
UC Irvine
UC Irvine Electronic Theses and Dissertations

Title
Automated Assistive-Service Driven Accessibility Testing for Mobile Applications

Permalink
https://escholarship.org/uc/item/1ff290tb

Author
Salehnamadi, Navid

Publication Date
2022

Copyright Information
This work is made available under the terms of a Creative Commons Attribution-
NonCommercial License, availalbe at https://creativecommons.org/licenses/by-nc/4.0/

Peer reviewed|Thesis/dissertation

eScholarship.org Powered by the California Digital Library
University of California

https://escholarship.org/uc/item/1ff290tb
https://creativecommons.org/licenses/by-nc/4.0/
https://escholarship.org
http://www.cdlib.org/

UNIVERSITY OF CALIFORNIA,
IRVINE

Automated Assistive-Service Driven Accessibility Testing for Mobile Applications

DISSERTATION

submitted in partial satisfaction of the requirements
for the degree of

DOCTOR OF PHILOSOPHY

in Software Engineering

by

Navid Salehnamadi

Dissertation Committee:
Professor Sam Malek, Chair

Associate Professor Jim Jones
Assistant Professor Stacy Branham

2022

© 2022 Navid Salehnamadi

DEDICATION

To my dear aunt, Sima Joun– With extraordinary abilities to love and be kind, unconditionally

ii

TABLE OF CONTENTS

Page

LIST OF FIGURES vi

LIST OF TABLES viii

ACKNOWLEDGMENTS ix

VITA x

ABSTRACT OF THE DISSERTATION xii

1 Introduction 1
1.1 Dissertation Structure . 5

2 Related Work and Research Gap 8
2.1 Related Work . 8

2.1.1 Accessibility Standards and Guidelines 9
2.1.2 Accessibility Testing . 9
2.1.3 Automated GUI Test Generation . 10

2.2 Research Gap . 13

3 Research Problem 15
3.1 Problem Statement . 15
3.2 Thesis Statement . 16
3.3 Research Hypotheses . 17

4 Proxy Users 19
4.1 Illustrative Example . 20
4.2 Background . 23

4.2.1 Android UI . 23
4.2.2 Accessibility in Android . 24

4.3 Actions . 25
4.3.1 Touch Gestures . 25
4.3.2 TalkBack Actions . 26
4.3.3 SwitchAccess . 28

4.4 Proxy User . 29

iii

4.4.1 Touch Proxy User . 29
4.4.2 TalkBack Proxy User . 30
4.4.3 SwitchAccess Proxy User . 35
4.4.4 Abstract Proxy User . 36

4.5 Conclusion . 37

5 Assistive-Service Testing Through Reusing GUI Tests 38
5.1 Illustrative Example . 40
5.2 Approach . 42

5.2.1 Test Analyzer . 42
5.2.2 Use-Case Executor . 45
5.2.3 Result Analyzer . 46

5.3 Evaluation . 47
5.3.1 Experimental Setup . 48
5.3.2 RQ1. Accuracy of LATTE . 48
5.3.3 RQ2. LATTE vs. Google Accessibility Scanner 51
5.3.4 RQ3. Qualitative Study of Detected Accessibility Failures and Warnings . 52

5.4 Conclusion . 55

6 Assistive-Service Crawler 57
6.1 Motivating Example . 59
6.2 Approach . 61

6.2.1 Snapshot Manager . 62
6.2.2 Action Extractor . 63
6.2.3 Oracle . 64

6.3 Optimization . 65
6.4 Implementation . 66
6.5 Evaluation . 67

6.5.1 Experimental Setup . 67
6.5.2 RQ1. Effectiveness of GROUNDHOG . 68
6.5.3 RQ2. Comparison with Scanner . 73
6.5.4 RQ3. Qualitative Study . 74
6.5.5 RQ4. Performance . 78

6.6 Threats to Validity . 79
6.7 Conclusion . 80

7 Over-Accessibility Issue Detection 81
7.1 Motivating Example . 83
7.2 Overly Accessible Elements . 86

7.2.1 Data Collection . 87
7.2.2 Results . 88

7.3 Approach . 91
7.3.1 OA Detector . 91
7.3.2 OA Verifier . 94

7.4 Evaluation . 94

iv

7.4.1 Experimental Setup . 95
7.4.2 RQ1. Accuracy of OVERSIGHT . 95
7.4.3 RQ2. Qualitative Analysis of Detected OA Elements 100
7.4.4 RQ3. Performance . 102

7.5 Conclusion . 103

8 Assistive-Service Aided Manual Testing 104
8.1 Motivating Example . 106
8.2 Approach Overview . 109

8.2.1 Recorder . 110
8.2.2 Action Translation . 111
8.2.3 Replayer . 112
8.2.4 Report . 113

8.3 Evaluation . 114
8.4 Discussion . 123
8.5 Conclusion . 127

9 Conclusion 128
9.1 Research Contribution . 129
9.2 Future Work . 130

Bibliography 132

v

LIST OF FIGURES

Page

1.1 Overview of this dissertation . 3

4.1 (a) The page showing all the words favorite by users, (b) The page after users tap
on the edit button, (c) A part of the excerpted XML representation of UI structure
in the dictionary app shown in subfigure (a) . 20

4.2 The process of communication of TalkBack or SwitchAccess Proxy User with their
corresponding assistive services. 31

4.3 (a) TENG representing Linear Navigation of Figure 4.1(b), (b) TENG representing
Search Navigation, (c) TENG representing Touch Navigation 33

4.4 (a) The corresponding SENG of Figure 4.1(b), (b) the actions in the SwitchAccess
menu . 35

5.1 a) The very first step of creating account in “geek” shopping app (the dotted box) b)
The accessibility issues reported by Google Accessibility Scanner c) Navigating the
app using assistive services (TalkBack and SwitchAccess) 40

5.2 Overview of LATTE . 42
5.3 The screenshots of some apps with accessibility failures 50
5.4 Screens of few apps with accessibility issues . 52

6.1 (a) The login activity of Facebook app, (b) The exit dialog appears when users
press back button on Facebook app, (c) a screen in BudgetPlanner app, the high-
lighted boxes and arrows depicts the directional navigation to the “ADD” button by
TalkBack, (d) a dialog appears after tapping “ADD” button 59

6.2 An overview of GROUNDHOG . 62
6.3 Locating (a) the last “ADD” button, and (b) the “Done” button with TalkBack Proxy

in Linear Navigation. 18 Linear Navigation interactions in (b) are redundant since
they have been performed in (a) already. 65

6.4 (a-d) are examples of false positives, and (e-f) are examples of missing actions in
GROUNDHOG . 72

6.5 Qualitative study of GROUNDHOG’s report on subject apps 75

7.1 Built-in lock for a security-sensitive app. 84
7.2 Over Accessibility Conditions. 88
7.3 Overview of OVERSIGHT framework. 91

vi

7.4 OVERSIGHT Failures. (a) and (b) are false positives of OA Detector, where dashed green
boxes are erroneously detected as covered. (c) is a false negative of OA Verifier. TalkBack
stuck in the world map. 99

7.5 Impacts of OA elements in different apps. (a) Accessibility issue of overly perceivable
elements. (b) Accessibility issue of overly actionable elements. (c) Workflow violation,
giving access to premium content (d) Workflow Violation, breaking app logic by submitting
a hotel request for negative number of travelers. 100

8.1 (a) The main page of Dictionary app, (b) The page after tapping on the word of the
day, (c) Upper menu disappears when users scroll down the page, (d) The Search
Navigation provided by TalkBack . 106

8.2 An overview of A11YPUPPETRY . 108
8.3 (a) the toggle button in iSaveMoney is not focusable and buttons indicated by yellow-

solid boxes have ineffective action, (b) The content description of the notification
icon in ESPN has unsupported characters, (c) The textual description of travelers
numbers are different in Expedia, (d) (e) different fragments showing to different
users . 117

8.4 (a) After pressing the search tab in DoorDash, a new search page appears without
any announcement, (b) List of saved stores in DoorDash, (c) The interstitial ad in
Dictionary app and the close tab is not focusable by TalkBack, (d)The accessible
calendar in Expedia . 122

vii

LIST OF TABLES

Page

1.1 Potential stakeholders for each part of the dissertation 5

5.1 The summary of detected accessibility failures. ‘x’ shows a failure was found in
an app (row) while executing under a setting (column). Red bold ‘x’ is a failure
that was detected using LATTE but not using Google Accessibility Scanner. ‘✓’
means the test or use case could be executed completely under a setting. The first
five highlighted apps have confirmed accessibility issues per prior user study [125] . 49

6.1 The evaluation subject apps with the details of detected accessibility issues by
GROUNDHOG . 69

7.1 Sample types of information exposed from nodes to assistive services. 87
7.2 Accuracy of OVERSIGHT in running on 30 apps. 97

8.1 The evaluation subject apps with the detected accessibility issues 114
8.2 The percentage of the intersection of user-confirmed issues detected by Scanner,

LATTE, and A11YPUPPETRY to the total number of user-confirmed issues. 116

viii

ACKNOWLEDGMENTS

First and foremost, I express my gratitude to my advisor, Professor Sam Malek, for his guidance
and support. He believed in me when I was at my lowest and inspired me when I needed it the most.

I want to thank the other committee members, Professors James Jones, and Stacy Branham, for their
valuable feedback on my dissertation. I appreciate professors Joshua Garcia, Cristina Lopes, and
Iftekhar Ahmed for their help and guidance during this journey. I also enjoyed collaborating with
other members of the SEAL lab at UCI, especially Forough Mehralian, Abdulaziz Alshayban, Dr.
Jun-wei Lin, Negar Ghorbani, Syed Fatiul Huq, and Ziyao He.

This dissertation was supported in part by award numbers 2211790, 1823262, and 2106306 from
the National Science Foundation. Also, I would like to thank Sigma Xi, Noyce Initiative, Bob and
Barbara Kleist, and UCI Grad Division for partly supporting my research financially.

I am grateful for my friends who were beside me and supported me in tough times, from the
beginning of my journey as an international Ph.D. student to the day I defended my dissertation. In
particular, I would like to thank my dear friend, Dr. Maryam Asghari, who was a great source of
inspiration and help.

I am thankful for my lovely family, who always support me. Being far from Maman Ozra, Sima
Joun, Baba Reza, and Maman over the past five years was difficult, but they constantly showed their
love and support, which was a relief in helping me to stay motivated and strong. I am grateful for
having Saeed in my life, who is more than a brother to me.

Finally, I do not know how to express my deepest gratitude and love toward Yasaman, my beautiful
wife. It is hard to imagine how I could get through all obstacles and difficulties without her love,
support, and wisdom. I was fortunate to have her by my side in past challenges, and I am happy to
be with her in unforeseeable stages of our life.

ix

VITA

Navid Salehnamadi

EDUCATION

Doctor of Philosophy in Software Engineering 2022
University of California, Irvine Irvine, California

Master of Science in Software Engineering 2017
Sharif University of Technology Tehran, Iran

Bachelor of Science in Computer Engineering 2015
University of Tehran Tehran, Iran

RESEARCH EXPERIENCE

Graduate Research Assistant 2017-2022
University of California, Irvine Irvine, California

Research Intern Summer 2021
Microsoft Seattle, Washington

Graduate Research Assistant 2015-2017
Sharif University of Technology Tehran, Iran

TEACHING EXPERIENCE

Teaching Assistant 2018-2019
University of California, Irvine Irvine, California

Teaching Assistant 2017
Sharif University of Technology Tehran, Iran

Teaching Assistant 2013-2015
University of Tehran Tehran, Iran

x

REFEREED JOURNAL PUBLICATIONS

ROUTE: Roads Not Taken in UI Testing 2022
Transactions on Software Engineering and Methodology (TOSEM)

DELTADROID: Dynamic Delivery Testing in Android 2022
Transactions on Software Engineering and Methodology (TOSEM)

REFEREED CONFERENCE PUBLICATIONS

Assistive-Technology Aided Manual Accessibility Testing in Mo-
bile Apps, Powered by Record-and-Replay

April 2023

(Under Review) 2023 ACM SIGCHI Conference on Human Factors in Computing Systems
(CHI)

Groundhog: An Automated Accessibility Crawler for Mobile
Apps

October 2022

37th International Conference on Automated Software Engineering (ASE)

Too Much Accessibility is Harmful! Automated Detection and
Analysis of Overly Accessible Elements in Mobile Apps

October 2022

37th International Conference on Automated Software Engineering (ASE)

Data-driven accessibility repair revisited: on the effectiveness of
generating labels for icons in Android apps

Aug 2021

2021, The ACM Joint European Software Engineering Conference and Symposium on the
Foundations of Software Engineering (ESEC/FSE)

Latte: Use-Case and Assistive-Service Driven Automated Acces-
sibility Testing Framework for Android

May 2021

2021, ACM SIGCHI Conference on Human Factors in Computing Systems (CHI)

Test Automation in Open-Source Android Apps: A Large-Scale
Empirical Study

September 2020

35th International Conference on Automated Software Engineering (ASE)

ER Catcher: A Static Analysis Framework for Accurate and
Scalable Event-Race Detection in Android

September 2020

35th International Conference on Automated Software Engineering (ASE)

A Benchmark for Event-Race Analysis in Android Apps (Poster) June 2020
18th International Conference on Mobile Systems, Aplications, and Services (MobiSys)

xi

ABSTRACT OF THE DISSERTATION

Automated Assistive-Service Driven Accessibility Testing for Mobile Applications

By

Navid Salehnamadi

Doctor of Philosophy in Software Engineering

University of California, Irvine, 2022

Professor Sam Malek, Chair

For 15% of the world population with disabilities, accessibility is arguably the most critical

software quality attribute. The ever-growing reliance of users with disability on mobile apps further

underscores the need for accessible software in this domain. Manual accessibility testing with

assistive services is a high-fidelity form of testing; however, it is time-consuming and requires

deep knowledge of various aspects of accessibility. Existing automated accessibility assessment

techniques primarily aim to detect violations of predefined guidelines, thereby often overlook the

way software is actually used by users with disability, i.e., with assistive services. Since disabled

users, especially the ones with motor or visual impairments, are heavily reliant on assistive services

in interacting with apps, many important cues are missed when these services are not considered in

the evaluation of an app’s accessibility.

This dissertation proposes a three-pronged approach to advance accessibility testing for mobile

applications by including assistive services in the evaluation process. In the first prong, I introduce

a new technique to extract main use cases of the software from the existing software tests, then

re-execute them from the standpoint of users with disabilities with various assistive services. In the

second prong, I introduce a completely automated way to crawl applications using assistive services

to detect accessibility issues at runtime. Finally, in the third prong, I introduce a semi-automated

technique to aid manual accessibility testers to efficiently evaluate applications with various assistive

xii

services. To show the feasibility of these ideas, this dissertation particularly presents and proposes

automated and semi-automated tools implemented for Android platform, namely for each prong (1)

LATTE, (2) GROUNDHOG, OVERSIGHT, and (3) A11YPUPPETRY.

All conducted experiments on real-world subject apps corroborate the effectiveness and efficiency

of the proposed approaches, and their ability to detect various types of accessibility issues in mobile

applications.

xiii

Chapter 1

Introduction

Mobile applications (apps) are permeating every aspect of the daily life of billions of people around

the world, from personal banking to communication, transportation, and more. The ability to access

and use these apps with ease is vital for everyone, especially for approximately 15% of the world

population with some form of disability [124]. For visually-related disabilities alone, there are

217 million people worldwide with moderate to severe visual impairment and 36 million who are

completely blind [2]. However, recent studies have shown accessibility issues are prevalent in

mobile apps, hindering their use by users with disability [106, 7, 36].

Technology institutes such as World Wide Web Consortium and companies such as Apple and

Google encouraged developers to test the accessibility of their software applications either manually

or automatically. Since there is a large range of disabilities with varying severity, it may not be

possible for a development team to manually test an app through user evaluation. Moreover, due to

time and budget constraints, such manual approaches often result in insufficient evaluation [115].

Relying on manual evaluation also makes it challenging to re-evaluate new releases of apps, which

may frequently occur due to short release cycles, changing requirements, and rapidly evolving

technologies [33].

1

To date, various automated accessibility analysis techniques have been proposed to deal with the

widespread prevalence of accessibility issues [13, 9, 27, 28]. Common across all these tools is the

way they aim to identify accessibility issues in terms of predefined rules derived from accessibility

guidelines. For instance, whether a label for an icon is missing, whether there is sufficient contrast

between text and background, whether the actionable elements are too close to each other, etc.

While it is important for developers to follow these guidelines in the construction of their apps, the

rules by themselves are not able to precisely determine the difficulties a user with disability may

experience. For example, from a disabled user’s standpoint, there is a significant difference between

accessibility issues affecting the main functionalities of an app versus those affecting its incidental

functionalities (e.g., advertisement banners, copyright disclaimers), yet the existing techniques

provide no effective means of distinguishing between the two. Prior studies [7] have shown the

developers tend to either not utilize or simply ignore the results of existing accessibility analysis

tools, because they produce a massive amount of accessibility warnings, many of which are minor,

or simply wrong.

Another limitation of the existing automated accessibility analysis techniques is that none consider

the assistive services such as TalkBack (a screen reader for Android users with blindness or

visual impairment) or SwitchAccess (an Android service for navigating app for users with motor

impairment) in their analysis. Since disabled users are heavily reliant on assistive services in

interacting with apps, many important cues are missed when these services are not considered in

the evaluation of an app’s accessibility. For instance, a screen with a dynamic user interface (UI)

may have no apparent accessibility issue in the implementation of its individual elements, yet be

completely unusable by a disabled user due to the assistive service’s inability to detect the changes

in UI.

The key insight that guides our research is that a high-fidelity form of evaluating accessibility needs

to reflect the way disabled users actually interact with apps, i.e., using the assistive services. Another

key insight comes from the huge body of work on automated Graphical User Interface (GUI) test

2

Figure 1.1: Overview of this dissertation

input generation techniques in the past decade, including test reuse [78, 30, 85], automated input

generation [55, 82, 83, 61, 76, 123, 116, 32, 8, 29, 94, 77], and record-and-reply techniques [101,

60, 107, 74, 50, 59, 63, 75]. Although these techniques aim to evaluate the functionality of apps’

GUI, they only consider the way users without disabilities interact with an app, e.g., performing

touch gestures on a screen.

Figure 1.1 depicts an overview of the contribution of this dissertation. Informed by the above-

mentioned insights, the first prong of this dissertation introduces a new form of automated ac-

cessibility analysis, called LATTE, that builds on the way developers already validate their apps

for functional correctness. A widely adopted practice in software development is for developers

to write system tests, often in the form of GUI test scripts, to validate the important use cases

(functionalities) of an app for correctness. These use cases are the important functionalities of an

app that should also be accessible. Given an app under test and a set of regular GUI tests (written

by developers) as input, LATTE first extracts a Use-Case Specification corresponding to each test.

A Use-Case Specification defines the human-perceivable steps a test takes to exercise a particular

functionality in an app. LATTE then executes the Use-Case Specification using an assistive service,

i.e., TalkBack and SwitchAccess.

The effectiveness of LATTE heavily depends on the availability of GUI tests for validating the

functionalities of the app under test. Therefore, LATTE may not be suitable for software without

GUI tests. Studies show that more than 92% of Android app developers do not have any GUI test

for their apps [79]. Even if GUI tests are available for proprietary apps, the test cases are rarely

3

available to the public or app store operators that may want to assess the accessibility of apps for

users. Furthermore, GUI tests may fail to achieve good coverage, making their approach ineffective

at finding accessibility issues in uncovered parts of the app under test.

To address the aforementioned limitations of LATTE, we have developed a fully automated approach,

a prototype called GROUNDHOG in Android, for validating the accessibility of Android apps that

replicates the manner in which disabled users actually interact with apps, i.e., using assistive

services. GROUNDHOG gets the app in a binary form, i.e., APK, and installs it on a Virtual

Machine (VM). It utilizes an app crawler to explore a diverse set of screens to be assessed. For

each screen, GROUNDHOG extracts all the possible actions and executes the same action with

different interaction models, including different assistive services, to validate if the app is accessible.

Moreover, powered by GROUNDHOG we studied over-accessibility and its threats, enabling an

assistive-service user to get access to app content or functionality that is not available otherwise.

We also studied the characteristics of overly accessible elements and proposed OVERSIGHT to

automatically detect them in mobile apps with high accuracy.

Nevertheless, the most reliable method of validating an app’s accessibility is through user eval-

uation [115]. Besides the fact that GUI tests may not be available or the lack of app coverage

for automated app crawlers, many of accessibility issues require human judgement. For example,

automated tools like Accessibility Scanner can report issues like missing speakable text; however,

they do not detect any issue when the provided alternative text is not descriptive or relevant to the

intended functionality of corresponding GUI elements. However, finding users with different types

of disability and conducting such evaluations can be prohibitively difficult, especially for small

development teams with limited resources. On the other hand, exploring and testing an app with

conventional interaction method, e.g., use touch screen in a mobile device, is quite an easy task

for most software developers and testers. For the last piece of this dissertation, I designed and

built a semi-automated tool to assist manual testers, even the ones with virtually no knowledge on

accessibility, to asses the accessibility different functionalities of an app from the standpoint of users

4

Table 1.1: Potential stakeholders for each part of the dissertation

Chapter Content Stakeholders
5 LATTE app developers, app testers, researchers
6 GROUNDHOG app developers, app testers, researchers, app stores, users
7 OVERSIGHT app developers, app testers, researchers, app stores, security analyst
8 A11YPUPPETRY app developers, app testers, researchers, users

with different disabilities. A prototype has been implemented for Android, called A11YPUPPETRY,

which utilizes record-and-reply techniques. Given a human tester and a device, A11YPUPPETRY

records all interactions of the tester on the device and replies it in another device with an assistive

service, like screen reader. When the exploration is finished, the human tester can review a full

accessibility report of the executed use case, including the captured video of the execution of the

same use case for each assistive service.

1.1 Dissertation Structure

The rest of this dissertation is organized as follows. Chapter 2 provides an overview of the prior

related research and identifies the position of this work in the research landscape. Chapter 3 presents

the research problem and the scope of this thesis. Chapter 4 examines different ways of interaction

with a mobile device and introduces Proxy Users, a software app that can automatically perform

an action with an assistive service. Chapter 5 will present my solution for re-executing GUI test

with assistive services (LATTE), then Chapter 6 will introduce our completely automated accessible

crawler (GROUNDHOG). Next, Chapter 7 will discuss over accessibility issues and our automated

solution for detecting them (OVERSIGHT). Chapter 8 will introduce our record-and-reply technique

for assisting human testers to conveniently verify the explored functionalities with assistive services

(A11YPUPPETRY). Finally, Chapter 9 concludes the dissertation with future work.

Each part of this dissertation may be of interest to different groups of readers. Table 1.1 lists the

potential stakeholders for each chapter of this dissertation.

5

The research presented in this dissertation has been published in or submitted to the following

venues:

• Navid Salehnamadi, Abdulaziz Alshayban, Jun-Wei Lin, Iftekhar Ahmed, Stacy Branham,

and Sam Malek, Latte: Use-Case and Assistive-Service Driven Automated Accessibility

Testing Framework for Android, 2021 ACM SIGCHI Conference on Human Factors in

Computing Systems (CHI), Yokohama, Japan, May 2021 [111].

• Navid Salehnamadi*, Forough Mehralian*, and Sam Malek, Groundhog: An Automated

Accessibility Crawler for Mobile Apps, 2022 37th IEEE/ACM, International Conference on

Automated Software Engineering (ASE) [113].

• Forough Mehralian*, Navid Salehnamadi*, Syed Fatiul Huq, and Sam Malek, Too Much

Accessibility is Harmful! Automated Detection and Analysis of Overly Accessible Elements

in Mobile Apps, 2022 37th IEEE/ACM, International Conference on Automated Software

Engineering (ASE) [88].

• Navid Salehnamadi, Ziyao He, and Sam Malek, Assistive-Technology Aided Manual Ac-

cessibility Testing in Mobile Apps, Powered by Record-and-Replay, Submitted to review in

2023 ACM SIGCHI Conference on Human Factors in Computing Systems (CHI), Hamburg,

Germany, April 2023.

In addition, the following publications are not included in the dissertation but are related:

• Jun-Wei Lin, Navid Salehnamadi, and Sam Malek, ROUTE: Roads Not Taken in UI Testing,

ACM Transactions on Software Engineering and Methodology (TOSEM) [80].

• Negar Ghorbani, Reyhaneh Jabbarvand, Navid Salehnamadi, Joshua Garcia, and Sam Malek,

DeltaDroid: Dynamic Delivery Testing in Android , ACM Transactions on Software Engi-

neering and Methodology (TOSEM) [49].

6

• Forough Mehralian, Navid Salehnamadi, and Sam Malek, Data-driven Accessibility Repair

Revisited: On the Effectiveness of Generating Labels for Icons in Android Apps, ESEC/FSE

2021, the ACM Joint European Software Engineering Conference and Symposium on the

Foundations of Software Engineering, August 2021 [89].

• Jun-Wei Lin, Navid Salehnamadi, and Sam Malek, Test Automation in Open-Source An-

droid Apps: A Large-Scale Empirical Study, 35th IEEE/ACM International Conference on

Automated Software Engineering (ASE), Virtual Event, Australia, September 2020 [79].

• Navid Salehnamadi, Abdulaziz Alshayban, Iftekhar Ahmed and Sam Malek, ER Catcher: A

Static Analysis Framework for Accurate and Scalable Event-Race Detection in Android, 35th

IEEE/ACM International Conference on Automated Software Engineering (ASE), Virtual

Event, Australia, September 2020 [109].

• Navid Salehnamadi, Abdulaziz Alshayban, Iftekhar Ahmed and Sam Malek, A benchmark

for event-race analysis in android apps, Proceedings of the 18th International Conference on

Mobile Systems, Applications, and Services (MobiSys), Virtual Event, June 2020 [108].

7

Chapter 2

Related Work and Research Gap

The purpose of this chapter is to provide an overview of the related work which forms the basis of

the proposed research. In particular, it discusses previous studies on accessibility and GUI testing

techniques. Furthermore, it identifies the research gap and situates the proposed research within the

literature.

2.1 Related Work

This section discusses prior work on accessibility evaluation in software development, particularly

for the Android platform. It first reviews the accessibility guidelines and standards that are the basis

of existing accessibility evaluation techniques, followed by previous studies and tools on automated

accessibility testing. Finally, it discusses existing GUI test generation techniques since they are the

building blocks of the proposed tools in this dissertation.

8

2.1.1 Accessibility Standards and Guidelines

Accessibility can be defined as the degree to which people with disabilities easily use an app or a

website. The more people with different types of disabilities can reach and interact with the app, the

more accessible it is.

There are several accessibility standards used across the world to help promote and implement ac-

cessibility, including Web Content Accessibility Guidelines (WCAG 2.0 and 2.1), a well-recognized

and general accessibility standard published by the Web Accessibility Initiative (WAI). Other

accessibility standards, e.g., U.S. Revised Section 508 standard [56], provide a variety of recom-

mendations to provide better support for individuals with different kinds of disabilities, including

motor, hearing, and visual impairment.

Developers of popular mobile platforms such as Google and Apple also provide their own set of

developers accessibility guidelines, which aim to provide better support for developers in making

their apps more accessible [15, 26]. These guidelines are based on WCGA but are platform-specific

and provide more technical details on how developers can remove common accessibility barriers in

the platform.

2.1.2 Accessibility Testing

In general, automated accessibility testing techniques evaluate app compliance with accessibility

guidelines [121] using static or dynamic analysis approaches [115]. Static analysis approaches such

as Lint [20] identify accessibility violations in the source code upon compilation. Thus, they are

not able to detect issues that can be detected at runtime. To mitigate their limitations, dynamic

analysis techniques are proposed to analyze the runtime attributes of rendered UI components on

the screen. Google accessibility Scanner [9] and other tools that are built on top of Accessibility

Testing Framework [61, 65, 45] take a single app screen from the developers to run their tests and

9

report issues such as small touch target size or duplicate name issues. The capabilities of these

tools are limited to a small number of issues that were supported by accessibility guidelines that

are found to only cover around 50% of the issues [100]. Thereby, they are not able to detect issues

that manifest themselves in interactions with apps. This limitation, similarly, exists for enhanced

dynamic techniques that evaluate the same accessibility rules but replace the developers’ effort in

exploring an app with a crawler [7, 45] or provide the ability to write app exploration scenarios in

the form of GUI tests [17, 104].

After the publication of my first work on using assistive services to detect accessibility issues,

Latte [111], a few other works consider assistive services for accessibility testing [37, 5]. The most

relevant to this thesis is Alotaibi et al. [5], which utilizes TalkBack to identify accessibility issues,

such as unfocusable elements. However, this tool is limited to a single app screen and fails to detect

accessibility issues related to actions such as clicking and typing.

2.1.3 Automated GUI Test Generation

The most common way to create GUI test cases is for a software developer to manually write the

test scripts using frameworks like Espresso [17] or Appium [25]. Because of developers’ expensive

effort to write GUI tests, automated GUI test generation has become an active research area.

Most automated test generators use three main strategies: random, model-based, and targeted.

Monkey [55], the state of the practice on app crawling, utilizes the random strategy to send random

events regardless of the state of the app under test. DynoDroid [82] has a more sophisticated

approach than Monkey by filtering out unacceptable events. Sapienz [83]’s goal is to increase

coverage by searching for test sequences with a genetic algorithm. The model-based strategy is

adapted in many testing tools [61, 76, 123], which analyze the app and build a GUI model to

create test cases. The model-based techniques can be optimized in run-time to optimize the testing

approach, like Stoat [116]. Alternatively, they can use the knowledge embedded in other apps, like

10

DroidMate [32], to better understand different UI states. Some parts of the app cannot be accessed

except with unique and consistent input in long sequences of events. The targeted strategy tries to

mitigate this problem. These testing tools [8, 29, 94] usually use data flow analysis or symbolic

execution to generate a sequence of events with proper inputs to reach the target states. Other types

of GUI test generation techniques like Humanoid [77] or DeepGUI [42] utilize a deep learning

technique and associate GUI events to the GUI visual information.

Besides the manual or complete GUI test generation techniques, there are other techniques that are

automated but require some forms of manually produced inputs to generate GUI test cases. For

example, test reusing techniques like [78, 30, 85] analyze the existing GUI test cases from similar

apps or other platforms and generate test cases for the source app.

