
UNIVERSITY OF CALIFORNIA,
IRVINE

Automated Techniques for Improving the Accessibility of Android Applications for Screen
Reader Users

DISSERTATION

submitted in partial satisfaction of the requirements
for the degree of

DOCTOR OF PHILOSOPHY

in Software Engineering

by

Forough Mehralian

Dissertation Committee:
Professor Sam Malek, Chair

Assistant Professor Iftekhar Ahmed
Associate Professor Anne Marie Piper

2024

© 2024 Forough Mehralian

TABLE OF CONTENTS

Page

LIST OF FIGURES v

LIST OF TABLES vii

ACKNOWLEDGMENTS viii

VITA ix

ABSTRACT OF THE DISSERTATION xi

1 Introduction 1
1.1 Dissertation Overview . 3
1.2 Dissertation Structure . 4

2 Research Problem 6
2.1 Problem Statement . 7
2.2 Thesis Statement . 8
2.3 Research Hypothesis . 9

3 Context-Aware Label Generation 12
3.1 Introduction . 13
3.2 Background . 16
3.3 Data Exploration . 17

3.3.1 Experimental Setup . 18
3.3.2 RQ1. Characteristics of Labels . 20
3.3.3 RQ2. Labels of Visually Similar Icons 22
3.3.4 RQ3. Labels and Icon Information 23
3.3.5 Summary . 24

3.4 COALA . 25
3.4.1 Image Encoder Module . 26
3.4.2 Context Encoder Module . 27
3.4.3 Label Decoder Module . 29

3.5 DL Model Assessment . 30
3.5.1 Experimental Setup . 31
3.5.2 RQ4. LabelDroid’s E!ectiveness . 33

ii

3.5.3 RQ5. Impact of Balanced Data on LabelDroid’s E!ectiveness 35
3.5.4 RQ6. E!ectiveness of coala . 36
3.5.5 RQ7. Informative Explanation for Users 39
3.5.6 RQ8. Performance . 41

3.6 Threats to Validity . 42
3.7 Related Work . 43
3.8 Conclusion and Future Work . 44

4 AT-Aware Accessibility Testing 46
4.1 Introduction . 47
4.2 Motivating Example . 50
4.3 Background . 52

4.3.1 Android UI . 52
4.3.2 Accessibility in Android . 54

4.4 Approach . 56
4.4.1 Snapshot Manager . 56
4.4.2 Action Extractor . 57
4.4.3 Proxies . 58
4.4.4 Oracle . 61

4.5 Optimization . 61
4.6 Implementation . 63
4.7 Evaluation . 64

4.7.1 Experimental Setup . 64
4.7.2 RQ1. E!ectiveness of Groundhog 65
4.7.3 RQ2. Comparison with Scanner . 70
4.7.4 RQ3. Qualitative Study . 72
4.7.5 RQ4. Performance . 75

4.8 Threats to Validity . 76
4.9 Related Work . 78
4.10 Conclusion . 79

5 AT-Aware Accessibility Testing: Over-Accessibility Issues 80
5.1 Introduction . 81
5.2 Motivating Example & Background . 84
5.3 Overly Accessible Elements . 88

5.3.1 Data Collection . 89
5.3.2 Results . 90

5.4 Approach . 93
5.4.1 OA Detector . 93
5.4.2 OA Verifier . 98

5.5 Evaluation . 101
5.5.1 Experimental Setup . 101
5.5.2 RQ1. Accuracy of OverSight . 102
5.5.3 RQ2. OA Elements in Security-Sensitive Apps 107
5.5.4 RQ3. Qualitative Analysis of OA Elements 109

iii

5.5.5 RQ4. Performance . 112
5.6 Threats to Validity . 112
5.7 Related Work . 114
5.8 Conclusion . 115

6 Time-Aware Assessment of App Accessibility 117
6.1 Introduction . 118
6.2 Background . 121
6.3 Formative Study . 123

6.3.1 Study Design . 123
6.3.2 Results . 125

6.4 Approach . 128
6.4.1 Phase 1: Capturing Unique App Screens 128
6.4.2 Phase 2: Monitoring Apps in Action 130
6.4.3 Phase 3: Localizing Problematic Dynamic Changes 132

6.5 Evaluation . 134
6.5.1 RQ1. Accuracy of TimeStump . 135
6.5.2 RQ2. Qualitative Study . 137
6.5.3 RQ3. Performance . 142

