a more

detailed explanation of the components comprising DELTADROID.

4.4.1 Test-Suite Analysis

The Test-Suite Analysis component identifies tests that are suitable for validating the behavior of dynamic

delivery in the app. To that end, App Bundle Analyzer pinpoints the code responsible for installing DFMs

in the app and instruments it. Subsequently, DFM Install Detector executes the initial test suite on the

instrumented app to determine the Baseline Test Cases, i.e., the tests in the initial test suite that execute the

installation request. Finally, Test Analyzer identifies the locations in baseline tests that additional GUI or
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Figure 4.6: A high-level overview of DELTADROID

system events should be injected to create effective dynamic delivery tests.

App Bundle Analyzer.

To aid in understanding how App Bundle Analyzer works, Figure 4.7 shows the code snippet corresponding to

the installation request of the Encryption DFM in k9Mail. The code initiates the request by creating instances

of SplitInstallManager (line 2) and SplitInstallRequest (line 4). It then sends the installation request

of the Encryption DFM to the app store API by invoking the startInstall method (line 6).

App Bundle Analyzer performs a flow-sensitive analysis to find invocations of startInstall method and

injects a logging statement immediately before it in the control-flow graph. Additionally, App Bundle

Analyzer registers a SplitInstallStateUpdatedListener to monitor and log the state of the installation

request at run-time.

1 //create an instance of SplitInstallManager.
2 SplitInstallManager splitInstallManager = SplitInstallManagerFactory.

create(context);
3 //create a request to install a module.
4 SplitInstallRequest request = SplitInstallRequest.newBuilder().addModule

("Encryption").build();
5 //submit the request to install the module
6 splitInstallManager.startInstall(request);

Figure 4.7: Code snippet from K9Mail app that requests the installation of Encryption DFM
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DFM Install Detector.

DFM Install Detector takes the instrumented app bundle as input, runs it against the initial test suite, and

identifies the tests that initiate DFM installation requests as Baseline Test Cases, i.e., tests that execute the

instrumented log statements.

Test Analyzer.

After identifying Baseline Test Cases, the next step is to find the proper location of modification, i.e., the

index in the test event sequence where new test events should be injected, which we refer to as target location.

To that end, Test Analyzer first instruments the tests to record all the test events, their types, and orders.

Events could be either GUI events (e.g., button clicks) or system events (e.g., changes in network connection).

It then uses Algorithm 1 to locate the last event in each test after which an installation request is initiated, i.e.,

the target location.

Algorithm 1 shows how Test Analyzer identifies target locations. Test Analyzer takes the instrumented app

and a set of baseline tests, T , as input, and provides a set of tuples 〈 location, DFM〉 as output. The first

element in the output tuple, location, indicates the index at which a test ∈ T should be modified, and the

second element indicates the DFM that is installed by test at that location.

Algorithm 1 starts by initializing the metadata, MD, to an empty set. For each instrumented test test ∈ T ,

Algorithm 1 executes the test on the instrumented app bundle, app, and collects all the entries recorded in the

log file during test execution in loggedEntries (line 3). These entries are either test events that are recorded

by the instrumented test, test, or log messages that show app has initiated an installation request. At the next

step, the Algorithm sorts the logged entries based on their corresponding time stamp, i.e., the actual time the

event happens, to account for potential race conditions (line 4). Subsequently, Algorithm 1 iterates over all

the entries in loggedEntries to identify the target location, i.e., the location of the last event in each baseline

test after which an installation request is initiated (lines 5-13). Specifically, it starts from the first entry in

loggedEntries and keeps track of the order of test events (lines 6-7). Once Algorithm 1 reaches an entry that

is made by app that installs a DFM (line 8), it extracts the DFM identifier from the entry (line 9) along with
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Algorithm 1: Test Analyzer
Input: app // Instrumented app bundle

Input: T // Baseline tests

Output: MD: {md | md = 〈location,DFM〉} // Baseline tests’ metadata

1 MD← /0

2 foreach test ∈ T do
3 loggedEntries← RunTestCase(test,app)
4 sortByTimeStamp(loggedEntries)
5 foreach entry ∈ loggedEntries do
6 if entry.type is TESTEVENT then
7 location← getEventID(entry)
8 else
9 DFM← getDFMIDentifier(entry)

10 MD←MD ∪〈location,DFM〉
11 break
12 end
13 end
14 end

the location of the last test event, location, saves it as a tuple in MD (line 10) for the corresponding test.

The algorithm terminates once the target locations corresponding to all tests are identified. As a result,

it provides a set of tuples containing the information required by the next component in DELTADROID’s

workflow, i.e., Test-Suite Augmentation.

4.4.2 Test-Suite Augmentation

Test-Suite Augmentation takes our defect model (Section 4.3) as well as the output of Test-Suite Analyzer as

inputs and generates effective dynamic delivery tests as output, i.e. 11 additional tests for a given baseline

test. Each of these new tests is responsible for creating one of the FSCs formally defined in Section 4.3 to

make the installation requests fail. FSCs can be created by injecting additional system and GUI events into

the test event sequence.

Algorithm 2 shows how Test-Suite Augmentation generates effective dynamic delivery tests. There are three

inputs to this algorithm. The first input is FSCs = {fsc | fsc = 〈Dev,AB,Req〉}, which is a set of Failed State
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Contexts we formally defined in Section 4.3.2. The second and third inputs are T and MD, respectively, the

output of Test-Suite Analysis. T represents a set of candidate tests and MD is the corresponding metadata, i.e.,

information about the DFM each test installs and the location at which DFM installation occurs within each

baseline test.

Algorithm 2 initializes GenTCs, a set of newly generated tests, as an empty set (line 1). It then iterates

over baseline tests (lines 2-7) and for each DFM installation request by a baseline test, it generates 11 new

tests, where each of them is responsible to create the context corresponding to one of the FSCs (lines 3-6).

Specifically, Algorithm 2 generates a set of test steps for creating system events (line 4) and GUI events (line

5), and injects them in the baseline test to create a new test, test ′, (line 6). After generation of each new test,

Algorithm 2 updates GenTCs with the new test (line 7).

Algorithm 2: Test-Suite Augmentation
Input: FSCs: {fsc | fsc = 〈Dev,AB,Req〉} // Failed State Context formula

Input: T // Instrumented baseline tests

Input: MD: {md | md = 〈location,DFM〉} // Metadata corresponding to baseline tests

Output: GenTCs
1 GenTCs← /0

2 foreach test ∈ T do
3 foreach fsc ∈ FSCs do
4 eventssys← systemEventGenerator(fsc)
5 eventsGUI ← GUIEventGenerator(fsc)
6 test′← test ∪ injectEvents(md,eventssys,eventsGUI)
7 GenTCs← GenTCs ∪ test′

8 end
9 end

The systemEventGenerator method is responsible for generation of proper system events. It takes the

formulation of a Failed State Context,fsc, parses the formulation to obtain contextual properties that contribute

to the corresponding fsc’s failure, and generates system events accordingly. For example, to generate the

example test for k9Mail (Figure 4.3), systemEventGenerator parses FSCNetwork Error and identifies the

state of the request, req.State, and connectivity status of the device, dev.Network Connection, as the related

contextual parameters (Equation 4.1) and generates corresponding system events. There are two categories of

system events that systemEventGenerator injects into the baseline tests. The first category includes system

events that directly change a context, e.g., disabling the network connection, slowing down the network
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speed, or creating a large file to take up device storage. The second category includes system events that

indirectly change contexts by simulating the device’s running Android version, user’s app store account, or

the SessionID assigned to an installation request.

For a subset of FSCs in which the failure originates in the app store API (i.e., Equations 4.6-4.11),

systemEventGenerator mocks the app store API to induce a specific behavior. For instance, in Module Un-

available FSC, the failed state will be induced if the version of the requested module is not compatible with the

app bundle uploaded in the app store. To that end, systemEventGenerator replaces SplitInstallManager

with a customized implementation reflecting the required context.

System events and mocking are not enough for creating a subset of FSCs. For instance, in the case of Access

Denied (Formula 3), an effective test should revoke the REQUEST INSTALL PERMISSION of the app. This can

be done either by permanently revoking the permission through Android settings or temporarily revoking the

app’s permission to download a DFM by moving the app to the background right before the DFM installation

begins. Each of these decisions requires a series of consecutive GUI actions. For example, one series of GUI

actions may involve clicking on the Home button to move the app to the background, relaunching the app in

the same state by clicking the App Switch button, and choosing the app among the recent running apps.

After producing the proper events, Algorithm 2 injects them into a copy of the given baseline test and

generates a new test (line 6). To that end, the injectEvents method takes eventsys and eventGUI sets and

injects them into test at the index specified by md.location. Specifically, injectEvents first injects eventsys

and then eventGUI . This is mainly because some GUI actions are useless without proper system events before

them. For example, in the case of Active Session Limit Exceeded, the installation request should be in the

Pending, Downloading, or Installing states before requesting installation of another DFM to make the failure

occur. To ensure this, we need to inject system events that slow down the speed of network connection,

making the transition of installation requests between states slower and allowing GUI actions to be effective.

In the rare cases where the baseline tests already contain proper events to simulate any or a subset of FSCs,

the specific FSC(s) are simply repeated. This repetition does not break the augmented test.

Finally, once a new test is generated, Algorithm 2 adds it to the set of newly generated tests. Algorithm 2

terminates after generating all the tests that make each installation request enter all the 11 Failed states
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described in Section 4.3. That is, the size of GenTCs is 11 times the size of baseline tests, i.e., |GenTCs|=

11×|T |.

Once the new tests are generated, the Oracle component automatically determines if developers properly

handle the failed states. We follow the specification of unhandled behavior from Android documentation [47],

in which an app takes no action, visible to the user, to handle the failure. Such behavior in our illustrative

example (Section 4.2) could be due to either missing an OnFailureListener in the code or any additional

UI element on the app screen notifying the user about a failure. To identify unhandled behaviors, the oracle

performs two actions. First, it investigates the invocation of OnFailureListener during the execution. If

such a callback is not invoked after an installation failure, a clear indicator is that a DFM failure is not

handled in the implementation. However, a developer may implement OnFailureListener in the code

without actually handling the failure in a meaningful manner. To account for such cases, our proposed oracle

investigates changes in the visible UI elements before and after the DFM installation failure. If there is an

addition of UI elements to the screen, e.g., a UI widget is added to show an error message, developers have

satisfied the minimum requirement to handle the DFM failure, i.e., informing users about the failure [47].

Otherwise, the oracle can confidently judge that the developer has not properly handled the DFM installation

failure.

We do not generate assertions here for two reasons: First, the purpose of DFM testing is to help developers

with the steps that lead to dynamic delivery failures and determine whether a particular failed state was

handled properly. Assertions for dynamic delivery testing are highly app-specific. For example, depending

on the developer’s design decision, they can either show a message, which notifies the user about the failure

and its reason, or stops the installation progress bar. In the former case, the assertion checks for the visibility

of a dialog message, e.g., line 10 in Figure 4.3. In the latter, the assertion could check for a specific amount

of progress (e.g., 0%) on the progress bar. As another example, the developer of k9Mail, in our illustrative

example (Section 4.2), may decide that the proper action to handle Network Failed state is to notify the

users and ask them to retry once the network is connected. Hence, the appropriate assertion should check

the existence of the notification element. Alternatively, the developer may decide to flag the encrypted

emails with a specific icon so that the user knows if an email is encrypted or not. In this design decision,

the appropriate assertion should check the existence of the specific icons. While these assertions are simple,
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Table 4.1: Subject apps

No. Application Application # Size Test-Suite Size
Name Category DFMs (LoC) Initial Aug.

1 Alert Productivity 2 914 12 34
2 Amaze File Manager Utility 3 107141 68 101
3 AntennaPod Entertainment 2 192094 51 73
4 K9Mail Utility 2 218242 95 117
5 LeafPic Utility 2 144332 16 38
6 AnkiDroid Educational 2 113547 32 54
7 Authorizer Utility 2 92990 22 44
8 Open Camera Utility 2 73128 11 33
9 TimeTable Educational 2 39371 17 39
10 Ping Utility 2 1633 13 35
11 Bills Utility 2 55304 12 34
12 Travel Destinations Lifestyle 2 762 12 34
13 Alkaa To-Do Productivity 2 46064 37 59
14 Kredit Utility 2 414 12 34
15 Calculator Productivity 2 36884 12 34
16 Movie Stats Entertainment 2 61646 10 32
17 Mediation Ads Lifestyle 2 29482 4 26
18 MyNews Educational 2 41764 4 26
19 Dictionary Educational 2 32841 16 38
20 JackOfAll Productivity 2 37958 6 28
21 Income Tracker Productivity 2 31025 19 41
22 Translator Utility 2 131401 12 34
23 BigFiles Utility 2 213679 8 30
24 SuperHero Lifestyle 2 1784 10 32
25 TOKO Game Game 2 48491 10 32

they require the developer’s judgment and understanding of the app’s behavior. That said, DELTADROID can

suggest the locations where developers could add assertions.

4.5 Evaluation

To evaluate DELTADROID’s effectiveness in validating Android apps’ dynamic delivery, we investigate the

following research questions:
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RQ1: Effectiveness of Inducing Failed States. How effective is DELTADROID in augmenting test suites to

generate test cases that induce different Failed states?

RQ2: Effectiveness of Revealing Installation Defects. To what extent does DELTADROID reveal installation

defects in real-world Android apps’ behavior?

RQ3: Performance. What is DELTADROID’s runtime efficiency in terms of execution time?

4.5.1 Experimental Setup

To answer these research questions, we selected a set of open-source Android apps from GitHub [11] which

are also uploaded to Google Play. Our inclusion criteria select apps that (1) are open-source, (2) implement

Android dynamic delivery, (3) have at least two DFMs, and (4) have an initial test suite. Note that dynamic

delivery features need the developer to sign an app when deployed onto the Google Play platform which, in

turn, requires our subject apps to be open source. To select subject apps that implement dynamic delivery,

we searched for “apply plugin: com.android.dynamic-feature” statement in the Android projects’

build files, i.e., Gradle [44]. Among the search results, we excluded toy or demo apps, which are minimal

Android apps with no specific functionalities, mainly developed to learn or examine Android dynamic

delivery. At the next step, we excluded apps with only one DFM, as one of the Failed states, namely Active

Session Limit Exceeded, requires subjects to have at least two DFMs.

Our final dataset includes 25 apps with a total of 51 DFMs, shown in Table 4.1. These apps come from

various categories, reducing any bias towards a certain type of app. Among these 25 apps, the initial test suite

of 15 apps has tests to cover all of the DFM installation requests in the code. Since DELTADROID requires

baseline test cases that attempt to install DFMs, we manually extended the test suites of the remaining 10

apps with the total number of 20 test cases that initiate the installation of DFMs. The additional test cases are

small, i.e., only 10-22 lines of code per test case, and would be straightforward for a developer to write with

minimal effort.

For a thorough evaluation of DELTADROID, we first compare it against a baseline static analysis approach,

which can detect failures corresponding to the missing implementation of OnFailureListener callbacks
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using Soot [144]. This approach performs a flow-sensitive analysis to find locations in code where an

installation request is initiated. It then checks whether the OnFailureListener is implemented. In case

the OnFailureListener callback is not implemented, the static analysis will report a dynamic delivery

failure. The rationale here is that without an OnFailureListener callback implementation, the app will fail

in any of the Failed State Contexts. The issue with the static analysis approach is that it does not execute the

OnFailureListener callback, and, as a result, it does not provide the developers with accurate information

regarding their app’s behavior under different Failed State Contexts.