Another area of semi-automated GUI test generation is record-and-reply techniques that assist

software developers or testers to generate GUI test scripts by recording the user interactions with

the app. RERAN [50], appetizer [24], Mosaic [60], and Orangutan[73] rely on the Linux Kernel

for recording and replaying events. For example, RERAN requires a rooted device and employs

the ADB command getevent and sendevent to record and replay events. For tools that rely on

Linux Kernel, the captured events are low-level and hard to translate to high-level gestures that are

understandable by assistive services. VALERA [62] has a high accuracy for recording and replying

and can capture various events, such as network inputs. However, VALERA replies on a customized

OS as it requires a modified Android system image, which imposes threats to its application.

Mobiplay [101], Espresso[17], Barista [46], Robotium[105], Culebra[92], Ranorex[102], SARA

[59], RANDR [107], Sugilite [75] rely on the application layer to capture inputs. Mobiplay utilizes

client-server architecture. The client and target apps run on an Android device and a remote server,

respectively. Mobiplay identifies the targeted node based on the screen coordinates during the

replay stage. Nevertheless, Mobiplay is not publicly available to researchers. Espresso can record

motion events via an attached debugger but requires the recorded app’s source code. Barista is a

cross-platform record-and-replay tool. However, Barista fails to record and replay on non-open-

11

source apps as it highly relies on the Espresso framework. Robotium can only capture widgets

that are rendered by the app’s main process, but usually, the apps will run several processes [59].

Culebra provides a desktop GUI for user recordings, and the widget that interacts with users is

identified via the view hierarchy. The drawback of Culebra is that it causes a significant overhead

while identifying the view hierarchy of the interacted widget. Ranorex can record interactions via

instrumentation, but the instrumentation fails when it encounters apps that have a large size. SARA

can record and replay several input sources via dynamic instrumentation, and the interaction can be

recorded in the form of coordinates and widgets. Specifically, SARA will record the interaction

coordinate at first and identify the corresponding widget information via the self-replay technique.

Then, SARA employs an adaptive replay method to replay captured interactions on different devices.

The drawbacks of SARA are the lack of a graphical user interface and the high reliance on the third-

party dynamic instrumentation tool called Frida. Frida can not instrument classes that implement

the Android Interface android.text.Editable, which will cause SARA to lose essential interactions

during the recording. RANDR utilizes static and dynamic instrumentation to record and replay

multiple input sources, including external non-deterministic sources such as random numbers.

While RANDR can record and replay abundant input sources, it does not require administrative

device privileges or access to the app source code. However, RANDR is not publicly available to

researchers. In addition, as RANDR and SARA both utilize instrumentation to capture the events

and interactions, the non-standard widgets such as android.webkit.WebView will be ignored.

Current popular android apps implement WebView to display web contents as a part of an activity

layout, so failing to identify WebView will make the recorder lose essential interactions during the

recording. Sugilite is a publicly available android application for recording and replay that utilizes

an overlay to intercept interactions, such as click and typing. Using an overlay enables Sugilite

to capture various events and widgets, even non-standard widgets such as WebView. Users must

confirm whether the identified interaction is correct for each being recorded. After confirmation,

Sugilite will perform that interaction on behalf of users. However, it fails to recognize the node that

is not clickable and will get stuck in the current window if the clicked node has accessibility issues.

12

2.2 Research Gap

The key research gap that we will address in this dissertation is the lack of considering assistive

services for evaluating the accessibility of software applications. One end of the spectrum of

accessibility testing is manual testing which uses assistive services to explore a software applica-

tion. However, manual accessibility testing is expensive; moreover, the testers should have deep

knowledge and expertise in using assistive services and understanding accessibility requirements (if

they are not disabled). The other end of the spectrum is automated accessibility testing that can be

done without any manual effort. However, they cannot detect accessibility issues manifested by

interaction with assistive services and only check the compliance of a limited set of accessibility

guidelines in fixed GUI states of the app under test. More specifically, we are interested in address-

ing three specific research challenges regarding assistive-service-driven accessibility testing in the

related literature:

• Reusing Existing GUI Tests. Software developers write GUI tests to evaluate their applica-

tions’ main functionalities automatically. However, this evaluation is limited to conventional

interaction, e.g., touch-based interaction in mobile devices. It does not consider other al-

ternative ways, i.e., assistive services like screen readers and switch access. The use cases

embedded in GUI test cases may be executed with assistive services to assess the accessibility

of the use cases.

• Automated GUI Input Generation (App Crawling). There are many automated GUI

test generation techniques; however, they all use conventional interaction methods to crawl

software applications. No prior work has studied the idea of crawling applications with

assistive services to validate the accessibility of the apps under test.

• Assisting Manual Accessibility Testing. There are various record-and-replay techniques to

assist manual testers in testing the functionality of mobile apps under different settings, like

different display sizes or platforms. However, none of them have considered replaying the

13

recorded actions using assistive services to evaluate the accessibility of apps’ functionalities.

14

Chapter 3

Research Problem

3.1 Problem Statement

Developers are obliged by law and expected by ethical principles to build accessible apps for users

regardless of their abilities. However, prior studies reveal that many popular apps are shipped with

some form of accessibility issues, hindering disabled users ability to interact with them [36, 106, 7].

Technology institutes such as World Wide Web Consortium and companies such as Apple and

Google have published accessibility guidelines [121, 26, 15], and encouraged developers to use

assistive services to evaluate the accessibility of their software applications. Beside the fact that

manual testing is an expensive process in terms of time and human resources [115, 33], developers

and testers usually do not have enough knowledge and expertise to use various assistive services to

evaluate the accessibility [7]. There are accessibility analysis tools [13, 9, 27, 28] that automatically

analyze the GUI of a fixed state of an app and detect accessibility issues. However, static assessment

of UI specifications cannot reveal many critical accessibility issues that only manifest themselves

in interacting with an app using assistive services, such as a screen reader. In short, the problem

statement of this dissertation can be summarized as follows:

15

The accessibility of software application can be evaluated either manually or automatically.

Although manual accessibility testing with assistive services is a high-fidelity form of evaluation,

it is expensive and requires accessibility knowledge which developers/testers usually do not have.

On the other hand, the existing automated accessibility testing techniques are fast and convenient.

They generally rely on accessibility guidelines to detect accessibility issues in fixed states of

software applications; however, they do not consider the actual way users with disabilities

interact with software applications, i.e., assistive services, and fail to detect accessibility issues

that are manifested at runtime by interacting with assistive services. Thereby, there is a demand

by software developers for fast, intuitive, and high-fidelity accessibility testing tools.

3.2 Thesis Statement
�

�

�

�

Insight 0: A common theme among almost all GUI test generation techniques is that they target

users without disabilities, i.e., users who can see the screen and can perform complex touch

gestures.

Insight 0 is the guiding insight to motivate this dissertation. Inspired by automated and semi-

automated GUI test generation techniques, the existing research gap in accessibility testing can be

addressed by incorporating assistive services in the evaluation process to represent the interactions

of users with various disabilities, e.g., with motor or visual impairments. In this context:

The goal of my research is to provide a set of automated and semi-automated techniques inspired

by GUI test generation techniques that incorporate assistive services in the accessibility testing

(1) to detect complicated accessibility issues that manifest themselves under particular modes of

interaction, and (2) to assist and enlighten developers in finding and understanding accessibility

issues efficiently.

16

3.3 Research Hypotheses

This section describes the insights and their corresponding hypotheses that guided the three prongs

in this dissertation.

�
�

�
�

Insight 1.1: Software developers write GUI tests to evaluate the essential functionalities of the

application.�� ��Insight 1.2: The main functionalities of an app should be accessible using an assistive service.�
�

�
�

Hypothesis 1: GUI tests can be automatically reused for detecting accessibility issues of

software applications at runtime using assistive services.

To demonstrate the feasibility of this hypothesis, I will use Android as the platform and develop

an automated tool, namely LATTE, that is able to analyze existing GUI tests written by develop-

ers, generate corresponding human-readable use cases, and execute them from the standpoint of

users with visual or motor impairment who uses screen reader (TalkBack), and physical switches

(SwitchAccess) respectively.

�
�

�
�

Insight 2: Many software repositories have zero or limited GUI tests that may not cover all

functionalities of an app.�
�

�
�

Hypothesis 2: It is possible to devise an automated GUI input generation technique targeting

assistive services for validating the accessibility of software applications.

To verify the correctness of this hypothesis, I will present two completely automated tool, called

GROUNDHOG and OVERSIGHT, that interacts with Android apps with and without assistive

services by performing all actions in an app. While GROUNDHOG is mainly concerned about the

functionalities that users with disabilities cannot perform, OVERSIGHT focuses on the dual of this

problem, i.e., the functionalities provided to users with assistive services that cannot be accessed by

users without assistive services.

�
�

�
�

Insight 3.1: Manual or exploratory testing is a reliable method of evaluating different aspects

of an app.
17

�
�

�
�

Insight 3.2: Most software developers and testers lack knowledge of accessibility principles

and challenges faced by disabled users.�

�

�

�

Hypothesis 3: It is possible to devise a record-and-replay testing technique to guide the

developers in both the construction of accessibility tests and their execution using assistive

services.

For the last hypothesis of this dissertation, I present a semi-automated tool, called A11YPUPPETRY,

that observes and records the interaction of a human tester, who may not know how to work with

assistive services, with an app, then replies the equivalent of those interactions with various assistant

services on the same app. Finally, the human tester will receive a report of the execution of her

exploration from the standpoint of users who use assistive services.

18

Chapter 4

Proxy Users

This thesis’s main idea is to automatically utilize assistive services to evaluate the accessibility of

mobile applications. Therefore, knowing how users with disabilities use these services and how

we can operate them programmatically is essential. This chapter first explains how users with

different abilities may interact with a mobile device, what the actions are, and introduces Proxy

User. A Proxy User is a software application that performs actions on behalf of users with or

without disabilities who may use assistive services. For example, TalkBack Proxy User can click on

an element by interacting with a device using TalkBack (the official screen reader in Android) to

focus an element, then perform a double tap on the screen to click on the focused element.

Proxy Users are not designed to model actual users and how they think; instead, they model how

users interact with a mobile device. Proxy Users are programs that communicate with a device

and assistive services to perform a given action without understanding the app’s semantics. In this

thesis, Proxy Users work as the primary building block of the proposed automated approaches in

the following chapters. All examples and implementation details of Proxy Users in this chapter are

provided for the Android platform; however, the concept and idea of Proxy User can be implemented

in other platforms like iOS if access to the related API is given.

19

Figure 4.1: (a) The page showing all the words favorite by users, (b) The page after users tap on the
edit button, (c) A part of the excerpted XML representation of UI structure in the dictionary app
shown in subfigure (a)

The following section illustrates how users with or without disabilities utilize assistive services to

interact with an app. Then, Section 4.2 briefly explains the essential backgrounds of Android and

Accessibility API used for implementing Proxy Users. Section 4.3 formalizes different ways of

performing actions with and without assistive services. Next, Section 4.4 defines four Proxy Users

and explains how to use Accessibility API to control them. Finally, this chapter is concluded in

Section 4.5.

4.1 Illustrative Example

This section illustrates how users with different abilities interact with apps in various ways.

Figure 4.1(a) shows a screen of the Dictionary.com app [43], which lists the favorite words and

20

lets the user edit the words. Assume a user wants to remove a word from favorites. A user without

a disability who can see all elements on the screen and perform any touch gestures can perform

this use case easily. First, she taps on the edit button, yellow-solid box 4 in Figure 4.1(a), then the

navbar changes to depict the number of selected words, and the delete button, Figure 4.1(b). Next,

the user selects the checkbox next to the word, and taps on the delete button, the yellow-solid box in

Figure 4.1(b).

To perform the same use case, users with visual impairments, particularly blind users, have a

completely different experience. They rely on screen readers, e.g., TalkBack for Android [18], to

interact with the app. Users can perceive the screen’s content by navigating through elements and

listening to the textual description of the focused element by TalkBack. A common accessibility

issue among mobile apps is the lack of content description for visual icons [36, 7]. For example, if

the delete button in Figure 4.1(b) does not have a content description, a blind user cannot understand

the functionality of this button. For the sake of this example, assume that this app does not have

such issues and that all elements have an accurate textual description.

There are several ways of navigating the elements of an app with TalkBack. Using Linear Navigation,

the user can navigate to the next and previous element of the currently focused element by swiping

right and left on the screen. For example, to reach the edit button in Figure 4.1(a), the user can start

from box 1 (top left icon) and navigate to the next elements until it reaches box 4.

Note that TalkBack may group elements for a more fluent announcement; for example, the red-

dashed box in Figure 4.1(b) consists of a textual element and one checkbox. Secondly, the user can

utilize Jump Navigation to focus on elements with specific types, e.g., buttons or edit-text boxes. For

example, by jumping in button elements, the user can focus on boxes 1, 3, and 4 in Figure 4.1(a).

The third way is Touch Navigation, where the user touches different parts of the screen, and

TalkBack focuses on the elements behind the user’s finger. For example, if the user touches the top

right of the screen in Figure 4.1(b), it focuses on the delete button, and TalkBack announces “Delete

21

Button”.

Another way to locate an element is by searching the name. TalkBack user can enter the name of

the element she is looking for, either by text entry or voice command, and TalkBack focuses on

the element with the same text. For example, by searching “Edit” TalkBack focuses on box 4 in

Figure 4.1(a).

To click on an element, the user should perform a double-tap gesture on the screen when the

target element is focused. TalkBack perceives this gesture and sends a click accessibility event,

ACTION CLICK, to the focused button, which is the equivalent of tapping on the button by touch.

To sum up, a blind user needs to use TalkBack to first locate the edit button (with any navigation

mode), then perform a double-tap, then locate the favorite word (red-dashed box in Figure 4.1(b)),

double tap, and finally locate the delete button and press double tap. If she uses LinearNavigation,

it requires at least 12 actions (9 swipes and 3 double-tap) compared to a user without a disability

who only needs to perform 3 single taps.

On the other hand, a user with motor disabilities uses SwitchAccess [16] to navigate the app.

SwitchAccess is an assistive service that enables users to interact with the device using a special

keyboard with a limited set of buttons such as Next and Select. SwitchAccess highlights the focused

element on the screen. The user uses the two buttons to change the focus to the next element or

select the currently focused element. For example, to get to the edit button in Figure 4.1(a), the user

needs to press the Next button several times, focusing on boxes 1, 3, and 4. Note that since the

target user of SwitchAccess is assumed to be able to see the whole screen, SwitchAccess does not

focus on textual elements, like box 2.

22

4.2 Background

This section provides a brief overview of User Interface (UI) components and accessibility support

in Android to help the reader understand the material presented later.

4.2.1 Android UI

Android provides a variety of pre-built UI components, such as structured layouts and widgets,

that allow developers to build the GUI of their app. The UI of an Android app is a single-root

hierarchical tree where the leaf nodes are called Views or Widgets that users can see and interact

with, e.g., buttons, text fields, and checkboxes. The non-leaf nodes, on the other hand, are invisible

to the user. These non-leaf nodes are called ViewGroups or Layouts and are used for arranging or

positioning the widgets.

Both Widgets and Layouts have variety of attributes. For example, the content-desc attribute is

used by accessibility services to describe widgets without textual representation, or the clickable

attribute shows if the widget is clickable. The UI hierarchy of a screen in an Android device can be

retrieved as an XML file. Figure 4.1(c) shows part of the UI structure in the dictionary app. Lines

8-14 represent the delete button in Figure 4.1(b), where its attributes, such as clickable or content

description, are represented.

XPath [122] (XML Path Language) is an expression language that supports various queries in

XML documents. In particular, XPath can be used to identify nodes accurately using structural

information. For example, the delete button in Figure 4.1(b) can be identified by its absolute path

in XPath created by the class attribute as “/Framelayout/LinearLayout/FrameLayout[2]/Button”

(the “android.widget” part is omitted from classes). Since the class of android widgets cannot be

changed at runtime, the absolute path in XPath, or in short apath, is a reliable identifier of widgets

in Android.

23

4.2.2 Accessibility in Android

Android provides an accessibility API for alternative modes of interacting with a device. It also

offers several assistive services, including TalkBack, which is the official screen reader in Android

and is built on top of the accessibility API. We briefly describe accessibility API in Android and

how an assistive service like TalkBack or SwitchAccess can leverage this API.

The Android framework provides an abstract service, called AccessibilityService, to assist users

with disabilities. The official assistive tools in Android, such as TalkBack, also implement this

abstract service [11]. AccessibilityService works as a wrapper around an Android device interacting

with it (performing actions on and receiving feedback from it).

Since these abilities may introduce security and privacy issues, an implementation of this service

must specify the types of feedback it can receive and the actions it can perform. For example, Talk-

Back can receive feedback about all elements on the screen since it has android:canRetrieveWindowContent

attribute in its specification. Moreover, it can perform actions, such as clicking, on elements; how-

ever, it cannot perform gestures, such as swiping on the screen, since the attribute android:canPerformGestures

does not exist in TalkBack’s specification.

The feedback is delivered to accessibility services through AccessibilityEvent objects. Accessibility

services should implement the method onAccessibilityEvent to receive feedbacks in form of Acces-

sibilityEvent objects. AccessibilityManager is a system-level service that monitors any changes in

the device and manages accessibility services. When anything important happens on the device,

AccessibilityManager creates an AccessibilityEvent object that describes the changes and passes

it to onAccessibilityEvent method of accessibility services. The accessibility services can analyze

the delivered event and may provide feedback to the user. For example, TalkBack announces the

textual description of an element to the user when it is focused. An AccessibilityEvent object is

associated with an AccessibilityNodeInfo object that contains the element’s attributes. For instance,

when a user clicks on delete button (Figure 4.1(b)), the system creates an AccessibilityEvent of type

24

TYPE VIEW CLICKED, which is associated with the AccessibilityNodeInfo object corresponding

to the element shown in lines 8-14 in Figure 4.1(c).

Moreover, an AccessibilityService can access all GUI elements on the screen in the form of

an AccessibilityNodeInfo object. An AccessibilityNodeInfo object not only represents the

attributes of a GUI element on the screen, but also provides the ability to perform actions on the

corresponding element. For example, an AccessibilityService can perform a click action on an

AccessibilityNodeInfo by sending ACTION CLICK event to it.

4.3 Actions

This section explains and formalizes how to interact with systems with and without assistive services.

In particular, three ways of interaction for users with different abilities will be examined: touch

gestures, TalkBack, and SwitchAccess.

4.3.1 Touch Gestures

Touch gestures are the primary interaction with most smartphone devices for users without visual or

motor impairments. To have a complete and sound understanding of different ways of interaction,

we used the official documentation of user interactions and touch gestures in Android [86, 22].

We categorized the standard touch gestures into several categories; however, the first and second

categories are the most frequently used gestures.

• PointGesture. This is the most common way of interacting with a touch-based mobile device.

To perform this type of gesture, the user uses one finger at a specific point on the screen without

moving her finger to other parts of the screen. This type of touch gesture is identified as PG(t, p)

where t is the type of the gesture, e.g., single-tap or long-press, and p is the coordinates of a point

25

on the screen.

• LineGesture. In this type of touch gesture, the user puts her finger on the screen and draws a

line. The movement’s velocity and starting point may lead to different behaviors. For example,

suppose the user draws the line from the edge of the display. In that case, it is considered an edge

swipe usually associated with system actions, e.g., going to the home screen or navigating back.

This type of touch gesture is identified as LG(l,v) where l is a straight line on the screen and v is

the velocity of the gesture, i.e., fast, regular, and slow.

• TwoFingersLines. The user uses her two fingers in these gestures to draw two separate lines.

The most famous example of this category is pinching in and out (drawing two lines in toward

each other or in opposite directions), which is usually associated with zooming in and out actions.

This touch gesture is defined as TFL(l1, l2) where l1 and l2 are two straight lines on the screen

which is swept by two fingers.

• Miscellaneous. These gestures are not commonly used in apps; however, app developers can use

them to create alternative ways or shortcuts. For example, pinching in with three fingers to copy

the selected text on iOS devices or double tapping with two fingers is equivalent to pinch-out for

zooming out.

4.3.2 TalkBack Actions

We studied and examined the TalkBack documentation to understand TalkBack and its actions.

Also, we followed official tutorials on TalkBack on Android devices and interacted with at least five

popular Android apps.

TalkBack, when it is enabled, creates a virtual layer between the app and the user to enable users to

perceive the UI without performing unintended actions. TalkBack draws an overlay on the screen,

receives touch gestures, and translates these gestures into different actions. We categorized different

ways of interactions into the following three categories:

26

• ElementBased. This type of interaction is mainly used to perceive the content of an element

or perform a click or long-press on the focused element. TalkBack focuses on an element and

announces its textual description. Given that the element is e and the type of the action is t, an

ElementBased action can be defined as EB(t,e), meaning that the element e should be focused by

TalkBack and action t, e.g., click, should be performed on the focused element. There are various

ways to focus on an element that previously were mentioned in Section 4.1.

– LinearNavigation. Users can change the focus to the next and previous element of the

currently focused element. The actions associated with linear navigation are swiping right

and left. The order of the next and previous elements is determined based on their position

in the UI hierarchy. TalkBack may also perform a scroll action while navigating to the next

or previous element if they are (partly) out of the screen.

– JumpNavigation. Users can jump through elements of specific types for faster navigation

by swiping up and down. For example, users can go to the next heading, paragraph,

control, or link instead of navigating element by element. Moreover, users can adjust the

announcements’ granularity to make the content more accessible. For example, users can

move to other lines, words, or characters instead of focusing on elements.

– SearchNavigation. Users can search for a specific element on the screen with text or voice

interface enabled by a three-finger long-press. It is similar to finding a specific word on a

page in a text viewer/editor.

– TouchNavigation. Users touch a spot on the screen, and TalkBack focuses on the underlying

element in the same coordinates. This navigation method is usually used when the user has

an estimation of the coordinates of the element she is looking for, e.g., the top or bottom

menu. Another use case is when the other navigation methods cannot detect the element and

the user has to conduct an exhaustive search to find all elements on the screen.

• TouchGestureReplication. Besides the click and long-press actions that ElementBased can do,

users can replicate several other touch gestures, in particular, LineGestures, by bypassing the

27

TalkBack overlay. A user can replicate scrolling, dragging, or edge swiping by swiping with two

fingers when TalkBack is enabled. A TouchGestureReplication can be defined as TGR(lg) where

lg is a LineGesture.

• PredefinedActions. Various actions that TalkBack can perform are not dependent on the app that

the user is interacting with. For example, global actions, e.g., Home, Recent Apps, or Back, are

not dependent on an app and can be performed with special gestures in TalkBack, e.g., swiping

up then left will go to the home screen of the device. A PredefinedAction is PA(t) where t

determines the action(s) to be performed, e.g., scroll forward or volume up.

4.3.3 SwitchAccess

Like TalkBack, we examined and studied SwitchAccess documentation and tutorials to understand

its actions comprehensively. SwitchAccess is an assistive service in Android phone that utilize

physical switches to interact with devices. One switch is assigned to “Next” and another switch is

assigned to “Select”. If the user can use more than two switches, other switches can be used for a

better user experience, e.g., a switch can be assigned to change the focus to the previous element.

We categorized the SwitchAccess actions into the following categories:

• ElementBased. Like TalkBack, the primary way to interact with an app is to locate an

element and perform an action on it. By pressing the Next switch, SwitchAccess focuses

on the next control element, e.g., button or edit textbox, and highlights the element. Note

that since the target users of SwitchAccess are assumed not to have visual impairments,

SwitchAccess does not focus on non-actionable elements, like TextView. When the element

is selected, the user can select the element by pressing the Select switch. If an element is

scrollable, a menu appears letting the user scroll in four directions by selecting the element.

• PointScan. In this mode, the user can click on a specific coordinate of the screen by sweeping

a horizontal and vertical line from the edges of the screen. In this mode, the user can select

28

1 Path swipePath = new Path();
2 swipePath.moveTo(x_1, y_1);
3 swipePath.lineTo(x_2, y_2);
4 gestureBuilder.addStroke(new GestureDescription.StrokeDescription(swipePath, 0, 200));
5 GestureDescription gestureDescription = gestureBuilder.build();
6 accessibilityService.dispatchGesture(gestureDescription, callback, null);

Listing 4.1: A code snippet that performs a LineGesture on the screen using
AccessibilityService API

the coordinate of the point by pressing the Select button when the horizontal/vertical line

reaches their desired coordinates.

• Menu. Regardless of the app, SwitchAccess shows a floating Menu button to the user, which

the user can select. The menu consists of predefined actions (similar to TalkBack), like Home,

Back, or changing volumes.

4.4 Proxy User

A Proxy User is a software application, an implementation of AccessibilityService, that performs

actions on behalf of users with or without disabilities who may use assistive services. Although

implementations of AccessibilityService, such as TalkBack and SwitchAccess, are typically used

for assisting users in interacting with the mobile device, these services can also be designed to

cooperate with one another, as we have done here. This section explains four Proxy Users: Touch,

TalkBack, SwitchAccess, and Abstract Proxy Users.

4.4.1 Touch Proxy User

This Proxy User interacts with the system from the standpoint of users without disabilities. These

users do not use any assistive service and see the elements depicted on the screen to locate them.

Recall that from Section 4.3, a touch gesture can be a PointGesture, LineGesture, TwoFingersLines,

and Miscellaneous. Given a touch gesture, the Touch Proxy User performs the gesture using APIs

29

provided by Accessibility API. For example, to perform a Line Gesture LG(l,v), where l (line) is

(x1,y1,x2,y2) and v (velocity) is fast (the actual value is different based on displays), Listing 4.1

shows a code snippet performing this gesture on the screen.

4.4.2 TalkBack Proxy User

TalkBack Proxy User interacts with the device using TalkBack, a screen reader, from the standpoint

of blind users or users with visual impairments. As mentioned before, Proxy Users communicate

with other components in an Android device to interact with an app. Figure 4.2 depicts the six

steps of such communication between TalkBack Proxy User and other components. We explain this

process for TalkBack; however, keep in mind that this process is almost identical for SwitchAccess

Proxy User.

1. TalkBack Proxy User performs a touch gesture using APIs provided by AccessibilityService,

similar to Touch Proxy User. For example, Listing 4.1 with a line from the middle to the right

side of the screen performs swipe right. The performed gesture is received by the Accessibili-

tyManager service, A11yManager in short, and generates accessibility events corresponding

to the action, e.g., TYPE GESTURE DETECTION START and TYPE GESTURE DETECTION END

events for the swipe.

2. All implementations of AccessibilityService, including TalkBack, receive the generated

accessibility events. TalkBack may suppress delivering the incoming events to the app and

possibly translates them to something else. For example, while swiping right on the screen

may result in a menu option being shown, TalkBack may translate that gesture to changing

the focus to the next element when TalkBack is enabled on the device.

3. TalkBack analyzes the incoming event and initiates another action accordingly. For example,

in the case of swipe right, TalkBack changes the focus to the next element, and in the case of

30

Figure 4.2: The process of communication of TalkBack or SwitchAccess Proxy User with their
corresponding assistive services.

a double tap, the currently focused element is clicked. Note that TalkBack is unaware of the

sender of these events, in this case, the TalkBack Proxy User. As a result, TalkBack behaves

the same as it would if a human user had performed the action.

4. A11yManager receives the new action from TalkBack and sends it to the app under test. For

example, if the TalkBack’s action clicks on the focused element, A11yManager sends an

event to the onClickListener class associated with the focused element in the app. The app

receives the action and updates its internal state accordingly, e.g., executing onClick method

of the clicked element.

5. The app informs A11yManager regarding the changes in the GUI elements. For example,

when edit button in Figure 4.1(a) is clicked, the screen changes to Figure 4.1(b).

6. A11yManager receives the changes in the layout and dispatches feedback events accordingly,

31

e.g., a TYPE VIEW FOCUSED accessibility event associated with the focused element’s Accessi-

bilityNodeInfo object. As a result, the TalkBack Proxy User is informed of the latest changes

on the device. For instance, it becomes aware of the element that is currently focused on.

Note that there is a possibility that because of the changes caused by step 5, i.e., showing a

new screen, another interaction is initiated between A11yManager and TalkBack, similar to

steps 2 and 3.

Recall that from Section 4.3 a TalkBack Action can be ElementBased (EB), TouchGestureRepli-

cation (TGR), or PredefinedAction (PA). To perform TGR(lg), TalkBack Proxy User makes a

copy of the LineGesture lg, called lg′, and moves its coordinate 2cm toward the top or right of

the display, then combine the two LineGestures (lg and lg′) and perform them when TalkBack is

enabled. Performing a PA(t) is easier since it is predefined and not dependent on the app. TalkBack

Proxy User has a database of PredefinedActions and can perform the actions accordingly, e.g.,

perform swipe right then left when t is “Scroll Forward”.

However, performing an ElementBased action is relatively challenging since it requires finding

and focusing on the element first. Moreover, there are various ways of navigating to locate an

element, i.e., Linear, Jump, Search, and Touch. To that end, we introduce TENG (TalkBack Element

Navigation Graph) to model the different ways of navigating an app with TalkBack.

Simply put, TENG is a graph modeling the different states of TalkBack when enabled. TENG is

defined over the UI hierarchy of an app screen, where the nodes include GUI elements that can be

focused by TalkBack and the edges represent actions that can be done by the user (or TalkBack

Proxy User) to change the focus from one node to another. For example, Figure 4.3(a) represents

a part of the TENG of the app screen in Figure 4.1(b). For now, please ignore the Start and End

red boxes; we will define and explain them shortly. The blue ovals represent control elements, e.g.,

buttons or checkboxes, and green-round boxes represent the textual elements. Also, the gray boxes

are a View element containing a set of elements that are grouped by TalkBack to announce. Recall

32

Figure 4.3: (a) TENG representing Linear Navigation of Figure 4.1(b), (b) TENG representing
Search Navigation, (c) TENG representing Touch Navigation

that in Section 4.1, we discussed TalkBack grouped related elements and associated the group

with an action for a better user experience. In runtime, when Talkback is in any of these nodes

(states), i.e., focused on their corresponding element, we call it an active node. The solid arrows in

Figure 4.3(a) represent Linear Navigation between elements, e.g., red arrows are associated with

swiping right or moving to the next element. The dotted arrows represent Jump Navigation which

changes the active node to the next control element. For example, if the Delete node is active, by

swiping right, TalkBack focuses on the text element that starts with “Favorite” and by swiping

down, TalkBack jumps on the previous control element, which is “Back”.

Besides the UI elements, TENG has some other nodes, which we call Virtual States. These states

do not correspond to an element on the screen; however, they represent some internal states of

TalkBack. For example, the virtual states Start and End in Figure 4.3(a) represent the states where

TalkBack reaches the first or last element on the screen and notifies the user there is no element left

to visit. Note that the user can still change the focus to other elements by Linear or Jump Navigation,

even if TalkBack is in a virtual state, e.g., swiping left from Start changes the focus to the compound

element in the end.