6.6 Threats to Validity . 143
6.7 Related Works . 145
6.8 Conclusion . 146

7 Conclusion 147
7.1 Research Contribution . 147
7.2 Future Work . 148

Bibliography 151

iv

LIST OF FIGURES

Page

3.1 Icons and their content descriptions in a messenger app 17
3.2 Plus icon in a music player app . 18
3.3 Imbalanced distribution of labels for icons. To the left are the few dominant

classes, and to the right is the long tail. The cuto! separates the labels with
more than 5 samples. 20

3.4 Overview of COALA framework . 26
3.5 Biased e!ectiveness of LabelDroid towards predefined labels 34
3.6 Overall evaluation of LabelDroid model trained on re-sampled data 35
3.7 Examples of inability of the context-agnostic model, LabelDroid, in generating

correct labels. 37
3.8 Examples of failures in label generation using coala and LabelDroid 38
3.9 A sample question from the user study. 40

4.1 (a) The login activity of Facebook app, (b) The exit dialog appears when users
press back button on Facebook app, (c) a screen in BudgetPlanner app, the
highlighted boxes and arrows depicts the directional navigation to the “ADD”
button by TalkBack, (d) a dialog appears after tapping “ADD” button . . . 48

4.2 A part of the excerpted XML representation of UI structure in the Budget
Tracker app shown in Figure 4.1(c). 53

4.3 An overview of Groundhog . 55
4.4 short . 62
4.5 (a-d) are examples of false positives, and (e-f) are examples of missing actions

in Groundhog . 71
4.6 Qualitative study of Groundhog’s report on subject apps 72

5.1 Built-in lock for a security-sensitive app. 85
5.2 Over Accessibility Conditions. 88
5.3 Neat button is not working when touched by enabled users but is available to

TalkBack users. 92
5.4 Overview of OverSight framework. 94
5.5 OverSight Failures: (a) and (b) are false positives of OA Detector, where dashed

green boxes are erroneously detected as covered; (c) is a false negative of OA Verifier,
where TalkBack is stuck in the world map. 107

v

5.6 Impacts of OA elements. (a) Accessibility issue of overly perceivable elements. (b)
Accessibility issue of overly actionable elements. (c) Workflow violation, giving
access to premium content. (d) Workflow Violation, breaking app logic. 110

6.1 Evolution of content loading on the screen across various states over time:
(a) represents the initial screen state before the user initiates an action, (b)
captures the moment when the user interacts with the app by clicking on a
button, and (c) to (f) illustrate the gradual appearance of new screen content
over time. Notably, in (f), the close button, indicated by a dashed red circle,
appears above the accessibility focus. Since it is not tagged with liveRegion
attribute, it is also not announced, and a screen reader user does not notice it. 118

6.2 Examples of dynamic content changes: (i) the add button (annotated as a)
and the more button (annotated as b) disappear when users continue explor-
ing the screen, (ii) the app information (marked as c) moves to the bottom of
the screen after hitting the Install button; the text (annotated as d) constantly
changes to indicate installation progress, (iii) the short-lived notification (an-
notated as e at the bottom) after saving a restaurant. 125

6.3 TimeStump’s approach overview. 129
6.4 Examples of detected issues by TimeStump: (a) Appearing Content, (b)

Short-Lived Content, and (c) Content Modification 143

vi

LIST OF TABLES

Page

3.1 Correlation, ω, and Mutual Information, MI, between icon information, C,
and tokens in labels, T . 24

3.2 Details of coala dataset . 31
3.3 LabelDroid’s e!ectiveness in generating predefined/non-predefined labels in

their test set. 34
3.4 Comparison of coala and LabelDroid e!ectiveness in generating non-predefined

labels . 36
3.5 Statistical analysis of scores. Given the significance level of 0.05, the scores of

coala’s labels are significantly better than the scores of LabelDroid’s labels.
µ̄Diff is the average of di!erence between score lists. 41

4.1 The evaluation subject apps with the details of detected accessibility issues
by Groundhog . 66

5.1 Sample types of information exposed from nodes to ATs. 88
5.2 Accuracy of OverSight in running on 30 apps. 103
5.3 Over accessibility issues in app lockers. 109

6.1 The accuracy of TimeStump on subject apps 138

vii

ACKNOWLEDGMENTS

I extend my gratitude to my advisor, Professor Sam Malek. He was patient with my mistakes,
generous in giving chances, and believed in me more than I believed in myself. His wisdom
shines through in his ability to discern when to o!er praise to bolster your confidence and
when to push you to achieve even greater heights.