We also compared DELTADROID against three alternative testing approaches. The first one is Monkey [39],

one of the most widely used automated testing tools for Android in practice, which is shown to outperform

many other automated testing tools [85]. Second, we compared DELTADROID against APE [123], the

state-of-the-art automated model-based approach for testing Android apps, which dynamically optimizes

the model based on the run-time information. APE is shown to outperform similar state-of-the-art Android

GUI testing tools (Sapienz[158] and Stoat[189]) in terms of both testing coverage and the number of detected

unique crashes. Third, we compared DELTADROID against App Crawler [50] that tests an Android app by

running alongside the app and automatically issuing actions, e.g., tap, swipe, etc., to explore the state-space

of the target app. It automatically terminates when there are no more unique actions to perform, the app

crashes, or after a designated timeout.

Test augmentation techniques target a specific goal in testing, e.g., achieving higher coverage of the code

or reproducing the crashes. Unlike those techniques, DELTADROID uses test augmentation to cover all the

failed states in the lifecycle of a DFM installation request by relying on a novel defect model. None of

the other test augmentation approaches target the same goal. Hence, they are not suitable candidates for

comparison against DELTADROID. That said, we tried to compare DELTADROID with Thor [56], a test suite

augmentation technique in the domain of Android, since it creates events that can induce the Network Error

and Access Denied failed states (but not other failed states). However, the current version of Thor is outdated,

as also mentioned in their issue repository [53]. We have also contacted the authors who confirmed that Thor

is no longer actively maintained and, since it is built on Android 4, it will not support Android apps with

dynamic delivery.
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In addition, we were unable to compare our results against TimeMachine [104], since the current version of it

does not support Google Play Services, as reported on its issue repository [54], preventing us from running it

on app bundles that use dynamic delivery.

Note that no other testing tool is quite comparable to DELTADROID, as none of those tools generate the

necessary system events for testing Android dynamic delivery. Explicitly handling dynamic delivery of

Android apps (e.g., DFMs), and representing and accounting for the corresponding defect model and Failed

State Contexts, are key novel elements of DELTADROID that contribute to its testing effectiveness.

For the purpose of comparison, we gave Monkey and APE an hour to run, similar to prior studies [123, 85].

We also ran App Crawler without any designated timeout to be able to explore all states of the application.

To further avoid any bias in favor of DELTADROID, we re-installed the apps on the device once any test by

Monkey, APE, and App Crawler completed a DFM installation. That is mainly due to the fact that once a

DFM is installed, a Failed state cannot possibly be reached. Therefore, alternative approaches had many

chances to cover Failed states during the hour-long period.

4.5.2 RQ1: Effectiveness of Inducing Failed States

To answer RQ1, we ran DELTADROID over all the subject apps to augment their existing test suites. Table 4.1

shows the size of the initial and augmented test suites for each subject app under the Test-Suite Size column.

These results confirm that DELTADROID was able to generate a new test case for each Failed state for subject

apps’ DFMs, i.e., the size of the initial test suite is increased by #DFM×11 tests.

We executed augmented test suites and ran Monkey, APE, App Crawler, and the baseline static analysis

approach on the subject apps. Each app is instrumented (Section 4.4.1); we thus monitored the apps’ log

statements during test execution to identify whether the tests covered different Failed states. If the log record

of a test indicates that the installation request entered any of the Failed states, we confirm that the test covers

the state. We also ran the applications’ initial test suite without manually extending them, and they could not

test any of the defined failed states, as these states occur only under peculiar contextual settings.

79



Ta
bl

e
4.

2:
Te

st
in

g
to

ol
s’

ef
fe

ct
iv

en
es

s
of

co
ve

ri
ng

Fa
ile

d
st

at
es

M
on

ke
y

[3
9]

A
PE

[1
23

]
A

pp
C

ra
w

le
r[

50
]

B
as

el
in

e
D

E
LT

A
D

R
O

ID
St

at
ic

A
na

ly
si

s

#
#

A
vg

.
#

#
#

#
A

vg
.

#
#

A
vg

.
#

#
A

vg
.

Fa
ile

d
St

at
e

A
pp

s
D

FM
s

T.
T.

F.
1

A
pp

s
D

FM
s

T.
T.

F.
A

pp
s

D
FM

s
T.

T.
F.

A
pp

s
D

FM
s

A
pp

s
D

FM
s

T.
T.

F.

N
.E

.
19

38
61

1
0

0
-

-
-

-
9

19
25

51
7

I.S
.

0
0

-
0

0
-

-
-

-
9

19
25

51
9

A
.D

.
0

0
-

0
0

-
-

-
-

1
1

1
1

13
I.W

.E
.S

.
0

0
-

0
0

-
1

1
3

9
19

25
51

5
A

.S
.L

.E
.

4
5

19
3

1
1

22
1

2
2

2
9

19
25

51
6

M
.U

.
0

0
-

0
0

-
-

-
-

9
19

25
51

4
A

.N
.A

.
0

0
-

0
0

-
-

-
-

9
19

25
51

5
A

.S
.A

.N
.F

.
0

0
-

0
0

-
-

-
-

9
19

25
51

5
S.

N
.F

.
0

0
-

0
0

-
-

-
-

9
19

25
51

4
A

.N
.O

.
0

0
-

0
0

-
-

-
-

9
19

25
51

4
I.R

.
0

0
-

0
0

-
-

-
-

9
19

25
51

6

A
vg

.T
ot

al
36

00
s

36
00

s
52

s
53

s
14

6s
tim

e
pe

ra
pp

%
In

st
al

le
d

10
0%

10
0%

10
0%

N
/A

2
10

0%
D

FM
s

1
T.

T.
F.

,s
ho

rt
fo

rT
im

e
To

Fa
ile

d
st

at
es

,i
nd

ic
at

es
th

e
te

st
in

g
tim

e
re

qu
ir

ed
to

re
ac

h
th

e
fa

ile
d

st
at

e.
2

T
he

ba
se

lin
e

st
at

ic
an

sl
ys

is
ap

pr
oa

ch
do

es
no

ti
ni

tia
te

D
FM

in
st

al
la

tio
ns

,s
in

ce
it

st
at

ic
al

ly
an

al
yz

es
th

e
ap

ps
.

80



Table 4.2 demonstrates the results of this study. It shows that DELTADROID was able to reach almost all

of the Failed states for the DFMs in a total of 25 subject apps. The only exception was the Access Denied

Failed state, which was only reached by the tests in one app. The scenario in which an installation request

can enter the Access Denied Failed state is quite a rare case that requires the app to initiate the installation

from a concurrent thread that can be executed while the app is in the background (see Equation 4.3). Only

one of the apps among our subjects, namely Travel Destinations, was implemented in such a way, for which

DELTADROID was able to cover the Access Denied Failed state.

Monkey, APE, and App Crawler were all able to generate tests that installed all the DFMs in the subject apps,

as reported in Table 4.2. However, they all performed quite poorly in terms of testing different Failed states.

Specifically, APE was able to only cover the Active Sessions Limit Exceeded Failed state for 1 DFM. App

Crawler performed better than APE and covered two Failed states, i.e., Incompatible With Existing Sessions

in 1 DFM of 1 app and Active Sessions Limit Exceeded in 2 DFMs of 2 different apps. While Monkey

performed better than APE and App Crawler in covering Failed states, it was far behind DELTADROID. That

is, Monkey was able to reach the Network Error Failed state for 38 DFMs of 19 apps and the Active Sessions

Limit Exceeded Failed state in 5 DFMs of 4 apps, making it cover 2 Failed states and 43 DFMs in total.

The baseline static analysis approach was able to inform us about missing the implementation of

OnFailureListener callbacks in 19 DFMs of 9 apps, indicating the possibility of all types of Failed states for

these apps. However, the static analysis approach results in a false negative in case the OnFailureListener

is implemented, but not in a way to properly handle the failed states. Additionally, static analysis cannot

generate tests to help developers induce the failed state contexts.

Overall, Table 4.2 demonstrates that DELTADROID significantly outperforms alternative approaches in testing

Android dynamic delivery. Additionally, these results confirm our choice to formulate dynamic delivery

testing as a test-suite augmentation technique, since even a pure random testing technique, such as Monkey,

can reach program points that install DFMs.
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4.5.3 RQ2: Effectiveness of Revealing Installation Defects

To assess the DELTADROID’s ability to reveal defective behavior in Android apps, we investigated each

app’s behavior in our dataset once any of the Failed states occur. Proper behavior for an app entering a

Failed state could notify the users of the situation, explain the reason for failure, give them an instruction, or

retry the installation as described in Android documentation [49]. However, in our study, we conservatively

consider a defective behavior only when an app crashes (Crash) or takes no action to handle the failure, i.e.,

no change in the behavior of the app (Unhandled), such as the illustrative example in Section 4.2. As a result

of this study, we found 18 apps (i.e., 72%) with the total of 160 unhandled behaviors upon the occurrence

of a Failed state. More importantly, we discovered 48 new instances of app crashing in 7 apps (i.e., 28%),

which were not detected by their initial test suites. Unlike a typical crash where simply restarting the app is

sufficient to return the app to a stable state, in all of these 7 crashing apps, we had to manually uninstall and

install the apps to resume their regular functionalities. We believe this is because DFM-induced crashes occur

during the installation of new modules that, if not completed properly, corrupt the app bundle permanently.

DELTADROID’s oracle was able to successfully determine the crashes, handled, and unhandled behaviors

in 23 apps in our dataset (i.e., 92%). For the remaining 2 apps, the oracle resulted in false positives, i.e.,

incorrectly identified an unhandled behavior as handled since a UI element appeared in the screen after the

failure, but not for the purpose of handling it.

Table 4.3 describes the apps’ detailed behavior in our dataset under different Failed states. Notations “UH”

(colored in yellow) and “CR” (colored in red), respectively, imply unhandled behaviors and crashes under

the Failed States columns. The checkmark notation (colored in green) indicates that the app handles the

corresponding Failed state by taking an extra action. All of the 6 apps in our dataset that handle at least one

Failed state only display an error message without providing any instructions to the user. Excluding the rare

scenario of Access Denied Failed state, our evaluation results indicate that for different Failed states, the

unhandled behavior ranges from 60% to 64%, and crashes range from about 16% to 24% of the apps. These

results emphasize the importance of testing Android dynamic delivery and the consequences of disregarding

it.
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One important outcome of these results is that a mere static analysis is not effective for validating dynamic

delivery. Specifically, static analysis techniques, e.g., the baseline static analysis approach, at best, can

only determine dynamic delivery failures corresponding to missing implementation of “OnFailureListener”

callback. Such failures constitute 70 out of 160 unhandled behaviors and 10 out of 48 crashes in our results.

This is because dynamic delivery failures depend on contextual settings, e.g., regarding network connection,

permissions, device storage, etc., that require app execution and dynamic analysis.

Finally, we reported all the discovered issues to the subject apps developers. As of this submission date, 21

crashes and 54 unhandled behaviors are confirmed by the developers. Developers’ responses also confirm

the wide-reaching importance of the problem, the difficulty of testing Android dynamic delivery, and their

interest in using our technique. For example, one developer indicated that they had not considered testing the

installation failure scenarios before our report. The developer said, “As a developer, we try to cover all the

failure scenarios, and testing them is not straightforward. Therefore, a testing tool that could detect all the

loopholes for dynamic delivery implementation would be very helpful to us.” Another developer noted that

“The Android documentation is not very clear, and it is indeed difficult to test traditionally, or it requires a lot

of code. I think a framework or utility to check the behavior of Android apps when module installation fails

could be very useful”.

4.5.4 RQ3: Performance

To investigate the performance characteristics of DELTADROID, we first assess the performance of its two

main components, i.e., Test-Suite Analysis and Test-Suite Augmentation. We next compare the efficiency of

DELTADROID to alternative approaches. We ran all of the tools on a Pixel 3a mobile device with Android 10

and an Android Emulator with Android 9 running on a MacBook Pro 2013 (2.3 GHz Intel Core i7, 16 GB,

MacOS 10.14), depending on the Android versions of the apps.

To assess the performance characteristics of DELTADROID, we measured the execution time corresponding

to each of its components, as shown in Table 4.4. On average, it takes about 69 seconds for DELTADROID to

perform all of the required analysis on the initial test suite and 8 seconds to generate new test cases. The
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overall average execution time of 77 seconds confirms the scalability of DELTADROID for validating Android

apps’ dynamic delivery.

Table 4.4: Execution time of DELTADROID

Phase Avg. Execution Time (s)
Test-Suite Analysis 68.94
Test-Suite Augmentation 8.25
Total 77.19

To investigate the efficiency of DELTADROID compared to alternative approaches, listed in Table 4.2, we

measured the number of discovered dynamic delivery faults over a specific amount of time for each approach.

To that end, we considered the maximum execution time of all approaches, i.e., an hour for Monkey and

APE. Figure 4.8a shows the resulting plots with each approach in a different color. Then, to better compare

the effectiveness of all candidate approaches, we measured the corresponding area-under-the-curve (AUC)

for each plot. Figure 4.8b shows the amount of AUC of the mentioned plots for each approach. The results

indicate that DELTADROID’s efficiency in revealing dynamic delivery faults is exceedingly superior to

alternative approaches.
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Figure 4.8: The results of comparing alternative approaches in revealing dynamic delivery faults
over time. (a)The number of discovered faults over the elapsed time for all approaches listed in
Table 4.2. (b)The Area-Under-the-Curve (AUC) of the plots in Figure 4.8a.

Furthermore to compare DELTADROID’s efficiency with alternative approaches, we measured the average

time to cover a Failed state for the first time in each testing approach, i.e., Monkey, APE, and App Crawler.

This metric does not apply to the baseline static analysis approach since it statically analyzes the apps’ source
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code, reports the final results, and terminates the execution. Table 4.2 shows the results of this study (under

columns Avg. T.T.F. which is short for Time to Failed state). DELTADROID takes about 6 seconds on average

to reach a Failed state, with a minimum of 4 and a maximum of 13 seconds. The corresponding numbers

for Monkey, APE, and App Crawler are 402, 221, and 2.5 seconds on average, respectively. Although App

Crawler reaches the failed states exceedingly fast compared to DELTADROID, it performs quite poorly in

terms of covering different failed states.

In addition, we calculated the average testing time of each technique and the total execution time for the

baseline static analysis approach among all subjects. The results show that the test cases generated by

DELTADROID took a total time of 146 seconds, on average, to test each app. On the other hand, Monkey

and APE were allowed to run for an hour on each app. App Crawler completed testing each app after 52

seconds, on average. The events DELTADROID injects, e.g., connecting and disconnecting Wi-Fi for the

Network Error failed state, or filling the device’s remaining storage for the Insufficient Storage failed state,

take more time compared to GUI events, e.g., clicking buttons. Therefore, DELTADROID is slightly slower

compared to App Crawler. The baseline static analysis approach also took a total time of 53 seconds, on

average, to execute on each app. Although the App Crawler and the baseline static analysis approach execute

more quickly than other techniques, these faster techniques are substantially inferior to DELTADROID in

terms of covering different failed states and revealing dynamic delivery defects.