Recall that TalkBack supports two other navigation modes, i.e., Search and Touch. We model these

33

navigations in TENG using virtual states. Figure 4.3(b) shows the part of TENG related to the

search navigation. The entry edge is a representative edge that comes from all nodes in TENG and

is associated with a three-finger tap. We did not draw all edges not to make the figure complicated

and messy. Once the Search Screen is activated, the user can type the text she is looking for, then the

result appears in a list (Result Screen). Once the user selects a search entry, TalkBack focuses on the

selected element. Finally, the Touch Navigation is modeled and depicted in Figure 4.3(c). Whenever

the user taps on the screen, TalkBack finds and focuses on the underlying element. Similar to Search

Navigation in Figure 4.3(b), the entry edge of the Touch State comes from all nodes of TENG.

Given a target element, we can use TENG to plan a sequence of interactions with the device to

focus on the element. For example, similar to the last step of our motivating example in Section 4.1,

assume we want to click on the checkbox, and at the beginning, TalkBack is focused on the Back

button. Therefore, the TENG’s active node is the Back button in Figure 4.3(a), and the goal is

focusing on the TENG’s node containing the target element (which is the compound element

denoted by the grey box), and then performing double-tap. There are various ways to reach the

target node; for instance, by performing two swipe-up actions, TalkBack first jumps to the Delete

button and then to the target node.

However, traversing with TalkBack is not as easy as it sounds. There are three reasons that TENG

may be modified during the interaction with TalkBack. First, the app may dynamically update the

visible elements on the screen. For example, a slide show constantly changes the visible content

after showing it for a specific time. Secondly, TalkBack may change the app state by performing

extra gestures for navigating. Lastly, the app may change the focused element in runtime. For

example, suppose developers do not want users to access certain elements, regardless of the rationale

behind this decision. In that case, they can focus on another element as soon as TalkBack focuses on

that element. Therefore, we cannot rely solely on the TENG created UI hierarchy before navigation.

To that end, once the TalkBack Proxy User performs an action associated with an edge, e.g., swiping

right to focus on the next element, the service listens to any changes in the UI to determine if

34

Figure 4.4: (a) The corresponding SENG of Figure 4.1(b), (b) the actions in the SwitchAccess menu

the UI hierarchy is changed. If anything changes, the TalkBack Proxy User recreates the TENG

and continues the navigation. Otherwise, the service verifies if the currently active node in TENG

is focused by TalkBack. If it was not, we mark the performed edge as ineffective and replan the

locating path again.

4.4.3 SwitchAccess Proxy User

This Proxy User represents how users with motor impairment interact with a device using SwitchAc-

cess. In terms of implementation detail, it is similar to TalkBack Proxy User. For example, the

communication process (depicted in Figure 4.2) is identical for SwitchAccess, except instead of

dispatching touch gesture events, SwitchAccess Proxy User emulates clicking the switches.

Recall that there were three types of actions in SwitchAccess: ElementBased, PointScan, and Menu.

SwitchAccess performs ElementBased action using a graph called SENG (SwitchAccess Element

Navigation Graph). Basically, SENG is similar to an induced subgraph of TENG in JumpNavigation,

except instead of the Start node, it has a Menu node. Figure 4.4(a) represent the corresponding

SENG of the app screen in Figure 4.1(b), where red and green arrows represent pressing the

35

Next and Previous switches, respectively. Since SwitchAccess does not need to announce textual

elements, it does not focus on them or combine them with control elements, like the checkbox in

Figure 4.3(b). Similar to the TalkBack Proxy User, the SwitchAccess Proxy User locates the target

element using SENG, then presses the Select switch.

For PointScan actions, given the coordinate of the target point, the SwitchAccess Proxy User

initiates scanning and observes the SwitchAccess state until it reaches the target point. Then it

presses the Select switch. Also, for actions inside the Menu, it first selects the Menu element (the

red box in Figure 4.4(a)), then locate the action and selects it. For example, Figure 4.4(b) shows

some actions in the SwitchAccess menu.

4.4.4 Abstract Proxy User

As mentioned before, the assistive services above (TalkBack and SwitchAcess) are built on top

of Accessibility API, and any other assistive services helping users with a disability has to use

this API to provide alternative ways of interacting with devices. Abstract Proxy User represents

an abstraction of any assistive services built on Accessibility API. We are interested in this API

here because since all assistive services must use this API if there is an accessibility issue with the

Accessibility API itself, it possibly means there is an accessibility issue with all assistive services.

The Accessibility API enables assistive services to receive information about the current state of the

app (by using AccessibilityNodeInfo), be notified about the changes in the app state (by listening

to AccessibilityEvent), and send actions (by dispatching AccessibilityAction). For example, an

assistive service can retrieve the information about the delete button in Figure 4.1(b) as an Accessibil-

ityNodeInfo. Then it can click on this element by dispatching AccessibilityAction.ACTION CLICK.

Finally, it can be notified if anything in the app has changed by listening to AccessibilityEvents, e.g.

if any element on the screen has changed or a new element is inserted.

36

The list of possible actions that can be performed by Accessibility API can be found in [12]. For

example, ACTION CLICK, ACTION SCROLL UP, and ACTION SET TEXT are responsible for

clicking, scrolling up (inside and element), and typing a word in an edit text box, respectively. Given

an action, the Abstract Proxy User first identifies the target element and retrieves its corresponding

AccessibilityNodeInfo. Then it sends the action event to this node.

4.5 Conclusion

This chapter examined different ways of interacting with a device with or without assistive services

and introduced Proxy Users. Proxy Users are software applications that input and perform the action

in various ways. In the following chapters, we utilize Proxy Users to evaluate the accessibility of

applications automatically.

37

Chapter 5

Assistive-Service Testing Through Reusing

GUI Tests

Existing automated accessibility assessment techniques primarily aim to detect violations of prede-

fined guidelines, thereby produce a massive amount of accessibility warnings that often overlook the

way software is actually used by users with disability. This chapter presents a novel, high-fidelity

form of accessibility testing for Android apps, called LATTE, that builds on the way developers

already validate their apps for functional correctness.

A widely adopted practice in software development is for developers to write system tests, often in

the form of Graphical User Interface (GUI) tests, to validate the important use cases (functionalities)

of an app for correctness. These use cases are the important functionalities of an app that should

also be accessible. Given an app under test and a set of regular GUI tests (written by developers)

as input, LATTE first extracts a Use-Case Specification corresponding to each test. A Use-Case

Specification defines the human-perceivable steps a test takes to exercise a particular functionality

in an app. LATTE then executes the Use-Case Specification using an assistive service, i.e., TalkBack

and SwitchAccess. If a use case cannot be completed using an assistive service, it naturally means

38

the corresponding use case has an accessibility problem, which is reported to the developer.

LATTE mitigates the limitations of existing automated accessibility analysis techniques by evaluating

the accessibility issues in a more realistic setting, i.e., using assistive services. In more than half of

the subjects apps in our experiments, LATTE detected accessibility issues that were not detected by

Google’s Accessibility Scanner, the most widely used accessibility analyzer for Android. Moreover,

unlike prior solutions that produce a massive number of accessibility warnings by simply scanning

an app’s screens irrespective of its purpose, our approach produces a small number of actionable

accessibility defects that are guaranteed to affect a disabled user’s proper usage of the app’s main

functionalities. LATTE produces a detailed report for each failed use case that provides the developer

with the exact cause of inaccessibility and steps to replicate it.

Although the most reliable method of validating an app’s accessibility is through user evaluation,

finding users with different types of disability and conducting such evaluations can be prohibitively

difficult, especially for small development teams with limited resources. Using LATTE, developers

are able to gain useful insights into how their apps behave when engaged through an assistive

service, allowing them to fix the issues prior to their release. Our approach can also complement

user evaluation by allowing the development teams to hone in on a subset of problematic use cases

that are flagged by our tool.

The remainder of this chapter is organized as follows. Section 5.1 illustrates an accessibility

issue that cannot be detected using existing automated techniques, while Section 5.2 describes the

details of our approach. Section 5.3 presents our experimental evaluation. Finally, Section 5.4

concludes this chapter. The tool and experimental artifacts can be found on the companion website,

https://github.com/seal-hub/Latte.

39

https://github.com/seal-hub/Latte

Figure 5.1: a) The very first step of creating account in “geek” shopping app (the dotted box) b) The
accessibility issues reported by Google Accessibility Scanner c) Navigating the app using assistive
services (TalkBack and SwitchAccess)

5.1 Illustrative Example

Figure 5.1(a) shows the launch screen of Geek - Smarter Shopping app (version ’2.3.7’) with more

than 10 millions users [66]. The foreground layout contains register and login buttons, while

the background is a layout of rolling decorative images. One of the most important use cases in

this app is registration, since it is the prerequisite for accessing all other functionalities. This use

case starts by clicking on the Create Account button (the dashed box in Figure 5.1(a)) followed

by filling a form with user information (not depicted in the figure). A developer can create a

GUI test to automatically verify this use case is working. For example, Listing 5.1 shows a GUI

test in Appium [25] testing framework written in Python. It is basically a sequence of steps

performing actions on specific elements on the screen, e.g., clicking on an element with resource-id

com.contextlogic.geek:id/login fragment create account button.

While the developer of an app like this is likely to write a test to evaluate the functional correctness

of registration, given its important to the overall functionality of the app, the conventional execution

of such test does not reveal anything about the app’s accessibility issues. To test the accessibility

40

1 find_element_by_id("com.contextlogic.geek:id/login_fragment_create_account_button").click()
2 find_element_by_xpath("/android.widget.FrameLayout/.../android.widget.EditText[1]").send_keys("

John Doe")
3 find_element_by_id("fragment_email_text").send_keys("john.doe@example.com")
4 find_element_by_id("fragment_password_text").send_keys("StR0nGp@ss")
5 find_element_by_xpath("/android.widget.FrameLayout/.../android.widget.TextView[3]").click()

Listing 5.1: The test script corresponding to the registration use case

of this app, a conscientious developer would also run the Google Accessibility Scanner [9]—a de

facto standard tool for analysis of accessibility in Android—on the launch screen and review the

identified issues, as shown in Figure 5.1(b). In total, 16 accessibility issues are detected by the

Scanner, denoted by orange borders placed around the elements with a problem. Out of these, there

are 8 “missing speakable text” and 6 “low image contrast” issues for the decorative images in the

background, and 2 “small touch target size” issues for the buttons in the foreground. As can be

seen, there are many issues with the very first screen, and no particular hint as to the severity of

these issues is provided to help the developer prioritize the effort involved in fixing the reported

issues. The only accessibility issue reported for Create Account button is the “small touch target

size”, which in fact does not affect users who rely on assistive tools for their interactions. Once the

reported issues are fixed, this screen becomes supposedly accessibility-issue free, according to the

automated accessibility scanner.

In practice, however, when TalkBack and SwitchAccess are used to operate this app, the first

decorative image in the background receives the focus (top left dotted box in Figure 5.1(c)). To

reach the Create Account button, users have to navigate through the elements. But here the

decorative background layout refills dynamically, i.e., it is a revolving list. As a result, the focus

never reaches to the foreground layout. The navigation path taken through the use of assistive tools

is depicted in Figure 5.1(c) as arrows. This makes it difficult, if not impossible, for both TalkBack

and SwitchAccess users to reach the Create Account button. In some cases, it may be possible for

the user to touch random spots on the screen and find the button by chance; nevertheless, it would

be far from perfect and frustrating at the very least.

41

Figure 5.2: Overview of LATTE

5.2 Approach

Our objective is to develop an automated accessibility analyzer that is use-case and assistive-service

driven. Figure 5.2 shows an overview of our approach, LATTE, consisting of three phases: (I)

analysis of the provided GUI test suite of an Android app to determine the corresponding use cases,

(II) execution of each use case on the app using an assistive service to evaluate the accessibility of

the use case, (III) collection and analysis of the results to produce an accessibility report. In this

section, we describe these phases in detail.

5.2.1 Test Analyzer

A use case is a sequence of interactions between a user and a software system for achieving an

objective. In the case of a shopping app, for instance, creating an account, searching for a product,

and purchasing a product, are examples of use case. As a common development practice, developers

write GUI tests to automatically evaluate the correctness of a software system’s use cases. A GUI

42

test is a sequence of steps, where in each step, the test (1) locates a GUI element, and (2) performs

an action on that element. For example, the first step (line 1) in Listing 5.1 locates an element with

resource-id equal to com.contextlogic.geek:id/login fragment create account button

and then clicks on it. GUI tests need to uniquely identify elements on the screen. They leverage the

implementation details of an app, such as resource-id, to interact with the GUI elements of the app.

A GUI test thus follows a white-box approach, i.e., uses the implementation details of an app to

drive the execution. Although this format is quite effective for machine execution, it differs vastly

from how users interact with an app. A user may exercise the same use case as a test, but follows a

black-box approach, i.e., interacts directly with the UI elements of an app to drive the execution.

Since our objective is to evaluate the accessibility of use cases exercised by tests, we first have to

extract a description of the use case in terms of constructs available to a user. For instance, while the

test script is able to access a button through its programmatic identifier (i.e, resource-id attribute), a

blind user would access it through its textual content description. The Test Analyzer component

takes a GUI test as input and transforms it into a Use-Case Specification, consisting of a set of

equivalent steps as those performed by the test at the level of abstraction understood by users. In

other words, Use-Case Specification of a test represents the steps a user would need to perform to

exercise the same functionality as that of the test.

To extract the use cases from GUI tests, we have developed a novel, dynamic program analysis

technique that, given a test script and an app, determines (1) the various GUI elements involved in

the test and their attributes, and (2) the actions performed on those elements. Dynamic program

analysis entails evaluating a program by executing it. In fact, software testing is the most common

form of dynamic program analysis. By dynamically analyzing a test script (i.e, running the test on

the app), we are able to identify the AccessibilityNodeInfo object corresponding to each GUI

element. AccessibilityNodeInfo class is provided by the Android framework and represents

the attributes of a GUI element on the screen. For example, the AccessibilityNodeInfo of

the element in the first step in Listing 5.1, “Create Account” button, can be found in Listing 5.2.

43

// Resource Id
viewIdResName: com.contextlogic.geek:id/login_fragment_create_account_button;
// Textual information
className: android.widget.TextView;
text: Create Account;
contentDescription: null;
// Other fields
boundsInParent: Rect(0, 0 - 498, 110);
boundsInScreen: Rect(291, 856 - 789, 966);
clickable: true;
focusable: true;
focused: false;
selected: false;
longClickable: false;
enabled: true;
importantForAccessibility: true;
...

Listing 5.2: The AccessibilityNodeInfo object corresponding to “Create Account” button

The first field is viewIdResName (or resrouce-id) that is the identifier of the element. The textual

attributes are className, text, and contentDescription. There are also other types of attributes

such as coordinates and supported behaviors, e.g., this element is clickable, focusable, etc. We

extract the textual attributes (text, contentDescription, and className) for each element, since these

are the attributes perceived by users in locating GUI elements. Note that the className attribute

is perceivable by users, since a sighted or blind user can recognize it visually or textually, i.e.,

EditText element has its distinguishable shape, and TalkBack announces it as Edit Text Box. We

further extract actions (e.g., click, type) performed on the GUI elements from the test script itself.

From Listing 5.1, we are able to determine that the use case consists of five steps, where the first

and last steps click on GUI elements and the other steps enter textual information in GUI elements.

We finally combine the information obtained through the above-mentioned analysis of the GUI

tests to arrive at the equivalent Use-Case Specifications. For example, Listing 5.3 is the Use-Case

Specification generated from the GUI test shown in Listing 5.1. The first step shows the user

clicking on a TextView element with the text “Create Account” and the last step is clicking on an

ImageButton element with content description equal to “Submit”. Intuitively, we have transformed

a white-box description of a use case (i.e., GUI test) to a black-box description of that use case (i.e.,

Use-Case Specification).

44

1 Click on element with Text: "Create Account", ContentDescription: null, Class: TextView
2 Type "John Doe" on element with Text: "Name", ContentDescription: null, Class: EditText
3 Type "john.doe@example.com" on element with Text: "Email", ContentDescription: null, Class:

EditText
4 Type "StR0nGp@ss" on element with Text: "Password", ContentDescription: null, Class: EditText
5 Click on element with Text: null, ContentDescription: "Submit, Class: ImageButton

Listing 5.3: The use case corresponding to the registration test case in the illustrative example

The Test Analyzer component is written in Python programming language on top of the Appium

testing framework [25].

5.2.2 Use-Case Executor

The existing testing frameworks can access all GUI elements and perform any actions on them,

even if the target element is not visible to the user. For example, the first step of the test shown

in Listing 5.1 is able to locate the “Create Account” button and click on it, no matter where the

button is located on the screen. However, users with disability may not be able to perform such

actions smoothly. Blind users need to explore the app using a screen reader to locate the element.

Although recognizing elements is comparatively easier for users with motor disability, they may

have difficulty reaching and initiating action on the element, as we saw in the illustrative example

of Section 5.1.

To improve the fidelity of evaluating accessibility issues for users with disability, LATTE is designed

to automatically execute a use case using assistive services. To that end, we utilize TalkBack and

SwitchAccess Proxy Users (defined in Section 4.4). Recall that, a Proxy User inputs an action, and

perform the action the way the target user interact with the device. For example, to click on “Create

Account” button, a TalkBack Proxy User use Linear Navigation to locate the button, then perform a

double-tap. Basically, the Use-Case Execution phase iterates through the Use-Case Specifications,

and perform them with TalkBack or SwitchAcces Proxy Users.

There are two scenarios during the use-case execution where the scanning process may not finish; in

45

other words, none of the focused elements match the description of the target element in the use-case

step. First, the textual description of the element is not sufficient to uniquely recognize the element,

because either there are multiple elements with the same description (duplicate labels issue) or

the target element does not have any textual description (unlabeled element issue). This scenario

occurs only in the case of TalkBack. The other scenario occurs when the target element could not

be focused (or reached) by TalkBack or SwitchAccess, e.g., illustrative example of Section 5.1 in

which “Create Account” button could not be reached.

LATTE defines two termination conditions for Proxy Users to prevent getting stuck in such cases:

(1) if an element is visited more than a predefined number of times, or (2) if a step takes more than a

predefined number of interactions to complete. These thresholds are configurable. Once either one

of these conditions is satisfied, LATTE marks the step as inaccessible. However, since we would

like to identify all accessibility issues in a use case, and not just the first encountered issue, when

an inaccessible step is encountered, LATTE executes it using the corresponding instruction in the

original test script, i.e. using Touch Proxy User. This allows LATTE to continue the analysis and

report all accessibility issues within a use case.

5.2.3 Result Analyzer

To retrieve the information generated during use case execution automatically, we implemented a

Command Line Interface (CLI) on top of the Android Debug Bridge (ADB) [14]. Using the CLI, the

Result Analyzer component communicates with the Use-Case Executor to receive and record details

of the execution for each step of a use case (recall Figure 5.2). Moreover, it automatically records

the screen during the use-case execution and stores the video clip. Once all use cases are executed,

the Result Analyzer aggregates the results and generates an Accessibility Report, consisting of the

following four components.

Accessibility Failures. For each use case, LATTE reports if it encountered an accessibility failure

46

during its execution using assistive services. A use case has an accessibility failure if the GUI

element of one of its steps cannot be located (focused).

Recorded Screens. While LATTE executes a use case, it records the screens to help developers (1)

localize the accessibility issues, and (2) obtain insights into how users with disability may interact

with their apps using assistive services.

Execution Details. LATTE reports other information extracted from the execution of each use

case, including the execution time and the number of interactions to complete the use case. This

information can be used as a source of insight for developers.

Accessibility Warnings. If a specific use case takes an exorbitant number of interactions to

complete, it indicates a usability concern for disabled users. We report this category of issues

as accessibility warnings, since in practice they can adversely affect users with disability. The

threshold of what constitutes an exorbitant number of interactions is configurable in LATTE. For

the purpose of experiments reported in the next section, we empirically observed that on average 1

touch interaction with an app requires approximately 5 times more interactions using TalkBack. We

thus set the threshold to 15 times the number of direct interactions, or 3 times the average number

of TalkBack interactions.

5.3 Evaluation

In this section, we evaluate LATTE on real-world apps to investigate the following research questions:

• RQ1. How accurately does LATTE execute use cases using assistive services?

• RQ2. How does LATTE compare to Google Accessibility Scanner (the official tool for

detecting accessibility issues in Android)?

47

• RQ3. How do the detected accessibility failures and warnings impact the usage of apps?

5.3.1 Experimental Setup

We evaluated our proposed technique using 20 apps, 5 of which have known accessibility issues,

as confirmed through user studies with disabled users in prior work [125]. The rest have been

randomly selected from 13 different categories on Google Play (e.g., entertainment, productivity,

finance), where 12 of them have more than 1 million installs.

We constructed a set of 2 to 4 test cases per app using Appium [25], which is an open-source testing

framework. In total, we ended up with 50 test cases for 20 apps. The test cases reflect a sample

of the apps’ main use cases, as provided in their descriptions (e.g., register an account, search

for products, place products in a shopping cart). For the apps with confirmed issues (first 5 apps

highlighted in Table 5.1), one of the test cases corresponds to the previously reported use case that

users with disability could not perform. Our experiments were conducted on a MacBook Pro with

2.8 GHz Core i7 CPU and 16 GB memory (a typical computer setup for development) using an

Android emulator (SDK 27).

5.3.2 RQ1. Accuracy of LATTE

We first executed the 50 GUI test cases to ensure they are constructed correctly. We then generated

the Use-Case Specifications from the tests and executed them using both SwitchAccess with two

physical switches (Next and Select) and TalkBack with directional navigation (swiping).

Table 5.1 summarizes the presence of accessibility failures in different settings. In a cell, ‘x’

indicates a use case of an app (row header) that could not be executed using an assistive service

(column header) due to an accessibility failure, and ‘✓’ indicates a use case that could be fully

executed without any failure. As shown under column heading “None”, all original test cases

48

Table 5.1: The summary of detected accessibility failures. ‘x’ shows a failure was found in an
app (row) while executing under a setting (column). Red bold ‘x’ is a failure that was detected
using LATTE but not using Google Accessibility Scanner. ‘✓’ means the test or use case could be
executed completely under a setting. The first five highlighted apps have confirmed accessibility
issues per prior user study [125] .

None

(Test Cases)

SwitchAccess

(Use Cases)

TalkBack

(Use Cases)

iPlayRadio ✓✓ xx xx

Feedly ✓✓ xx xx

Checkout51 ✓✓ ✓✓ x✓

Yelp. ✓✓ ✓✓ xx

Astro ✓✓ ✓✓ x✓

BillManager ✓✓ ✓✓ x✓

Budget ✓✓✓ xx✓ xxx

CalorieCounter ✓✓✓ x✓✓ xxx

Clock ✓✓ ✓✓ xx

Cookpad ✓✓ ✓✓ xx

Dictionary ✓✓✓ ✓✓✓ xxx

Fuelio ✓✓✓ ✓✓✓ x✓✓

Geek ✓✓ xx xx

SchoolPlanner ✓✓✓ ✓✓✓ xxx

SoundCloud ✓✓ ✓✓ xx

TodoList ✓✓✓✓ xx✓✓ xxx✓

TripIt ✓✓✓ ✓✓✓ xx✓

Vimeo ✓✓✓ ✓✓✓ xx✓

Walmart ✓✓ ✓✓ ✓✓

ZipRecruiter ✓✓✓ ✓✓✓ xx✓

49

(a) TripIt - The initial
screen

(b) TripIt - After naviga-
tion the bottom menu is
disappeared

(c) Yelp - the dotted box
could not be focused by
TalkBack

(d) Reported accessibil-
ity issues by Scanner
for Feedly (Orange solid
boxes)

Figure 5.3: The screenshots of some apps with accessibility failures

passed, since they do not check the accessibility of apps, but rather evaluate the correctness of

corresponding use cases. All accessibility results were manually examined and the failures were

verified by the authors (the video clips of the failures can be found on the companion website [110]).

LATTE achieves 100% precision (no false positives) in determining accessibility failures in the use

cases; in other words, all of the failed use cases in our experiments manifest a real accessibility

issue. As can be seen, 11 use cases in 6 apps and 39 use cases in 19 apps have accessibility

failures with SwitchAccess and TalkBack, respectively. Additionally, LATTE detected 17 and

25 accessibility warnings using SwitchAccess and TalkBack, respectively. The warnings are not

reported in Table 5.1, but discussed in more detail later.

We also analyzed the number of interactions for executing a use case with different assistive

services. On average, LATTE requires 11, 51, and 43 interactions to finish each use case under

None, SwitchAccess, and TalkBack settings, respectively. Additionally, the ratios of the number of

interactions required for SwitchAccess and TalkBack over those required for None were 5 and 4,

respectively. This means LATTE requires more than 4 interactions using assistive services to fulfill

a single interaction without such services, giving us a glimpse into the practical challenges disabled

users face in their usage of mobile apps.

50

5.3.3 RQ2. LATTE vs. Google Accessibility Scanner

We ran Google Accessibility Scanner at each step of all use cases. We then compared the failures

detected by LATTE against the issues reported by Scanner. Red bold ‘x’ in Table 5.1 represents the

corresponding use case has an accessibility failure detected by LATTE that Scanner could not detect.

Scanner was able to detect only 18 of the 50 accessibility failures detected by LATTE in the evaluated

use cases. For each failure detected by LATTE, we examined all of the issues reported by Scanner.

If any of those issues were found to be related to the actual fault, we assumed the Scanner can help

to find the failure, e.g., Scanner can detect missing labels. Scanner could not detect any of the 11

accessibility failures detected by LATTE using SwitchAccess, and 21 of the 39 failures detected by

LATTE using TalkBack. While LATTE was able to detect all of the 5 issues confirmed by actual users

with disability in the first 5 apps of Table 5.1, Scanner was only able to detect 1 of the issues (in

Astro app). In addition, Scanner was not able to find the accessibility failures in 8 of our randomly

selected subject apps.

Scanner reports an exorbitant number of issues that would overwhelm a typical developer. It reports

on average 34 issues per use case for a total of 1,716 issues in the 50 use cases in our experiments.

Out of the 1,716 reported issues by Scanner, only 18 were relevant to the accessibility failures

reported by LATTE. In comparison, LATTE produces at most one accessibility failure per use case.

For example, in Figure 5.3(d), Scanner detected a number of issues, e.g., “Get Smarter” has low

text contrast. The Scanner did not report any problem regarding the top two buttons (menu and

search icons) that cannot be reached using TalkBack and SwitchAccess, making the app totally

inaccessible.

On the other hand, the current prototype of LATTE could not detect issues that are not related to

assistive-services, like low-text contrast. We believe LATTE can be improved by the predefined

checks of Scanner to cover a more comprehensive set of accessibility issues.

51

(a) School Planner (b) Todo List (c) Dictionary

Figure 5.4: Screens of few apps with accessibility issues

5.3.4 RQ3. Qualitative Study of Detected Accessibility Failures and Warn-

ings

Accessibility Failures

We manually examined all use-case failures and categorized them into the following three groups:

Dynamic Layout Some apps change the visibility of elements on the screen dynamically. For

example, Figure 5.3(a) shows the initial screen of TripIt app. If a user wants to reach the bottom

menu, e.g., clicking on the Alert icon, she needs to explore the elements to locate the target

widget; however, during the directional navigation with TalkBack, the bottom menu disappears

(Figure 5.3(b)). The reason behind hiding the menu is to improve the user experience by providing

more space in the middle list (where a sighted user is looking for an item). However, this change in

the layout makes the bottom menu inaccessible for a blind user, since she does not know the menu

has disappeared. The accessibility failures in TripIt and Dictionary apps belong to this category.

This observation is consistent with the findings in a prior work [98] that showed usability and

52

accessibility concerns are not a subset of each other. Furthermore, this example suggests improving

the usability of a use case for some users may in fact degrade the accessibility of that use case for

others.

Navigation Loop Assistive services may not reach a GUI element in some apps because of a

static or dynamic loop in directional navigation. Developers can create a static loop by defining

custom traversal order over elements using accessibilityTraversalAfter attribute. While

Accessibility Scanner can detect static loops, none of the apps in our experiments had this issue.

On the other hand, a dynamic loop is caused by inserting elements while the user interacts with

an app. For example, as shown in Section 5.1, the images in the background are inserted as the

user navigates through them, making the navigation list virtually infinite. This issue is usually

caused by RecyclerView widget where its adapter indefinitely inserts items into the container. The

accessibility failures of this type could be found in Yelp, CalorieCounter, CookPad, Geek, and

SoundCloud apps.

Non-Standard Implementation Developers use customized GUI widgets in their apps that may

have different behavior when users interact with them using an assistive service. For example,

Figure 5.3(c) is the page of a restaurant in Yelp where users can rate the restaurant (the dotted blue

box). However, TalkBack cannot focus on the rating widget since it is a customized TextView

without any text. Therefore, even a sighted user using TalkBack cannot select this widget to rate

the restaurant. Another source of these failures is using WebView widgets carelessly. WebView

allows Android apps to load UI elements using web technologies, e.g., HTML, JavaScript. For

example, in Feedly app (Figure 5.3(d)), the search icon at the top right is a WebView icon where its

clickable attribute is false, meaning it cannot be invoked using assistive services. This attribute,

however, does not prevent a user without disability from directly tapping the icon, which results in

the corresponding JavaScript event handler to be invoked. LATTE detected these types of failures in

iPlayRadio, Feedly, Checkout51, Yelp, Budget, and TodoList apps.

53

Accessibility Warnings

We also studied the use cases with Accessibility Warnings and categorized them into four categories.

Recall that LATTE reports an accessibility warning when an step in the use-case execution takes

more than a specific number of interactions (15 interactions in our experiments).

Overlapping Layouts Most of the apps have multiple layouts that overlay on top of each other,

i.e., Activity, menu, and dialogue layout. A user who directly interacts with the screen only considers

the elements on the top layout. However, TalkBack and SwitchAccess visit all focusable elements

regardless of the layout hierarchy. Therefore, users who use assistive services often navigate

through elements even if they are not on the top layout. For example, Figure 5.4(a) shows the main

screen of the School Planner app. As can be seen, the side menu is the active window (it is fully

visible). However, it takes at least 12 interactions for a user to even reach the first item in the menu.

Developers can fix this issue by making the elements in the non-top layouts unfocusable.