4.6 Threats to Validity

The main threat to internal validity is that DELTADROID, indeed as a test augmentation technique, requires

initial tests that reach program points that install DFMs. In case the test suite does not include test cases initi-

ating the installation of DFMs, DELTADROID reports no baseline tests to augment. Therefore, DELTADROID

would not be able to generate new test cases to test Android dynamic delivery failures. However, these

test cases are easily obtained. According to our investigation, even a pure random testing technique such

as Monkey [39] was able to create such tests for all apps, as reported in Table 4.2. For the evaluation of

DELTADROID, we have also manually extended the existing test suites of a subset of subject apps with test
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cases that attempt to install their DFMs, and reported that these test cases were small, i.e., only 10-22 lines of

code per test case, and would be straightforward for a developer to write.

One of the main threats to external validity is the selection of subject Android apps in our evaluation. To

mitigate this threat, we selected open-source Android apps that (1) implement Android dynamic delivery, (2)

have at least two DFMs, and (3) have an initial test suite among the hundreds of applications on GitHub [11],

one of the largest and most widely used open-source repositories online. Another threat to external validity is

whether the types of dynamic delivery failed state contexts, defined in our defect model, accurately describe

the existing dynamic delivery failures. To alleviate this threat, we explored multiple resources, including the

Android documentation, issue repositories, discussion forums, and open-source Android apps’ source code,

to understand the root causes of dynamic delivery failures and identify contextual factors to induce them.

Note that to construct a defect model for the purpose of test generation, we only need one situation in which

the desired failed state is induced.

4.7 Related Work

This section provides an overview of the prior work on test-suite augmentation and test-input generation for

mobile apps.

Test-Suite Augmentation: Software evolves, so should the test suites to ensure validation of the evolving

software. The purpose of test-suite evolution is two-fold [173, 221]. First, it can be used to repair available

test cases for corrective regression testing [163, 127, 120, 217]. Second, developers can create additional tests

for either progressive regression testing [65, 181, 216, 215, 214, 224, 178, 213, 137, 203, 222, 98, 223, 95] or

to fulfill additional testing criteria, e.g., achieve higher coverage, find more crashes, or perform non-functional

testing [164, 218, 174, 101, 60, 139, 172, 56]. Reuse of the available test suites to generate additional tests is

known as test augmentation.

The closely related work to DELTADROID are [56, 164, 218, 174]. Adamsen et al. proposed a technique

that augments the existing test suites and systematically exposes them to adverse conditions where certain

87



unexpected events may interfere with the test execution. They realized their technique in a tool, Thor, working

on Android. Milani Fard et al. [164] proposed a technique that leverages existing test suites to automate the

generation of tests for web applications. Specifically, they mine the human knowledge from the existing test

suite to generate additional tests that explore uncovered parts of the program. Xuan et al. [218] proposed a

technique to reproduce crashes by leveraging the existing test suites, instead of automatic generation of new

tests. Pradhan et al. [174] proposed a search-based technique to obtain the program dependence graph from

the existing test suite to generate new tests to cover untested program configurations.

Although Thor [56] is similar in terms of using test augmentation techniques to provide contextual factors

in running existing test suites, the events it injects into the test cases are substantially different from

DELTADROID’s GUI and system events. It only generates events that might simulate two failed state contexts,

namely Network Error and Access Denied. Therefore, it cannot be used to comprehensively test Android

dynamic delivery failures. Furthermore, unlike [164, 174] that tries to achieve a higher coverage of the

code by augmenting the existing test suites, the goal of DELTADROID is to cover all the Failed states in

the lifecycle of a DFM installation request through test augmentation. Moreover, While [218] relies on the

information from a stack trace of a crash report to identify target tests and augments the existing test suite

using random mutation operators, DELTADROID relies on a novel defect model that formally defines failure

contexts to generate effective tests.

Android Testing: Android test generation techniques mainly focus on either fuzzing to generate inputs

or exercise an Android app through its GUI. The majority of recent techniques [189, 123, 92] rely on

a GUI model, usually constructed dynamically and non-systematically, leading to unexplored program

states. Sapienz [158], EvoDroid [152], and time-travel testing [104] employ an evolutionary algorithm.

ACTEve [63], and Collider [136] utilize symbolic execution. CrawlDroid [78] introduces a feedback-based

exploration strategy to effectively explore different states of Android apps. AimDroid [122] discovers

unexplored activities with a reinforcement learning guided random algorithm. AppFlow [131] leverages

machine learning to automatically recognize common screens and widgets and generate tests accordingly.

MonkeyLab [149] mines app executions to generate GUI-based scenarios. Dynodroid [151] and Monkey [39]

generate test inputs using random input values. Another group of techniques focuses on testing for specific

defects [128, 225, 134, 179]. Mao et al. introduce a different approach [159] that generates replicable test
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scripts from crowd-based testing by collecting and analyzing test inputs from a crowd call to non-technical

users with no specific software testing expertise or experience. None of these techniques can be used to

properly validate the dynamic delivery in Android apps, as they cannot generate meaningful test inputs to

induce the contextual settings for the manifestation of Failed states.

Similar to DFM-induced defects, energy defects occur under peculiar contextual settings. Jabbarvand et

al. [134] proposed a search-based technique that leverages contextual models to generate both system and

GUI test inputs. Unlike [134], which searches for contextual settings that manifest energy defects using

meta-heuristics, DELTADROID use a formal model of such contexts to generate tests for all of them.

4.8 Discussion

In this chapter, we formally defined a novel defect model representing the conditions (contexts) under which

installation of a Dynamic Feature Module (DFM) in an Android app could fail. Utilizing the defect model,

we introduced DELTADROID, a test-suite augmentation approach for testing dynamic delivery in Android

apps. DELTADROID leverages static and dynamic analyses to detect the test cases that initiate the installation

of DFMs in apps. DELTADROID then modifies these tests to create new tests that augment the initial test suite

to effectively create the conditions for reaching all of the Failed states. Our experimental results corroborate

the effectiveness of DELTADROID in inducing Failed states and detecting a significant number of installation

defects among real-world Android apps. We have made DELTADROID publicly available [51]. In our future

work, we aim to extend DELTADROID to test dynamic delivery in other platforms, e.g., Java Platform Module

System [7].
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Chapter 5

Run-time Automatic Architectural

Inconsistency Resolution in Java

Many mainstream programming languages lack extensive support for architectural constructs, such as

software components, which limits software developers in employing many benefits of architecture-based

development. To address this issue, Java, one of the most popular and widely-used programming languages,

has introduced the Java Platform Module System (JPMS) in its 9th and subsequent versions. JPMS provides

the notion of architectural constructs, i.e., software components, as an encapsulation of modules that helps

developers construct and maintain large applications efficiently—as well as improving the encapsulation,

security, and maintainability of Java applications in general and the JDK itself. However, ensuring that

module declarations reflect the actual usage of modules in an application remains a challenge that results in

developers mistakenly introducing inconsistent module dependencies at both build- and run-time. Chapter 3

describes JPMS properties and architectural notions in-depth and defines a defect model consisting of eight

inconsistent modular dependencies that may arise in Java applications. Based on the defect model, in chapter

3.3, we presented DARCY, a framework that leverages the defect model and static analysis techniques to

automatically detect and repair the specified inconsistent dependencies within Java applications, specifically

at build-time. In this chapter, we extend DARCY and present DARCY+ that supports the automatic resolution

of architectural inconsistencies that may arise at the run-time, as well as the build-time, of Java applications.
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The results of our experiments, conducted over 52 open-source Java 9+ applications, indicate that architectural

inconsistencies are widespread and demonstrate the DARCY+ ’s effectiveness in the automated resolution of

these inconsistencies at run-time.

5.1 Introduction

Every software system has an architecture comprising the principal design decisions employed in the system’s

construction [taylor2008], which is not usually explicitly documented, e.g., in the form of UML models.

Furthermore, the architecture of a system is often conceptualized in terms of high-level constructs, such as

software components, connectors, and their interfaces. However, programming languages used to implement

the software systems provide low-level constructs, such as classes, methods, and variables. Therefore, in many

software systems, the architecture as intended or even documented, known as the prescriptive architecture,

does not match the architecture reflected in the system’s implementation, known as the descriptive architecture,

and it is a non-trivial task to map one to the other. Hence, ensuring the conformance between the prescriptive

and descriptive architecture has been a significant challenge in the software engineering literature [taylor2008].

As also discussed in chapter 3, inconsistencies between the prescriptive and descriptive architectures are

highly critical and need to be resolved, as a system’s architecture determines its key properties. Therefore, the

software engineering research community has introduced several approaches to minimize such inconsistencies,

including frameworks or programming languages that provide the realization of architectural constructs in the

implementation of software applications [cite several]. However, many mainstream programming languages

have lacked extensive support for architecture-based development. This all changed with the introduction of

Java Platform Module Systems (JPMS) in Java 9 and subsequent versions1. JPMS incorporates the notion

of modules, which represents software components, as a Java programming language construct. Hence,

developers can explicitly specify the software system’s components, their interfaces, and their detailed

dependencies amongst each other in a file called module-info.java, which forms the system’s prescriptive

architecture.
1We may refer to Java 9 and subsequent versions as Java 9+ in this chapter.
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In chapter 3.3 we discussed the inconsistencies between the prescriptive, i.e., dependencies specified in the

module-info.java file, and the descriptive architecture, i.e., the system’s implemented dependencies at

build-time. Then, we presented DARCY, an automated framework that leverages a defect model consisting of

8 types of architectural inconsistencies we formally defined and static analyses to automatically resolve the

identified inconsistencies within Java applications statically at build-time (refer to Chapter 3.4.) Similarly, in

case of any changes to the specified dependencies of modules at run-time, Java cannot ensure whether those

changes are consistent with the applications’ implemented dependencies. In this chapter, first, we extend our

previous work and present DARCY+ to detect and repair architectural inconsistencies not only statically at

build-time but also dynamically at run-time that may arise due to dynamic changes occurring to software

systems at run-time. Second, we designed and reported on new experiments to evaluate DARCY+’s ability to

resolve architectural inconsistencies at run-time and improve architectural metrics followed by the resolution.

The results of our experiments, conducted over 52 open-source Java 9+ applications, indicate that architectural

inconsistencies are widespread and demonstrate the benefits of DARCY+ in automated detection and repair

of these inconsistencies at run-time. By automatically fixing these inconsistencies, DARCY+ was able to

measurably improve various attributes of the subject applications’ architectures at run-time by reducing the

attack surface of applications, improving their encapsulation, and producing deployable applications that

consume less memory.

The remainder of this chapter is organized as follows. Section 5.2 reviews the Java module system and its

design goals. Section 5.3 provides a brief overview of the formally specified defect model, introduced in

Chapter 4.3, consisting of the architectural inconsistencies in the context of Java 9+. Section 5.4 provides

details of DARCY+ and its implementation. Section 5.5 presents the experimental evaluation of the research.

Section 5.6 includes the threats to validity of our approach. The chapter concludes with an outline of related

research and a discussion.
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5.2 Overview of Java Platform Module System

Chapter 3.2 introduces the module system in Java 9+, called Java Platform Module System (JPMS), and

provides an overview of JPMS’s goals and the architectural risks that arise from its misuse. More specifically,

it discusses the details of modules in Java 9+ —including module declarations, module directives, and their

behavior at run-time.

Regarding Java application’s run-time behavior, JPMS also allows developers to modify Java applications at

run-time. More specifically, developers can dynamically load new modules into a running Java application or

unload them [153]. Depending on different use cases, Java modules can be dynamically loaded or unloaded

at run-time [153], altering the system’s prescriptive and descriptive architecture.

5.3 Defect Model: Inconsistent Module Dependencies

As described earlier, architectural inconsistencies may arise when using modules, based on the module

directives described in the previous section and Chapter 3.2. These inconsistencies occur in modules’

specifications at both build-time and run-time. Chapter 3.3 describes the architectural inconsistencies in

details. This chapter focuses on the architectural inconsistencies that may arise during software systems’

run-time.

Similar to build-time, insufficiently specified dependencies (e.g., a module that attempts to use a package it

does not have a required directive for) are already checked by the Java platform but cause a run-time exception.

However, excess dependencies, where a module either (1) exposes more of its internals than are used or (2)

requires internals of other modules that it never uses, are not handled by Java. These inconsistencies can

affect various architectural attributes, including encapsulation and maintenance, software bloat and scalability,

and security.

To achieve a systematic and comprehensive coverage of all types of inconsistent module dependencies, we

studied all potential inconsistencies resulting from developers’ misuse of each type of module directive. The
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result of this study led to a defect model specifying eight types of inconsistent dependencies that may arise

when using JPMS, which is described in Chapter 3.3 in detail.

The architecture of software systems can change during their run-time, e.g., introducing new dependencies by

loading new modules. The new modules’ specified dependencies, i.e., its prescriptive architecture, might not

reflect the implemented dependencies in the module, i.e., its descriptive architecture. Since Java platform does

not provide any mechanism to ensure the consistency between the specified and implemented dependencies,

all types of inconsistent module dependencies can occur at run-time as well as the build-time. Therefore, in

the remainder of this chapter, we leverage the defect model explained in chapter 3.3 to develop DARCY+ that

resolves modular run-time inconsistencies.

5.4 DARCY+: Framework Overview

This section describes how we designed and developed DARCY+ to automatically resolve architectural

inconsistencies at both build- and run-time, leveraging the defect model of inconsistent module dependencies

and the components in our previous approach, presented in Chapter 3.4. Figure 5.1 depicts a high-level

overview of DARCY+ comprised of two phases, Detection, and Repair. Each DARCY+ ’s component works at

either build-time, run-time, or both, color-coded in Figure 2. DARCY+ is implemented in Java and Python.

5.4.1 Detection

The detection phase takes a Java application as input and identifies any instance of the eight inconsistent

dependencies described in Chapter 3.3. In this section, we briefly review the DARCY+’s components that

were introduced in our previous work, explained in Chapter 3.4. Then, we describe the additional components

that were added as a part of DARCY+’s run-time extension in detail.

To identify the implemented dependencies of an input Java application, DARCY+ relies on static analysis,

represented as Package Dependency Analysis in Figure 2, for which we leveraged Classycle [106]. More

specifically, we ran Classycle to collect the information about implemented dependencies in the source code
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Figure 5.1: A high-level overview of DARCY+

of the input application, which provides a complete report of all dependencies in the source code of a Java

application at both the class and package levels. Since the dependencies defined in modules are at the package

level, we only extracted the dependencies among packages. The results of Package Dependency Analysis are

stored in Implemented Dependencies, which is a database component.

More precisely, the information about implemented dependencies in the source code of the input application

is collected by running Classycle, which provides a complete report of all dependencies in the source code

of a Java application at both the class and package levels. We only need the extracted dependencies among

packages since the dependencies defined in modules are at the package level. Package Dependency Analysis’s

results are stored in Implemented Dependencies, which is a database component.

Module-Info Scanner examines all module-info.java files within the input Java application and extracts

all specified dependencies which are defined at the package level. The collected information of specified

dependencies is stored in another database component, Specified Dependencies.

Java Reflection Analysis leverages a custom static analysis [113], which we have implemented using the Soot
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framework [200], to identify the usage of reflection in the input application. Java Reflection Analysis extracts

reflective invocations that occur in cases where non-constant strings, or inputs, are used as target methods of

a reflective call. Recall that a reflective invocation of a method, for both constructor and non-constructor

methods, occurs in three stages: (1) class procurement (i.e., a class with the method of interest is obtained),

(2) method procurement (i.e., the method of interest to be invoked is identified), and (3) the method of interest

is actually invoked. Java Reflection Analysis attempts to identify information at each stage. Finally, the traces

of any actual usage of reflection in the Java application is then stored in Implemented Dependencies.

ServiceLoader Usage Analysis extracts the implemented dependencies of type uses leveraging a custom

static analysis using the Soot framework to identify usage of java.util.ServiceLoader in the

input application. Recall that an application obtains a service loader for a given service by using the

ServiceLoader API. A service loader can locate and instantiate providers of the given service [18].

Finally, the traces of any actual usage of services is then stored in Implemented Dependencies.

All the above-mentioned components are used at both build-time, for the whole application, and run-time,

for the loaded modules, to collect all specified and implemented dependencies of Java modules to further

assist the detection of architectural inconsistencies. Refer to Chapter 3.4 for an in-depth description of the

mentioned components.

Detection at Build-time

Static Inconsistency Analysis’s main goal is to identify all types of inconsistency scenarios described in

Section 3.3 at build-time. For each directive in a module-info.java file, Static Inconsistency Analysis

explores implemented and specified dependencies, stored in their respective database components, to identify

any occurrence of an inconsistent dependency defined in Section 3.3. If a matching instance is found, Static

Inconsistency Analysis reports the identified architectural inconsistency, the module affected, and the specific

directive involved. The component then stores the identified inconsistencies in Inconsistent Dependencies,

which are then used in the repair phase.
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Detection at Run-time

Recall that a Java application can dynamically load a module while running. Hence, its architecture and

module dependencies can change at run-time. Subsequently, the loaded module can contain architectural

inconsistencies, which will be introduced to the Java application at run-time. The Module Loading Monitor

and Dynamic Inconsistency Analysis components have been added to our previous work, explained in Chapter

3.4, in developing DARCY+ to automatically detect architectural inconsistencies at run-time.

The Module Loading Monitor monitors the running Java application for any dynamic changes to its dependen-

cies, i.e., dynamically loading a new module. In case a new module is dynamically loaded to the system, as

mentioned in Section 5.2, the Module Loading Monitor notifies and passes the loaded module’s information

to Module-info Scanner, Java Reflection Analysis, Package Dependency Analysis, and ServiceLoader Usage

Analysis components. Unlike the detection phase at build-time, the components mentioned above only

analyze the loaded module and collect the additional implemented and specified dependencies into their

corresponding database components. Afterward, Dynamic Inconsistency Analysis component analyzes the

change in the architecture using the previously-stored dependencies at build-time. It then identifies all types

of inconsistency scenarios described in Section 3.3 that arise by the loaded module at run-time. The Dynamic

Inconsistency Analysis analyzes the added dependencies by the loaded module at run-time, whereas Static

Inconsistency Analysis analyzes the whole application at build-time. The inconsistencies detected by Dynamic

Inconsistency Analysis will be added to the Inconsistent Dependencies to be used later in the repair phase.

5.4.2 Repair

To repair inconsistent dependencies, the repair phase transforms modules with detected inconsistent depen-

dencies both statically at build-time and dynamically at run-time. Module-Info Transformer is responsible for

transforming module specifications to match their implemented dependencies.

Module-Info Transformer is responsible for repairing inconsistent dependencies in a module by deleting

or modifying the explicit dependencies defined in the module-info files. All module inconsistencies

detected in the detection phase are all unnecessarily defined dependencies in module-info.java files.
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Therefore, Module-Info Transformer omits those dependencies specified in the module-info files that cause

inconsistencies.

The Inconsistent Dependencies database includes all the required details regarding the detected inconsistent

module dependencies, e.g., the modules and packages involved and the type of the inconsistent dependency.

Subsequently, Module-Info Transformer collects the related records of inconsistent dependencies defined in

each module and modifies the affected lines in their corresponding module-info.java files using ANTLR

[10]. More specifically, Module-Info Transformer uses ANTLR to construct a customized parser based on

Java 9+ grammar and modifies it to check the records of inconsistent dependencies found in the detection

phase. Upon finding the matched lines in modue-info.java files, Module-Info Transformer either deletes

the entire statement or modifies a part of it, e.g., in case of Requires Transitive inconsistency. Furthermore, in

the case of open module inconsistency (Equation 3.8 in Section 3.3), Module-Info Transformer removes the

open modifier from the module declaration and adds an opens to statement for each package that needs to

be opened to another module.

Since DARCY+ can not be aware of the intentions of developers and architects, it may repair the specified

dependencies with which DARCY+’s users may disagree. For instance, in the case of third-party libraries, the

developers intentionally export some packages for further needs or even allow other modules to reflectively

access the internals of some classes and packages. In these situations, DARCY+ warns the developers and

architects about potential threats caused by architectural inconsistencies in their Java application and allows

them to override DARCY+ prior to the application of repairs.

Overall, after the repair phase at build-time, the transformed Java application starts running and will be

monitored by Module Loading Monitor. In the case of dynamically loading a module at run-time, the

detection and repair phase will be repeated for the loaded module.

5.5 Evaluation

To assess the effectiveness of DARCY+, we study the following research questions:
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RQ1: How accurate is DARCY+ at resolving inconsistent, architectural dependencies dynamically at run-

time?

RQ2: To what extent does DARCY+ reduce the attack surface of Java modules at run-time?

RQ3: To what extent does DARCY+ enhance encapsulation of Java modules at run-time?

RQ4: To what extent does DARCY+ reduce the memory consumption at run-time?

RQ5: What is DARCY+’s run-time efficiency in terms of execution time?

To answer these research questions, we selected a set of Java applications from GitHub [11], a large and

widely used open-source repository of software projects, all of which are implemented in Java 9+.

We used a Python script leveraging Beautiful Soup [1], i.e., a web scraping library and GitHub’s API, to crawl

Github, followed by filtering GitHub repositories. Chapter 3.5 explains the crawling and filtering process in

more detail. Finally, our evaluation dataset includes 52 Java 9+ applications. Recall that DARCY+ detected

567 instances of architectural inconsistencies in 38 applications at build-time (refer to Chapter 3.5). Table 3.2

includes these 38 subject applications, their number of modules, packages, and directives.

5.5.1 RQ1: Inconsistency resolution at Run-time

Java applications can dynamically load new modules while running. Hence their architecture changes, and

the new modules can introduce further architectural inconsistencies at run-time.
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To answer RQ1, we simulated the above-mentioned run-time behavior and assessed DARCY+’s capabilities

of dynamically detecting and repairing architectural inconsistencies that may arise at run-time.

To simulate this scenario, we randomly selected a module in each dataset application and ran the application

without that single module. While DARCY+ is monitoring the application during its run-time, we added

the previously selected module as a new module loaded into the system. Then, we evaluated whether

DARCY+ can accurately detect inconsistent dependencies of the recently added module at run-time. For this

purpose, we manually checked whether the inconsistent dependencies found by DARCY+ match the actual

inconsistencies existing in the added module. Table 5.1 describes the results of this experiment, including

the number of packages and directives in the added module, as well as the detected run-time inconsistencies

separated by their types. As shown in Table 5.1, all inconsistent dependencies found by DARCY+ at run-time

are correct.

To evaluate DARCY+’s ability to correctly repair this type of run-time inconsistencies, we ran the repair phase

of DARCY+ for each loaded module in our experiment. We manually examined each repair, and all were

correct. We further evaluated whether the transformed module can run successfully without any unexpected

run-time behavior caused by DARCY+’s repairs. As described in Table 5.1, DARCY+ was able to repair

the detected run-time inconsistencies without introducing any disruptions to the applications’ run-time, i.e.,

run-time exceptions. Similar to RQ2, we also ran the detection phase after the repair actions, and the results

showed zero inconsistencies within the transformed Java applications.

5.5.2 RQ2: Security

Similar to Chapter 3.5.3, we consider the attack surface of Java 9+ applications to assess DARCY+’s ability

to enhance security. More specifically, the attack surface of a system is defined as the collection of points at

which the system’s resources are externally visible or accessible to users or external agents. Manadhata et al.

introduced an attack-surface metric to systematically measure the security of a system [155, 156, 157]. Every

externally accessible system resource contributes to a system’s attack surface, as it can potentially be part of

an attack. This contribution reflects the likelihood of each resource being used in security attacks. Intuitively,
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the more actions available to a user or the more resources accessible through these actions, the more exposed

an application is to security attacks [155, 156, 157].

The main resource of a Java 9+ application is Java modules and their packages. As a result, the application’s

attack surface can be defined as the number of packages accessible from outside its modules. Recall that to

measure the attack surface of Java 9+ applications, we count the number of packages exposed by exports (to)

and open(s to) directives since these directives make the internals of packages accessible to other modules

(refer to Chapter 3.5.3.)

To evaluate DARCY+’s ability to enhance the applications’ security at run-time, we measured the attack

surface reduction ratio followed by repairing the inconsistencies of the dynamically loaded modules at

run-time. Therefore, for each Java application in our dataset, we selected a module and ran DARCY+ on the

rest of the application’s modules. Then, we ran the repaired application without that specific module. While

running, we dynamically loaded the chosen module and measured the attack surface ratio reduction in the

whole application as the result of DARCY+’s repairing the loaded module at run-time. This ratio indicates to

what extent DARCY+ is able to further reduce the attack surface of a transformed application by resolving

inconsistent dependencies of a dynamically loaded module. We repeated this experiment for all modules in

each application and reported the average attack surface reduction ratio per module. As described in Table

5.2, DARCY+ was able to reduce the attack surface of the loaded modules in 36 out of 38 applications by an

average of about 17% at run-time. DARCY+ entirely eliminated the attack surface of the loaded module in 28

applications.

Table 5.2 also includes the attack surface reduction ratios followed by DARCY+’s repairs at build-time, which

was previously discussed in Chapter 3.5.3. As shown in Table 5.2, 36 out of 38 applications had an average

attack-surface reduction of about 56% at their build-time. Note that the average attack surface reduction

ratios are usually less than those of build-time as the run-time measurement includes the effects of repairing

only one module on the whole application attack surface, whereas at build-time we measured the effects of

repairing all modules.

Figure 5.2 shows a cumulative distribution function (CDF) of the ratio of attack surface reduction by DARCY+

among the applications in our dataset at run-time, along with the corresponding results of build-time. It
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Table 5.2: Result for Attack-Surface Reduction at Build and Run-time

Application App’s Attack Surface Reduction (%)
Name Build-time Run-time (Avg. Per Module)

Auto-sort 50.00% 7.50%
Ballerina-lang 45.64% 3.09%
Blynk-Server 44.83% 4.02%
BunnyHop 87.50% 7.19%
Codersonbeer-app 75.00% 41.67%
Constantin 100.00% 100.00%
Eclipse Jetty 41.88% 5.14%
Java-9-lab 33.33% 3.13%
Java-9-modularity - -
Java-Bookstore - -
Java-SPI 50.00% 33.33%
Java9-demo 50.00% 11.43%
Java9-junit 25.00% 16.67%
Java9-labs 80.00% 31.25%
java9-modules 50.00% 3.37%
Java9-TLB-modules 20.00% 2.92%
JavaUtils 85.71% 19.28%
Jigsaw-resources 50.00% 5.00%
Jigsaw-tst 33.33% 6.00%
Jwtgen 100.00% 3.57%
Logback 52.00% 4.82%
Meetup 75.00% 9.38%
Music-UI 60.00% 1.90%
Number-to-text 25.00% 22.22%
Practical-Security 25.00% 18.75%
Quasar 77.27% 24.31%
QuestDB 63.46% 9.75%
Rahmnathan-utils 100.00% 42.86%
RecolInline-Server 47.06% 1.01%
Rhizomatic-IO 15.38% 0.61%
Sense-nine 83.33% 50.00%
Sirius 21.43% 0.70%
Spring-mvn-java9 100.00% 7.14%
Springuni-java9 100.00% 33.33%
Tascalate-Javaflow 45.45% 1.98%
The-Message 10.00% 15.79%
TRPZ 40.00% 50.00%
Vstreamer 66.67% 10.71%
Avg. Attack Surface Reduction 56.37% 16.94%

indicates that in about 90% of the applications, DARCY+ was able to reduce the applications’ attack surface

up to 40% on average per loaded module at run-time. Recall that the attack surface reduction at build-time is

up to about 50% in 60% of the applications. The relatively large reduction of the attack surface in applications
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Figure 5.2: Cumulative distribution function (CDF) of the attack surface reduction at build- and
run-time

achieved by DARCY+ indicates that it can significantly curtail security risks in Java 9+ applications.

5.5.3 RQ3: Encapsulation

Similar to Chapter 3.5.4, to evaluate DARCY+’s ability to enhance the encapsulation of Java 9+ applications,

we leveraged two metrics, i.e., the Ratio of Coupling (RoC) and the Normalized Cumulative Component

Dependency (NCD), selected from an extensive investigation by Bouwers et al. [72] about the quantification

of encapsulation for implemented software architectures.

The Ratio of Coupling (RoC) [74] measures coupling among an application’s modules. For Java 9+ modules,

RoC is the ratio of the number of existing dependencies among modules to the number of all possible

dependencies among modules. The Normalized Cumulative Component Dependency (NCD) [143] is the

sum of all modules’ outgoing dependencies, divided by the total number of modules. For Java 9+ modules,

outgoing dependencies are requires and uses dependencies of each module. Ideally, the value of both

RoC and NCD would be low. More specifically, a low RoC value shows that only a small part of all

possible dependencies among modules is actually utilized—making it less likely that faults, failures, or errors
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introduced by changes or additions to modules will propagate across modules. Additionally, a low NCD

value indicates lower coupling and better encapsulation.

Table 5.3 presents the amount of RoC and NCD change in 38 Java 9+ applications with inconsistent

dependencies at both build- and run-time. These results for build-time were previously showed in Chapter

3.5.4.

To measure the encapsulation improvement at run-time, we ran the same experiment as RQ2. More specifically,

we selected a module in each application and ran the transformed application without the chosen module

and later at run-time we dynamically loaded the selected module. We then measured the amount of RoC

and NCD change in the whole application followed by only repairing the loaded module. We repeated the

same experiment for all modules and reported the average RoC and NCD change per module repair for each

application. As shown in Table 5.3, DARCY+ was able to reduce the amount of RoC by an average of about

7% and up to about 25% per module in the whole application. The repairs by DARCY+ also reduced the

amount of NCD in 24 applications at run-time by an average of about 4% and up to 21%.

At build-time, across all 38 applications, the amount of RoC was reduced by an average of about 28%, and

up to about 81%. The amount of NCD was also reduced in 24 applications by an average of about 21%,

and up to 79% at build-time. Note that the RoC and NCD change at run-time ratios are less than those of

build-time since at run-time, we only measure the effect of repairing a single module on the whole application.

These results indicate that DARCY+ can successfully enhance the encapsulation of Java 9+ applications by a

significant amount at both build- and run-time.

Figure 5.3 shows the cumulative distribution function (CDF) of the RoC reduction followed by the DARCY+’s

repairs at both build- and run-time. It indicates that, in about 70% of applications, DARCY+ was able to

reduce the RoC up to 40% at build-time. It also shows that in about 80% of applications, DARCY+ was able

to reduce the RoC of the entire application up to about 10% by resolving the inconsistencies of a single

module loaded at run-time.