Far-Off Widget All screen elements can be accessed virtually in no time for a user who di-

rectly interacts with the device. However, users relying on assistive services access the elements

sequentially. Therefore, it takes longer for them to access a frequently used element located at the

end of the navigation list. For example, in the TripIt app, Figure 5.3(a), a user has to navigate all

elements from the top to the bottom to access the fab icon (the icon with a plus sign, highlighted

in Figure 5.3(b)). To resolve these issues, developers can define a custom navigation to reduce

the interactions required to reach the important elements. For example, in the School Planner app

(Figure 5.4(a)), the fab icon is located at the top of the navigation list, although its actual position

on the screen is at the bottom right.

Grid Layout Grids provide an efficient layout for presenting multiple items in a small space, all

of which can be accessed in no time for users without disability. However, since a grid’s items are

54

accessed linearly by SwitchAccess, it takes a lot of interactions to reach the last element on the

gird. For example, in the TodoList app, the calendar widget has 30 items in the grid that need to

be visited before reaching to “CANCEL” or “OK” buttons (Figure 5.4(b)). To fix this, developers

can provide different layouts for different settings, e.g., a text-based date picker when TalkBack or

SwitchAccess are enabled.

Web View There is a common practice for mobile developers to reuse web content (implemented

in HTML/JavaScript) for some parts of their apps using WebView widget [87]. However, assistive

services cannot analyze web elements properly, as shown earlier in the case of Non-Standard

Implementation category of accessibility failures. Even if improper usage of web elements does not

make an app inaccessible, it can degrade the user experience. For example, in the case of Dictionary

app, shown in Figure 5.4(c), the definition of a term is shown in terms of a series of web elements,

and each word in the passage is a clickable Android GUI element. Consequently, TalkBack and

SwitchAccess need to navigate through all of these elements to reach the end of the text.

5.4 Conclusion

This chapter described a novel, high-fidelity form of automated accessibility analysis for Android

apps, called LATTE. It reuses tests written by developers to evaluate the correctness of the important

use cases in their apps to also validate the accessibility of those use cases. LATTE first extracts use

cases corresponding to an app’s tests, and subsequently executes them with the help of assistive

services. We evaluated the effectiveness of LATTE by analyzing 20 apps selected from 13 different

categories from Google Play and identified 32 accessibility failures that could not be identified

using the state-of-the-art technique. A qualitative analysis of the results obtained in our experiments

allowed us to identify a number of interesting categories of accessibility failures and warnings,

together with ways in which developers can resolve them.

55

Although LATTE finds accessibility failures undetected by Accessibility Scanner, it cannot detect

accessibility barriers for users who do not use assistive services, e.g., low text contrast. Therefore,

Accessibility Scanner cannot be replaced completely by LATTE, rather they complement each other.

The main input for LATTE, which should be designed by app developers, is GUI test cases. If these

test cases are unavailable, for any reason, LATTE is not able to do any accessibility analysis on the

app. The next chapter, examines the possibility of completely automated accessibility analysis of

mobile apps without any manual input.

56

Chapter 6

Assistive-Service Crawler

The previous chapter introduces LATTE, which incorporate assistive services in evaluating the

feasibility of executing GUI test cases. However, LATTE assumes the availability of GUI tests

for validating the functionalities of the app under test, which are then repurposed for accessibility

analysis. Unfortunately, developers do not usually write GUI tests for their apps, making their

approach applicable to only situations in which GUI tests are available. Studies show that more

than 92% of Android app developers do not have any GUI test for their apps [79]. Even if GUI

tests are available for proprietary apps, the test cases are rarely available to the public or app store

operators that may want to assess the accessibility of apps for users. Furthermore, GUI tests may

fail to achieve good coverage, making their approach ineffective at finding accessibility issues in

uncovered parts of the app under test.

After LATTE, Alotaibi, et al. [6] have proposed a method of detecting certain accessibility failure

that may occur when using TalkBack. However, their approach requires the developer to manually

navigate through the app, i.e., the input to their tool is a screen of an app, rather than the app under

test. Furthermore, their approach cannot detect issues related to performing actions with TalkBack.

To address the limitations of existing tools, we have developed a fully automated approach, called

57

GROUNDHOG, for validating the accessibility of Android apps that replicates the manner in which

disabled users actually interact with apps, i.e., using assistive services. GROUNDHOG gets the app

in a binary form, i.e., APK, and installs it on a Virtual Machine (VM). It utilizes an app crawler

to explore a diverse set of screens to be assessed. For each screen, GROUNDHOG extracts all the

possible actions and executes the same action with different interaction models, including different

assistive services, to validate if the app is accessible. GROUNDHOG leverages the VM to repeatedly

reevaluate the app from the same state, performing the same action using different assistive services

to identify the accessibility issues that may affect users with various forms of disability.1 In

particular, GROUNDHOG checks if UI elements can be located by users, i.e., locatability, and all

actions can be performed, i.e., actionability, regardless of the way users interact with the device,

e.g., touch-based interaction or assistive-service interaction. Instead of just reporting violations of

accessibility guidelines as in prior work, GROUNDHOG produces a summary of the accessibility

issues containing a video that describes how a user with disability cannot perform an action in an

app. This type of reporting can help developers to pinpoint the issue and increase their awareness of

the challenges faced by users with disability.

Our empirical experiments show that GROUNDHOG can detect 293 accessibility issues that could

not be detected by existing accessibility testing tools.

The rest of this chapter is organized as follows: Section 6.1 motivates this study with an example.

Section 6.2 explains the details of our approach, and Section 6.3 describes the optimizations over our

technique. The evaluation of GROUNDHOG on real-world apps is finally presented in Section 6.5.

58

Figure 6.1: (a) The login activity of Facebook app, (b) The exit dialog appears when users press
back button on Facebook app, (c) a screen in BudgetPlanner app, the highlighted boxes and arrows
depicts the directional navigation to the “ADD” button by TalkBack, (d) a dialog appears after
tapping “ADD” button

6.1 Motivating Example

In this section, we provide two examples to illustrate the types of accessibility issues that cannot be

detected with conventional accessibility testing tools and prior studies.

Figure 6.1(a) shows the login screen of the Facebook app with more than 1 billion installs on Google

Play [54]. This screen provides the ability for the user to log in, which obviously is crucial to be

accessible, since it is the entry point of the app.

A user with a disability relies on an assistive service to interact with the app. As discussed in

1The name of our tools is inspired by the popular Hollywood movie “Groundhog Day” from 1993, where the lead
character is stuck in a time loop, forcing him to relive the same day, which is akin to our repeated reevaluation of an app
from the same state.

59

Section 4.3, a TalkBack user can navigate through the elements with four navigation modes, Linear,

Touch, Jump, and Search. Using either of these navigation modes on the app screen illustrated in

Figure 6.1(a), TalkBack can only detect the two text boxes, annotated in green in Figure 6.1(a),

and is incapable of detecting the rest of the elements, including crucial buttons such as “Log in” or

“Create new account”. However, a regular user can see all the elements on the screen, provide login

credentials, and tap on the buttons to log in and use the app without any problem. Interestingly, a

TalkBack user cannot even exit the app using the back button as none of the elements on the exit

dialog, in Figure 6.1(b), are accessible by TalkBack. This is an example of locatability issue, since

a user with a disability cannot locate (reach) an element on the screen.

Existing accessibility testing approaches are not capable of detecting these issues. Google Acces-

sibility Scanner [9] evaluates the top screen on a device, checks a few rules for the elements, and

reports their violations as accessibility issues. In running Scanner on the screen in Figure 6.1(a) 4

issues are detected for text boxes, 2 of them are warning about their “small touch target size”, and

2 of them are noting the “missing speakable text” for them. Neither Scanner nor other rule-based

accessibility testing tools [20, 17] are capable of detecting navigational issues in Android apps.

Assistive services also enable users to perform actions on elements. Unfortunately, actions per-

formed under different interaction models may have inconsistent behaviors. Figure 6.1(c) shows

a screen in a popular budget tracker app, with more than 1 million installs, where users can add

income or expenses to their budgets. To add an income to the budget, a user without a disability

simply taps on the “ADD” button and a form appears to input the amount, as shown in Figure 6.1(d).

For the same action, a TalkBack user, first locates the “ADD” button, e.g., the Linear Navigation is

shown by arrows in Figure 6.1(c)). Once the element is located, the user double taps to perform a

click action through TalkBack. However, in this case, The income addition form in Figure 6.1(d)

will not be shown, preventing TalkBack users from adding any income and rendering the app

inaccessible for them as a result. This is an example of actionability issue, since the action is not

supported consistently under different interaction models.

60

The insight underlying our work is that the two types of accessibility issues discussed above cannot

be revealed accurately unless the apps are examined in the manner disabled users interact with apps,

i.e., using assistive services.

6.2 Approach

Regardless of different interaction models, the ability to locate elements on the screen and perform

actions consistently are fundamental needs in app accessibility. As a result, locatability and

actionability form the basis of our approach. The goal of our approach is to automatically detect

apps that fail to meet these accessibility requirements at runtime.

To that end, we propose GROUNDHOG, an automated assistive-service driven testing tool. Figure 6.2

shows the overview of our approach. GROUNDHOG utilizes an App Crawler to explore different

states of the app. After each change in the app, App Crawler invokes the Snapshot Manager to

capture a VM snapshot if the current state (screen) has not already been seen. Snapshot Manager

provides the VM Snapshots to Action Extractor, where all the possible actions on the given state of

the app are subsequently extracted. GROUNDHOG then tries to locate the elements and perform

these actions on them using three different Proxy Users: Touch Proxy User, TalkBack Proxy User,

and Abstract Proxy User. Finally, the new state of the app after performing the action is provided to

the Oracle along with the initial app state. Oracle assesses if each Proxy User successfully performs

the action and produces the final report.

In this section, we describe each component of GROUNDHOG in detail, except Proxy Users, which

have been discussed in Section 4.4.

61

Figure 6.2: An overview of GROUNDHOG

6.2.1 Snapshot Manager

The goal of Snapshot Manager is to allow a diverse set of app states obtained through crawling to be

later analyzed. Snapshot Manager is a connector between an app crawler and the rest of the system.

GROUNDHOG can be integrated with any of the existing app crawling techniques like Monkey [55],

Stoat [116], Ape [57], Sapienz [84], etc. These crawlers employ various techniques in modeling the

app to trigger transitions between app states. For example, Stoat models app behavior as a Finite

State Machine (FSM) whose nodes are UI elements and attempts to maximize node coverage as

well as code coverage. In GROUNDHOG, even a human agent, e.g., developer or tester, can be

involved to replace or enhance an automated app crawler to reach any desired state of the app.

62

For each app state, Snapshot Manager checks whether this state is a newly discovered state to take

a snapshot for further analysis or not. To that end, Snapshot Manager calculates a hash value of

the hierarchical representation of UI elements on the screen. Screen hash calculation in Snapshot

Manager only incorporates elements and attributes that impact obtaining a diverse set of app screens.

For example, elements that do not belong to the app under test, i.e., have a different package name

or belong to an advertisement widget, are not included. Similarly, not all elements’ attributes can

distinguish different screens. For example, if the app crawler taps on an edit text box or writes a

random string in it, its focused and text attributes change; however, they are not indicators of a new

screen. The practice of excluding some values in defining GUI states is also widely adopted in

Mobile GUI testing studies [44, 38, 39].

Snapshot Manager provides VM snapshots of diverse app screens to the rest of GROUNDHOG’s

components.

6.2.2 Action Extractor

The Action Extractor component takes a VM snapshot of an app state as input and extracts a list of

available actions from it. To that end, Action Extractor loads the snapshot on a VM equipped with

an Accessibility Service such as UIAutomator. This service runs in the background and enables

capturing a hierarchical representation of UI elements. Action Extractor performs further analysis

on the dumped hierarchy of UI elements. It explores the tree of elements and searches for those that

support action, e.g., have clickable=true in their attributes.

An action consists of two parts: the operation, e.g., click, and an identifier of the element on which

the action is performed. The target element can be identified uniquely by its apath, i.e., the absolute

path from the root to the target node in the UI hierarchy tree. For example, assuming the target

element is the first “ADD” button in Figure 6.1(c), the corresponding apath is /Framelayout/Lin-

earLayout/FrameLayout[2]/Button. Also, the operation of this action can be determined from the

63

“clickable” attribute. Therefore, this action can be represented as the following JSON object that is

passed to proxies to be executed in different interaction modes:

1 {

2 operation: ’click’,

3 apath: ’/Framelayout/LinearLayout/FrameLayout[2]/Button’

4 }

6.2.3 Oracle

The Oracle component is responsible for analyzing each app state and corresponding execution logs

to determine if an accessibility issue exists in executing an action with a proxy.

For locatability issue, Oracle refers to failure reports of Proxy Users to check if the Proxy

User was successfully locating the element. For actionability issue, Oracle first analyzes

event logs to check if the events which are indicating a change in the content of the UI, i.e.,

TYPE WINDOW CONTENT CHANGED, and executing an action, e.g., TYPE VIEW CLICKED,

occurred. It also compares the app’s previous state with the new state to ensure the event occurred.

In comparing app states, Oracle compares their UI hierarchy similar to Snapshot Manager by

comparing their hash values. However, Oracle does not exclude the same attributes as Snapshot

Manager in calculating the hash value. For example, changes in the text attribute are not demon-

strating a new screen for Snapshot Manager but can indicate an action execution. In the end, if

the UI hierarchy before and after the action execution is the same, and there is no corresponding

AccessibilityEvent of the executed action, the oracle reports an actionability issue for a given User

Proxy.

Furthermore, the Oracle compares the actionability of each element across different Proxy Users

to check if there exists at least one Proxy User that can successfully perform the action. This way,

we are assured the element is associated with behavior (it is operative) and not just a decorative

element.

64

Figure 6.3: Locating (a) the last “ADD” button, and (b) the “Done” button with TalkBack Proxy
in Linear Navigation. 18 Linear Navigation interactions in (b) are redundant since they have been
performed in (a) already.

6.3 Optimization

In the previous section, we explained how, given a snapshot of an app, GROUNDHOG extracts all

possible actions for each of them, and locates and performs the available actions using different

Proxy Users. For example, Figure 6.3 depicts the process of locating two elements (a) the last

“ADD” button, and (b) the “Done” button. Note that TalkBack traverses the UI hierarchy with each

swipe starting from the top left element on the screen. As can be seen in Figure 6.3, the elements 1

to 19 appear both in (a) and (b). In other words, there is substantial redundancy between the steps

required to locate these two elements.

65

We introduce an optimization technique using a memoization algorithm to minimize the number of

interactions in the Linear Navigation mode without losing the accuracy of detecting locatability

issues in an app. The basic idea is to memorize the elements that TalkBack has located directionally

in previous action executions and start the exploration from the closest located element to the target

element. To locate the target element, TalkBack Proxy first sends a direct AccessibilityEvent, called

ACTION FOCUS to element e which asks TalkBack to focus on it directly. The element e is a

visited element in the past action executions of TalkBack Proxy, closest to the target element in the

UI hierarchy. This way, all Linear Navigation from the start to the element e is bypassed, allowing

the exploration to proceed much faster.

6.4 Implementation

GROUNDHOG is designed as a Client-Server architecture model where the server is on the host

machine and the client resides on an Android device. The server side, implemented in Python,

orchestrates the whole analysis from running an app crawler, taking snapshots, executing actions

with Proxy Users, creating reports, and visualizing the results. The client, implemented in Java, is

basically an accessibility service, i.e., Proxy Users, that controls the device to execute actions.

GROUNDHOG utilizes Android Debug Bridge (ADB) [14] to manage communications between the

server and client. GROUNDHOG also modifies Stoat app crawler [116] and employs it to explore

different states of the app. As discussed in Section 6.2, any app crawler can be used in GROUNDHOG.

The rationale behind choosing Stoat is that it is completely open-source and conveniently works

with the latest Android versions. It also has been widely used in previous studies. Lastly, Pillow [40]

Python imaging library and Flask [97], python web framework, assist in visualizing the detected

accessibility issues.

In our experiments, for actionability evaluation of GUI elements, we only focused on click actions

66

that are most commonly associated with app behaviors. However, GROUNDHOG can be similarly

configured for any other type of action, e.g., long-click. Also, for the TalkBack Proxy User, we used

two navigation modes (Linear and Touch) for the experiments as they are the most common ways to

navigate the app.

6.5 Evaluation

We conduct several research experiments to evaluate GROUNDHOG and answer the following

research questions:

RQ1. How effective is GROUNDHOG in detecting accessibility issues?

RQ2. How does GROUNDHOG compare to Google Accessibility Scanner (the official accessibility

testing tool in Android)?

RQ3. What are the characteristics of the detected accessibility issues? How do they impact app

usage for users with disabilities?

RQ4. What is the performance of GROUNDHOG? To what extent optimization improves its

performance?

6.5.1 Experimental Setup

We evaluate GROUNDHOG on three different sets of real-world apps. First, a set of 20 random apps

with more than 10 million installs in Google Play Store [19] (labeled as P). Second, 20 randomly

selected apps from AndroZoo [3], a collection of Android apps collected from several sources

including Google Play (labeled as A). All of these 40 apps are published in Google Play in 2021

and 2022. We also included 17 apps from the 20 apps that were evaluated by LATTE (labeled as

67

L).2 Out of the 17 apps from the LATTE Latte dataset included in our study, 11 have confirmed

accessibility issues.

In total, our dataset consists of 57 apps that have been published in 21 different categories in

Play Store. The complete list of datasets can be found on our companion website [114]. We ran

GROUNDHOG on each app until at least 10 states (screens) were captured (in total 570 different

states).

To answer the research questions, we carefully examined the results to check if the reported issue

is correct (true positive) or wrong (false positive). Therefore, we create a smaller set of results by

selecting 5 UI states from 10 apps in each dataset (P, A, and L). In total, a set of 150 different UI

states with 1,133 actions is created which can be seen in Table 6.1 (sorted based on installs).

All experiments were conducted on a typical computer setup for development (MacBook Pro,

2.8 GHz Core i7 CPU, 16 GB memory). We used the most recent distributed Android OS at the

time of experiments (SDK30), and the latest versions of assistive services, i.e., TalkBack 12.1 and

SwitchAccess 12.1.

6.5.2 RQ1. Effectiveness of GROUNDHOG

Table 6.1 summarizes the accessibility issues detected by GROUNDHOG. The Actions column

represents the total number of extracted actions from all different states of the app and the number

of actions that GROUNDHOG found to be operative, i.e., leading to a modification in the GUI state.

As shown in the Table, on average, each snapshot has 7.5 actions to be evaluated by Proxy Users.

The columns entitled TalkBack Unlocatable, TalkBack Unactionable., and Abstract Unactionable

represent locatability and actionability issues by TalkBack Proxy Users, and actionability issues by

Abstract Proxy User, respectively. For each type of issue, we show the total number of detected

2We had to exclude 3 outdated apps that do not work at the time of the experiments.

68

Ta
bl

e
6.

1:
T

he
ev

al
ua

tio
n

su
bj

ec
ta

pp
s

w
ith

th
e

de
ta

ils
of

de
te

ct
ed

ac
ce

ss
ib

ili
ty

is
su

es
by

G
R

O
U

N
D

H
O

G

Id
A

pp
C

at
eg

or
y

#I
ns

ta
lls

#A
ct

io
ns

Ta
lk

B
ac

k
U

nl
oc

at
ab

le
Ta

lk
ba

ck
U

na
ct

io
na

bl
e

A
bs

tr
ac

t
U

na
ct

io
na

bl
e

#A
ll

Is
su

es
Sc

an
ne

r
To

ta
l

O
pe

ra
tiv

e
To

ta
l

T
P

To
ta

l
T

P
To

ta
l

T
P

SA
To

ta
l

T
P

P1
In

st
ag

ra
m

So
ci

al
>

1B
31

17
0

0
0

0
0

0
0

0
0

9
P2

Fa
ce

bo
ok

L
ite

So
ci

al
>

1B
20

18
14

14
0

0
7

6
6

21
20

33
P4

Z
oo

m
B

us
in

es
s

>
50

0M
26

25
1

0
0

0
0

0
0

1
0

13
P7

M
ic

ro
so

ft
Te

am
s

B
us

in
es

s
>

10
0M

23
19

0
0

2
0

2
0

0
2

0
6

P1
1

M
ov

et
oi

O
S

To
ol

s
>

10
0M

12
10

2
2

0
0

0
0

0
2

2
11

P1
2

B
ib

le
B

oo
ks

>
50

M
44

39
6

6
0

0
0

0
0

6
6

20
P1

3
To

on
M

e
Ph

ot
og

ra
ph

y
>

50
M

48
41

18
17

1
0

0
0

0
19

17
43

P1
9

V
en

m
o

Fi
na

nc
e

>
10

M
24

17
0

0
0

0
0

0
0

0
0

6
P2

1
Ly

ft
N

av
ig

at
io

n
>

10
M

21
18

2
0

0
0

0
0

0
2

0
2

P2
2

E
xp

ed
ia

Tr
av

el
>

10
M

40
34

9
6

0
0

0
0

0
9

6
71

A
1

Y
O

N
O

Fi
na

nc
e

>
10

0M
92

59
54

41
9

9
1

1
1

64
51

39
A

2
N

or
to

nV
PN

To
ol

s
>

10
M

21
16

9
8

1
0

0
0

0
10

8
8

A
3

D
ig

ita
lC

lo
ck

To
ol

s
>

10
M

57
42

7
7

0
0

1
0

0
8

7
21

A
5

To
-D

o-
L

is
t

Pr
od

uc
tiv

ity
>

5M
45

32
2

1
0

0
0

0
0

2
1

19
A

6
E

st
ap

ar
V

eh
ic

le
s

>
1M

41
31

23
21

2
0

0
0

0
25

21
11

A
9

M
yC

en
ts

ys
H

ou
se

>
10

K
34

19
0

0
0

0
9

9
9

9
9

14
A

10
H

M
an

ag
er

Pr
od

uc
tiv

ity
>

10
K

17
17

2
2

0
0

0
0

0
2

2
5

A
11

G
re

ys
he

et
L

if
es

ty
le

>
10

K
44

24
1

0
0

0
19

18
18

20
18

10
A

13
M

G
Fl

as
he

r
V

eh
ic

le
s

<
10

K
54

37
5

5
2

2
6

6
6

11
11

19
A

18
A

ud
itM

an
ag

er
Pr

od
uc

tiv
ity

<
10

K
15

10
0

0
5

5
5

5
5

5
5

6
L

3
Y

el
p

Fo
od

>
50

M
62

56
10

9
0

0
0

0
0

10
9

9
L

4
G

ee
kS

ho
pp

in
g

Sh
op

pi
ng

>
10

M
29

28
5

3
0

0
0

0
0

5
3

13
L

5
D

ic
tio

na
ry

B
oo

ks
>

10
M

42
38

3
1

0
0

2
1

0
5

2
16

L
6

Fa
tS

ec
re

t
H

ea
lth

>
10

M
37

37
11

9
1

1
0

0
0

12
10

14
L

8
Sc

ho
ol

Pl
an

ne
r

E
du

ca
tio

n
>

10
M

52
48

8
8

0
0

1
0

0
9

8
52

L
9

C
he

ck
ou

t5
1

Sh
op

pi
ng

>
10

M
29

22
6

6
0

0
0

0
0

6
6

4
L

11
Tr

ip
It

Ta
ve

l
>

5M
52

39
9

8
0

0
0

0
0

9
8

6
L

12
Z

ip
R

ec
ru

ite
r

B
us

in
es

s
>

5M
31

27
1

0
0

0
0

0
0

1
0

5
L

13
Fe

ed
ly

N
ew

s
>

5M
63

34
34

34
14

12
24

23
23

58
57

1
L

15
B

ud
ge

tP
la

nn
er

Fi
na

nc
e

>
1M

27
25

2
0

6
6

6
6

6
8

6
26

To
ta

l
11

33
87

9
24

4
20

9
43

34
83

75
74

34
1

29
3

51
2

Pr
ec

is
io

n
0.

85
0.

79
0.

90
0.

86

69

issues and the number of issues manually verified by authors or True Positives (TP).

To verify if an issue is detected correctly by GROUNDHOG, we load the corresponding snapshot

on an emulator and interact with the app manually. For TalkBack locatability issues, we explored

the app using TalkBack’s two navigation modes, i.e., Linear and Touch, and check if the target

element cannot be located in either way. Note that since Abstract Proxy directly interacts with the

corresponding AccessibilityNodeInfo objects, it has no locatability issue.

For the actionability issues, first, we perform the action with touch (by tapping on the element) and

observe the changes in the app state, e.g., by tapping on a checked box, its state changes, or by

clicking a button, a new page may appear. Once we confirmed the target element is associated with

an action by touch, we reload the snapshot to the same state two other times. The first time, we use

TalkBack to click on the element (double tap), and the second time we send ACTION CLICK to the

target element using ADB and GROUNDHOG. Then we monitored all changes to see if anything

happened. We follow a conservative strategy and assume that any changes after clicking (even if it

is not the same as the change after tapping the element) show the element is actionable.

With the number of verified issues (TPs), we evaluated the effectiveness of GROUNDHOG in terms

of Precision as the ratio of the number of TPs to the number of all detected issues. We also report

Action Coverage and Recall of GROUNDHOG as follows.

Precision

The number of locatability and actionability issues that are confirmed manually are shown in

Table 6.1. In total, GROUNDHOG could detect 293 true accessibility issues with a precision of

86%. Two-thirds of the apps in our test set have locatability issues. Note that, when an element

is not locatable by TalkBack, it cannot be verified if it is actionable. Therefore, the number of

TalkBack Proxy User actionability issues is expected to be less than Abstract Proxy actionability

issues. A9 and A11 are the only two exceptions in our test set. Our further investigations of these

70

apps reveal that TalkBack dispatches touch events to the screen when performing ACTION CLICK

fails. TalkBack utilizes this workaround to overcome some accessibility issues in apps.

Our analysis of GROUNDHOG’s failures showed that 39 out of 48 false positives could be fixed by

rerunning GROUNDHOG on the app for the second time. The reason for these failures in the first

attempt is the improper timing between performing an action and retrieving the results from the

device, e.g., some of AccessibilityEvents are not captured, which is a common challenge in dynamic

analysis techniques due to concurrency issues.

In a few of the false positives, although the assistive services did not make any changes to the

app’s state, the changes by touch interaction do not contribute to any functionality of the app. For

example, Figure 6.4 (a) shows the login page of MicrosoftTeams app (P7). Clicking on the email

text box on the login page results in different behaviors based on the way it is performed. When a

user with an assistive service clicks on the text box, nothing happens; however, if a user touches the

text box, the decorative figure disappears, as shown in Figure 6.4 (b). GROUNDHOG reports this as

an actionability issue. However, since this change does not impact assistive-service users, we mark

it as a false positive.

Some false positives happen because of changes in the app state during exploration. For example,

GROUNDHOG reports a button in a slider list of the To-Do-List app (A5) as locatabilty issue, as

shown in Figure 6.4 (c). However, the reason behind this is that the element is the last item on

the list and when TalkBack focuses on it, the sliding widget fetches new elements and moves the

elements to the front. This changes the GUI hierarchy layout and GROUNDHOG does not realize

the current first element is the same as the last element on the list seen previously. Moreover,

GROUNDHOG detects a TalkBack actionability issue for the SchoolPlanner app (L8), as shown in

Figure 6.4 (d), since performing a click on the focused element does not change the UI state (since

the tab is already active). However, by touching on the tab, we are in fact touching on the overlay,

resulting in the disappearance of the overlay element.

71

(a) (b)

(c)

(d)

(e)

(f)

Figure 6.4: (a-d) are examples of false positives, and (e-f) are examples of missing actions in
GROUNDHOG

Action Coverage

To understand the effectiveness of GROUNDHOG in extracting all possible actions from the screen,

we manually examined all 150 UI states by touch interactions to extract the set of all elements

that are associated with an action. In total, we found 1,149 actions, where GROUNDHOG could

extract 1,133 of them (98% action coverage). In cases that GROUNDHOG missed an action, there

was a custom-implemented UI widget without proper specifications for accessibility services. For

example, two missing actions, back and search buttons from apps Greysheet and Feedly apps (A11

and L13), depicted in Figure 6.4(e), and (f), are layouts with attribute clickable set to False. Thus,

GROUNDHOG cannot identify them as actionable elements.

Recall

To calculate the recall of GROUNDHOG in detecting real accessibility issues, we used the set of

detected accessibility issues by LATTE as the ground truth. In total, LATTE found 12 accessibility

72

issues, where 10 of them could be detected by GROUNDHOG (83% recall in detecting existing

issues). One false negative happens for the Feedly app where GROUNDHOG did not extract the

search button, depicted in Figure 6.4 (e), as an action. The other false negative happens in the

Dictionary app, where the accessibility issue can be revealed after performing three consecutive

actions on the app. Since GROUNDHOG analyzes an app only with one action, this issue could not

be detected. We also found 87 new accessibility issues in the dataset of apps from LATTE that were

not detected by LATTE.

In comparison with LATTE, we can see GROUNDHOG is able to detect a much larger number of

accessibility issues. This is mainly because LATTE assumes the availability of manually written

GUI tests and does not achieve the same level of coverage as GROUNDHOG that uses a crawling

technique. At the same time, in a few cases, GROUNDHOG is missing certain accessibility issues

that are detected by LATTE because manually written tests can exercise non-native UI elements that

do not have a proper specification for accessibility services (i.e., attributes of AccessibilityNodeInfo

object are not properly set), while GROUNDHOG cannot properly analyze such elements.

6.5.3 RQ2. Comparison with Scanner

Google Accessibility Scanner [9], or Scanner for short, is the most widely used accessibility analyzer

for Android. Scanner leverages Accessibility Testing Framework (ATF) [10] to evaluate screen

accessibility. To compare GROUNDHOG with Scanner, we analyzed all the examined app states

in Table 6.1 with Scanner and checked what it reports. The last column of Table 6.1 displays

the number of issues detected by Scanner. By comparing the accessibility issues reported by

GROUNDHOG against what Scanner reports, we found that there is no intersection between the

type of issues each of them detects. Scanner evaluates a screen against predefined accessibility

rules and reports issues such as low contrast, small touch target size, and missing speakable text for

unlabeled icons. It cannot detect issues related to interactions with an app using assistive services.

73

However, the accessibility issues reported by Scanner are also important to be addressed to have an

accessible app. We believe that GROUNDHOG complements Scanner and other ATF-based testing

techniques [7, 45, 61] in evaluating app accessibility.

6.5.4 RQ3. Qualitative Study

We manually examined all the detected accessibility issues to understand how the issues affect users

with a disability and what are their root causes. We found four different categories of issues as

follows.

Unlocatable elements with TalkBack

GROUNDHOG evaluates locatability of elements by TalkBack in using both Linear and Touch

Navigation modes. In severe cases, neither of these modes can locate an element. For example,

Figure 6.5 (a) shows a screen in the Expedia app where none of its elements, even the back button,

can be detected by TalkBack. We found that the root cause of this issue is having the important-for-

accessibility attribute set to false, meaning that TalkBack should treat them as decorative elements

and skip them in exploring the app. Developers should set this attribute properly. We found this

issue in Facebook, Expedia, Checkout51, ToonMe, SchoolPlanner, and Yelp apps.

In some cases, the element can be located by Linear Navigation, but not by Touch Navigation. For

example, Figure 6.5 (b) depicts the entry screen of YONO (a banking app), where the highlighted

button can be located by Linear Navigation, yet, the element does not get accessibility focus when

touched. This issue happens when there is an overlap among the active elements on a screen,

similar to Figure 6.5 (b), where the highlighted button is placed under the top layout. Such elements

confuse users about the screen’s content and may also have security implications when a malicious

functionality is hidden by malware authors in such elements. This finding motivates us to examine

74

(a)

(b) (d) (g)

(e)

(f)

(c)

(a) (d)

(e) (g)

(c)

(f)

(b)

Figure 6.5: Qualitative study of GROUNDHOG’s report on subject apps

the impacts and root causes of such issues, which will be explained in the following chapter. This

type of issue can be found in YONO, Feedly, Dictionary, Estapar, TripIt, NortonVPN, Facebook,

DigitalClock, ToonMe, AuditManager, and SchoolPlanner apps.

The remaining cases of locatability issues occur in elements that TalkBack skips in Linear Navigation

but can be focused on by touch. For example, Figure 6.5 (c) shows a part of the Bible app, when the

user uses TalkBack in Linear Navigation mode and reaches the end of the text, the highlighted bottom

menu disappears. For a sighted user who sees all the changes on the screen, the disappearance of

the menu can aid in reading the rest of the text more conveniently; however, it confuses blind users

who may not even know the menu exists in the first place. This type of is issue have been seen in

LATTE as well. The FatSecret, Geek, ToonMe, TripIt, Bible, MoveToiOS, and HManager apps have

this type of issue.

75

Actionability

This issue manifests itself when an assistive service cannot be used to perform an action. GROUND-

HOG could find this type of issue in Facebook, Dictionary, Feedly, BudgetPlanner, MyCentsys,

Greysheet, MGFlasher, AuditManager, FatSecret apps. For example, Figure 6.5 (d) shows a button

in Feedly app that can only be clicked by touch.

Generally speaking, Abstract Proxy has more capabilities than TalkBack in performing actions

as it uses Accessibility API to directly click on AccessibilityNodeInfo object. However, this was

not the case in MyCentsys and Greysheet apps. Our further investigation and study on TalkBack

source code [21] revealed that TalkBack utilizes a workaround to mitigate accessibility issues in

apps. Talkback first uses Accessibility API to perform and check if the action is sent successfully;

otherwise, it sends a touch event to the center of the focused element. Although this workaround

may address inaccessibility in some situations, it may confuse users even more in some other

situations. For example, Figure 6.5 (e) highlights a button under the Register button with the text

“Help”. However, when a TalkBack user double taps, the Register button is clicked instead.

A common theme of apps with actionability issues is that they are developed using hybrid frame-

works or utilize WebViews [23]. Hybrid frameworks enable a developer to implement mobile

apps in one codebase with one language, like C# in Xamarin[91]. Similarly, WebView renders

web elements that are developed in HTML, CSS, and JavaScript code in mobile apps. One of the

advantages of hybrid apps and Webviews is reusing the same code on different platforms, like iOS,

Android, and even the Web. We could find YONO, ToonMe, Estapar, and Greysheet apps in Apple

Store with similar accessibility issues detected by GROUNDHOG, manifested by Voiceover (the

iOS’ official screen reader). We believe further studies are required to assess the accessibility issues

resulting from hybrid frameworks.

76

Counterintuitive Navigation

One type of information produced by GROUNDHOG as part of its reporting is short videos in

GIF format showing how Talkback navigates linearly to reach an element. Checking these videos

revealed a new type of accessibility issue where developers set an unexpected traversal order

for elements. For example, Figure 6.5 (f) shows the visiting order of a calendar’s elements in

SchoolPlanner. As seen, there is no pattern in visiting the elements. In another example, Yelp’s

home page has counterintuitive navigation where the search button (which is at the top of the page)

will be reached when all other elements have been visited.

Inoperative Actions

We examined the inoperative actions reported by GROUNDHOG to see how they impact users with

disabilities. Such clickable elements without any impact on the app content increase the number of

interactions for TalkBack users to reach an element. For example, it takes 25 directional navigation

to reach the farthest element in a state of DigitalClock; however, if the inoperative actions are

removed by developers it can be reduced to 20 interactions, saving 20% of time spent by users with

disabilities.

However, in some instances, there is a usability bug in inoperative actions which concerns users

without disabilities. For example, Figure 6.5 (g) shows a profile page of a user in Yelp where

GROUNDHOG detects the Follow button is not operative. Here, the other buttons in the same row

(Compliment and Message) are associated with an action (the login page appears). It seems, there is

a bug that makes the Follow button inoperative.

77

6.5.5 RQ4. Performance

We measured the time that GROUNDHOG takes to create reports to understand how GROUNDHOG

can be integrated into the development lifecycle. For an app on average, GROUNDHOG takes

3,541 seconds to explore an app, execute all actions using different Proxy Users, and produce an

accessibility report with visualized information. Since GROUNDHOG does not require any manual

input from developers, analyzing an app in less than an hour is completely practical, and can be

done on a nightly basis.

The breakdown of the execution time is as follows. The app crawler (Stoat) takes 420 seconds

on average to explore different states of the app. The action extraction part virtually takes no

time (less than a second). The heavy part of GROUNDHOG is executing each action via Proxy

Users. GROUNDHOG executes each action in 21, 24, and 40 seconds for Abstract, Touch, and

TalkBack Proxy Users, respectively. There are some common time-consuming parts for all Proxy

Users: reloading snapshot takes 4.1 seconds, reconnecting ADB takes between 2 to 12 seconds, and

GROUNDHOG waits for 5 seconds after each action is executed to ensure all changes in the app state

are finalized. TalkBack Proxy User takes more time to execute because the communication between

GROUNDHOG and TalkBack is a slow process since GROUNDHOG actually performs touch gestures

and waits for TalkBack to change its internal state.

GROUNDHOG’s performance can be improved significantly by parallelizing the snapshot analysis

thanks to its Client-Server model. Each VM snapshot is less than 1GB of data and can be easily

transferred in less than 10 seconds.

Locating an element using TalkBack Proxy takes 9.71 seconds on average per action. Without our

optimization technique, it would take 26 seconds on average. In other words, the optimization

improves the performance of this aspect of GROUNDHOG by more than 2.5 times per action, which

reduces the app analysis time by 10 minutes on average.

78

6.6 Threats to Validity

External validity. A key threat to validity is preserving the state of the app under test since three

different Proxy Users should perform the same action on the same element. We mitigate this threat

by capturing a VM snapshot of the device used for all Proxy Users. The virtualization technique

may not preserve the state of apps that update their content dynamically or retrieve information

from the server. For example, in a shopping app, if one proxy adds an item to an empty shopping

cart that is synchronized with an external database, the same VM snapshot may be in a different

state when it is loaded for another Proxy User. We have not observed this situation occurring in our

experiments; however, to prevent reporting false positives/negatives in similar cases, we check the

UI hierarchy of the apps after loading the VM snapshots. If they are not exactly similar, we report

a flag indicating that the VM snapshot is different and the result may not be reliable. It would be

interesting for future work to examine elegant solutions for handling dynamic and online content.

Another threat resides in the variety of actions supported by GROUNDHOG. Our current implemen-

tation supports clicking action. Other touch gestures are not implemented. Although clicking is

one of the most essential touch gestures for interacting with GUI elements, our claimed benefits of

GROUNDHOG can be more confidently generalized by providing and evaluating support for other

types of actions. However, it is worth noting that most other complex touch gestures, like pinching

in/out or double-tap, are not supported by assistive services in the first place. For example, pinching

can be used for zooming in on an image, but it does not have an equivalent in TalkBack since blind

users may not see visual images.

Internal validity. We implemented GROUNDHOG using several libraries and tools, including ADB,

Android Virtual Device, Stoat [57], and AccessibilityService in Android, which may introduce

defects in the crawling and analysis steps of our implementation. Furthermore, our prototype may

contain bugs in its implementation. We have tried to minimize this threat by upgrading all libraries

to the latest available versions, writing automated unit tests, and conducting code reviews. In

79

addition, we tested the prototype extensively on numerous popular Android apps.

6.7 Conclusion

This chapter introduced GROUNDHOG, a fully automated assistive-service driven accessibility

crawler to detect accessibility issues that only manifest themselves through interactions with the

app. GROUNDHOG explore apps and assess the locatability and actionability of each element on the

screen using different interaction modes provided by assistive services.

One result of the experiments with GROUNDHOG was detecting elements that can be accessed

with TalkBack by Linear Navigation but cannot be accessed by touch interaction. This observation

encouraged us to investigate the idea of over-accessibility when some information or functionalities

should not be accessible to any user; however, users with assistive services can access them. The

next chapter explains our studies and finding regarding this matter.

80

Chapter 7

Over-Accessibility Issue Detection

Principles of universal design [41] dictate that technologies and services, including mobile apps,

must be accessible to everyone regardless of their abilities. These principles are often overlooked in

development practices, where developers build and test their apps based on the assumption that by

default, a user views the app content on the screen and interacts with it by touch. Such assumptions

exclude about 15% of the world’s population with some form of disability, especially users with

visual and fine-motor impairments.

Prior chapters have shown that many apps are shipped with functionalities that are not accessible

using assistive services. We call this the under-access problem. In this chapter, we look at the

dual of this issue, which we call the over-access problem. That is, some apps are shipped with

functionalities that in certain states can be accessed using assistive services but not otherwise.

An element is Overly Accessible (OA) when it provides more information and functionality to

assistive-service users than regular users. In security-sensitive apps, OA elements can jeopardize

the security of password-protected apps such as banking, investment, health, etc. Case in point, for

several iOS versions, users have reported scenarios of using VoiceOver, the standard screen reader

in iPhones, to bypass iOS passcode and gain access to contacts, photos, notes, etc [35, 72, 71].

81

Moreover, OA elements can be used to provide unauthorized access to premium functionalities

in apps with in-app purchases, endangering around 60% of companies on app stores that derive

revenue from such functionalities in their apps [93]. As an example, the Mediation Moments

app [34] has premium articles that are available to subscribed users; however, we found that an AT

user can read these articles without purchasing the subscription. Lastly, bypassing the designed

workflow can result in invalid inputs to be provided to an app, breaking its logic and leading to

unexpected crashes. For example, in using the Airbnb app to book a place, the “decrement” button

is disabled for touch when there is only one traveler, preventing zero and negative inputs. We found

that an assistive-service user can still click this button and submit a request for a room for a negative

number of people.

Interestingly, over-access also degrades the accessibility of apps. Blind users utilize screen readers

to navigate through the elements on a screen sequentially. Even if the OA elements are not security-

sensitive, presenting information that the developer did not intend to be available on the screen can

confuse the screen-reader users. OA elements also increase the number of required interactions to

reach the desired element, resulting in a less optimal user experience.

Despite the severe impacts of OA elements, they have received practically no attention in prior

accessibility analysis of apps or security-related studies. Neither Google Accessibility Scanner [9],

nor Apple Accessibility Inspector [28] check any rules for over accessibility. They only check a set

of accessibility rules (e.g., proper text size and color) on currently displayed UI elements. Most

other accessibility testing studies [17, 104] extend the accessibility rules of standard scanners and

cannot detect OA elements consequently. Prior security-related studies [95, 64] have investigated

the feasibility of constructing malicious software (e.g., malware) to launch a security attack by

exploiting accessibility APIs. No prior study has investigated the vulnerabilities caused by OA

elements in benign apps that can be readily exploited by any user, and using the standard ATs.

To fill this gap, we conducted an empirical study on 100 different UIs from 20 randomly selected

apps to understand OA elements and their specifications. We then developed a tool, OVERSIGHT,

82

to automatically detect them on a given state of the app.

OVERSIGHT first leverages the findings of our empirical study and devises a static checker to

analyze currently displayed UI elements and localize OA smells, i.e., elements with one of the OA

characteristics that may lead to revealing information or functionality that is unavailable for sighted

users and available for assistive-service users. Then, OVERSIGHT validates the accessibility of these

elements dynamically using TalkBack and Proxy Users. Finally, OVERSIGHT reports accessibility

issues resulting from OA elements. Our empirical evaluation on 30 apps reveals that OVERSIGHT

can precisely detect more than 83% of OA elements.

The remainder of this chapter is organized as follows. Section 7.1 motivates this study with

an example and provides background information. Section 7.2 introduces different classes of

OA elements according to our empirical study. Section 7.3 explains OVERSIGHT, an automated

approach to detect OA elements. Finally, in Section 7.4, the evaluation of OVERSIGHT on real-world

apps is presented.

7.1 Motivating Example

Figure 7.1 shows screenshots of AppLock [69], a popular app locker with more than 5,000,000

installations and rating of 4.2. As shown in Figure 7.1 (a), the app lists all the installed apps on

a phone on its first page, enabling users to add a lock to any desired app. App lockers protect

themselves and other requested apps by preventing access to their content without providing a secret

pattern or passcode. When a user opens the AppLock or any locked apps, e.g., Files or Messages

as shown in Figure 7.1(a), she first sees the lock screen, depicted in Figure 7.1(b), and should first

unlock it with a preset pin. Many other types of apps (e.g., investment, health monitoring, diary,

etc.) employ a similar protection strategy for their contents.

A user without disability can see the pin pad and the text asking to “Enter pin” on the screen.

83

(a) (b)
Figure 7.1: Built-in lock for a security-sensitive app.

84

She would try to unlock the app by entering the pin through touching the numbers on the screen.

However, a user with disability has to rely on assistive services to interact with apps.

Unfortunately, developers oftentimes only test their apps’ functionality under conventional ways

of interaction, leading to many inaccessible functionalities in apps. A developer who is aware of

the disabled users’ limitations may utilize accessibility testing tools, such as Google Accessibility

Scanner [9], to evaluate the accessibility of their app. For example, for the lock page of AppLock,

Accessibilty Scanner reports an issue for the text contrast of “Enter pin”. Accessibility Scanner

may also report “missing speakable text” if there is a clickable image without a content description,

or “small touch target size” if the clickable area is too small for an element. Google Accessibility

Scanner, as well as all other prior accessibility testing tools (e.g., [112, 113, 5, 9, 20, 90]), are aimed

at finding under-access, i.e., features that should be available to the user but cannot be accessed

using assistive services. None of these tools report issues related to over-access, i.e., features that

should not be available to the user but can be accessed using ATs.

In practice, a blind user may need to understand the screen content by exploring and navigating

through all the elements on the screen. Figure 7.1(b) shows which elements can be focused by

TalkBack. The numbers indicate the order in which elements are focused. After passing pin pad

elements, TalkBack detects some elements that are not visible to sighted users. We call these

elements Overly Accessible (OA) as they are not visible to sighted users or clickable by touch.

Announcing these elements not only misleads the blind user about the content of the page, but in

many cases also requires an exorbitant number of interactions to pass a long list of OA elements

until the user reaches the visible functionality that the developer intended to be available. Such OA

elements remain undetected in the prior accessibility testing tools.

These OA elements, as specified in Figure 7.1(b), can also pose security concerns. By listening

to what TalkBack announces, we can understand that the OA elements correspond to the first

page of AppLock as shown in Figure 7.1(a). This page contains the list of device apps and the

mechanism to enable or disable their locks. For instance, element 17 in Figure 7.1(b) is the lock

85

toggle for the Files app. This means that, using TalkBack, a user can access the locked apps and

disable their protections, without even entering the pin code. In essence, she can bypass the lock

screen protection. Prior research has demonstrated how Accessibility APIs can be used by malware

authors to launch a security attack [95, 64] and how to prevent such attacks [103, 99]. No prior

work, however, has aimed to develop a method of assisting developers with detecting vulnerabilities

caused by OA elements in benign apps that can be readily exploited by any user, and using the

standard assistive services.

To fill this gap, we took a deeper look at how UI elements are represented to assistive services. In

modern platforms such as Android, Accessibility Service runs in the background and provides the

required information about a window’s content to assistive services. From the perspective of Acces-

sibility Service in Android, a window’s content is presented as a tree of AccessibilityNodeInfos

(nodes) [53]. Android 12 documentation lists 65 different types of information that are provided

by nodes. Table 7.1 illustrates a sample set of this information. We hypothesize that nodes with

peculiar specifications can lead to OA elements. For example, in Figure 7.1(b), by comparing the

Bounds and DrawingOrder of elements, the second and third method in Table 7.1, we found that the

layout that expands the whole window is drawn on top of some of the elements. While the elements

underneath are covered for a sighted user, an assistive service can still navigate through them and

announce them to the user. Our objective in this study is to study specifications of OA elements and

propose an automated tool to detect such OA elements that can have severe security, privacy, and

accessibility impacts on apps.

7.2 Overly Accessible Elements

An element is OA if it is exposing more information/functionality to assistive services than what is

available through the conventional interaction mode. To understand to what extent node specifica-

tions can reveal OA elements, we perform an empirical study on manually detected OA elements on

86

Table 7.1: Sample types of information exposed from nodes to assistive services.

Attribute Description
1 ActionList The actions that can be performed on the node.
2 Bounds The coordinates of the bounding box of the node.
3 DrawingOrder The drawing order of the view of this node.
4 Text The text of this node.
5 Enabled Whether this node is enabled.
6 VisibleToUser Whether this node is visible to the user.
7 Clickable Whether this node is clickable.
8 ContentDesc The content description of this node.
9 ChildCount The number of children.
10 PackageName The package this node comes from.

some real world apps. In this section, we explain the data collection and results of this study.

7.2.1 Data Collection

Our goal is to collect all the available information from nodes to assistive services. To that end,

we first developed an Accessibility service, called OVERSIGHT Service (OSS), which is capable

of capturing different types of information exposed from nodes. OSS runs in the background on

an Android device and receives commands from Android Debug Bridge (ADB) [14], a command

line tool that ships with Android devices. Using this service, we conducted an empirical study

on 100 different screens of 20 real world apps. Our app list consists of 5 apps with built-in lock

from Google play and 15 randomly selected apps from 38,106 apps that were published in 2021

in AndroZoo [4] (without any intersection with apps evaluated in LATTE or GROUNDHOG). We

installed each app on a Google Pixel 4 device, along with OSS. Then, we interacted with each app

to find 5 different states and explored each state with TalkBack and without it. We aimed at finding

elements that are not visible to sighted users but TalkBack announces them or performs an action on

them. We utilized OSS to dump OA nodes screenshot and specification in the hierarchy of nodes.

We then performed open coding of these elements iteratively. We coded the elements, noting

any condition that was not discovered before. To facilitate efficient coding, we developed a web

application to visualize unannotated elements with search and batch tagging capabilities. In this way,

87

<node …
packageName
=“app1"/>

packageName=“app2”
(a) Out of boundary

(b) Covered

(c) Belongs

(d) Camouflaged

natural

com.google.android.apps
.messaging

com.gamemalt.applocker

Figure 7.2: Over Accessibility Conditions.

we can search and tag elements in batches using queries specified by different types of information

from nodes, for example, Text ̸= /0∨ContentDesc ̸= /0 filters elements without any information.

7.2.2 Results

We categorized the conditions of OA elements that were yielded during the coding procedure into

two main classes:

• Overly Perceivable: elements that reveal content to an assistive service that is not available

through regular interaction mode.

• Overly Actionable: elements that provide action to an assistive service that is not available

through regular interaction mode.

These classes are inline with two accessibility principles from Web Content Accessibility Guidelines

(WCAG) [118]: (1) Content should be equally perceivable by different users [119], and (2) UI

88

elements should be equally operable by different users [120]. These principles can be violated

due to bias in the level of access granted to any type of user, e.g., screen reader users vs. sighted

users. While providing more access through conventional interaction modes, i.e., under-access

problem, has been studied extensively and supported by a series of guidelines, not many works have

investigated its counterpart, i.e., over-access problem. Our study is based on these principles and

we organize detected OA elements’ conditions under them. These conditions can be considered as

accessibility guidelines to be later expanded or tailored to different platforms. Below, we list the

conditions of OA elements we found in Android apps.

Overly Perceivable

A node with a textual data or content description is Overly Perceivable if it cannot be read or viewed

by a sighted user, but can be accessed through programmatic means. We found the following

conditions for such elements that are hidden to sighted users:

P1. Out of boundary: Nodes that are outside of the screen boundary, either with negative

coordinates or with coordinates exceeding the device size. The left side of Figure 7.2(a) illustrates a

schematic of the app screen with different layers corresponding to the drawing order of comprising

elements. The orange element is OA as it is out of screen boundary and is not visible on the

rendered screen. Figure 7.2(a) also shows a real example in our empirical study on the right.

P2. Covered: Nodes that are covered by other nodes in the rendered UI. Dashed boxes in Figure 7.1

are examples of covered nodes. Figure 7.2(b) also schematically shows how the orange OA element

is covered by a blue sliding pane.

P3. Zero area: Nodes whose bounding box has zero area. These nodes will not be depicted on the

screen but can be focused by an AT that will announce their content.

P4. Android invisible: Nodes that are not out of screen boundary and have positive area but they

89

are specified as invisible to user.

P5. Invalid bounds: Nodes whose captured bounds contradict the bounding box definition in

Android documentation. The bounds attribute is supposed to be presented as the coordinates of the

top-left and bottom-right points of the box. For example, if the coordinates of the ending point are

smaller than the start point, the node has invalid bounds.

P6. Belongs: Nodes that belong to a package name that is different from the app under test. Left

side of Figure 7.2(c) illustrates that the green screen from app2 is placed on top of the elements

of app1. In the rendered screen, the elements from app1 are not visible to sighted user but may

be announced by assistive services. The right side of Figure 7.2(c) shows a locker in our study, in

which the elements of the Messages app are detected on the lock screen.

Overly Actionable

The ActionList attribute of nodes specifies the list of actions available to assistive services. When

a node support click action for assistive services, the following conditions are barriers in performing

that action through conventional interaction modes.

A1. Hidden: Nodes that are hidden to sighted users, i.e., with any of P1 to P6 conditions stated

above.

A2. Disabled: Nodes that are disabled under certain conditions in the app and cannot be triggered

by touch.

A3. Camouflaged: Empty nodes that are used as placeholders and are not detectable by sighted

users, e.g., empty text boxes. Figure 7.2(d) provides the schematic placement of these nodes on the

screen on the left and an example in our empirical study on the right.

90

Over Accessibility
Smells

OA Verifier

OA Detector

Overly Accessible
Elements

PNG

OverSight

Draw pattern
 to unlock

Developer

Oversight
Service

Draw pattern
 to unlock

Visualizer

Figure 7.3: Overview of OVERSIGHT framework.

7.3 Approach

In this section, we introduce OVERSIGHT, an automated tool that gets the information from a

specific state of the app and returns a list of OA elements confirmed by an assistive services.

Figure 7.3 illustrates the overview of our approach. OVERSIGHT engine consists of two main

components: OA Detector (Section 7.3.1) and OA Verifier (Section 7.3.2).

7.3.1 OA Detector

OA Detector gets a window’s content specification in XML along with its screenshot through

OVERSIGHT Service (OSS). As described in Section 7.2, OSS runs in the background, dumps

hierarchical representation of nodes in an XML file, and enables communication with the device

91

through broadcast messages. OA Detector analyzes nodes on the window and returns Over Ac-

cessibility Smells, i.e., nodes that meet one of the conditions derived from our empirical study

(Section 7.2). Confirming over accessibility issues in these nodes is the responsibility of OA Verifier

. OA Verifier utlizes TalkBack and Abstract Proxy Users to validate the locatability and actionability

of over accessibility smells. OVERSIGHT also visualizes over accessibility smells as well as OA

elements on the screenshot along with their specification for developers. In the following sections,

we describe the details of each component.

Our empirical study organizes a set of conditions under the basis of over-perceivability and over-

actionability. OA Detector implements these conditions to automatically check the nodes against

them. In this section, we explain the formula and algorithms we used to implement each condition.

For the majority of the conditions, i.e., P1, P3-P6, A1-A2, the implementation is straightforward

using their definitions in Section 7.2 and the attributes of nodes mentioned in Table 7.1. Here, we

elaborate on the algorithms we utilized to calculate the covered nodes (P2) and camouflaged ones

(A3). Implementation details of all conditions are available with our open-source tool available

at [96].

P2. Covered To find out covered elements, we investigate how Android draws elements on a

window. Android draws a window starting from the root node and recursively draws the child

elements according to their drawingOrder. To determine what nodes are covered, we simulate

Android’s drawing but in reverse order using a depth-first search algorithm. We start visiting nodes

from the last drawn node to the first drawn node and keep track of covered areas. A node is “covered”

if any of the covered areas obscure its bounding box.

Algorithm 1 explains our approach in details. For a given node, n, and a set of bounds that may

cover it, BC, DetectCovered first checks if n is covered to set all the descendants up to the leaf

node as covered. (Line 2-4) If n is not covered, we will assess if its children are covered. To that

end, we first sort the children in descending order based on their drawingOrder in line 5. The first

92

Algorithm 1: Overlap Analysis Algorithm
Input: n ∈ Node(The visiting node), BC : {b1, · · · ,bk}(The set of covering bounds)

1 Function DetectCovered(n, BC):
2 if n.covered then
3 ∀d ∈ n.descendants : d.covered← True
4 return

5 ordered ← Sort n.children based on decreasing order of drawingOrder
6 foreach m ∈ ordered do
7 if m.bounds is covered by BC then
8 m.covered← True

9 DetectCovered(m, BC)
10 BC← BC ∪m.bounds

element in the ordered list is the last child drawn by Android on the window among the other

children. Then, in line 6, we iterated through the children and check if they are covered by any

bounds in BC. If that is the case, in the recursion call, the algorithm set all the descendants covered.

Otherwise, in the recursion call, children of node m will be assessed. In line 10, we add the bounds

of node m to the set of covering bounds since the other children in the for loop of line 6 may be

covered by m.

A3. Camouflaged Detecting camouflaged nodes (A3) is challenging since there is no attribute in

nodes indicating their color. This condition occurs when developers want to utilize some empty

views as a placeholder. To detect these elements, we filter out nodes that have any child. Then, we

evaluate the image associated to the remaining nodes. To get the image, we crop the screenshot

based on the coordinates of the bounding box of the node. Then, we check if all the pixels of the

image have the same color.

OA Detector evaluates compliance of each node with the defined conditions to find a list of nodes

that has Over Accessibility Smells, i.e., they have symptoms that can lead to revealing information

or functionality to assistive-service users that is not available to sighted users. To verify their

accessibility with an assistive service, we propose OA Verifier as below.

93

7.3.2 OA Verifier

The behavior of different assistive services in focusing on the elements and performing an action

on them cannot be predicted statically. To confirm if an assistive service can locate the detected

over accessibility smells, we utilize OA Verifier . The goal of this component is to evaluate the

locatability and actionability of nodes identified by OA Detector on a real device with an assistive

service.

To assess the locatability of a node with TalkBack, we utilize the Linear Navigation mode in

TalkBack Proxy User (defined in Section 4.4) as OA elements are not viewable on the screen to be

enabled by tapping/touching. Since OA elements most likely appear after the ones that are visible

to sighted users, TalkBack Proxy User first explores the screen backward by drawing “swipe left”

gesture. Whenever TalkBack focuses on a node, OA Verifier calls the node TalkBack Locatable.

TalkBack Proxy User continues screen exploration until either it reaches all the nodes in the given

list, or sees a repetitive node.

An element is considered actionable, if 1) it is locatable and 2) a Proxy User performs the action

successfully. To assess the actionability of elements, we first filter out unlocatable elements. Then

use TalkBack and Abstract Proxy Users to perform click action on the remaining OA smells.

7.4 Evaluation

In this section, we evaluate OVERSIGHT on real-world apps to answer the following research

questions:

RQ1. How accurate is OVERSIGHT in detecting OA elements?

RQ2. What are the potential impacts of OA elements on different apps and communities?

94

RQ3. What is the performance of OVERSIGHT?

7.4.1 Experimental Setup

Datasets

We evaluated our approach on 60 app screens from 30 real-world Android apps. Our test set

consists of three groups of apps: (group1) 10 app lockers similar to the motivation example from

Google Play, (group2) 10 apps with known accessibility issues detected in LATTE, and (group3) 10

randomly selected apps from different categories of Google Play. For each app, we captured two

different states of the app. For apps in group1, the first state is the lock screen of the app itself, and

the second state is the lock screen that protects a third-party app, e.g., Messages, when it is locked.

For apps in group2, we selected two different screens of the app with the confirmed accessibility

issue. Lastly, for apps in group3, we randomly explored the apps and captured two different screens.

We ran our experiments on an Android emulator based on Android 11.0 and with TalkBack version

12.1 on a typical development machine, using a MacBook Pro with 2.4 GHz core i7 CPU and 16

GB memory.

7.4.2 RQ1. Accuracy of OVERSIGHT

To answer this question, we ran OVERSIGHT on each snapshot in our test set and carefully examined

the reports. We separately evaluate OVERSIGHT’s two main components, OA Detector and OA

Verifier.

To evaluate OA Detector, we carefully checked the reported OA smells in each category and tagged

them as True Positive (TP) if it was correctly detected with one of the OA conditions and False

Positive (FP) otherwise. We then calculate OA Detector’s precision as the ratio of the number of

95

nodes that were correctly detected by OA Detector to the number of all detected OA smells.

Table 7.2 summarizes the results of this experiment. Each row in this Table corresponds to one state

of an app. The number of nodes in each state varies as shown in the second column (N). In our test

set, it can be as few as 6 nodes and as many as 656. Smell column indicates the number of nodes

with Overly Perceivable (P) or Overly Actionable (A) conditions on each screen. We display the

precision per app state under the DP (Detector Precision) column, and the average precision is in

the last row.