Figure 5.4 demonstrates the cumulative distribution function (CDF) of DARCY+’s NCD reduction rate at both

build- and run-time. It shows that resolving the inconsistencies in 80% of the applications could reduce the
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Table 5.3: Results for Encapsulation Improvement at Build- and Run-time

Application App’s RoC Change (%) App’s NCD Change (%)
Name Build-time Run-time Build-time Run-time

Auto-sort 7.69% 2.00% - -
Ballerina-lang 21.43% 1.41% 7.46% 0.53%
Blynk-Server 21.31% 2.74% - -
BunnyHop 60.71% 5.21% 25.00% 2.78%
Codersonbeer-app 30.77% 12.05% 12.50% 3.13%
Constantin 55.56% 23.33% 20.00% 5.00%
Eclipse Jetty 35.59% 4.46% 34.18% 4.26%
Java-9-lab 6.67% 1.25% - -
Java-9-modularity 9.09% 2.56% 12.50% 3.02%
Java-Bookstore 17.65% 5.07% 16.67% 4.42%
Java-SPI 15.38% 5.58% 5.56% 1.39%
Java9-demo 10.00% 4.40% - -
Java9-junit 7.69% 5.13% - -
Java9-labs 40.00% 11.90% - -
java9-modules 20.00% 2.45% - -
Java9-TLB-modules 8.33% 1.64% - -
JavaUtils 80.56% 20.86% 79.31% 20.37%
Jigsaw-resources 20.00% 3.13% - -
Jigsaw-tst 9.09% 2.31% - -
Jwtgen 15.38% 3.01% 8.33% 1.50%
Logback 46.15% 5.48% 21.43% 2.75%
Meetup 42.86% 6.82% - -
Music-UI 26.67% 2.68% 10.00% 1.27%
Number-to-text 9.09% 7.60% - -
Practical-Security 10.00% 5.00% 7.69% 1.92%
Quasar 52.38% 16.16% 25.00% 6.73%
QuestDB 52.31% 8.55% 8.33% 2.14%
Rahmnathan-utils 50.00% 16.98% 12.50% 3.17%
RecolInline-Server 47.62% 1.07% 48.00% 0.77%
Rhizomatic-IO 5.17% 0.27% 2.44% 0.13%
Sense-nine 29.03% 6.93% 16.00% 2.96%
Sirius 24.32% 1.03% 26.09% 0.90%
Spring-mvn-java9 44.44% 5.29% 16.67% 1.64%
Springuni-java9 50.00% 25.00% 40.00% 16.67%
Tascalate-Javaflow 30.36% 1.66% 26.67% 1.41%
The-Message 6.25% 12.00% - -
TRPZ 10.53% 7.54% - -
Vstreamer 16.00% 3.66% 20.00% 2.26%

RoC
Total # of Affected Systems 38
Build-time Reduction Avg. 27.53%
Run-time Reduction Avg. 6.69%

NCD
Total # of Affected Systems 24
Build-time Reduction Avg. 20.93%
Run-time Reduction Avg. 3.80%
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Figure 5.3: revisedCumulative distribution function (CDF) of the Ratio of Coupling (RoC) reduction
at build- and run-time
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Figure 5.4: Cumulative distribution function (CDF) of the Normalized Cumulative Component
Dependency (NCD) reduction at build- and run-time

NCD up to 22% at build-time. Furthermore, it shows that resolving the inconsistencies of a module loaded at

run-time can reduce the amount of NCD in 90% of the applications up to about 10%.
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5.5.4 RQ4: Software Bloat

To answer this research question, we measured the memory usage of each application before and after

DARCY+’s repair phase at both build- and run-time. Recall that in Java 9+, with the JDK being modularized,

we can create a lightweight custom Java Runtime Environment (JRE), reducing software bloat (refer to

Chapter 3.2.) More specifically, the size of a custom JRE may be reduced after a repair if the application has

inconsistent dependencies of type requires JDK (Equation 3.2 of Section 3.3).

Table 5.4: Results for Software-Bloat Reduction at Build- and Run-time

Application Runtime Memory Reduction (%)
Name Build-time Run-time

Ballerina-lang 8.29% 0.09%
BunnyHop 54.72% 20.55%
Eclipse Jetty 16.83% 0.59%
Java-SPI 6.04% 1.51%
JavaUtils 21.87% 19.82%
Practical-Security 0.76% 0.19%
Quasar 4.55% 1.14%
Rahmnathan-utils 0.12% 0.04%
RecolInline-Server 50.70% 7.27%
Sense-nine 0.63% 0.22%
Avg. Memory Reduction 16.45% 5.14%

Table 5.4 shows the reduction of software bloat in terms of the reduction in the size of the JRE image of

affected applications after removing inconsistent requires JDK dependencies at both build- and run-time

repair. According to the results, the reduction is about 16% in 10 applications and up to 55% once the repair

is executed at build-time. The table also shows that DARCY+ reduces the application’s memory consumption

by an average of 5% in those 10 applications after repairing a loaded module at run-time.

Figure 5.5 demonstrates the cumulative distribution function (CDF) of DARCY+’s software bloat reduction

rate at both build- and run-time. At build-time, the figure shows that in 80% of the applications DARCY+ could

reduce the size of the JRE image up to about 22% by resolving the module inconsistencies. Furthermore, the

figure shows that resolving the inconsistencies of a module loaded at run-time can reduce the size of JRE

image in 80% of the applications up to about 7%. Such results are particularly substantial for deployment
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Figure 5.5: Cumulative distribution function (CDF) of software bloat reduction at build- and
run-time

and scalability goals in microservices or IoT devices that contain very little memory.

5.5.5 RQ5: Performance

As described in Section 5.4, DARCY+ builds on three tools, Classycle[106], Soot [200], and ANTLR [10].

As a result, similar to Chapter 3.5.6, we assess DARCY+’s performance in terms of these underlying tools’ as

well as DARCY+’s execution time.

Table 5.5: Results for Execution Time

Component Avg. Execution Time (ms)
Build-time Run-time

Class Dependency Analyzer (Classycle) 7428 -
Java Reflection Analysis 328 131
ServiceLoader Usage Analysis 315 101
Java Inconsistency Analysis 250 27
Repair 453 163
Total 8774 422

Table 5.5 describes the average execution times for DARCY+ at both build- and run-time. Results for Classycle

are shown separately from results for other components since Classycle dominates the execution time. Note
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that Classycle is only executed once before applications’ run-time, and DARCY+ will store the collected

package dependencies for further analysis. Therefore, it only appears in build-time execution time in Table

5.5. On average, as mentioned in Section 3.5.6, DARCY+ takes under 9 seconds for any system to execute

at build-time, which is highly time-efficient for both detection and repair. On the other hand, at run-time,

DARCY+ takes only about 0.4 seconds on average to detect and repair the inconsistencies of a dynamically

loaded module, which causes only a minimal overhead to the system’s execution.

5.6 Threats to Validity

There are several threats to internal and external validity that applies at both build- and run-time. Chapter 3.6

discusses these threats to validity in detail, which we briefly explain in this section.

Regarding threats to internal validity, DARCY+ inherits the risk of false positives or negatives from the static

analysis techniques it leverage, which might compromise the accuracy of DARCY+’s results. Accordingly,

DARCY+ might miss some inconsistencies in the detection phase due to the false positives or negatives of

the static analysis tools used in its implementation, e.g., Classycle and Soot. However, both Classycle and

Soot are widely used in developing many state-of-the-art tools over the years [184, 220, 89, 147, 114, 150,

88, 130, 144]. Soot has also been actively maintained [19]. Furthermore, we manually examine all detected

inconsistencies to avoid any compromise in DARCY+’s accuracy due to unexpected issues with the underlying

static analysis techniques.

A possible threat to DARCY+’s validity is the selection of Java applications in our dataset. To minimize this

risk, we selected open-source Java 9+ applications from many developers and thousands of repositories in

Github, one of the largest and most widely used open-source repositories online. Another threat to external

validity is the comprehensiveness of our defect model of module inconsistencies. To mitigate this risk, we

studied all types of module directives defined in Java and their possible inconsistencies.

Furthermore, DARCY+ may mistakenly detect some module inconsistencies without knowing developers’

or architects’ intentions. For instance, in the case of Java libraries, developers may intentionally export or

110



open some packages for further usage, and without being aware of this intention DARCY+ will detect them as

inconsistencies. In these cases, DARCY+ takes the developers’ input and overrides its decision before repair

to resolve this threat.

5.7 Related Work

Most of the related works of DARCY+ have been discussed in Chapter 3.7. In this section, we only focus on

related studies to DARCY+’s run-time detection and repair of architectural inconsistencies.

Regarding run-time architectural conformance, in the most closely related work, Yan et al. [219] introduce

DiscoTect, a technique that observes running software systems and constructs an architectural view of them.

Using this dynamic architectural discovery, developers and architects can map the architectural styles to

implementation styles which helps them with building systems consistent with their architectural design.

However, their approach does not provide an automated technique to enforce the conformance between

prescriptive and descriptive architecture as DARCY+ does.

Overall, DARCY+ is the first approach that studies architectural-implementation conformance, at both

build- and run-time, in a mainstream programming language using its own built-in architectural constructs.

Additionally, DARCY+ repairs the detected inconsistencies instead of only detecting them. DARCY+ is

the first architecture-implementation conformance approach that attempts to reduce the attack surface and

software bloat in software applications.

5.8 Discussion

To summarize, we formally defined 8 types of architectural inconsistencies in Java 9+ applications and

presented DARCY+, a fully-automated framework that effectively detects and robustly repairs the existing

architectural inconsistencies both statically at build-time and dynamically at run-time. For this purpose,

DARCY+ leverages static custom analysis, state-of-the-art static analysis tools, and a custom parser gen-
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erator. According to our experiment, DARCY+’s repair significantly reduces the attack surface, enhances

encapsulation, and reduces memory usage for Java 9+ applications. As a future direction of this research,

we can provide run-time architectural visualization showing the architectural inconsistencies as they occur.

Furthermore, DARCY+ can be expanded as an interactive framework that takes the developer’s or architects’

feedback and modifies the repair decisions in real-time. DARCY+ can also be implemented as a plug-in for

Integrated Development Environments (IDE), which helps developers avoid architectural inconsistencies

when developing Java applications.
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Chapter 6

Automated Support for Architecture-based

Adaptability in Modern Java Applications

Software architecture has been shown to provide an appropriate level of granularity for the representation

of a managed software system and reasoning about the impact of adaptation choices on its properties.

Software architecture-based adaptability is the ability to adapt a software system in terms of its architectural

elements, such as its components and their interfaces. Despite its promise, architecture-based adaptation has

remained largely elusive, mainly because it involves heavy engineering effort to make non-trivial changes

to the manner in which a software system is implemented. To that end, the incorporation of extensive

support for architecture-based development in Java Platform Module System (JPMS) inspires realizing

architecture-based adaptation capabilities in Java applications. In this chapter, we present ACADIA—a

framework that automatically enables architecture-based adaptation of practically any Java 9+ application for

free, i.e., without requiring any changes to the implementation of the application itself. ACADIA builds on

JPMS, which has brought extensive support for architecture-based development to Java 9 and subsequent

versions. ACADIA extends JPMS with the ability to provide and maintain a representation of an application’s

architecture and make changes to it at runtime. The results of our experimental evaluation, conducted on

three large open-source Java applications, indicate that ACADIA is able to efficiently apply dynamic changes

to the architecture of these applications without requiring any changes to their implementation.
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6.1 Introduction

Development of (self-)adaptive software systems is known to be significantly more complex than that

of non-adaptive systems [82]. Conventional wisdom in software engineering suggests that a software

system’s architecture provides an appropriate level of abstraction to mitigate the complexity of adaptive

systems [171, 84, 190, 170, 192]. A software system’s architecture represents the elements comprising the

system (e.g., components, connectors, interfaces) and their relationships to one another [193]. Architecture-

based adaptability is thus the ability to maintain an accurate representation of a software system’s architecture

at runtime and effect adaption choices in terms of its architectural elements (e.g., (un)load components).

While the research community has produced many frameworks for architecture-based adaptation (e.g.,

Rainbow [115] c2.fw [94], ArchJava [58], and Prism-MW [154]), architecture-based adaptation has remained

largely elusive in industry. The existing architecture-based adaptation frameworks require the managed

software to be designed and developed specifically for adaptation on top of those frameworks. Case in

point, in ArchJava [58], developers would need to implement their Java applications using syntax that is

specific to ArchJava. For example, a component in ArchJava is defined using a special “component” keyword

before class declaration (public component class nameOfClassHere), while a component’s interfaces

are defined using a special “port” keyword before method declaration (public port nameOfMethodHere).

Despite their elegance, the above-mentioned frameworks are not used for architecture-based adaptation of

real-world software, because developers do not build their systems on top of these framework.

Indeed, the majority of real-world software is not developed architecturally. Widely-used programming

languages and frameworks do not provide explicit support for architectural concepts. In other words, there

is a gap between architectural constructs (e.g., components, connectors, interfaces) used to conceptualize

the architecture of a system and the low-level programming constructs (e.g., classes, methods, variables)

used for their implementation. A system that is not developed architecturally is practically impossible to

adapt without a significant engineering effort. At a minimum, developers have to recover what parts of the

code map to architecturally relevant elements, develop the ability to dynamically (un)load and (un)bind those

elements, and further implement the necessary facilities to keep that representation of the software in sync

with the running system.
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These difficulties have also impacted software engineering researchers that have struggled with the lack

of real-world adaptive software for proper evaluation of their techniques. Researchers have responded to

this problem by developing a repository of exemplar adaptive applications to help with validation of their

work [43]. The majority of these exemplars, however, are essentially still toy applications. Indeed, to this date,

the majority of publications in this domain, including those of the authors, evaluate the reported techniques on

either small, handcrafted applications or simulated environments. There are no effective means of comparing

the techniques on the same set of real-world applications, similar to the manner researchers evaluate their

work in other areas of software engineering, for instance software testing. The lack of access to real-world

software readily available for experimentation has truly hindered research in this area.

Inspired by relatively recent developments in Java, which for the first time has incorporated extensive support

for architecture-based development, we believe the software engineering community is finally at the cusp

of realizing architecture-based adaptation for free, i.e., without requiring the developers to implement their

systems on top of a separate framework for architecture-based adaptation. In its 9th iteration, Java has

introduced the Java Platform Module System (JPMS) [8], which allows developers to explicitly specify

the system’s software components (i.e., modules in JPMS), their interfaces, and the specific nature of their

dependencies in a file called module-info.java.1 JPMS creates opportunities for building adaptive software

systems in ways that were not possible before. Specifically, the architectural elements of any Java application

built in Java 9 and subsequent versions are readily attainable from its module-info.java file.2

Despite its support for architecture-based development, JPMS does not provide a mechanism for maintaining

a runtime model of the system’s architecture and modifying it at runtime. Accordingly, JPMS by itself is

lacking support for architecture-based adaptation of Java applications. In this chapter, we present ACADIA,

a framework that allows for any Java 9+ software system to be adapted architecturally. ACADIA leverages

JPMS features and static analysis to (1) determine the architecture of Java applications and (2) automatically

transform the applications to a form that can be adapted at runtime. Using ACADIA, developers can determine

or update their Java applications’ architecture at runtime without requiring any additional implementation

or any modification to their applications. Moreover, ACADIA is extremely efficient, enabling developers to

1Unfortunately the notion of software connector is still not explicit in JPMS.
2We may refer to Java 9 and subsequent versions as Java 9+ in this chapter.
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execute various adaptation strategies with very low overhead. An implementation of the proposed technique

is publicly available [51]. ACADIA offers profound and practical contributions to the software engineering

research community by making it possible to evaluate the techniques developed in this community on

hundreds of open-source Java 9+ applications with minimal effort. Researchers can further empirically

compare their techniques and replicate prior studies on the same set of real-world, adaptive software, thereby

advancing the research in this area.