As shown in the Table 7.2, on average, OA Detector has a precision of 84.23% in detecting OA

smells. For 56 different states in 28 number of apps, the precision is 100%. We analyzed the

elements recognized as False Positive, i.e., with FP tag, to better understand OA Detector failures.

Figure 7.4 shows some examples where OA Detector erroneously evaluates a node as OA. In

Figure 7.4(a), the map and the text on it is annotated as OA. Further inspection of this layout showed

us that the map is behind a transparent layout and made our algorithm classify the underlying nodes

as “covered” (recall P.2 in Section 7.3.1). In Android, transparent layouts pass the touch gesture to

the underlying elements so they will not be recognizable through conventional interaction modes.

Since layout colors are not included in node information, OA Detector cannot distinguish transparent

layouts from color-filled ones. Moreover, having a stack of transparent nodes, if not maintained

properly, can cause troubles for assistive-service users. For example, if all the stacked nodes are

focusable, the assistive service will focus on each of them separately, confusing assistive-service

users about what is shown on the screen and resulting in a less optimal navigation experience.

Partially covered nodes are another failure of OA Detector as shown in Figure 7.4(b). There is

a “Sort and Filter” button covering the elements underneath. However, as the underlying texts

are partially recognizable to sighted users they are tagged as FPs. OA Detector does not exclude

partially covered elements in the “covered” category since a developer may have intentionally

blocked access to part of a node content.

To evaluate the OA Verifier component, we investigate the nodes specified as locatable and actionable

96

Table 7.2: Accuracy of OVERSIGHT in running on 30 apps.

App N Smells DP TalkBack SAT VP VRP A L A A

...domobi... 47 0 2 0.00 0 2 2 1.00 1.00
26 9 6 1.00 8 3 6 1.00 0.95

...alpha... 12 0 0 1.00 0 0 0 1.00 1.00
8 0 0 1.00 0 0 0 1.00 1.00

...sp.pro... 42 0 0 1.00 0 0 0 1.00 1.00
26 9 6 1.00 8 5 6 1.00 0.90

...thinky... 18 0 0 1.00 0 0 0 1.00 1.00
17 1 0 1.00 0 0 0 1.00 0.50

...litetoo... 73 6 7 1.00 6 7 7 1.00 1.00
73 0 0 1.00 0 0 0 1.00 1.00

...nevways... 55 1 1 0.00 0 1 1 1.00 1.00
6 0 0 1.00 0 0 0 1.00 1.00

...ammy.a... 16 0 0 1.00 0 0 0 1.00 1.00
26 9 6 1.00 8 6 6 1.00 0.95

...gsmobile... 53 0 0 1.00 0 0 0 1.00 1.00
37 0 0 1.00 0 0 0 1.00 1.00

...cd.app... 12 0 0 1.00 0 0 0 1.00 1.00
12 0 0 1.00 0 0 0 1.00 1.00

...saeed.ap... 13 0 0 1.00 0 0 0 1.00 1.00
16 0 1 0.00 0 1 1 1.00 1.00

...c51 83 4 1 0.00 4 1 1 1.00 1.00
29 0 1 0.00 0 0 1 1.00 1.00

...fatsec... 41 0 1 1.00 0 0 1 1.00 0.50
147 14 5 1.00 2 0 5 1.00 0.70

...colpit... 18 2 0 1.00 0 0 0 1.00 0.50
67 2 1 1.00 0 0 1 1.00 0.50

...tripit 202 55 20 0.91 6 1 20 1.00 0.54
270 68 23 1.00 4 4 23 1.00 0.55

...contex... 52 0 26 1.00 0 0 5 1.00 0.50
57 1 0 0.00 1 0 0 1.00 1.00

...yelp.an... 66 0 0 1.00 0 0 0 1.00 1.00
129 15 9 0.86 0 0 6 1.00 0.50

...devhd.f... 71 19 4 1.00 4 0 4 1.00 0.60
138 44 21 1.00 8 0 21 1.00 0.67

...ziprecr... 36 0 0 1.00 0 0 0 1.00 1.00
63 5 5 1.00 0 0 2 1.00 0.50

...diction... 102 8 5 1.00 2 1 4 1.00 1.00
177 98 5 0.89 98 1 1 1.00 1.00

...and... 110 16 10 0.95 0 0 8 1.00 0.50
69 16 10 0.53 16 9 9 1.00 1.00

...airbnb... 42 0 1 1.00 0 0 0 1.00 0.50
56 0 3 1.00 0 0 1 1.00 0.50

...carfax... 30 0 0 1.00 0 0 0 1.00 1.00
20 0 0 1.00 0 0 0 1.00 1.00

...expedi... 53 0 2 1.00 0 0 1 1.00 0.50
98 6 0 0.33 4 0 0 1.00 0.83

...houzz 22 0 0 1.00 0 0 0 1.00 1.00
169 37 27 1.00 9 3 5 1.00 0.85

...mcdona... 42 1 0 1.00 0 0 0 1.00 0.50
126 35 10 0.32 35 5 5 1.00 0.94

...meditat... 22 3 2 1.00 0 0 2 1.00 0.50
46 15 1 0.75 14 0 1 1.00 0.94

...pinterest 32 1 1 1.00 1 1 1 1.00 1.00
24 0 0 1.00 0 0 0 1.00 1.00

...popular... 36 5 3 1.00 0 0 3 1.00 0.50
158 40 19 1.00 21 0 2 1.00 0.68

...theathl 20 0 1 1.00 0 1 1 1.00 1.00
77 35 5 1.00 34 5 5 1.00 0.99

...weawow 32 2 2 0.00 0 0 2 1.00 1.00
656 280 52 1.00 194 3 5 1.00 0.87

Average: 84.23% 100% 83.27%

97

with TalkBack and Abstract Proxy Uses. To check the reported nodes by OA Verifier, we load

the corresponding snapshots of the app states on the emulator and utilize an assistive service, e.g.,

TalkBack, to explore the app and assess Locatability (L) and Actionability (A) of OA smells. In

terms of locatability, if TalkBack can focuses on a node, we consider it locatable. For actionability,

the node is actionable if it is locatable and is clickable, i.e., the click gesture, such as double tap

in TalkBack, broadcasts a click event. When an element is clicked successfully in Android, an

AccessibilityEvent, called VIEW CLICKED, is created and sent to AccessibilityServices.

To determine if the action was performed, OVERSIGHT service captures the events and shows if an

event of type VIEW CLICKED or WINDOW CONTENT CHANGED is logged. Since OA Verifier follows

the same strategy in detecting clicked nodes, the accuracy of OA Verifier equals to its accuracy in

detecting locatable nodes. Thereby, we label the output of OA Verifier as true if it matches with our

manual investigation and false otherwise. Using these tags, we calculate precision and recall of OA

Verifier as follows: Precision is the ratio of number of nodes that correctly verified to be locatable to

the number of locatable nodes detected by OA Verifier, while recall is the ratio of number of nodes

that correctly verified to be locatable to the number of OA smells that are manually verified to be

locatable.

Table 7.2 shows the average precision and recall of OA Verifier using TalkBack and Abstract Proxy

Users in the last two columns, VP (Verifier Precision) and VR (Verifier Recall). As shown in the

last row, the average precision and recall on all apps is 100% and 83.27% respectively. While OA

Verifier is 100% precise in its reports, the recall shows that it has missed some issues. Figure 7.4(c)

shows an example of a set of nodes that were erroneously detected to be unlocatable by OA Verifier.

On this state of the “Weawow” app, there is a map of all the cities that a user can get the weather

information for. When TalkBack reaches to this widget, it navigates through all the nodes on the

map, as depicted by number annotations on the map, and gets stuck there in an infinite loop. Thus,

all the nodes on the second half of the screen were reported as unlocatable. OVERSIGHT attempted

to address such issues for scrollable widgets by navigating both forward and backward on the screen.

However, backward navigation on this app does not help since the app content loads dynamically

98

(c)(b)

(a)

1
2

3108

9

31018

31085

19

10

Figure 7.4: OVERSIGHT Failures. (a) and (b) are false positives of OA Detector, where dashed green boxes
are erroneously detected as covered. (c) is a false negative of OA Verifier. TalkBack stuck in the world map.

in forward navigation, while scrolling to the bottom. OA Verifier also has a similar issue in web

apps such as Dictionary. In this app, every time the app is scrolled forward, it fetches a totally new

UI specification which although looks visually similar, uses different apaths for nodes, making the

logged information inaccurate.

Further investigation of conditions of detected OA elements revealed that the “covered” condition

(recall P.2 in Section 7.3.1) is the most frequent symptom of OA elements. 18 apps out of 30

had at least one “covered” OA element. According to Android documentation, Android attempts

to evaluate whether a node is visible to user [51] (recall row 6 of Table 7.1) to be announced

by TalkBack. However, our review of Android’s source code [52] indicates the platform only

compares the bounds of a child node with its parents to evaluate if they are visible to user (i.e., the

corresponding VisibleToUser flag is set to true). However, such a comparison does not exist for

nodes that are siblings or children of siblings. We believe Android platform should reassess its

99

So owning a new house, a bigger car
or having a busy social life only
affects 10% of your happiness. And
often it will only give you a short
boost of happiness. The rest comes
from within and meditation is a very
useful 'tool' for achieving inner
contentment.

(a)
(b)

(c)

(d)

Figure 7.5: Impacts of OA elements in different apps. (a) Accessibility issue of overly perceivable elements.
(b) Accessibility issue of overly actionable elements. (c) Workflow violation, giving access to premium
content (d) Workflow Violation, breaking app logic by submitting a hotel request for negative number of
travelers.

strategy of detecting visible nodes to minimize such issues.

7.4.3 RQ2. Qualitative Analysis of Detected OA Elements

We manually examined all reported OA elements by OVERSIGHT in Table 7.2 and study how they

impact users with disabilities and app developers.

Users with disabilities

Both over perceivable and over actionable elements degrade app accessibility, hindering disabled

users’ ability to explore the app conveniently. For example, in “30 days workout” app, Figure 7.5(a),

a blind user has to navigate through the covered elements, highlighted in green. Although these OA

100

elements, requiring paid subscription to access, are not actionable, a user who wants to understand

the app content would be confused of what is shown on the screen. Moreover, if she wants to reach a

specific button, e.g., Profile, she has to pass through all OA elements, resulting in a less optimal user

interaction. A similar scenario happens in the welcome page of “iSaveMoney” app. The intended

use-case is for the user to follow the introductory steps and get familiar with different parts of the

app; however, the information from next steps are available to assistive-service user in the first step,

making the introduction complicated. School Planner, ZipRecruiter, and McDonlads have a similar

issue. It is worth mentioning that OA elements in app lockers discussed in RQ2 not only undermine

app functionality for assistive-service users but also complicate their interaction with apps. When

they utilize app exploration by swipe, there is no lock preventing them to access apps. However,

app exploration by touch will not activate the OA elements that supposedly exist on the screen.

In some cases, OA elements provide actions to assistive-service users. Case in point, background

images in Geek, shown in Figure 7.5(b), are not accompanied with any textual data but are actionable.

Although none of them are associated with any functionalities, i.e., they do not change the screen

content when triggered, they complicate app exploration for assistive-service users who believe

there are real buttons on the screen. Interestingly, this app was also diagnosed with under-access

problem in a prior work [112] because of a rolling dynamic widget that all these background images

belong to. The assistive-service user gets stuck in an infinite loop and cannot login if she wants to

explore the screen by swiping.

Developers

Besides Developers design a workflow by which users interact with the apps. Violating such

workflows can (1) break app logic, (2) provide unauthorized access to premium content.

Developers restrict access to some functionalities to avoid false inputs and gather required infor-

mation from users. For example, in the Airbnb app depicted in Figure 7.5(c), when the number of

101

passengers is zero, the decrease button for the number of travelers is disabled. However, using an

assistive service, one can decrease the number of passengers to less than zero. Similarly, in Expedia

and FatSecret apps, the continue button is disabled until the user enters the required information

at each step. Using assistive services, users can pass invalid inputs, which can result in the app

malfunctioning or crashing.

In some cases, the workflow violation targets developer’s revenue model. Figure 7.5(d) illustrates

an article in a meditation app which is only available fully for the subscribed users. However,

TalkBack announces the whole content of this article and scrolls through it without asking for a

subscription. The same issue exists for the premium articles in the “The Athletics” app. While these

examples are related to the restricted scroll functionality, the same issue threatens any other blocked

functionalities that are intended to be available to subscribed users.

7.4.4 RQ3. Performance

The time-consuming component of OVERSIGHT is OA Verifier which needs to interact with the

device and perform actions on elements. On average, it takes 54 seconds for OA Verifier to perform

an action. The execution time varies in different apps as their number of nodes and OA smells are

different. For the apps in our test set, the average execution time of OVERSIGHT is 571 seconds,

which can be effectively used in practice. Any dynamic analysis tool, including OVERSIGHT, is

costly in time compared to simple static checkers. The OA Detector runs very fast, under one

second. By identifying the OA smells, OA Detector reduces the number of nodes that need to be

verified by 84% on average. Without OA Detector, an expensive verifier would need to assess every

single node on the screen.

102

7.5 Conclusion

Assistive services help disabled users have equal access to mobile apps by providing alternative

modes of interaction. An inconsistency between different interaction modes may result in both under-

access as well as over-access problems. The former has been extensively studied in prior works

(including LATTE and GROUNDHOG), concerning inaccessible data and functionality. However,

this chapter presented the latter and discussed the threats of overly accessible elements, enabling an

assistive-technology user to get access to app content or functionality that is not available otherwise.

We also studied the characteristics of overly accessible elements and proposed OVERSIGHT to

automatically detect them in mobile apps with high accuracy. Our evaluation reveals overly

accessible elements have severe impacts on both disabled users and developers.

In the last three studies that led to building the automated tools LATTE, GROUNDHOG, and

OVERSIGHT, the main focus was to evaluate the accessibility of mobile apps with minimal manual

effort using assistive services. However, removing human knowledge from these tools limits their

ability to detect accessibility issues that require an intelligent oracle. The next chapter tries to tackle

this limitation by empowering manual testers with automated tools to assess the accessibility of

mobile apps with ease.

103

Chapter 8

Assistive-Service Aided Manual Testing

Modern mobile devices are equipped with touchscreens, providing rich experiences for users;

however, they also force developers to test and validate the functionality of their apps either

manually or using automated tools. In the testing process, developers may neglect to evaluate their

software for approximately 15% of the world’s population with disabilities [124], many of whom

cannot use conventional interaction methods, such as touch gestures.

In order to understand how people with disabilities use mobile apps, developers are encouraged

to conduct user studies with users (preferably with disabilities) using assistive services, such as

screen readers. Despite the fact that software practitioners acknowledge the importance of human

evaluation in accessibility testing, they admit that end-user feedback is difficult to obtain [31].

Furthermore, for small development teams with limited resources, finding users with various types

of disabilities and conducting such evaluations can be prohibitively challenging and expensive.

The key insights that guide our research are (1) mobile developers and testers still prefer manual

testing in-app development [67, 81, 70], (2) assistive services need to be incorporated for evaluating

apps’ accessibility, and (3) there is a lack of expertise and knowledge among many mobile developers

and testers on how to properly evaluate the accessibility of their apps with guidelines, automated

104

tools, and assistive services. A survey found that 48% of Android developers cite lack of awareness

as the main reason for accessibility issues in apps [7]. Another survey found that 45% of accessibility

practitioners are experiencing problems related to accessibility development and design, such as

inadequate resources and experts [31].

Informed by the above-mentioned insights, this chapter introduced a new form of automated acces-

sibility analysis, called A11YPUPPETRY, that aids developers in gaining insights on accessibility

issues of their apps. Developers and testers can evaluate their apps manually by using touch gestures,

while A11YPUPPETRY records these interactions. After that, A11YPUPPETRY interacts with

the app on another device using an assistive service to perform the equivalent actions on behalf

of the testers, regardless of their knowledge and expertise in accessibility and assistive services.

A11YPUPPETRY is inspired by Record-and-Replay (RaR) techniques, such as [50, 59, 107], where

a program records the user actions on an app and replays the same actions on the same app in

another device. However, to the best of our knowledge, all existing RaR techniques replay the

recorded actions exactly as they are performed in the primary device. For example, if the user

touches specific coordinates of the screen, the replayer program also sends a touch event for the

same coordinates. A11YPUPPETRY is different from these techniques since the replaying part

is completely done by an alternative way of interaction, e.g., a screen reader. More importantly,

A11YPUPPETRY generates a fully visualized report for developers after replaying the recorded use

case with assistive services, which are augmented by accessibility issues.

The rest of this chapter is organized as follows: Section 8.1 motivates this study with an example and

explains the challenges that we are facing. The Section 8.2 provides an overview of our approach

and the following sections explain the details of our approach. The evaluation of A11YPUPPETRY

on real-world apps is presented in Section 8.3. Finally, Section 8.4 provides a discussion on our

findings in our user studies.

105

Figure 8.1: (a) The main page of Dictionary app, (b) The page after tapping on the word of the day,
(c) Upper menu disappears when users scroll down the page, (d) The Search Navigation provided
by TalkBack

8.1 Motivating Example

This section demonstrates a couple of accessibility issues that manifested by using assistive-services

which cannot be detected by conventional accessibility testing tools. Then, we elaborate on the

challenges of automatically recording touch gestures and replaying them with a screen reader.

Figure 8.1(a) shows the home page of the Dictionary.com app with more than ten million users in

the Android Play store [43]. Assume a tester wants to validate the correctness of a use case which

consists of 3 parts: Selecting the “word of the day” and listening to its pronunciation, and marking

the word as a favorite, and reviewing or removing favorite words.

106

A user without a disability who can see all elements on the screen and perform any touch gestures

can perform this use case fairly easily. First, she taps on the word of the day, box 10 in Figure 8.1(a),

then the app goes to Figure 8.1(b). Next, she taps on the speaker button to listen to the pronunciation,

pink-dashed box in Figure 8.1(b). Then to mark the word as a favorite, she taps the star button,

yellow-solid box in Figure 8.1(b), and she can get back to the home page, Figure 8.1(a), by pressing

the back button. Next, to see the list of favorite words, she taps on box 2. The rest of this use-case

(removing the favorite word) has been discussed in Section 4.1.

To perform the same use case, users with visual impairments, particularly blind users, have a

completely different experience. As mentioned in Section 4.3, using Linear Navigation in TalkBack,

the user can navigate to the next and previous element of the currently focused element by swiping

right and left on the screen. For example, to reach the “word of the day” in Figure 8.1(a), which is

diphthongize, the user can start from box 1 (top left icon) and navigate to the next elements until it

reaches box 10. Note that TalkBack may group elements for a more fluent announcement, like here,

where a couple of textual elements are grouped into box 10. After getting to the word of the day

page, to listen to the pronunciation, the user needs to locate the speaker button, pink-dashed box

in Figure 8.1(b). However, the element cannot be focused on by TalkBack since it is a WebView

element customized by developers; therefore, this functionality is inaccessible for TalkBack users.

While the unlocatablity of this element by TalkBack is a critical accessibility issue, Google’s

Accessibility Scanner, the most widely used accessibility analyzer for Android, cannot detect it

since the scanner does not consider assistive services like TalkBack into account.

Assuming the mentioned accessibility issue does not exist, the blind user continues the rest of the

use case by selecting the favorite button, the yellow-solid box with the star icon in Figure 8.1(b), and

then returns to the home page. After returning to the home page, the user needs to find Favorites List

or box 2 in Figure 8.1(a). However, since the user was previously on this page, box 10 is focused.

By navigating to the next elements, boxes 11 and 12, TalkBack automatically scrolls forward to

fetch the items below; however, the app makes the upper menu disappear as shown in Figure 8.1(c).

107

Figure 8.2: An overview of A11YPUPPETRY

A sighted user can notice this major change in the screen since he can observe all parts of the

screen; however, a blind user may not notice it. Consequently, the blind user cannot locate the

favorites list button, initially located at the top right of the display. Even if the user searches for the

word “Favorite”, Figure 8.1(d), there is no result since the favorites list button does not exist on the

screen anymore. This is another example of accessibility issues that could not be detected without

considering TalkBack in runtime.

While it is straightforward for most app developers and testers without disabilities to perform

the aforementioned use case with touch gestures, none of the accessibility issues above could be

detected unless the same use case is performed using a screen reader. Recall that our idea is to

record touch gestures from an arbitrary app tester, execute them using a screen reader automatically,

and generate a report with detected accessibility issues. Now, we explain the possible challenges to

realizing this idea. The following section provides an overview of our approach, A11YPUPPETRY.

108

8.2 Approach Overview

A11YPUPPETRY consists of four main phases, (1) Record, (2) Action Translate, (3) Replay, and (4)

Report. In this section, we provide an overview of the approach and in the next four sections, we

explain the details of each phase.

Figure 8.2 depicts an overview of A11YPUPPETRY. The process starts with the Record phase when

the user interacts with a device enabled with the Recorder service. The Recorder service listens

to UI changes events and adds a transparent GUI widget overlay on top of the screen to record

the user’s touch gestures. After receiving a touch gesture on the overlay, the Recorder replicates

the gesture on the underlying app, and sends the recorded information to the server as an Action

Execution Report. The server will store the recorded information in the database.

In the second phase, Action Translation, the Action Translator component receives the Action

Execution Report from the Recorder (containing UI hierarchy, screenshot, and the performed

gesture) and translates it to its equivalent TalkBack Action. For example, touching on the coordinates

of the favorite button in Figure 8.1(b) will be translated to focusing on the favorite button and

performing a double-tap gesture.

In the Replay phase, the TalkBack Action is sent to several replayer devices that perform the action.

Each replayer device has a running TalkBack Proxy User that receives TalkBack Action from

the server, creates and maintains a TENG of the app (defined in Section 4.4), and performs the

received actions with a navigation mode, i.e. Linear, Touch, Jump, and Search. Once an action is

performed, a TalkBack Execution Report will be stored in the database. The TalkBack Execution

Report consists of actions that are executed with TalkBack, screenshots, and UI hierarchy files of

the different states of the app before, during, and after execution.

In the final phase (Report), the A11y Analyzer component reads the stored information in the

database, i.e., Action and TalkBack Execution Reports, and produces an Aggregated Report of the

109

recording, replaying, and the detected accessibility issues. The user can access this report using a

web application.

8.2.1 Recorder

In a nutshell, the recorder component uses two different ways to record the user’s actions, (1)

through a transparent overlay placed on top of the app and (2) by listening to system events related

to the changes on the screen. We implement the recorder on top of Sugilite [75], a programming by

demonstration tool for Android apps.

We implemented the recorder component as an AccessibilityService to understand the user’s ac-

tion. When the recorder is enabled, it creates an overlay of the screen’s size, which is an an-

droid.view.object and attaches it to the foreground window. This overlay acts as an echo component;

it performs any received touch gestures on the app with Accessibility API. A touch gesture event,

e.g., PointGesture PG, is captured by onTouchListener which is enabled for the overlay. Once the

touch gesture is received, a copy of the touch gesture, the UI hierarchy of the current screen, and a

screenshot image are combined and packed as Action Execution Report.

Although the overlay object can record touch gestures, a few other actions such as adjusting volume

with physical buttons or typing with a keyboard cannot be captured. To that end, the recorder

listens to all AccessibilityEvents and records the events that represent actions performed by the

user. For example, when the user types on an EditText with a keyboard, the recorder will receive

AccessibilityEvent.TYPE VIEW TEXT CHANGED containing the typed text. Similar to touch

gestures, these events, along with the UI hierarchy and screenshot of the app, are packed and sent as

Action Execution Reports.

Once the Action Execution Report is created, either by the overlay screen or AccessibilityEvent, the

recorder sends it with WebSocket to the Server. Note that the recorder is an app inside an Android

110

device or emulator, and all the storing, analysis and broadcasting is done on the external remote

server.

8.2.2 Action Translation

In the second phase of A11YPUPPETRY, the Action Translator component (Figure 8.2) translates

actions recorded from the user using touch gestures to their counterparts in TalkBack. We propose

a mapping from touch gestures, i.e., Point and Line Gestures, to TalkBack actions (defined in

Section 4.3). The other types of gestures, like TwoFingerLine or Circular gestures do not have any

equivalent in TalkBack.

PointGesture

PointGestures, like single-tap or long-press, can be mapped to ElementBased actions in Talkback

since a PointGesture is usually associated with a GUI element. In some cases, the PointGesture is

not associated with a single element and the exact coordinate of the touched surface is important.

For example, a painting app may have a large canvas where the user can paint and draw shapes

by touch gestures. Although the underlying element of all these gestures is the canvas, the exact

coordinate of the gesture is important to draw the lines precisely. We exclude these cases in this

work since they require a fine visual perception of the screen to pinpoint the desired coordinates.

However, to precisely find the equivalent of a PointGesture, we also need to find the element

associated with the touch gesture. To find the associated element, we list all elements in the UI

hierarchy (recall that the Action Execution Report has the UI hierarchy of the app before the

execution). Then filter the elements that enclose the touched point and sort them based on their

z-index. An element with a greater z-index is always in front of an element with a lower z-index

[47]. Then we iterate the list to find an element that has a matching attribute to the action that is

111

performing. For example, if the PointGesture is single-tap or long-press, then the element should

have a clickable or long-clickable attributes respectively. If no such element can be found, we

choose the first element in the list.

LineGesture

LineGestures can be mapped to either TouchGestureReplication or PredefinedActions. For example,

a swipe-up touch gesture can be performed in TalkBack either by swiping up with two fingers or

performing the predefined action, swipe right then left.

Once the input action is translated into a TalkBack action, it will be sent to replayer devices, in

particular, to their TalkBack Proxy Users.

8.2.3 Replayer

The third phase of A11YPUPPETRY replays the received TalkBack Action with TalkBack. Before

the user starts interacting with the app, the recorder and replayer devices are in the same state, i.e.,

the app under test is installed and opened. In the replayer device, TalkBack and TalkBack Proxy

User services are enabled. For each navigation mode, i.e., Linear, Jump, Search, and Touch, there is

one replayer device receiving the inputs from the server. Section 4.4 explained how TalkBack Proxy

User can perform an action in details.

Once a replaying use case is finished, TalkBack Proxy Users compile a set of information and send

it to the server, including the UI hierarchy, screenshot, TENG, and performed actions in all stages.

112

8.2.4 Report

In the final phase of A11YPUPPETRY (Report), the A11y Analyzer component in Figure 8.2

analyzes all information stored in the database and generated from the Recorder and TalkBack

Proxy Users, compiles and aggregates them, and shows the final report to the user via a web interface.

Since the target users of A11YPUPPETRY are developers and testers with limited knowledge on

accessibility, we implemented the following features to illustrate the accessibility barriers in their

apps.

• Annotated Video. Once the record and replay for an app is completed, A11y Analyzer create

videos using the captured screenshots, then animates the touch gesture on the image. Moreover, it

adds a short description of the gesture whenever it is performed. For the replayer vidoes, it also

annotate the focused elements by TalkBack during the navigation.

• Blindfold Mode. The replayer video cannot represent the issues that blind users may face,

especially the ones related to the semantics of the app. For example, when visual icons have

content descriptions that are irrelevant to their corresponding buttons’ functionality, blind users

may become confused and not understand the app. We provided a blindfold mode in our report

which lists the textual description of the items that have been navigated with TalkBack. For

example, the Blindfold Mode report of Linear Navigation for Figure 4.3(a) would be ”1. Back

button, double tap to activate 2. 1 Selected, 3. Delete button, , double tap to activate 4. Favorite

..., 5. Select, 6. diphtongize, not checked, checkbox, double tap to toggle”

• State Comparison. A11y Analyzer also compares the state of the apps in the recorder and replayer

devices to see if there is any difference between them. Ideally, if all actions are performed correctly

in all replayers, there should be no difference between the states. The comparison is done by

checking the UI hierarchy of the apps before performing any action. In case of different between

states, the web interface shows a warning sign near the state to show the issue.

113

Table 8.1: The evaluation subject apps with the detected accessibility issues

App Category #Installs #Actions #User #Scanner #LATTE #A11YPUPPETRY Issues
Issues Issues Issues Linear Touch Jump Search Total

ESPN Sports >50M 24 11 18 6 6 2 13 6 17
DoorDash Food >10M 23 8 22 10 9 1 13 9 15
Expedia Travel >10M 33 8 89 4 2 3 19 7 22
Dictionary Books >10M 21 8 113 6 4 2 13 5 15
iSaveMoney Finance >1M 21 5 35 2 10 9 10 2 11

8.3 Evaluation

This section explains our experiments and user studies to evaluate the effectiveness and limitations

of A11YPUPPETRY.

We selected five Android apps with possible accessibility issues detected in GROUNDHOG or online

social media [68]. For each app, we designed a task (consisting of 20 to 40 actions) according to

the functionalities of the app. Also, we included the parts of the app that were reported inaccessible

in the task. The first four columns of Table 8.1 show some information about the subject apps and

the number of actions involved in the designed tasks.

We use A11YPUPPETRY on each task of these five apps. We used an Android emulator with

Android 11 and TalkBack (version 12.1) for both recording and replaying devices. Our prototype of

A11YPUPPETRY enables us to perform the experiments synchronously (recorder and replayers are

running simultaneously) or asynchronously (the recording can be done before the replaying). For

the experiments, we use the asynchronous mode to not introduce any problem caused by network

or other concurrency issues; however, in practice, the synchronous mode is more promising since

the results can become ready much faster. Furthermore, we scan each stage of the app during the

execution with Accessibility Scanner (version 2.3).

To compare A11YPUPPETRY with existing work, we used LATTE (our use-case driven testing tool)

and Accessibility Scanner. Since LATTE requires GUI test cases for the analysis, we transformed

recorded use cases to GUI test cases. Scanner is not a use-case driven tool and scans the whole

screen; therefore, we ran Scanner on the screens of the app after each interaction. Moreover, since

114

in this experiments we are focused on blind users who uses TalkBack, we filter out issues that are

not related to blind users, like small touch target size or low text contrast.

Besides experiments with these tools, we conducted two user studies with users with visual im-

pairment who have experience working with TalkBack in Android. To connect to such users, we

used the third-party service Fable 1. Fable is a company that connects tech companies to users with

disabilities for user research and accessibility testing. Fable compensates all user testers and is

committed to fair pay for the testers 2.

We used two services of Fable: Compatibility Test and User Interview. In the compatibility test, we

provided the designed tasks and apps to Fable, then Fable distributed each task to three TalkBack

users with visual impairments. The users performed the tasks, and for each step of the task, they

reported any issues they faced. Once we gathered all detected issues from A11YPUPPETRY and

compatibility tests in Fable, we did a preliminary analysis and produced a comprehensive list of

accessibility issues for each step. Then for each app, we sent requests for user interviews with Fable,

where Fable scheduled a one-hour online interview with a blind user who uses TalkBack. During

the interview, the user shared his/her Android phone screen. We asked the users to perform the

designed tasks and explain their thoughts and understanding of the app’s pages. When they faced an

accessibility issue that prevented them from continuing the task, we intervened and guided them to

skip to the next step. Once the users finished the tasks, we started a conversation and asked them

some specific questions about the tasks or general questions about their experience in working with

screen readers and apps. In summary, each app is assessed four times: three users in compatibility

tests and one user in an online interview.

The source code of A11YPUPPETRY, a demo of the web interface, designed tasks, apps, and user

responses can be found in our companion website [1].

We would like to understand how A11YPUPPETRY can help detect accessibility issues confirmed

1https://www.makeitfable.com
2https://makeitfable.com/article/why-fair-pay-for-testers-matters/

115

https://www.makeitfable.com
https://makeitfable.com/article/why-fair-pay-for-testers-matters/

Table 8.2: The percentage of the intersection of user-confirmed issues detected by Scanner, LATTE,
and A11YPUPPETRY to the total number of user-confirmed issues.

App
% Intersection with User-Confirmed Issues

Scanner LATTE
A11YPUPPETRY

Detected Evidence Total
ESPN 10% 18% 18% 45% 63%
DoorDash 25% 25% 50% 37% 87%
Expedia 12% 25% 50% 12% 62%
Dictionary 25% 50% 50% 37% 87%
iSaveMoney 40% 40% 40% 20% 60%

by users with visual impairment. As discussed before, all five tasks from five subject apps are

assessed by users with disabilities, Accessibility Scanner, LATTE, and A11YPUPPETRY. For

A11YPUPPETRY, we used four navigation modes (Linear, Touch, Jump, and Search). For user

feedback, if at least one user expresses an issue with a certain action, we assume the action has an ac-

cessibility issue. The number of reported issues for each app can be found in Table 8.1. The last col-

umn represents the number of actions that at least one of the navigation modes in A11YPUPPETRY

reported an issue. As can be seen, the issues detected by LATTE and A11YPUPPETRY are propor-

tional to the number of actions; however, Scanner reported many issues that can be difficult for

testers to examine and verify.

Table 8.2 summarizes the effectiveness of Scanner, LATTE, and A11YPUPPETRY in detecting issues

confirmed by actual users. For each tool, we calculate the number of user-confirmed problems

that the tool could automatically detect. The key insight for designing A11YPUPPETRY was that

a human tester interacts with it and interprets the results to locate accessibility issues that could

require human knowledge to detect. Therefore, for A11YPUPPETRY, we also calculate the number

of user-confirmed issues that evidence of the such problems exists in the report of A11YPUPPETRY.

Table 8.2 shows the ratio of these calculated numbers to the total number of user-confirmed issues.

As can be seen, A11YPUPPETRY, even its automated detected results, outperforms the existing

tools. On average, A11YPUPPETRY could detect more than 70% of issues confirmed by users.

To have a better understanding of the detected issues, we manually analyzed all reported issues

116

Figure 8.3: (a) the toggle button in iSaveMoney is not focusable and buttons indicated by yellow-
solid boxes have ineffective action, (b) The content description of the notification icon in ESPN has
unsupported characters, (c) The textual description of travelers numbers are different in Expedia,
(d) (e) different fragments showing to different users

and categorized them into five categories: (1) Automated Detection the ones that both users and

A11YPUPPETRY reported, (2) Evidence Provided the ones that users reported and A11YPUPPETRY

provide some evidence of the existence of such issue in its report which can guide the tester to detect

the issue, (3) Unsettled Issues that A11YPUPPETRY reported, but users did not find significant,

(4) Flaky Issues that A11YPUPPETRY mistakenly reported as issues, and (5) Undetected Issues

are the one that users reported but A11YPUPPETRY did not provide any evidence of such issue.

In the following, we explain the subcategories of each of these categories and provide illustrative

examples.

Automated Detection

Missing Speakable Text This issue (a visual element without the content description) is among

the most common types of accessibility issues in mobile apps [36]. Due to the nature of this issue,

existing accessibility testing techniques, like Accessibility Scanner, can detect this issue by only

analyzing the layout of the app without considering assistive services. A11YPUPPETRY detects

117

such issues using the Search navigation, i.e. if an element is not associated with a textual description,

it cannot be searched with TalkBack.

Unfocusable Element In this issue, an element associated with functionality or data cannot be

focused by TalkBack; as a result, TalkBack users cannot access them or even realize such an element

exists. In Section 8.1, we gave an example of such an issue (the speaker button in Figure 8.1(b)).

Note that this issue cannot be detected by Accessibility Scanner since it requires assessing whether

the element is focusable by TalkBack in runtime.

Sometimes, the unfocusable element belongs to a minor feature that the user may not need, for

example, the collapse button in the iSaveMoney app that hides the details of expenses (red-dashed

box in Figure 8.3(a)). However, sometimes this issue becomes critical, for example, on one of the

search pages of Expedia, none of the elements on the screen, including Navigate Up Button, are

focusable, making the user confused. A user mentioned: “After typing New York and pressing

the search button, I am unable to move around the screen at all. None of the gestures that I use to

navigate or read the screen work.”

Ineffective Action Sometimes elements are focused on by TalkBack; however, the intended action

cannot be performed. For example, in the iSaveMoney app, many buttons, including all yellow-solid

boxes in Figure 8.3(a), can be focused by TalkBack; however, after clicking them by double tap,

nothing happens. It seems the underlying reason behind this issue is the customized implementation

of the buttons, which are sensitive to touch gestures and not click actions. The issue is also found in

Doordash when the user wants to change the delivery option to pick-up.

118

Evidence Provided

The following issues are reported by users and not by A11YPUPPETRY; however, the aggregated

report of A11YPUPPETRY, including the annotated video and blindfold mode, provides evidence of

these issues. The report can help accessibility testers to reveal the issue faster without the need to

interact with apps multiple times.

Uninformative Textual Description The main purpose of content description of elements is

to help users with visual impairment understand the app better; as a result, merely having a

content description does not improve accessibility. A11YPUPPETRY is not capable of analyzing the

semantics of content descriptions; however, its blindfold mode lists the texts that are announced

while exploring the app. A developer/tester can determine whether the textual descriptions are

informative or not by reading the blindfold mode report. Here are some examples of this type of

issue confirmed by users.

• The textual element has some random or irrelevant data. For example, the notification icon in

ESPN, highlighted button in Figure 8.3(b), has a content description “Í”, which is not informative

• The elements associated with a functionality, e.g., button, checklist, or tab, should express their

functionality. While TalkBack takes care of standard elements like android.widget.button, it

does not announce the functionality of non-standard elements, e.g., a button which is a an-

droid.widget.TextView. Doordash app has many of these issues, e.g., “Save” without button or

“Pickup/Delivery” without announcing toggle.

• The textual description should describe the purpose of the element completely. For example, on

the renting page of Expedia, there is a compound element described as “Pick-Up”; however, it is

unclear if it is related to location or date. A sighted user can easily recognize it by looking at the

pinpoint icon inside this element which hints this element is related to the location of picking up.

119

• Sometimes, the textual descriptions provide complete information; however, they can be incorrect.

For example, the traveler’s element, highlighted in Figure 8.3(c), clearly shows there are 3

travelers selected; however, its textual description is “Number of travelers. Button. Opens dialog.

1 traveler” which is not correct.

Difficulties in Reading Besides the textual description of elements, the way the texts are an-

nounced by TalkBack is important for understanding an app. We found a few accessibility issues

reported by the users that make it difficult for them to perceive the text. This kind of issue can be

detected by testers by manually analyzing the blindfold mode and annotated videos. For example,

in Dictionary, paragraphs of texts cannot be read as a whole; the user has to read a long text word

by word. Or in the Doordash app, yellow-solid boxes in Figure 8.4(a), each category on the main

page is announced two times, one time the visible text, e.g., Grocery or Chicken, another time the

image which didn’t have textual description, announced as “unlabeled”. In another example, all

content of the summary block in the iSaveMoney app, green-dotted highlighted box in Figure 8.3(a),

are announced altogether in an unintuitive order, and the user had to change the reading mode

to understand each word. Although these issues do not make the app incomprehensible, they are

barriers to blind users from using these apps conveniently. We asked one of the interviewees how

they felt about this kind of inaccessibility, and he said he could deal with them “but we, blind people

or deaf people, deserved the same amount of dignity as others.”

Unsettled Issues

A11YPUPPETRY detected some issues that the users in our user studies did not find them significant

issues. Mainly these issues belong to Jump and Search navigation modes. In the Jump navigation

mode, TalkBack Proxy User tries to locate the element using jump navigation (going to the next

control or heading element); however, sometimes, it is not possible to reach to element since it does

not have proper attributes, e.g., it is not a button. TalkBack Proxy User with Search navigation mode

120

tries to locate the elements by searching their textual description; however, when there are multiple

elements with the same description, this mode cannot locate the element correctly. Although users

mentioned it would be nice if the attributes were set properly so they could use different navigation

modes; they did not find these issues important since they usually do not use Jump and Search

navigation modes. We further examined why users do not use these modes often in Section 8.4.

Flaky Issues

Sometimes A11YPUPPETRY reports issues that are not correct, which is caused by technical

problems with the experiments. The main characteristic of this category is that by rerunning

A11YPUPPETRY, the issue may not be reported again. There are three main technical prob-

lems. First, TalkBack sometimes freezes and does not respond properly and on time, making

A11YPUPPETRY think the app has accessibility issues that do not let TalkBack continue the ex-

ploration. Secondly, the recorder may record incorrect elements to perform; for example, on the

signup page of the ESPN app, instead of recording a button, it records a transparent view covering

the button, which does not interfere with the touch interaction. Lastly, the apps can be changed and

be in different states on TalkBack Proxy User devices. Mainly this issue is caused by A/B testing,

where developers dynamically show different pages to different users to measure some metrics

about their product. For example, Figure 8.3(d) and (e) are two different fragments of changing the

number of travelers in the Expedia app. If the recorder records the action in Figure 8.3(d), the same

element cannot be found in Figure 8.3(e) since the structure is totally different.

Undetected Issues

As expected, A11YPUPPETRY cannot provide all accessibility-related feedback, and the best way to

evaluate the accessibility of apps is by conducting user studies with disabled users. We categorized

the limitation of A11YPUPPETRY in the following categories.

121

Figure 8.4: (a) After pressing the search tab in DoorDash, a new search page appears without any
announcement, (b) List of saved stores in DoorDash, (c) The interstitial ad in Dictionary app and
the close tab is not focusable by TalkBack, (d)The accessible calendar in Expedia

Improper Change Announcement As users interact with mobile apps, the layout constantly

changes. A sighted user can monitor all these changes to understand the latest state of the app;

however, it is much more difficult for users with visual impairment to realize something is changed

in the app. During our interview, users reported a couple of these kinds of issues. For example,

when the user presses the search tab in the Doordash app, the red-dashed box in Figure 8.4(a), a

completely new search page appears without any announcement for TalkBack users. One participant

mentioned “My preference is that whenever something like that happens, [TalkBack] moves the

focus up to where the new content begins because someone as a screen reader won’t necessarily

[realize the app is changed].”

Excessive Announcement On the other hand, it can be problematic and annoying when TalkBack

announces content more than users need. For example, in the Expedia app, when a user types a

name in the search edit box, TalkBack interrupts the user by announcing “Suggestions are being

loaded below”. Although it is informative for users to know the search results are loaded on the fly,

it is annoying to interrupt constantly.

122

Temporary Visible Elements Sometimes, apps introduce new elements for a short period to

notify the user something has changed and let the user undo or do something relevant to this change.

For example. in the Doordash app, when the user saves a restaurant as her favorite, a pop-up box

appears, Figure 8.4(b), notifying the user the store is saved and disappears momentarily. A blind

user is informed of this change; however, she does not have enough time to focus on the appearing

dialogue.

8.4 Discussion

The previous section demonstrates the effectiveness of A11YPUPPETRY in providing insights and

detecting accessibility issues. This section discusses other findings from the user studies that might

be insightful for future research work.

TalkBack Interaction Preferences. We further examine how users with visual impairments

interact with apps using TalkBack. We asked the interviewees of the user interview to explain the

different ways they use TalkBack. If they did not mention any of the navigation ways that we found

in TalkBack documentation, we ask them if they are aware of them.

Generally, the primary way of navigation mode for all participants is Linear navigation. A user

mentioned “I’m more into the flick, element to element, to explore an app and understand its layout.”

This mode is especially used when the user interacts with an app or page that is unfamiliar.

The next favorite way of navigating is through Touch mode; however, it is usually used in certain

scenarios. For example, when the user knows about the possible location of elements, use Touch

navigation mode. One participant mentioned “The back buttons are always at the top left, usually

so... I’m going to put my finger at the top left to find that back button.”. Also, when the user cannot

find the element or is stuck in a loop, use touch to find the target element.

123

Some interviewees said they might use Jump navigation for headings in the apps that they are

familiar with. One participant said “If I don’t know [the app] well enough ... I’m going to flick

through the whole thing to figure out the layout. If I know it well enough, then I probably would

switch to the heading option and then search by heading”. However, almost none of the participants

are willing to use the Search navigation mode. One user mentioned “I know [search] is there. But I

prefer to just hunt for [the elements]. It gives me a more experience with the app.”

Besides the element locating, we realized the users do not want to use other actions like scrolling

since scrolling confuses them in understanding the new state of the app. A user said “[I use scrolling]

if I know an app really well. But sometimes I find that when I do the scrolling thing, it’ll get me

into something else... sometimes it’ll get me where I really don’t want to be. So I have a tendency

not to want to do it.”

Context. A common accessibility issues in mobile apps are missing speakable text [36, 7].

Although missing speakable text degrades the user experience and ability to locate elements,

sometimes users can figure out the functionality of the unlabeled button given their context. For

example, the user can view the list of saved stores in Doordash and remove any of them, as depicted

in Figure 8.4(b). The element for removing a store is an icon with the shape of a heart without a

content description. However, our interviewee did not have a problem with locating this button. He

mentioned “That is a good layout, an accessible checkbox next to [the restaurant], which is checked

unchecked. I have seen these checkboxes on the home screen. I don’t like them on the home screen

because the user doesn’t know what that checkbox actually does. The common sense here would

tell you I’m in the saved stores’ section. So if I uncheck a box, it’s going to remove that.” Anyway,

this observation should not encourage developers not to care about missing content descriptions; on

the contrary, it emphasizes the importance of context for users with visual impairment to understand

the app better.

124

Advertisement. In the experiments of recording and replaying with A11YPUPPETRY, we did not

observe any ads. However, if an interstitial ad appears during the replay process, A11YPUPPETRY

may fail to continue as the appearance of ads is random and irregular. For example, for the

Dictionary app, the interstitial ad, such as Figure 8.4(c), might appear when the user searches for a

word. Disabled users have difficulty noticing the occurrence of the ads until they get stuck in the

ads window for a few minutes. Even if they are aware of the ads, closing them and returning to

the previously interrupted use case is challenging. One of the interviewees tried to locate the app

with Linear and Touch navigation modes; however, the ad’s close button seems not focusable by

TalkBack. As a result, the user had to restart the app (close and open again) to continue the task.

All the interviewees are cautious about the in-app advertisements. As one stated, “I tend not to

open [the in-app advertisements] because half of the time, these advertisements cause problems.”

In addition, most interviewees admitted that they are willing to pay for the ad-free version if the

price is not high, so they do not need to deal with ads while navigating apps. A user mentioned:

“If the app gives me the option to do without ads with a small price, I pay the small price just so

I don’t have to deal with the ads. Most of the time [the ads] don’t work with the screen readers.”

Nevertheless, previous research indicates that some apps still contain ads even if users pay ad-free

fees [58].

To the best of our knowledge, only one previous research investigated the impact of ads on disabled

users. The research found that most ads are represented in GIFs, and more than half of the sampled

ads have no ALT tag [117]. Therefore, screen readers can not read the contents of the ads to blind

users. Other researchers investigated the impact of ads on the whole user group, not just disabled

users. The negative influences of ads include privacy threats, significant battery consumption,

slowing down the app, and disabling an app’s normal function [58, 48]. We argue that the negative

influences mentioned above could worsen for disabled users as they rely on assistive technologies

to accomplish the task. Remember, the previous section illustrates disabled users usually need more

steps and time to achieve an equivalent action that users without disability perform.

125

There are some design implications for in-app advertisements. Generally, ads that take the entire

screen are named interstitial ads, while ads that are represented as horizontal strips are named banner

ads. The ads should be announced correctly via Assistive Services so disabled users can know the

occurrence of the ads. In addition, developers are encouraged to design banner ads since the banner

ads usually will not disable an app’s functionality. By contrast, interstitial ads significantly attract

users’ attention and even require users to close the ad manually [58]. Developers should also ensure

the ads disappear after users pay ad-free fees.

Guided Navigation. The interviewees enjoyed interacting with an app when the app guided them

through the process. In particular, Expedia did a great job in reserving flights: it consists of several

steps like asking about the origin and destination airports, and dates. Once each step is done, the

focus is changed to the next question and also announces the changes. Users are also able to get out

of this selection and get back to the search page to change or view other information. One of the

interviewees was especially happy about the calendar, Figure 8.4(d), and mentioned “That was one

of the coolest mobile calendars I’ve ever used because it walked me through where I was. I selected

the start date, and it told me that, and then it said, pick your end date, and then it summarized with

states, like September 19th Start date or September 20th in the trip.”

Alternative Suggestion. As we discussed before, there are many complex touch gestures that do

not have equivalent in TalkBack, e.g., dragging or pinching in. Developers are recommended to

provide alternative interactions for complex gestures. For example, the calendar widget in Expedia,

Figure 8.4(d), suggests that sighted users modify the selected dates by dragging the start to end

dates. Moreover, for TalkBack users, it announces “Select dates again to modify” which is an

alternative way for modifying the dates.

Common Sense. During the interviews, we noticed participants sometimes locate elements much

faster than the other elements. In particular, for elements like “Search” or “Back”, instead of using

126

Linear navigation, they explored certain parts of the app by Touch navigation and locating the

element. We asked how they locate these elements and they generally respond they predict the

location of these elements with the help of common sense. For example, the back button or open

navigation drawer is usually located on the top left of the element, or menus are located in the

footer. Common sense is not limited to similar elements on the screen. In the interview for the

Doordash app, the interviewee found the button that shows the address of a restaurant pretty fast,

even though the button was unlabeled. When we asked how he found such an element, he responded

“A normal company would put the address on top, you know. So I’m using it. That’s common sense.”

Therefore, it is important for developers to not change the spatial aspects of UI elements without

considering users’ habits.

8.5 Conclusion

This chapter introduced A11YPUPPETRY, a semi-automated record-and-replay technique for

detecting accessibility issues in mobile app use cases using TalkBack, the official screen reader

in Android. A11YPUPPETRY records the user touch gestures in a device, translates the gestures

into their equivalent action in TalkBack, and performs them on four different devices with four

navigation modes in TalkBack. Finally, A11YPUPPETRY analyzes reports of the recorder and

replayers and generates aggregated and visualized reports for developers, even without knowledge

of accessibility. We evaluated A11YPUPPETRY by conducting user studies with users with visual

impairments. We realized A11YPUPPETRY is capable of detecting various types of accessibility

issues that cannot be detected by existing tools, and also can provide evidence for some accessibility

barriers that can be provided to accessibility experts, without taking their time to spend time on

interacting with TalkBack.

127

Chapter 9

Conclusion

In this dissertation, I introduced the idea of using assistive services for the automated evaluation

of accessibility in mobile apps and presented a set of automated testing tools built on this idea. I

showed that although existing guideline-based automated testing is helpful in detecting various

types of accessibility issues, they are limited to detecting issues that only are manifested in runtime

with an assistive service– the way users with disabilities interact with an app.

In order to utilize assistive services automatically, I introduced Proxy User. A Proxy User is

a program that interacts with a mobile device using an assistive service. Powered by Proxy

Users, I applied the idea of assistive-service-driven testing on three UI testing areas. First, I

introduced LATTE, which reuses existing UI test cases by translating them to human-readable use

case specifications, then executing them with two official assistive services in Android: TalkBack

and SwitchAccess. Second, I designed fully automated test input generation focused on accessibility

(GROUNDHOG and OVERSIGHT) to evaluate mobile apps’ under- and over-accessibility issues by

crawling the apps and perform actions with and without assistive services. Finally, I introduced

A11YPUPPETRY, a record-and-replay technique to aid manual testers with limited knowledge of

accessibility and assistive services assess the accessibility of mobile apps.

128

In the remainder of this chapter, I conclude my dissertation by enumerating the contributions of my

work and avenues for future work.

9.1 Research Contribution

• Fundamental contribution to accessibility testing I proposed a novel approach to assess the

accessibility of mobile apps that focus on the way users with disabilities interact with devices.

The concept of Proxy User abstracts away the engineering details of working with assistive

services programmatically. I built a prototype of Proxy Users for the Android platform;

however, this concept can be easily applied to other platforms like iOS or the Web. Moreover,

the applicability of Proxy User is realized in the proposed four different techniques (LATTE,

GROUNDHOG, OVERSIGHT, and A11YPUPPETRY).

• Tools and experiments. I designed and built the proposed testing techniques for the Android

platform and evaluated them on real-world and popular apps. These tools are implemented

in Client-Server architecture and are capable of parallelization, especially on the cloud. The

source code of all tools and supplementary materials (like subject apps in the experiments) are

publicly available [110, 114, 96, 1]; moreover, all experiments are written as Python scripts

to help other researchers reuse, replicate, and extend the proposed approaches.

• User study. I conducted user studies to create a more realistic understanding of what users

with disabilities need and want. The insights from these studies may help other researchers to

focus on undiscovered and significant accessibility problems. Dataset.

– A dataset of 50 UI test cases on 20 apps associated with detected accessibility issues

(already reused in other researchers’ work [5])

– A dataset of 30 apps with various accessibility issues, including super popular apps like

Facebook

129

– A dataset of 40 accessibility issues confirmed by blind users

9.2 Future Work

Fixing Accessibility Issues A straightforward research direction on top of accessibility issue

detection mechanisms is fixing techniques. Some issues are trivial to find, like missing speakable

text (the most common accessibility issue in mobile apps). My colleague and I already designed a

machine learning tool to fix this issue in CoALa [89]. However, the proposed techniques in this

dissertation are capable of detecting more complex issues automatically. As a future research idea, a

search-based algorithm can be designed to search for a source code that does not have navigational

issues detected by one of the proposed tools. Since GROUNDHOG and OVERSIGHT are entirely

automated and do not require manual input, they can be great choices as oracles for automated

accessibility fixing techniques.

Regression Accessibility Testing Regression testing is a practical approach for validating software

quality as it evolves, and accessibility is one of the essential software qualities. Any change in a

mobile app may change the UI, which blind users are familiar with, or even introduce accessibility

issues. Future research work can optimize and extend the proposed assessment technique to add a

wholly automated accessibility testing component to regression testing. In particular, LATTE can be

used as the base of such a technique since it is designed to work with UI test cases.

Education An effective way to encourage developers to build more accessible apps is to make

them aware and knowledgeable regarding accessibility and what users with disability need and

want. Mobile developers without disabilities are likely to design, develop, and test their products

for users without disabilities since they are not aware of how users with disability interact with an

app. The proposed techniques in this dissertation, in particular A11YPUPPETRY, can be used and

130

extended to help developers and even students know their design’s impact on other users. A future

research direction may study the effects of visualization tools on developers’ empathy toward users

with disability.

131

Bibliography

[1] A11yPuppetry. A11ypuppetry companion website. https://a11ypuppetry.github.io/,
2022. Last Accessed: September 15, 2022.

[2] P. Ackland, S. Resnikoff, and R. Bourne. World blindness and visual impairment: despite
many successes, the problem is growing. Community eye health, 30(100):71, 2017.

[3] K. Allix, T. F. Bissyandé, J. Klein, and Y. Le Traon. Androzoo: Collecting millions of
android apps for the research community. In 2016 IEEE/ACM 13th Working Conference on
Mining Software Repositories (MSR), pages 468–471, Austin, TX, 2016. IEEE, IEEE.

[4] K. Allix, T. F. Bissyandé, J. Klein, and Y. Le Traon. Androzoo: Collecting millions of android
apps for the research community. In Proceedings of the 13th International Conference on
Mining Software Repositories, MSR ’16, pages 468–471, New York, NY, USA, 2016. ACM.

[5] A. S. Alotaibi, P. T. Chiou, and W. G. Halfond. Automated detection of talkback interactive
accessibility failures in android applications. In 2022 IEEE Conference on Software Testing,
Verification and Validation (ICST), pages 232–243, Virtual, 2022. IEEE, IEEE.

[6] A. S. Alotaibi, P. T. Chiou, and W. G. Halfond. Automated detection of talkback interactive
accessibility failures in android applications. In 15th IEEE International Conference on
Software Testing, Verification and Validation (ICST), April 2022.

[7] A. Alshayban, I. Ahmed, and S. Malek. Accessibility issues in android apps: state of
affairs, sentiments, and ways forward. In 2020 IEEE/ACM 42nd International Conference on
Software Engineering, pages 1323–1334, Virtual, 2020. ICSE.

[8] S. Anand, M. Naik, M. J. Harrold, and H. Yang. Automated concolic testing of smartphone
apps. In Proceedings of the ACM SIGSOFT 20th International Symposium on the Foundations
of Software Engineering, FSE ’12, pages 59:1–59:11, New York, NY, USA, 2012. ACM.

[9] Android. Accessibility scanner - apps on google play. https://play.google.com/store/
apps/details?id=com.google.android.apps.accessibility.auditor&hl=en_US,
2022. Last Accessed: May 6, 2022.

[10] Android. Accessibility testing framework. https://github.com/google/
Accessibility-Test-Framework-for-Android, 2022. Last Accessed: May 6,
2022.

132

https://a11ypuppetry.github.io/
https://play.google.com/store/apps/details?id=com.google.android.apps.accessibility.auditor&hl=en_US
https://play.google.com/store/apps/details?id=com.google.android.apps.accessibility.auditor&hl=en_US
https://github.com/google/Accessibility-Test-Framework-for-Android
https://github.com/google/Accessibility-Test-Framework-for-Android

[11] Android. Accessibilityservice in android. https://developer.android.com/guide/
topics/ui/accessibility/service, 2022. Last Accessed: May 6, 2022.

[12] Android. Andoird accessibility api, accessibilityaction. https://developer.
android.com/reference/android/view/accessibility/AccessibilityNodeInfo.
AccessibilityAction, 2022. Last Accessed: October 12, 2022.

[13] Android. Android accessibility overview. https://support.google.com/
accessibility/android/answer/6006564, 2022. Last Accessed: May 6, 2022.

[14] Android. Android debug bridge. https://developer.android.com/studio/
command-line/adb, 2022. Last Accessed: May 6, 2020.

[15] Android. Build more accessible apps. https://developer.android.com/guide/
topics/ui/accessibility, 2022. Last Accessed: May 6, 2022.

[16] Android. Control your android device with switch access. https://support.google.com/
accessibility/android/answer/6122836?hl=en, 2022. Last Accessed: May 6, 2022.

[17] Android. Espresso : Android developers. https://developer.android.com/training/
testing/espresso, 2022. Last Accessed: May 6, 2022.

[18] Android. Get started on android with talkback - android accessibility help. https://
support.google.com/accessibility/android/answer/6283677?hl=en, 2022. Last
Accessed: May 6, 2022.

[19] Android. Google play. https://play.google.com/store/apps, 2022. Last Accessed:
May 6, 2022.

[20] Android. Improve your code with lint checks. https://developer.android.com/
studio/write/lint?hl=en, 2022. Last Accessed: May 6, 2020.

[21] Android. Talkback source code by google. https://github.com/google/talkback,
2022. Last Accessed: May 6, 2022.

[22] Android. Use touch gestures. https://developer.android.com/develop/ui/views/
touch-and-input/gestures, 2022. Last Accessed: August 29, 2022.

[23] Android. Webview - android documentation. https://developer.android.com/
reference/android/webkit/WebView, 2022. Last Accessed: May 6, 2022.

[24] appetizerio. Replaykit. https://github.com/appetizerio/replaykit, 2022. Last
Accessed: September 2, 2022.

[25] Appium. Mobile app automation made awesome. http://appium.io/, 2020.

[26] Apple. Accessibility on ios. https://developer.apple.com/accessibility/ios/,
2022. Last Accessed: May 6, 2021.

133

https://developer.android.com/guide/topics/ui/accessibility/service
https://developer.android.com/guide/topics/ui/accessibility/service
https://developer.android.com/reference/android/view/accessibility/AccessibilityNodeInfo.AccessibilityAction
https://developer.android.com/reference/android/view/accessibility/AccessibilityNodeInfo.AccessibilityAction
https://developer.android.com/reference/android/view/accessibility/AccessibilityNodeInfo.AccessibilityAction
https://support.google.com/accessibility/android/answer/6006564
https://support.google.com/accessibility/android/answer/6006564
https://developer.android.com/studio/command-line/adb
https://developer.android.com/studio/command-line/adb
https://developer.android.com/guide/topics/ui/accessibility
https://developer.android.com/guide/topics/ui/accessibility
https://support.google.com/accessibility/android/answer/6122836?hl=en
https://support.google.com/accessibility/android/answer/6122836?hl=en
https://developer.android.com/training/testing/espresso
https://developer.android.com/training/testing/espresso
https://support.google.com/accessibility/android/answer/6283677?hl=en
https://support.google.com/accessibility/android/answer/6283677?hl=en
https://play.google.com/store/apps
https://developer.android.com/studio/write/lint?hl=en
https://developer.android.com/studio/write/lint?hl=en
https://github.com/google/talkback
https://developer.android.com/develop/ui/views/touch-and-input/gestures
https://developer.android.com/develop/ui/views/touch-and-input/gestures
https://developer.android.com/reference/android/webkit/WebView
https://developer.android.com/reference/android/webkit/WebView
https://github.com/appetizerio/replaykit
http://appium.io/
https://developer.apple.com/accessibility/ios/

[27] Apple. Apple accessibility. https://www.apple.com/accessibility/iphone/, 2022.
Last Accessed: May 6, 2020.