The remainder of this chapter is organized as follows. Section 6.2 provides background on the Java module

system, including JPMS programming constructs and its design goals, and illustrates an example modularized

Java application. Section 6.3 describes ACADIA and its implementation in detail. Section 6.4 demonstrates

an application of ACADIA in terms of an example adaptation strategy built upon it. Section 6.5 presents

the experimental evaluation of ACADIA’s adaptation capabilities. The chapter concludes with an outline of

related research.

6.2 Architecture-based Development in Java

In this section, we first introduce the concepts behind the Java Platform Module System (JPMS) [8], followed

by the description of an illustrative example used throughout the chapter for explanation of our work.

6.2.1 Java Platform Module System

JPMS allows software developers to specify the architecture of Java applications in terms of software

components, component interfaces, and dependencies among the application’s components. A Java module

in JPMS represents a software component, and it is a uniquely named reusable group of related packages and

resources.

The main goals of modular development in JPMS include reliable configuration, strong encapsulation,

scalability, platform integrity, and improved performance [96]. JPMS enables developers to explicitly

specify module interfaces and dependencies. In other words, developers can identify the public and private
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members of a module that are accessible or inaccessible to other modules. As JPMS provides a more

refined accessibility control, it significantly increases Java applications’ encapsulation. Furthermore, Java

has modularized the JDK itself using JPMS modules. As a result, developers can create lightweight custom

Java Runtime Environment (JRE) images consisting of only modules they need for their application, which

improves the scalability and performance of Java applications [6].

Each Java module includes a module descriptor file specifying the module’s interfaces and dependencies to

other modules. Specifically, the descriptor file, called module-info.java, includes the module name, other

modules it depends on, the packages it explicitly makes available to other modules, the services it offers, the

services it consumes, and to what other modules it allows reflection [96]. A module can utilize combinations

of the following five module directives to describe the details of its interfaces and dependencies: (1) the

requires directive, which specifies other modules that a module needs access to, (2) the exports directive,

which makes public members of a package accessible by other modules, (3) the opens directive, which opens

public and private members of a package to reflective access by other modules, (4) the provides directive,

which specifies the services a module provides, and (5) the uses directive, which specifies the services a

module consumes [135].

6.2.2 Illustrative Example

Figure 6.1 illustrates an example Java application modularized using JPMS. It consists of three modules

User, Util, and Network. Each module’s descriptor file, i.e., module-info.java, is shown in the figure.

Accordingly, module User contains two packages, foo and bar, and reads modules Util and Network in its

implementation, specified by requires directives. Module Util contains two packages, core and api. It reads

module Network in its implementation, specified by requires directive, and uses the service NetService,

specified by uses directive. Module Util also exposes its core and api packages to be accessible by other

modules, using exports directives, and opens its core package specifically for reflective access to the module

User, using opens directive. Module Network contains a package, called net, and provides an implementation

of the service NetService in one of its classes, called NetClass, which is specified by provides directive.
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Module Network
Module Network {

provides 
NetServcie with 
NetClass;

}

net

Module Util
Module Util {

requires LogLib;
requires Network;
exports core;
exports api;
opens core to User;
uses NetService;}

core api

Module User
Module User{

requires Util;
requires Network;

}

foo bar

<External Library>

LogLib

Legend

Module 
Access

Package 
Access

Reflective 
Access

Service 
Access Package Module 

Descriptor File

Figure 6.1: An example Java app implemented using JPMS

These directives outline an overview of the dependencies between the system’s modules and their packages.

Figure 6.1 shows these dependencies with arrows. More specifically, package foo in module User accesses

internals of packages bar, core, and net in its implementation. It also reflectively accesses private members of

package core. Package bar accesses the internals of package api. Package core accesses internals of package

net and uses the service package net provides. Package api uses the external library LogLib and uses the

service provided by package net.
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Figure 6.2: A high-level overview of ACADIA framework

6.3 ACADIA: Framework Overview

Figure 6.2 depicts a high-level overview of ACADIA consisting of three main compartments: ACADIA API,

Static Analyzer, and Runtime Controller. In this section, we describe how ACADIA enables architecture-based

adaptation capabilities in Java 9+ applications by explaining each compartment’s implementation in detail.

6.3.1 ACADIA’s API

ACADIA takes a Java 9+ application’s source code as input and provides a specific API including a set of

commands with which any adaptation strategy or software developer can interact. The adaptation strategy is

denoted by Managing Subsystem in Figure 6.2. More specifically, ACADIA can execute various architecture-

based adaptation operations on the running Java system, denoted by Managed Subsystem in Figure 6.2. These

operations include applying dynamic changes to the running system, obtaining an accurate architectural

model of the system at runtime, or visualizing it at any time during the execution of software.

Table 6.1 shows ACADIA’s API, represented as a predefined set of commands. These commands can be

grouped into five categories: (1) commands for loading and unloading of modules, i.e., load, load-all,
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and unload, (2) a command for statically analyzing a new module to obtain its architecturally-relevant

properties, i.e., static-analyzer, (3) commands for modification of dependencies, i.e., add-requires,

add-exports, and add-opens, (4) commands for retrieving a system’s dynamic architectural model, i.e.,

get-arch-model, get-dependent, and list-all-loaded-modules, and (5) a command for visualization

of the system’s dynamic architecture for human perception, i.e., visualize. Each category of API commands

are implemented by specific components in the Runtime Controller compartment, as elaborated further in

Section 6.3.3.

Table 6.1: Commands describing ACADIA’s API

Command Description

load <moduleName> <path> Loads the module <moduleName> from the path <path>.

load-all <path> Loads all modules of the Java application from the path
<path>.

unload <moduleName> <path> Unloads the module <moduleName> from the path
<path>.

static-analyzer <moduleName> <path> Runs the Static Analyzer on a new module, <moduleName>
from path <path>, to retrieve and store its package depen-
dencies.

add-requires <source> <target> Makes module <target> accessible by module <source>
through a requires directive.

add-exports <source> <pckg> <target> Makes the package <pckg> from the module <source>
accessible to the module <target> through an exports
directive.

add-opens <source> <pckg> <target> Makes the package <pckg> from the module <source>
accessible via reflection to the module <target> through an
opens directive.

get-arch-model Generates the real-time architecture model of the Java app
in terms of a graph representation, characterized by different
types of dependencies.

get-dependent <Module> [<pckg>] Retrieves a subset of the architecture model including the
packages and modules that are dependent on the module
<Module> and package <pckg>, characterized by differ-
ent types of dependencies.

list-all-loaded-modules Lists all deployed modules at anytime of the runtime.

visualize Visualizes the architecture graph of the system in a figure
for human perception.

stop Stops the ACADIA’s framework and quits.
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6.3.2 Static Analyzer

Before running the target Java application, ACADIA performs a set of static analyses on the application’s

source code to acquire the necessary information about the implementation of the Java application. ACADIA

relies on an existing static analysis approach, represented as Package Dependency Analyzer in Figure 6.2, to

identify the dependencies between all packages of a Java application. We leveraged Classycle [106] in the

implementation of ACADIA. More specifically, ACADIA retrieves all package dependencies implemented

in each Java module by running Classycle before starting the application. Although Classycle collects all

information about the system dependencies at both the class level and package level, ACADIA only requires

the package-level dependencies, since module directives can only define and manage dependencies between

packages.

A Java application might contain packages that reflectively access one another, indicating dependencies

of type opens directive. This type of reflective dependencies cannot be retrieved by Package Dependency

Analyzer. For this purpose, we implemented a custom static analysis, using the Soot framework [200],

represented as Reflective Dependency Analyzer in Figure 6.2. It analyzes the source code of the Java app and

extracts all instances of reflective dependencies [116]. Figure 6.3 shows an example of a reflective invocation

in Java. A reflective invocation first obtains a private class of interest (line 2), followed by selecting one of

the class’s methods using its name and parameters (lines 3-6). It finally invokes the selected method (line

7). The Reflective Dependency Analyzer component uses a backward static analysis and follows the use-def

chain of any java.lang.reflect.Method instances to identify all reflective invocations in the source code.

It then collects all the selected class and method information in the reflective invocation.

1 try {
2 Class clazz = Class.forName("className"); ()
3 Class argz = new Class[2]; ()
4 argz[0] = Integer.TYPE; ()
5 argz[1] = Integer.TYPE; ()
6 Method method = clazz.getMethod("methodName", argz); ()
7 method.invoke(..., ...); ()
8 }catch (Throwable e) {
9 System.err.println(e);

10 }

Figure 6.3: An example of a reflective dependency in Java
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Furthermore, Java applications can contain implementations of service providers using ServiceLoader API,

which indicates the dependencies of types provides and uses directives. Figure 6.4 shows an example of a

service dependency in Java [18]. In this example, CodecSet is a service class providing two functionalities:

getEncoder and getDecoder. Here, ServiceConsumer is a class that aims to consume these functionalities.

It uses ServiceLoader, a built-in Java class, to load the provider classes of the corresponding service (line

6). It then iterates over possible provider classes and chooses appropriate ones with the getEncoder method

(lines 7-9). To identify such dependencies, we developed another custom static analysis, using the Soot

framework [200], shown as Service Dependency Analyzer in Figure 6.2. It analyzes the source code of

the Java application, leverages a backward analysis, and follows the use-def chain of any instances of the

ServiceLoader class [116].

1 interface CodecSet{
2 public abstract Encoder getEncoder(String encodingName);
3 public abstract Decoder getDecoder(String encodingName);
4 }
5 Class ServiceConsumer{
6 private static ServiceLoader<CodecSet> codecSetLoader = ServiceLoader.

load(CodecSet.class); ()
7 for (CodecSet cp : codecSetLoader) { ()
8 Encoder enc = cp.getEncoder(encodingName); ()
9 if (enc != null) {...} ()

10 }
11 }

Figure 6.4: An example of service dependency in Java

The collected information from Package Dependency Analyzer, Reflective Dependency Analyzer, and Service

Dependency Analyzer components is stored in Module Dependency Model, i.e., a database component, which

is later used by the Runtime Controller compartment. In addition, in case the Managing Subsystem introduces

a new module at runtime, for which the module dependency information is not available, it can use the

static-analyzer command (recall Table 6.1) to invoke the Static Analyzer, extract that information, and

update the Module Dependency Model.
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6.3.3 Runtime Controller

The Runtime Controller compartment is responsible for the implementation of ACADIA’s runtime API, listed

in Table 6.1. In the remainder of this section, we explain the implementation details of each category of API

commands.

The Module Loader component is responsible for loading and unloading modules at runtime, i.e., load,

load-all, or unload commands. In case of loading a module into a running system, Module Loader compo-

nent creates a module wrapper, i.e., a graph of coherent modules representing the module itself and other

modules or libraries it depends on. Upon loading a new module, that module and all unloaded modules that it

depends on are loaded into a new wrapper. The wrapper is implemented using java.lang.ModuleLayer

class in JPMS [33], which defines a group of modules in the Java virtual machine (JVM). When starting

a Java application, the Java runtime creates an initial layer called boot layer. The boot layer contains the

module graph of resolved modules provided when running the Java application. Later, new ModuleLayers

can be defined to deploy other new modules inside them. A Java application can include multiple lay-

ers during its execution, and layers themselves can have dependencies amongst each other [153]. The

java.lang.ModuleLayer class is only an implementation for a group of Java modules. Whenever a

ModuleLayer is created, JVM assigns a new instance of ClassLoader to that layer which enables loading

a new module at runtime. Our evaluation (see Section 6.5) will demonstrate that the performance cost or

overhead of using our wrapper implemented using ModuleLayer is small and practical.

After creating the wrapper, Module Loader determines the dependent modules and libraries using the Module

Dependency Model database. Then, it invokes Wrapper Controller, which is responsible for managing all of

the created wrappers in the running system, to register the recently created wrapper. More specifically, once

a wrapper is created, Wrapper Controller notifies the JVM about the classes that may be loaded from the

modules inside that wrapper, such that JVM knows to which module each loaded class belongs. Wrappers can

also have dependencies amongst each other in cases where a module required inside a wrapper is previously

loaded into another wrapper. Lastly, the Library Resolver component loads the required external libraries

inside the wrapper. At this point, Module Loader can load the target module and its dependent modules

into the Managed Subsystem. To unload a module, Module Loader identifies the target module’s dependent
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modules and libraries. i.e., modules that are only used by the target module. Subsequently, the Wrapper

Controller locates the module’s corresponding wrapper and removes it.

To better explain the loading or unloading process of a module, we use the Java application introduced in

Section 6.2.2. Consider a scenario in which the Managed Subsystem first starts with no Java modules loaded.

Therefore, the Java runtime starts with the boot layer consisting of the necessary JDK modules. Suppose

the Managing Subsystem enters the command to load module Util. To that end, Module Loader retrieves its

dependent modules and libraries, i.e., Network and LogLib library. It then creates a new wrapper (Wrapper

1) and loads the Util and Network modules into it. Next, Wrapper Controller registers the recently created

wrapper and notifies the JVM. Before loading the entire wrapper into the JVM, Library Resolver loads the

external library LogLib from the provided path. Finally, Module Loader loads the entire wrapper into the

Managed Subsystem.

Next, suppose the Managing Subsystem enters the command to load module User. Consequently, Module

Loader determines that the User module is dependent on modules Util and Network using the Module

Dependency Model. As a result, Module Loader creates a new wrapper (Wrapper 2) and loads module User

into it, and Wrapper Controller registers it by notifying the JVM. There is no need to load the dependent

modules since they are already loaded into Wrapper 1. Instead, Wrapper Controller creates a dependency

from Wrapper 2 to Wrapper 1. Figure 6.5 shows the Managed Subsystem after ACADIA has loaded all of the

modules of this example within two wrappers. Later, suppose the Managing Subsystem decides to unload the

User module. As a result, the Module Loader and Wrapper Controller components respectively unload User

and delete Wrapper 2, as it contains no other modules.

The Architecture Model Analyzer component listens to Module Loader or the input commands regarding

dependency modifications for any changes to the architecture of the system. It uses the Module Dependency

Model database to create the system’s Dynamic Architecture Model and keep it updated. The dynamic

architecture model of the system should capture all its modules, packages, and all types of their dependencies.

It can be modeled using a graph where the system’s modules and packages are represented as graph nodes

and their dependencies as graph edges. However, there are different types of dependencies between packages

and modules, specified by various module directives in JPMS. Therefore, the dynamic architecture cannot be
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Figure 6.5: The managed subsystem after loading all modules of the example Java app (Section
6.2.2)

modeled with a single graph, as there might be more than one edge between two nodes. For this purpose, we

leverage the concept of multidimensional networks for modeling graphs with different types of edges [69].

In the context of our architectural model, there are five different types of edges: the Containment edge

between package nodes and their corresponding module nodes, the Module Access specified with requires

directives between module nodes, the Package Access specified with exports directives and the package

dependencies in the system’s implementation, the Reflective Access specified with opens directives and the

reflective dependencies in the system’s implementation, and the Service Access specified with provides and

uses directives between packages.