[28] Apple. Debug accessibility in ios simulator with the
accessibility inspector. https://developer.apple.com/
library/archive/technotes/TestingAccessibilityOfiOSApps/
TestAccessibilityiniOSSimulatorwithAccessibilityInspector/
TestAccessibilityiniOSSimulatorwithAccessibilityInspector.html#//apple_
ref/doc/uid/TP40012619-CH4-SW1, 2022. Last Accessed: May 6, 2022.

[29] T. Azim and I. Neamtiu. Targeted and depth-first exploration for systematic testing of android
apps. In Proceedings of the 2013 ACM SIGPLAN international conference on Object oriented
programming systems languages & applications, pages 641–660, 2013.

[30] F. Behrang and A. Orso. Test migration between mobile apps with similar functionality. In
2019 34th IEEE/ACM International Conference on Automated Software Engineering (ASE),
pages 54–65. IEEE, 2019.

[31] T. Bi, X. Xia, D. Lo, J. Grundy, T. Zimmermann, and D. Ford. Accessibility in software
practice: A practitioner’s perspective. ACM Transactions on Software Engineering and
Methodology (TOSEM), 31(4):1–26, 2022.

[32] N. P. Borges, M. Gómez, and A. Zeller. Guiding app testing with mined interaction models.
In 2018 IEEE/ACM 5th International Conference on Mobile Software Engineering and
Systems (MOBILESoft), pages 133–143. IEEE, 2018.

[33] G. Brajnik. Comparing accessibility evaluation tools: a method for tool effectiveness.
Universal access in the information society, 3(3-4):252–263, 2004.

[34] M. M. B.V. Meditation moments. https://play.google.com/store/apps/details?
id=com.meditationmoments.meditationmoments&hl=en_US&gl=US, 2022. Last Ac-
cessed: March 10, 2022.

[35] M. Campbell. Lock screen bypass enables access to Notes in iOS 15, 2021.

[36] J. Chen, C. Chen, Z. Xing, X. Xu, L. Zhu, and G. Li. Unblind your apps: Predicting
natural-language labels for mobile gui components by deep learning. In 2020 IEEE/ACM
42nd International Conference on Software Engineering, page 322–334, Virtual, 2020. ICSE.

[37] P. T. Chiou, A. S. Alotaibi, and W. G. Halfond. Detecting and localizing keyboard acces-
sibility failures in web applications. In Proceedings of the 29th ACM Joint Meeting on
European Software Engineering Conference and Symposium on the Foundations of Software
Engineering, pages 855–867, Virtual, Athens, Greece, 2021. ACM New York, NY, USA.

[38] W. Choi, G. Necula, and K. Sen. Guided gui testing of android apps with minimal restart and
approximate learning. Acm Sigplan Notices, 48(10):623–640, 2013.

134

https://www.apple.com/accessibility/iphone/
https://developer.apple.com/library/archive/technotes/TestingAccessibilityOfiOSApps/TestAccessibilityiniOSSimulatorwithAccessibilityInspector/TestAccessibilityiniOSSimulatorwithAccessibilityInspector.html#//apple_ref/doc/uid/TP40012619-CH4-SW1
https://developer.apple.com/library/archive/technotes/TestingAccessibilityOfiOSApps/TestAccessibilityiniOSSimulatorwithAccessibilityInspector/TestAccessibilityiniOSSimulatorwithAccessibilityInspector.html#//apple_ref/doc/uid/TP40012619-CH4-SW1
https://developer.apple.com/library/archive/technotes/TestingAccessibilityOfiOSApps/TestAccessibilityiniOSSimulatorwithAccessibilityInspector/TestAccessibilityiniOSSimulatorwithAccessibilityInspector.html#//apple_ref/doc/uid/TP40012619-CH4-SW1
https://developer.apple.com/library/archive/technotes/TestingAccessibilityOfiOSApps/TestAccessibilityiniOSSimulatorwithAccessibilityInspector/TestAccessibilityiniOSSimulatorwithAccessibilityInspector.html#//apple_ref/doc/uid/TP40012619-CH4-SW1
https://developer.apple.com/library/archive/technotes/TestingAccessibilityOfiOSApps/TestAccessibilityiniOSSimulatorwithAccessibilityInspector/TestAccessibilityiniOSSimulatorwithAccessibilityInspector.html#//apple_ref/doc/uid/TP40012619-CH4-SW1
https://play.google.com/store/apps/details?id=com.meditationmoments.meditationmoments&hl=en_US&gl=US
https://play.google.com/store/apps/details?id=com.meditationmoments.meditationmoments&hl=en_US&gl=US

[39] W. Choi, K. Sen, G. Necul, and W. Wang. Detreduce: minimizing android gui test suites
for regression testing. In 2018 IEEE/ACM 40th International Conference on Software
Engineering (ICSE), pages 445–455, Gothenburg, Sweden, 2018. IEEE, IEEE.

[40] A. Clark and Contributors. Pillow, python imaging library. https://pillow.readthedocs.
io/en/stable/, 2022. Last Accessed: May 6, 2022.

[41] B. R. Connell. The principles of universal design, version 2.0. http://www. design. ncsu.
edu/cud/univ design/princ overview. htm, 1997.

[42] F. Y. B. Daragh and S. Malek. Deep gui: Black-box gui input generation with deep learning.
In 2021 36th IEEE/ACM International Conference on Automated Software Engineering
(ASE), pages 905–916. IEEE, 2021.

[43] Dictionary.Com. Dictionary.com english word meanings & definitions. https://play.
google.com/store/apps/details?id=com.dictionary, 2022. Last Accessed: August
29, 2022.

[44] Z. Dong, M. Böhme, L. Cojocaru, and A. Roychoudhury. Time-travel testing of android apps.
In Proceedings of the 42nd International Conference on Software Engineering, ICSE ’20,
pages 1–12, Seoul, South Korea, 2020. IEEE.

[45] M. M. Eler, J. M. Rojas, Y. Ge, and G. Fraser. Automated accessibility testing of mobile
apps. In 2018 IEEE 11th International Conference on Software Testing, Verification and
Validation, pages 116–126, Västerås, Sweden, 2018. ICST.

[46] M. Fazzini, E. N. D. A. Freitas, S. R. Choudhary, and A. Orso. Barista: A technique
for recording, encoding, and running platform independent android tests. In 2017 IEEE
International Conference on Software Testing, Verification and Validation (ICST), pages
149–160, Tokyo, Japan, 2017. IEEE, IEEE.

[47] E. Fernandes, Q. A. Chen, G. Essl, J. A. Halderman, Z. M. Mao, and A. Prakash. Tivos:
Trusted visual i/o paths for android. University of Michigan CSE Technical Report CSE-TR-
586-14, 2014.

[48] C. Gao, J. Zeng, F. Sarro, D. Lo, I. King, and M. R. Lyu. Do users care about ad’s
performance costs? exploring the effects of the performance costs of in-app ads on user
experience. Information and Software Technology, 132:106471, 2021.

[49] N. Ghorbani, R. Jabbarvand, N. Salehnamadi, J. Garcia, and S. Malek. Deltadroid: Dynamic
delivery testing in android. ACM Trans. Softw. Eng. Methodol., sep 2022. Just Accepted.

[50] L. Gomez, I. Neamtiu, T. Azim, and T. Millstein. Reran: Timing-and touch-sensitive record
and replay for android. In 2013 35th International Conference on Software Engineering
(ICSE), pages 72–81, San Francisco, CA, USA, 2013. IEEE, IEEE.

[51] Google. Accessibilitynodeinfo. https://developer.android.com/reference/
android/view/accessibility/AccessibilityNodeInfo#isVisibleToUser(), 2020.
Last Accessed: March 6, 2022.

135

https://pillow.readthedocs.io/en/stable/
https://pillow.readthedocs.io/en/stable/
https://play.google.com/store/apps/details?id=com.dictionary
https://play.google.com/store/apps/details?id=com.dictionary
https://developer.android.com/reference/android/view/accessibility/AccessibilityNodeInfo#isVisibleToUser()
https://developer.android.com/reference/android/view/accessibility/AccessibilityNodeInfo#isVisibleToUser()

[52] Google. Accessibilityinteractioncontroller.java. https://android.googlesource.
com/platform/frameworks/base/+/80943d8/core/java/android/view/
AccessibilityInteractionController.java#680, 2022. Last Accessed: May 3,
2022.

[53] Google. Accessibilitynodeinfo. https://developer.android.com/reference/
android/view/accessibility/AccessibilityNodeInfo, 2022. Last Accessed: March
12, 2022.

[54] Google. Facebook lite - apps on google play. https://play.google.com/store/apps/
details?id=com.facebook.lite&hl=en_US&gl=US, 2022. Last Accessed: May 6, 2022.

[55] Google. Ui/application exerciser monkey. https://developer.android.com/studio/
test/monkey, 2022. Last Accessed: May 6, 2022.

[56] U. Government. U.s. revised section 508 standards. https://www.access-board.gov/
guidelines-and-standards/communications-and-it/about-the-ict-refresh/
final-rule/text-of-the-standards-and-guidelines, August 20, 2020.

[57] T. Gu, C. Sun, X. Ma, C. Cao, C. Xu, Y. Yao, Q. Zhang, J. Lu, and Z. Su. Practical gui
testing of android applications via model abstraction and refinement. In 2019 IEEE/ACM
41st International Conference on Software Engineering (ICSE), pages 269–280, Montreal,
Canada, 2019. IEEE, IEEE.

[58] J. Gui, M. Nagappan, and W. G. Halfond. What aspects of mobile ads do users care about?
an empirical study of mobile in-app ad reviews. arXiv preprint arXiv:1702.07681, 2017.

[59] J. Guo, S. Li, J.-G. Lou, Z. Yang, and T. Liu. Sara: self-replay augmented record and
replay for android in industrial cases. In Proceedings of the 28th acm sigsoft international
symposium on software testing and analysis, pages 90–100, Beijing, China, 2019. Association
for Computing Machinery.

[60] M. Halpern, Y. Zhu, R. Peri, and V. J. Reddi. Mosaic: cross-platform user-interaction record
and replay for the fragmented android ecosystem. In 2015 IEEE International Symposium on
Performance Analysis of Systems and Software (ISPASS), pages 215–224, Philadelphia, PA,
USA, 2015. IEEE, IEEE.

[61] S. Hao, B. Liu, S. Nath, W. G. Halfond, and R. Govindan. Puma: programmable ui-
automation for large-scale dynamic analysis of mobile apps. In Proceedings of the 12th
annual international conference on Mobile systems, applications, and services, pages 204–
217, Bretton Woods, New Hampshire, USA, 2014. ACM New York, NY, USA.

[62] Y. Hu, T. Azim, and I. Neamtiu. Versatile yet lightweight record-and-replay for android.
In Proceedings of the 2015 ACM SIGPLAN International Conference on Object-Oriented
Programming, Systems, Languages, and Applications, pages 349–366, Auckland , New
Zealand, 2015. Association for Computing Machinery.

136

https://android.googlesource.com/platform/frameworks/base/+/80943d8/core/java/android/view/AccessibilityInteractionController.java#680
https://android.googlesource.com/platform/frameworks/base/+/80943d8/core/java/android/view/AccessibilityInteractionController.java#680
https://android.googlesource.com/platform/frameworks/base/+/80943d8/core/java/android/view/AccessibilityInteractionController.java#680
https://developer.android.com/reference/android/view/accessibility/AccessibilityNodeInfo
https://developer.android.com/reference/android/view/accessibility/AccessibilityNodeInfo
https://play.google.com/store/apps/details?id=com.facebook.lite&hl=en_US&gl=US
https://play.google.com/store/apps/details?id=com.facebook.lite&hl=en_US&gl=US
https://developer.android.com/studio/test/monkey
https://developer.android.com/studio/test/monkey
https://www.access-board.gov/guidelines-and-standards/communications-and-it/about-the-ict-refresh/final-rule/text-of-the-standards-and-guidelines
https://www.access-board.gov/guidelines-and-standards/communications-and-it/about-the-ict-refresh/final-rule/text-of-the-standards-and-guidelines
https://www.access-board.gov/guidelines-and-standards/communications-and-it/about-the-ict-refresh/final-rule/text-of-the-standards-and-guidelines

[63] Y. Hu and I. Neamtiu. Valera: an effective and efficient record-and-replay tool for android. In
Proceedings of the International Conference on Mobile Software Engineering and Systems,
pages 285–286, 2016.

[64] J. Huang, M. Backes, and S. Bugiel. A11y and privacy don’t have to be mutually exclusive:
Constraining accessibility service misuse on android. In 30th USENIX Security Symposium
(USENIX Security 21), pages 3631–3648, 2021.

[65] IBM. Ibm accessibility requirements. https://www.ibm.com/able/guidelines/ci162/
accessibility_checklist.html, 2022. Last Accessed: May 6, 2020.

[66] W. Inc. Geek - smarter shopping. https://play.google.com/store/apps/details?
id=com.contextlogic.geek&hl=en_US, 2020.

[67] M. E. Joorabchi, A. Mesbah, and P. Kruchten. Real challenges in mobile app develop-
ment. In 2013 ACM/IEEE International Symposium on Empirical Software Engineering and
Measurement, pages 15–24, Baltimore, MD, USA, 2013. IEEE, IEEE.

[68] K. Kaja. Doordash issue tweet. https://twitter.com/kirankaja12/status/
1551710324016836608, 2022. Last Accessed: September 15, 2022.

[69] KewlApps. Applock. https://play.google.com/store/apps/details?id=com.
gamemalt.applocker, 2022. Last Accessed: March 10, 2022.

[70] P. S. Kochhar, F. Thung, N. Nagappan, T. Zimmermann, and D. Lo. Understanding the
test automation culture of app developers. In 2015 IEEE 8th International Conference on
Software Testing, Verification and Validation (ICST), pages 1–10, Graz, Austria, 2015. IEEE,
IEEE.

[71] F. Koroy. Another BAD iOS 12 Passcode Bypass! 12.1/12.0.1 (Works on XS), 2018.

[72] F. Koroy. iOS 12 Passcode Bypass! Photos & Contacts (Works on XS), 2018.

[73] W. Lachance. Orangutan. https://github.com/wlach/orangutan, 2022. Last Accessed:
September 2, 2022.

[74] W. Lam, Z. Wu, D. Li, W. Wang, H. Zheng, H. Luo, P. Yan, Y. Deng, and T. Xie. Record and
replay for android: Are we there yet in industrial cases? In Proceedings of the 2017 11th
joint meeting on foundations of software engineering, pages 854–859, 2017.

[75] T. J.-J. Li, A. Azaria, and B. A. Myers. Sugilite: creating multimodal smartphone automation
by demonstration. In Proceedings of the 2017 CHI conference on human factors in computing
systems, pages 6038–6049, Bremen , Germany, 2017. Association for Computing Machinery.

[76] Y. Li, Z. Yang, Y. Guo, and X. Chen. Droidbot: a lightweight ui-guided test input generator
for android. In 2017 IEEE/ACM 39th International Conference on Software Engineering
Companion (ICSE-C), pages 23–26. IEEE, 2017.

137

https://www.ibm.com/able/guidelines/ci162/accessibility_checklist.html
https://www.ibm.com/able/guidelines/ci162/accessibility_checklist.html
https://play.google.com/store/apps/details?id=com.contextlogic.geek&hl=en_US
https://play.google.com/store/apps/details?id=com.contextlogic.geek&hl=en_US
https://twitter.com/kirankaja12/status/1551710324016836608
https://twitter.com/kirankaja12/status/1551710324016836608
https://play.google.com/store/apps/details?id=com.gamemalt.applocker
https://play.google.com/store/apps/details?id=com.gamemalt.applocker
https://github.com/wlach/orangutan

[77] Y. Li, Z. Yang, Y. Guo, and X. Chen. Humanoid: A deep learning-based approach to
automated black-box android app testing. In 2019 34th IEEE/ACM International Conference
on Automated Software Engineering (ASE), pages 1070–1073. IEEE, 2019.

[78] J.-W. Lin, R. Jabbarvand, and S. Malek. Test transfer across mobile apps through seman-
tic mapping. In 2019 34th IEEE/ACM International Conference on Automated Software
Engineering (ASE), pages 42–53. IEEE, 2019.

[79] J.-W. Lin, N. Salehnamadi, and S. Malek. Test automation in open-source android apps: A
large-scale empirical study. In Proceedings of the 35th IEEE/ACM International Conference
on Automated Software Engineering, pages 1078–1089, Virtual, Australia, 2020. ACM New
York, NY, USA.

[80] J.-W. Lin, N. Salehnamadi, and S. Malek. Route: Roads not taken in ui testing. ACM Trans.
Softw. Eng. Methodol., sep 2022. Just Accepted.

[81] M. Linares-Vásquez, C. Bernal-Cárdenas, K. Moran, and D. Poshyvanyk. How do developers
test android applications? In 2017 IEEE International Conference on Software Maintenance
and Evolution (ICSME), pages 613–622, Shanghai, China, 2017. IEEE, IEEE.

[82] A. Machiry, R. Tahiliani, and M. Naik. Dynodroid: An input generation system for android
apps. In Proceedings of the 2013 9th Joint Meeting on Foundations of Software Engineering,
ESEC/FSE 2013, pages 224–234, New York, NY, USA, 2013. ACM.

[83] K. Mao, M. Harman, and Y. Jia. Sapienz: Multi-objective automated testing for android
applications. In Proceedings of the 25th International Symposium on Software Testing and
Analysis, ISSTA 2016, pages 94–105, New York, NY, USA, 2016. ACM.

[84] K. Mao, M. Harman, and Y. Jia. Sapienz: Multi-objective automated testing for android
applications. In Proceedings of the 25th International Symposium on Software Testing and
Analysis, pages 94–105, Saarbrücken, Germany, 2016. ACM New York, NY, USA.

[85] L. Mariani, M. Pezzè, V. Terragni, and D. Zuddas. An evolutionary approach to adapt tests
across mobile apps. In 2021 IEEE/ACM International Conference on Automation of Software
Test (AST), pages 70–79. IEEE, 2021.

[86] G. Material Design. Gestures. https://material.io/design/interaction/gestures.
html#principles, 2022. Last Accessed: August 29, 2022.

[87] O. Matters. Mobile app backlog is directly damaging revenue in the enterprise. http://www.
bizreport.com/whitepapers/mobile_app_backlog_is_directly.html, 2020. Last
Accessed: September 15, 2020.

[88] F. Mehralian, N. Salehnamadi, S. F. Huq, and S. Malek. Too much accessibility is harmful!
automated detection and analysis of overly accessible elements in mobile apps. In 2022 37th
IEEE/ACM International Conference on Automated Software Engineering, Michigan, USA,
2022. IEEE, ACM New York, NY, USA.

138

https://material.io/design/interaction/gestures.html#principles
https://material.io/design/interaction/gestures.html#principles
http://www.bizreport.com/whitepapers/mobile_app_backlog_is_directly.html
http://www.bizreport.com/whitepapers/mobile_app_backlog_is_directly.html

[89] F. Mehralian, N. Salehnamadi, and S. Malek. Data-driven accessibility repair revisited: on
the effectiveness of generating labels for icons in android apps. In Proceedings of the 29th
ACM Joint Meeting on European Software Engineering Conference and Symposium on the
Foundations of Software Engineering, pages 107–118, Virtual, Athens, Greece, 2021. ACM
New York, NY, USA.

[90] Microsoft. Accessibility insights for android. https://accessibilityinsights.io/
docs/en/android/overview/, 2022. Last Accessed: March 13, 2022.

[91] Microsoft. An app platform for building android and ios apps with .net and c#. https:
//dotnet.microsoft.com/en-us/apps/xamarin, 2022. Last Accessed: May 6, 2022.

[92] D. T. Milano. Culebra. https://github.com/dtmilano/AndroidViewClient/wiki/
culebra, 2022. Last Accessed: September 2, 2022.

[93] M. Miller. Monetization insights from app professionals. https://www.data.ai/en/
insights/app-monetization/app-marketers-developers-survey-2/, 2017.

[94] N. Mirzaei, S. Malek, C. S. Păsăreanu, N. Esfahani, and R. Mahmood. Testing android apps
through symbolic execution. ACM SIGSOFT Software Engineering Notes, 37(6):1–5, 2012.

[95] M. Naseri, N. P. Borges Jr, A. Zeller, and R. Rouvoy. Accessileaks: Investigating privacy leaks
exposed by the android accessibility service. In The 19th Privacy Enhancing Technologies
Symposium, Jul 2019, Stockholm, Sweden. Springer, 2019.

[96] OverSight. Oversight. https://sites.google.com/view/oversight2, 2022.

[97] Pallets. Flask, the python micro framework for building web applications. https://github.
com/pallets/flask, 2022. Last Accessed: May 6, 2022.

[98] H. Petrie and O. Kheir. The relationship between accessibility and usability of websites.
In Proceedings of the SIGCHI conference on Human factors in computing systems, pages
397–406, San Jose, California, USA, 2007. CHI.

[99] A. Possemato, A. Lanzi, S. P. H. Chung, W. Lee, and Y. Fratantonio. Clickshield: Are you
hiding something? towards eradicating clickjacking on android. In Proceedings of the 2018
ACM SIGSAC Conference on Computer and Communications Security, pages 1120–1136,
2018.

[100] C. Power, A. Freire, H. Petrie, and D. Swallow. Guidelines are only half of the story:
accessibility problems encountered by blind users on the web. In Proceedings of the SIGCHI
conference on human factors in computing systems, pages 433–442, Texas, USA, 2012. CHI.

[101] Z. Qin, Y. Tang, E. Novak, and Q. Li. Mobiplay: A remote execution based record-and-replay
tool for mobile applications. In Proceedings of the 38th International Conference on Software
Engineering, pages 571–582, Texas, Austin, 2016. Association for Computing Machinery.

[102] Ranorex. ranorex. https://www.ranorex.com/mobile-automation-testing/
android-test-automation/, 2022. Last Accessed: September 2, 2022.

139

https://accessibilityinsights.io/docs/en/android/overview/
https://accessibilityinsights.io/docs/en/android/overview/
https://dotnet.microsoft.com/en-us/apps/xamarin
https://dotnet.microsoft.com/en-us/apps/xamarin
https://github.com/dtmilano/AndroidViewClient/wiki/culebra
https://github.com/dtmilano/AndroidViewClient/wiki/culebra
https://www.data.ai/en/insights/app-monetization/app-marketers-developers-survey-2/
https://www.data.ai/en/insights/app-monetization/app-marketers-developers-survey-2/
https://sites.google.com/view/oversight2
https://github.com/pallets/flask
https://github.com/pallets/flask
https://www.ranorex.com/mobile-automation-testing/android-test-automation/
https://www.ranorex.com/mobile-automation-testing/android-test-automation/

[103] C. Ren, P. Liu, and S. Zhu. Windowguard: Systematic protection of gui security in android.
In NDSS, 2017.

[104] Robolectric. robolectric/robolectric, Jul 2019.

[105] RobotiumTech. robotiumrecorder. https://github.com/RobotiumTech/robotium, 2022.
Last Accessed: September 2, 2022.

[106] A. S. Ross, X. Zhang, J. Fogarty, and J. O. Wobbrock. Epidemiology as a framework for large-
scale mobile application accessibility assessment. In Proceedings of the 19th international
ACM SIGACCESS conference on computers and accessibility, pages 2–11, Baltimore, MD,
USA, 2017. ASSETS.

[107] O. Sahin, A. Aliyeva, H. Mathavan, A. Coskun, and M. Egele. Randr: Record and replay
for android applications via targeted runtime instrumentation. In 2019 34th IEEE/ACM
International Conference on Automated Software Engineering (ASE), pages 128–138, San
Diego, CA, USA, 2019. IEEE, IEEE.

[108] N. Salehnamadi, A. Alshayban, I. Ahmed, and S. Malek. A benchmark for event-race analysis
in android apps. In Proceedings of the 18th International Conference on Mobile Systems,
Applications, and Services, pages 466–467, 2020.

[109] N. Salehnamadi, A. Alshayban, I. Ahmed, and S. Malek. Er catcher: a static analysis
framework for accurate and scalable event-race detection in android. In 2020 35th IEEE/ACM
International Conference on Automated Software Engineering (ASE), pages 324–335. IEEE,
2020.

[110] N. Salehnamadi, A. Alshayban, J.-W. Lin, I. Ahmed, S. Branham, and S. Malek. Latte
companion website. https://github.com/seal-hub/Latte, 2020.

[111] N. Salehnamadi, A. Alshayban, J.-W. Lin, I. Ahmed, S. Branham, and S. Malek. Latte:
Use-case and assistive-service driven automated accessibility testing framework for android.
In Proceedings of the 2021 CHI Conference on Human Factors in Computing Systems, pages
1–11, Virtual, Okohama, Japan, 2021. ACM New York, NY, USA.

[112] N. Salehnamadi, A. Alshayban, J.-W. Lin, I. Ahmed, S. Branham, and S. Malek. Latte:
Use-case and assistive-service driven automated accessibility testing framework for android.
In Proceedings of the 2021 CHI Conference on Human Factors in Computing Systems, New
York, NY, USA, 2021. Association for Computing Machinery.

[113] N. Salehnamadi, F. Mehralian, and S. Malek. Groundhog: An automated accessibility crawler
for mobile apps. In 2022 37th IEEE/ACM International Conference on Automated Software
Engineering, Michigan, USA, 2022. IEEE, ACM New York, NY, USA.

[114] N. Salehnamadi, F. Mehralian, and S. Malek. Groundhog companion website. https:
//github.com/seal-hub/Groundhog, 2022. Last Accessed: September 1, 2022.

140

https://github.com/RobotiumTech/robotium
https://github.com/seal-hub/Latte
https://github.com/seal-hub/Groundhog
https://github.com/seal-hub/Groundhog

[115] C. Silva, M. M. Eler, and G. Fraser. A survey on the tool support for the automatic evaluation
of mobile accessibility. In Proceedings of the 8th International Conference on Software
Development and Technologies for Enhancing Accessibility and Fighting Info-exclusion,
pages 286–293, Thessaloniki, Greece, 2018. DSAI.

[116] T. Su, G. Meng, Y. Chen, K. Wu, W. Yang, Y. Yao, G. Pu, Y. Liu, and Z. Su. Guided,
stochastic model-based gui testing of android apps. In Proceedings of the 2017 11th Joint
Meeting on Foundations of Software Engineering, pages 245–256, Paderborn, Germany,
2017. ACM New York, NY, USA.

[117] D. Thompson and B. Wassmuth. Accessibility of online advertising: a content analysis of
alternative text for banner ad images in online newspapers. Disability Studies Quarterly,
21(2), 2001.

[118] W3. Web content accessibility guidelines (wcag) overview. https://www.w3.org/WAI/
standards-guidelines/wcag/, 2020. Last Accessed: August 20, 2020.

[119] W3. Principle 1: Perceivable. https://www.w3.org/TR/WCAG20/#perceivable, 2022.
Last Accessed: March 15, 2022.

[120] W3. Principle 2: Operable. https://www.w3.org/TR/WCAG20/#operable, 2022. Last
Accessed: March 15, 2022.

[121] W3. Web content accessibility guidelines (wcag) overview. https://www.w3.org/WAI/
standards-guidelines/wcag/, 2022. Last Accessed: May 6, 2022.

[122] W3. Xml path language. https://www.w3.org/TR/2017/REC-xpath-31-20170321/,
2022. Last Accessed: May 6, 2022.

[123] W. Wang, D. Li, W. Yang, Y. Cao, Z. Zhang, Y. Deng, and T. Xie. An empirical study of
android test generation tools in industrial cases. In 2018 33rd IEEE/ACM International
Conference on Automated Software Engineering (ASE), pages 738–748. IEEE, 2018.

[124] WHO. World report on disability. https://www.who.int/disabilities/world_
report/2011/report/en/, 2011. Last Accessed: May 6, 2022.

[125] X. Zhang, A. S. Ross, and J. Fogarty. Robust annotation of mobile application interfaces in
methods for accessibility repair and enhancement. In Proceedings of the 31st Annual ACM
Symposium on User Interface Software and Technology, pages 609–621, Berlin, Germany,
2018. UIST.

141

https://www.w3.org/WAI/standards-guidelines/wcag/
https://www.w3.org/WAI/standards-guidelines/wcag/
https://www.w3.org/TR/WCAG20/#perceivable
https://www.w3.org/TR/WCAG20/#operable
https://www.w3.org/WAI/standards-guidelines/wcag/
https://www.w3.org/WAI/standards-guidelines/wcag/
https://www.w3.org/TR/2017/REC-xpath-31-20170321/
https://www.who.int/disabilities/world_report/2011/report/en/
https://www.who.int/disabilities/world_report/2011/report/en/

	LIST OF FIGURES
	LIST OF TABLES
	ACKNOWLEDGMENTS
	VITA
	ABSTRACT OF THE Dissertation
	Introduction
	Dissertation Structure

	Related Work and Research Gap
	Related Work
	Accessibility Standards and Guidelines
	Accessibility Testing
	Automated GUI Test Generation

	Research Gap

	Research Problem
	Problem Statement
	Thesis Statement
	Research Hypotheses

	Proxy Users
	Illustrative Example
	Background
	Android UI
	Accessibility in Android

	Actions
	Touch Gestures
	TalkBack Actions
	SwitchAccess

	Proxy User
	Touch Proxy User
	TalkBack Proxy User
	SwitchAccess Proxy User
	Abstract Proxy User

	Conclusion

	Assistive-Service Testing Through Reusing GUI Tests
	Illustrative Example
	Approach
	Test Analyzer
	Use-Case Executor
	Result Analyzer

	Evaluation
	Experimental Setup
	RQ1. Accuracy of Latte
	RQ2. Latte vs. Google Accessibility Scanner
	RQ3. Qualitative Study of Detected Accessibility Failures and Warnings

	Conclusion

	Assistive-Service Crawler
	Motivating Example
	Approach
	Snapshot Manager
	Action Extractor
	Oracle

	Optimization
	Implementation
	Evaluation
	Experimental Setup
	RQ1. Effectiveness of Groundhog
	RQ2. Comparison with Scanner
	RQ3. Qualitative Study
	RQ4. Performance

	Threats to Validity
	Conclusion

	Over-Accessibility Issue Detection
	Motivating Example
	Overly Accessible Elements
	Data Collection
	Results

	Approach
	OA Detector
	OA Verifier

	Evaluation
	Experimental Setup
	RQ1. Accuracy of OverSight
	RQ2. Qualitative Analysis of Detected OA Elements
	RQ3. Performance

	Conclusion

	Assistive-Service Aided Manual Testing
	Motivating Example
	Approach Overview
	Recorder
	Action Translation
	Replayer
	Report

	Evaluation
	Discussion
	Conclusion

	Conclusion
	Research Contribution
	Future Work

	Bibliography