DEFINITION 6.1. The dynamic architecture model of the managed subsystem can be formally specified as a

triple

Dynamic Architecture Model≡ 〈V, D, E〉, where

• V is the set of nodes including the loaded Java modules, all their packages, and the external libraries,

• D = {Containment,ModuleAccess,PackageAccess,

Re f lectiveAccess,ServiceAccess} is the set of dimensions specifying different types of dependencies

between the nodes,
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• E = {(u,v,d)|u,v ∈V ∧d ∈ D} is the set of dependencies between the nodes.

Figure 6.6 demonstrates the multidimensional network representation of the architectural model of our

illustrative example application, explained in Section 6.2.2, after loading all of its modules. As shown in the

figure, there might be more than one edge between two nodes in a multidimensional network.

foo bar
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net

api

User

Util

Network

Legend

Log 
Lib

Containment

Module Access

Package Access

Reflective Access

Service Access

Module Node

Package Node

External Library 
Node

Figure 6.6: The multidimensional network representing the dynamic architecture model of the
illustrative example in Section 6.2.2 after loading all modules

The Architecture Model Analyzer is responsible for generating and updating the architectural model upon the

occurrence of any changes to the architecture of the Managed Subsystem by adding or removing nodes or

edges, as a result of (un)loading modules and modifications to their dependencies. Moreover, in the case

of get-dependent command, ACADIA needs to identify the dependent modules and packages to a specific

module or package. To that end, Architecture Model Analyzer defines this search as a connected component

search problem in the context of a multidimensional network [69]. In other words, the dependent nodes on a

specific node in a specific set of dimensions can be formally specified, as shown in Equation 6.1.

Dependent Nodes(v,D)≡ {v ∈V | ∃(u,v,d) ∈ E ∧d ∈ D} (6.1)
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The Graph Generator component returns the architectural model of the system in response to

get-arch-model command. To that end, the Graph Generator converts the multidimensional network

representation of the system’s architectural model to a graph description file in DOT language [42], i.e.,

a widely-used graph description language. Furthermore, in the case of the visualize command, it uses

visualization libraries, such as Graphviz [112], to visualize the generated graph in DOT language for human

perception.

6.4 Application of ACADIA

To evaluate ACADIA, we used it to develop a self-adaptation logic aimed at keeping the memory usage of Java

9+ applications below a user-provided threshold. Memory efficiency is particularly critical for deployment of

Java-based applications on resource-constrained devices, e.g., embedded and IoT devices.

While the application is running, the adaptation logic monitors its runtime memory usage. Once it gets larger

than a predefined threshold, it attempts to reduce the system’s memory footprint by either (1) offloading

unnecessary modules, i.e., application modules that are not being used at the moment, or (2) replacing some

modules with their alternative memory-efficient versions, if available.3 Later, if a previously offloaded or

replaced module is needed again, the adaptation component reloads it using the framework. The details

of this adaptation strategy are presented in Algorithm 3. It uses ACADIA’s API commands to execute its

adaptation operations.

Algorithm 3 takes the Java application (App) and the user-defined memory threshold (MemoryT hold) as

inputs. While the app is running, it continuously monitors the app’s memory usage, and if it goes above the

threshold, it applies the proper adaptation strategies aimed at reducing its memory usage. More specifically,

whenever the runtime memory size gets larger than the predefined threshold MemoryThold, Algorithm 3

first retrieves the list of running methods using the stack trace of the app’s running thread, and consequently,

3It is often possible to realize a given functionality with different degrees of memory consumption based on the
implementation choices involving data structures (e.g., arrays vs. vectors vs. linked lists), storage locations (e.g.,
random access memory vs. hard drive), and algorithms. Of course, such choices may also affect other quality attributes,
e.g., execution speed. For the sake of simplicity, we did not take into account the effect of adaptation choices on other
quality attributes.
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Algorithm 3: Adaptation Strategy
Input: App // The Java Application to run
Input: MemoryT hold // Memory size threshold

1 while app.thread.isAlive() do
2 if getRuntimeMemory() > MemoryThold then
3 RunningModules ← getModules(app.thread.getStackTrace())
4 foreach module ∈ App.loadedModules() do
5 if module 6∈ RunningModules and ACADIA.getDependent(module) 6∈ RunningModules then
6 ACADIA.unload(module)
7 end
8 if module.isLoaded() and hasReplacement(module) then
9 NewModule← module.getReplacement()

10 DependentModules← ACADIA.getDependent(module)
11 ACADIA.load(NewModule)
12 ACADIA.updateDependencies(module, DependentModules, NewModule)
13 ACADIA.unload(module)
14 end
15 if getRuntimeMemory() < MemoryThold then
16 Break
17 end
18 end
19 end
20 RequiredModules ← getModules(app.thread.getStackTrace())
21 if App.loadedModules 6= RequiredModules then
22 ACADIA.load(RequiredModules - App.loadedModules())
23 end
24 end

obtains the list of modules being used and stores it in RunningModules (line 3). Then, for each loaded

module, the algorithm attempts to either offload or replace it to reduce the runtime memory size (lines 4-18).

Trying to offload the module, Algorithm 3 checks whether the module can be offloaded safely. In other words,

it checks if the target module is not currently running. Algorithm 3 also uses ACADIA’s get-dependent

command to retrieve the modules dependent on the target module and ensures none of them are among the

running modules at the moment (line 5). If true, the algorithm offloads the target module using ACADIA’s

unload command (line 6).

However, in case the target module is being used and cannot be offloaded, Algorithm 3 tries to replace the

target module with its memory-efficient version, if any (line 8). For this purpose, the module’s replacement

is stored in NewModule (line 9). Moreover, the algorithm uses ACADIA’s get-dependent command

and obtains the list of modules dependent on the target module (line 10). These dependencies should be

updated to reflect the NewModule. Therefore, Algorithm 3 first loads the new module using ACADIA’s load
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command (line 11) and then modifies the other dependent modules’ dependencies to require, export, or

open their packages to the new module accordingly (line 12). To that end, the updateDependencies method

calls ACADIA’s add-requires, add-exports, or add-opens commands where applicable. At this point,

ACADIA can safely offload the old version of the module as it is no longer used (line 13).

After the consideration of each module for offloading and replacement, the algorithm evaluates whether the

runtime memory footprint of the application is less than the MemoryThold, and if so, it stops considering the

other modules (lines 15-17). If the application requires a previously offloaded module for its execution, the

algorithm retrieves the list of required modules using the stack trace of the app’s thread again and stores it in

RequiredModules (line 20). It then checks if any of these required modules are not loaded (line 21). In that

case, it uses ACADIA’s load command to load them (line 22). The algorithm eventually terminates when the

application thread stops.

6.5 Evaluation

To evaluate ACADIA, we study the following research questions: RQ1: How successful is ACADIA in adapting

real-world Java 9+ applications without requiring changes to the manner in which they are implemented?

RQ2: What is ACADIA’s performance in terms of its execution time?

RQ3: To what extent does ACADIA impose an overhead on Java 9+ applications’ execution time?

To answer these questions, we selected three large non-trivial open-source Java 9+ applications from

GitHub [11]. Using these applications, we designed an experiment in which we execute the adaptation

strategy explained in Section 6.4 on a MacBook Pro 2013 (2.3 GHz Intel Core i7, 16 GB, MacOS 10.14). In

this section, we first introduce the selected Java applications and describe their architecture in detail. We then

discuss the mentioned research questions and present the details of the experiments’ results.
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6.5.1 Subject Applications

To examine the objectives of ACADIA, we used three different open-source Java applications on GitHub [11],

namely Quasar [4], Tascalate JavaFlow [9], and Rhizomatic [16]. Each subject application contains multiple

Java modules that can be utilized in many example scenarios. In this experiment, we used the example

scenarios (use cases) officially introduced by the applications’ developers to ensure they truly reflect real-

world usages of these applications.

The first application, Quasar, is an open-source Java system that provides high-performance, lightweight

threads, Go-like channels, Erlang-like actors, and other asynchronous programming tools for Java and Kotlin.

Quasar aims to simplify the development of highly concurrent software applications by adding lightweight

threads, channels, or actors to the JVM [14]. Quasar consistes of 4 modules and 33 packages. It also depends

on three external libraries. Figure 6.7 shows a high-level overview of Quasar’s architecture, including its

modules and required libraries.

slf4j.apiorg.reactivestreams

reactivestreams actors disruptor

core

lmax.disruptor

JDK Modules

< Library > < Library > < Library >

Figure 6.7: Quasar’s architecture graph in module-level

The second application, Tascalate JavaFlow, contains libraries and tools for developing Java applications

using continuations, i.e., an abstract representation of the control state of a computer program. Tascalate

JavaFlow allows developers to capture the execution state of the program. e.g., local variables, execution

stack, program counters, etc., at a specific time and later resume the execution from that saved state. [9].
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Tascalate JavaFlow is implemented in 10 modules, containing 27 packages in total. Figure 6.8 demonstrates

the module-level architecture of Tascalate JavaFlow.

agent.common instrument.agent providers.asmx

spi

JDK Modules

apiasmx.plustools.jar

tools.runtime

agent.core agent.proxy

Figure 6.8: Tascalate’s architecture graph in module-level

The third application, Rhizomatic, is a runtime environment built on JPMS that provides different pro-

gramming services. It supports a service programming model based on Google Guice [5] and provides

programming models for developing web application servers and RESTful applications in Java [16]. Rhi-

zomatic consists of 7 modules and 157 packages. Figure 6.9 illustrates a high-level overview of Rhizomatic’s

module architecture.

kernel

reload

api

JDK Modules

gradle.assembly

bootstrap.production

web inject

Figure 6.9: Rhizomatic’s architecture graph in module-level
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6.5.2 RQ1: Adaptation Effectiveness

Table 6.2: Results of ACADIA performing an adaptation strategy on different example scenarios of
three subject Java apps

App Example AVG. Mem. (MB) Adapt.
Name Scenario Before After ∆ % Success

Fiber 51 24.4 52.16 3
FiberAsync 55 28.4 48.36 3
IO 59 32.4 45.08 3
Channel 52 24.8 52.31 3

Quasar Actor 56 36.8 34.29 3
SrvrBhvr 60 41.8 30.33 7

(Max Mem.: ProxySrvr 52 33.8 35.00 3
62 MB EventSrc 51 29.6 41.96 3

Mem. Thold: Supervisor 58 35 39.66 3
40 MB) ReactStrms 62 40.6 34.52 7

Issues 59 39.8 32.54 3
Migration 52 33.4 35.77 3
PingPong 54 34.8 35.56 3
GenEvent 60 40.8 32.00 7
GenServer 54 32.2 40.37 3
GalaxySrvr 52 29.6 43.08 3

Average Runtime Memory Size Reduction: 39.56%
Adaptation Success Rate: 81%

cdi-owb 11 3.2 70.91 3
cdi-weld3 12 3.2 73.33 3

Tascalate cd-weld4 12 3.2 73.33 3
cglib 12 5.4 55.00 3

(Max Mem.: common 12 5.8 51.67 3
12 MB dyninvoke 12 6.42 46.43 7

Mem. Thold: jee 12 3.2 73.33 3
6 MB) lambdas 11 3.2 70.91 3

retro-lmbds 12 3.2 73.33 3
skynet 12 3.2 73.33 3
trampoline6 12 6.42 46.43 7
trampoline9 12 7.4 38.33 7

Average Runtime Memory Size Reduction: 62.20%
Adaptation Success Rate: 75%
Rhizomatic BTS-msg 47 19.6 58.30 3

(Max Mem.: BTS-msg-gdl 47 19.6 58.30 3
47 MB BTS-msg-prd 43 18.6 56.74 3

Mem. Thold: msg-api 47 18.6 60.43 3
20 MB) msg-srvc 46 24.42 46.89 7

Average Runtime Memory Size Reduction: 56.13%
Adaptation Success Rate: 80%

To assess ACADIA’s effectiveness, we applied the adaptation strategy described in Section 6.4 on the three
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subject applications while running each of their example scenarios. Each application developer has introduced

a set of example scenarios in which the subject application is used for different functionalities. There are

16 example scenarios proposed for Quasar in its documentation [15], 12 example scenarios implemented

for Tascalate [20], and 5 example scenarios for Rhizomatic [17]. We executed each example scenario on the

adaptive-version of the corresponding application. To instigate adaptation, we assigned a memory threshold

in the range of 42%-64% of the maximum runtime memory required for execution of the non-adaptive version

of each application. This assignment of memory threshold was intended to be both challenging, meaning that

the original non-adaptive version of applications would not be able to execute under such memory limits, and

realistic to provide the possibility of the adaptation strategy overcoming the memory limits. Obviously, if the

memory threshold is set to extremely low levels, no adaptation strategy can possibly succeed.

For the purpose of module replacement in the adaptation strategy, we prepared memory-efficient alternative

implementations for two modules in each application. To that end, we partially modified the implementations

of a few packages inside these modules to provide the same functionality with less runtime memory. More

specifically, we added frequent invocations of Java garbage collector (java.lang.System.gc()) in the

source code that makes the JVM recycle unused objects to make the memory they currently occupy available.

We also changed the implementation of certain modules to store specific data in the disk instead of RAM.

This decision might have the disadvantage of increasing the execution time. However, memory-constrained

devices in modern systems often rely on a solid-state drive, which is faster than traditional hard disk drives,

effectively mitigating the loss in execution time when reducing runtime memory usage. The adaptation

strategy monitored the state of the applications during the execution of each example scenario. Accordingly,

it loaded and unloaded a set of applications’ modules using ACADIA, depending on the size of the runtime

memory and the required modules, to meet the adaptation objective, i.e., reducing the runtime memory usage

below the threshold.

Table 6.2 demonstrates the results of this experiment. It includes the application names with their assigned

memory threshold and the list of example scenarios in our experiment. For each scenario, we measured the

average runtime memory size in Megabytes (MB) throughout the execution of a scenario. For each example

scenario, Table 6.2 includes the average runtime memory usage before and after executing the adaptation

strategy and whether the adaptation strategy could successfully reduce the runtime memory usage below the
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predefined memory threshold. As shown in Table 6.2, ACADIA was able to meet the adaptation strategy’s

objective in 81%, 75%, and 80% of the example scenarios regarding Quasar, Tascalate, and Rhizomatic

applications, respectively. In a few cases ACADIA failed to reduce the runtime memory size below the

threshold due to the number of running modules at the moment, yet, it was able to reduce the runtime memory

usage by the average of about 40% to 62% in the subject applications. These experiments confirm that, for an

overwhelming number of scenarios, ACADIA was able to effectively enable the adaptation strategy to unload

and re-load applications’ modules and modify their dependencies to reduce the average runtime memory

usage.

More importantly, the experiments show that the same adaptation logic can be applied to effectively adapt

three real-world Java applications without requiring any changes to the manner in which they are implemented.

Indeed, the same adaptation logic can be applied to any Java 9+ application. There is nothing particularly

unique about the three applications that were selected for our experiments. It is also important to note that

whether the adaptation logic succeeds in meeting its objectives depends on the properties of the system.

For instance, whether the adaptation logic can actually reduce the memory footprint of a system below a

user-defined threshold depends, at least in part, on whether there are replacement modules with varying

levels of memory usage. While we created such replacement modules in our experiments to provide a set of

adaptation choices, we did not change the manner in which the applications are implemented. That is, all

applications used in our experiments are purely Java 9+ applications.

6.5.3 RQ2: ACADIA’s Performance

To assess ACADIA’s performance, we answer this research question in terms of the execution time of its Static

Analyzer and Runtime Controller compartments discussed in Section 6.3. Table 6.3 reports the execution

time of the Static Analyzer and the Runtime Controller for each subject application’s example scenario noted

as Static and Runtime, respectively. The Static compartment takes between 16 to 36 seconds to statically

analyze the subject applications. However, it is executed once, and often offline before running an application,

and hence, it does not affect the application’s runtime. The Runtime compartment’s average execution time

ranges from 15 to 35 milliseconds for the subject applications. It includes the time ACADIA requires to
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perform adaptation operations, such as loading/unloading modules, and updating their dynamic architectural

model. The results of Table 6.4 indicate that ACADIA’s execution time is only a small fraction of the example

scenarios’ execution time (reported in the ”Single” column in Table 6.4), i.e., about 5-8% on average.

Table 6.3: Results for ACADIA’s execution time regarding its Static Analyzer and Runtime Controller
compartments

Application Example ACADIA Exec. Time (ms)
Name Scenario Static Runtime

Quasar

Fiber

24,375

49
FiberAsync 47
IO 40
Channel 41
Actor 35
SrvrBhvr 26
ProxySrvr 31
EventSrc 34
Supervisor 30
ReactStrms 35
Issues 33
Migration 27
PingPong 37
GenEvent 33
GenServer 33
GalaxySrvr 31
Average: 35.12

Tascalate

cdi-owb

35,721

32
cdi-weld3 25
cd-weld4 33
cglib 33
common 34
dyninvoke 40
jee 24
lambdas 32
retro-lmbds 34
skynet 35
trampoline6 29
trampoline9 39
Average: 32.5

Rhizomatic

BTS-msg

16,946

14
BTS-msg-gdl 10
BTS-msg-prd 12
msg-api 9
msg-service 30
Average: 15
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6.5.4 RQ3: Overhead on Applications’ Execution

As described in Section 6.3, ACADIA defines and creates module Wrappers implemented using

java.lang.ModuleLayer to manage, load, and unload an application’s modules. Such an implementa-

tion imposes an overhead in terms of an application’s execution time. However, since the defined module

wrappers only represent a group of modules with a specific class loader to enable loading and unloading them

at runtime, they are very efficient.

To answer RQ3, we measured the average execution time of the example scenarios both when all modules

are loaded into a single module wrapper (i.e., without the overhead of wrappers since any Java 9+ system

must exist in at least a single java.lang.ModuleLayer, which are used to implement a module wrapper)

and when the modules are loaded into separate module wrappers (i.e., with the overhead of wrappers). Table

6.4 demonstrates the results of this study. The table includes the execution time of each example scenario

executing in a Single wrapper and after splitting modules into Separate wrappers. The last column reports the

percentage of the overhead caused by module wrappers regarding the applications’ execution time. As shown

in Table 6.4, ACADIA imposes an overhead ranging from 4.3% to 5.4% of the applications’ execution time,

on average, due to exploiting module wrappers. This overhead is similar to that of adaptation techniques and

frameworks in the literature, e.g., 5-10% in Rainbow [83].

Overall, the results of our evaluation indicate that ACADIA can effectively enable architecture-based adaptation

capabilities in Java 9+ applications without requiring any change to the applications’ implementation, with a

low overhead in terms of execution time.

6.6 Related Work

This section provides an overview of the prior work on dynamic software adaptation and architecture-based

software adaptation.

Dynamic Adaptation: Dynamic adaptability has become one of the major properties of large software
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Table 6.4: Results for the overhead on the execution time of the subject apps

Application Example AVG Exec. Time (ms)
Name Scenario Single Separated Overhead%

Quasar

Fiber 278 313 12.59%
FiberAsync 272 280 2.94 %
IO 254 265 4.33 %
Channel 2057 2079 1.07%
Actor 576 604 4.86 %
ServerBehavior 444 479 7.88 %
ProxyServer 153 167 9.15 %
EventSource 335 338 0.90 %
Supervisor 342 355 3.80 %
ReactiveStreams 234 240 2.56 %
Issues 1280 1367 6.80 %
Migration 1237 1306 5.58 %
PingPong 1218 1254 2.96 %
GenEvent 1223 1265 3.43 %
GenServer 1217 1293 6.24 %
GalaxyServer 1234 1286 4.21 %

Average: 4.96%

Tascalate

cdi-owb 613 638 4.08 %
cdi-weld3 632 648 2.53 %
cd-weld4 616 671 8.93 %
cglib 615 623 1.30 %
common 613 616 0.49 %
dyninvoke 612 626 2.29 %
jee 620 634 2.26 %
lambdas 611 643 5.24 %
retro-lambdas 615 652 6.02 %
skynet 613 648 5.71 %
trampoline6 612 671 9.64 %
trampoline9 619 641 3.55 %

Average: 4.34 %

Rhizomatic

BTS-msg 171 180 5.26 %
BTS-msg-gradle 167 171 2.40 %
BTS-msg-prod 178 192 7.87 %
msg-api 194 211 8.76 %
msg-service 208 213 2.40%

Average: 5.34 %

applications in many different domains [111]. Software engineering community has proposed various

techniques for dynamic adaptation of software systems. Some address dynamic adaptation by providing

models to specify dynamically adaptive software systems as well as tools for implementing such systems [64,

70, 166, 62, 108]. More specifically, they introduce models to specify and execute adaptive systems [70, 166,
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62] or propose a methodology for modeling and validation of dynamic adaptation [108]. Moreover, some

studies focus on dynamic adaptation in service-based applications [99] by providing a runtime support [167]

or a framework to specify and analyze dynamically configurable service architectures [110]. iPOJO [107]

proposes a service-oriented component framework for handling dynamic adaptation. Klus et al. [138] present

a dynamic adaptive system infrastructure and an underlying component model.

Some studies have addressed dynamic adaptation from other perspectives, e.g., in multi-cloud or distributed

systems [87, 211], investigating safe adaptation [80], utilizing dynamic product line architecture [129,

102, 118], using software process technology [199], and addressing dynamic adaptation from a security

perspective [61].

Architecture-Based Adaptation: As software system’s architecture directly impacts its quality attributes, the

literature has studied a range of architectural styles with regards to their support for structural and behavioral

changes at runtime [196, 171], e.g., presenting an architectural strategy for self-adapting systems [209] or a

reference architecture for system configuration and behavior adaptation [73].

Plenty of approaches have leveraged architectural models to address dynamic adaptation of software sys-

tems [84, 68, 91, 103]. Particularly, Cheng et al. [84] utilize externalized architectural models for adaptation

of pervasive computing systems based on performance-related criteria. Bencomo et al. [68] use architec-

tural models for representation, generation, and operation of highly configurable component-based systems.

Additionally, Cu et al. [91] leverage an architectural variability mechanism to present an approach that

automatically updates both source code and running code during the system evolution. However, due to

the uncertainty of many existing models, D’Ippolito et al. [103] propose a tiered framework for combining

specific models with different assumptions and risks.

Several research groups have previously developed frameworks for realization of architecture-based adap-

tation, such as Rainbow [115], c2.fw [94], ArchJava [58], Prism-MW [154], and ActivFORMS [132]. For

instance, Rainbow [115] uses architecture models and styles to provide a reusable infrastructure that monitors

a running software system and updates its architectural model based on different self-adaptation strategies.

Moreover, Swanson et al. present Refract that extends Rainbow with new components and algorithms

targeting failure avoidance [191].
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Prior studies have investigated architecture-based adaptation in other contexts, e.g., service-based applica-

tions [66, 76, 81, 67], distributed systems [212, 75], microservices [109], internet-of-things (IoT) [210], and

mobile computing [125]. More specificall, Weyns et al. [212] present an architectural style for designing

decentralized self-adaptive systems. Similar to ACADIA, Florio et al. [109] introduce Gru, an approach that

adds adaptation capabilities to microservices without changing their implementations. In the context of IoT,

Weyns et al. [210] propose an architecture-based adaptation approach for automating the management of

IoT systems. Hallsteinsen et al. [125] introduce MADAM, a generic middleware for adaptation in mobile

applications.

While the above-mentioned techniques have provided the inspiration for our work, all require a software

system to be designed and developed for adaptation using the corresponding frameworks. None of the

above-mentioned solutions are capable of readily adapting applications built using one of the most popular

programming languages without requiring any changes to the manner in which the applications are built.

ACADIA does not require any changes to an implemented system other than using the standard, albeit

relatively recently introduced, Java constructs, enabling automatic architecture-based adaptation support for

and evaluation on many large, real-world Java applications, which are abundantly available on open-source

software repositories (e.g., GitHub).

6.7 Discussion

The capability to retain an accurate representation of a software system’s architecture at runtime and make

adaptation decisions in terms of its architectural characteristics, e.g., components and interfaces, is referred

to as architecture-based adaptability. Despite its potential, architecture-based adaptability has not gained

traction in industry, as it often complicates the development of software by requiring non-trivial modification

to the manner it is developed. This chapter introduces ACADIA, a framework that leverages JPMS and static

analysis techniques to automatically enable architecture-based adaptation support in any Java 9+ application.

Using ACADIA, an engineer can focus on the development of adaptation logic, which can obtain the dynamic

architecture of the running Java system and apply changes to it through an API. Our evaluation results indicate
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that ACADIA can effectively maintain and modify the architecture of any Java 9+ application at runtime with

very low overhead and requiring no changes to its implementation.
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Chapter 7

Conclusion

A software system’s architecture comprises the principal design decisions employed in the system’s construc-

tion, and it is often conceptualized in terms of high-level constructs, such as software components, connectors,

and their interfaces. On the other hand, programming languages usually provide low-level constructs, such as

classes, methods, and variables. Bridging this gap, yet, remains a challenge as a result of which the software

engineering research community has previously advocated for architecture-based development.

Accordingly, modern programming languages and frameworks have recently provided extensive support for

architecture-based development by incorporating the notion of software components or modules representing

an architectural construct, e.g., modules in Java 9+ or C++20 and dynamic feature modules in Android. The

support of modularization in software development helps developers with improved software quality, easier

maintainability, and better scalability. Despite all the benefits, it introduces new challenges in different phases

of development and execution of software application, including build-time, module installation-time, and

run-time.

At build-time, developers explicitly specify the system module declarations and their dependencies which

might be inconsistent with the module dependencies implemented in the system. These architectural

inconsistencies can lead to severe security, maintainability, and scalability consequences. Furthermore when

installing a module during the system’s run-time, an installation request may fail due to various contextual
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reasons. The failure at installing a module can result in run-time exceptions or unexpected behavior of the

applications. Finally, the application modules can be loaded and unloaded at run-time. Loading and unloading

modules change the system’s architecture by defining new dependencies. As a result, it can introduce new

architectural inconsistencies to the running system.

This dissertation presents validation and verification approaches to address the challenges of modular software

development in different phases of software development and execution. Section 7.1 describes the research

contributions in detail.

7.1 Research Contributions

This dissertation makes the following contributions to the Software Engineering research community:

• A comprehensive defect model of inconsistent module dependencies in Java 9+ applications: I defined

a novel defect model consisting of 8 types of architectural inconsistencies in Java 9+ applications that

may arise while specifying module dependencies using Java Platform Module System (JPMS). The

inconsistent module dependencies in this defect model are in fact unnecessary specified dependencies

in the module description files, e.g., where a module exposes more of its internals than are used or

requires internals of other modules that it never uses.

• Automated detection and repair of modular inconsistencies in Java 9+ applications: I proposed a novel

approach that leverages the defect model of inconsistent module dependencies and static analyses to

automatically detect and repair the identified architectural inconsistencies within Java 9+ applications

both statically at build-time and dynamically at run-time. This novel technique detects modular

inconsistencies with 100% accuracy and robustly repairs them without introducing any unexpected

behavior or disruptions to the applications’ execution.

• A comprehensive defect model of dynamic delivery faults in Android app bundles: I constructed a novel

defect model in terms of Failed State Contexts (FSC), i.e., a context or situation in which a dynamic

feature module installation request fails. This defect model consists of 11 types of FSCs based on the
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root cause of the failure, each depending on different contextual reasons.

• Automated dynamic delivery testing in Android: I proposed a novel test augmentation approach for

testing dynamic delivery in Android app bundles. The proposed approach considers the dynamic

feature modules’ installation life-cycle and their fault models to effectively test the behavior of Android

applications during the module installation. It leverages static and dynamic analysis techniques to (1)

identify tests that reach dynamic feature modules installation requests and (2) modify the identified

tests with injecting a combination of GUI and system events to generate new tests that induce different

conditions, which may cause an installation request to fail.

• Tools and Experiments:

– Automatic detection and repair of architectural inconsistencies in Java: I implemented the

proposed technique and empirically evaluated it on 52 Java 9+ applications with appropriate

metrics to demonstrate its effectiveness and efficiency. Furthermore, the developed tool is

publicly released [52] to help other researchers reuse and extend the proposed approach and

build more advanced techniques on top of them.

– Dynamic delivery testing in Android: I implemented the proposed technique and empirically

evaluated it on 25 Android applications with appropriate metrics to demonstrate its effectiveness

and efficiency. Furthermore, the developed tool is publicly released [41] to help other researchers

reuse and extend the proposed approach and build more advanced techniques on top of them.

• Dataset

– A dataset of 567 inconsistent module dependency defects in real-world Java applications: This

data set contains the source code of 38 Java 9+ applications with architectural inconsistencies

specified in their module description files. The dataset contains additional data, such as the type

of the architectural inconsistencies, the affected modules, and packages for each application to

help other researcher use the dataset easily. This dataset is available upon request.

– A dataset of 204 reproducible dynamic delivery defects in real-world Android applications:

This dataset contains the source code and apk files of 25 Android applications with crashes or

unexpected behavior during the dynamic feature module installation failures. 75 defects among
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this list was confirmed by the application developers. The dataset also includes some additional

data, such as the type of dynamic delivery defect, the affected dynamic feature modules, and the

applications defective behavior to help other researcher use the dataset easily. This dataset is

available upon request.

7.2 Future Directions

Automatic modularization of Java applications with no architectural inconsistencies. Migrating non-

modular Java applications, before Java 9, to modular Java 9+ application requires significant engineering effort

and is highly time-consuming. Therefore, many developers do not modularize their Java applications to use

Java Platform Module System (JPMS) or migrate them with inadequate modularization and many unnecessary

module dependencies, introducing numerous architectural inconsistencies. For instance, developers might

unnecessarily expose the applications’ internals or require the internals of other modules or JDK modules,

which seriously impair the applications’ security, maintainability, and scalability. To that end, the software

engineering community needs to address the issues of modularization of Java applications and migrating them

to Java 9+. More specifically, researchers need to develop automated approaches that consider related security,

encapsulation, and scalability metrics and efficiently modularize Java applications with no architectural

inconsistencies.

Automatic repair of dynamic delivery defects in Android applications. Dynamic delivery defects in

Android can result in critical failures, i.e., crashing or unexpected behaviors of applications. Therefore, it

requires developers’ extra attention to localize and fix them. This dissertation helps developers with detecting

the issues and testing them. However, developers need to manually repair the identified dynamic delivery

defects, as there is no automated technique to resolve such failures. The software engineering research

community should focus on resolving dynamic delivery failures in Android applications and devise an

automated and efficient approach that robustly repair such failures in Android application to advance this line

of research line further.
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