I want to thank my committee members, Professors Iftekhar Ahmed and Anne Marie Piper,
for their invaluable feedback on my dissertation. I am also deeply grateful for the support
and guidance of Professors Cristina Lopes and Sameer Singh throughout this journey. Being
a member of the SEAL lab at UCI has been a privilege, and I appreciate the opportunity
to learn from and collaborate with my colleagues, especially Dr. Navid Salehnamadi, my
collaborator, mentor, and friend, whose unwavering support has been invaluable.

This dissertation was supported in part by award numbers 2211790, 1823262, and 2106306
from the National Science Foundation. Also, I would like to thank Richard N. Taylor, Infor-
matics Department, and UCI Grad Division for partly supporting my research financially.

This dissertation would not have been possible without the support of my friends over the
past six years. I am especially grateful to Dr. Zahra Montazeri, who has been like family to
me and a tremendous source of inspiration throughout this journey.

Finally, I am deeply thankful to my mom and dad, who, despite being far away, supported
me with their love and sacrifices. I am also grateful to my wonderful brother, Ehsan, and
my inspiring sister, Fahimeh.

viii

VITA

Forough Mehralian

EDUCATION

Doctor of Philosophy in Software Engineering 2024
University of California, Irvine Irvine, CA

Master of Science in Software Engineering 2018
Sharif University of Engineering Tehran, Iran

Bachelor of Science in Computational Sciences 2015
Sharif University of Engineering Tehran, Iran

RESEARCH EXPERIENCE

AI/ML Research Intern March 2024–August 2024
Apple Inc. Seattle, Washington

Graduate Research Assistant 2019–2024
University of California, Irvine Irvine, California

Graduate Research Assistant 2015–2018
Sharif University of Technology Tehran, Iran

TEACHING EXPERIENCE

Teaching Assistant 2018–2019, 2023
University of California, Irvine Irvine, California

Teaching Assistant 2017-2018
Sharif University of Technology Tehran, Iran

ix

REFEREED CONFERENCE PUBLICATIONS

Automated Accessibility Analysis of Dynamic Content
Changes on Mobile Apps

Apr 2025

International Conference on Software Engineering (ICSE)

MA11y: A Mutation Framework for Web Accessibility
Testing

Sep 2024

International Symposium on Software Testing and Analysis (ISSTA)

Groundhog: An Automated Accessibility Crawler for
Mobile Apps

Oct 2022

Automated Software Engineering (ASE)

Too Much Accessibility is Harmful! Automated De-
tection and Analysis of Overly Accessible Elements in
Mobile Apps

Oct 2022

Automated Software Engineering (ASE)

Data-driven accessibility repair revisited: on the e!ec-
tiveness of generating labels for icons in Android apps

Aug 2021

The ACM Joint European Software Engineering Conference and Symposium on the
Foundations of Software Engineering (ESEC/FSE)

Automated Construction of Energy Test Oracle for An-
droid

Nov 2020

The ACM Joint European Software Engineering Conference and Symposium on the
Foundations of Software Engineering (ESEC/FSE)

x

ABSTRACT OF THE DISSERTATION

Automated Techniques for Improving the Accessibility of Android Applications for Screen
Reader Users

By

Forough Mehralian

Doctor of Philosophy in Software Engineering

University of California, Irvine, 2024

Professor Sam Malek, Chair

Universal design principles mandate that technologies and services, including mobile apps,

should be accessible to all users, regardless of their abilities. However, these principles are

often overlooked in development practices. This dissertation addresses the significant gap

in mobile app accessibility for users with visual impairments, particularly those relying on

Assistive Technologies (ATs) like screen readers. While existing guidelines and tools aim

to improve accessibility, they often fall short in real-world scenarios, especially for dynamic

content and interactive elements that require more than static rule-based analysis. This work

advances the field of accessibility testing and repair by introducing three key contributions:

(1) COALA, a deep learning approach for generating informative labels for unlabeled icons,

overcoming biases in previous methods; (2) Groundhog and OverSight, automated tools

that detect inconsistencies in app accessibility when using ATs, identifying issues related to

both under-access and over-access problems; and (3) TimeStump, a framework for detecting

and addressing accessibility challenges caused by dynamic content changes in apps. Through

these innovations, this research enhances the accessibility of mobile apps for screen reader

users, ensuring a more inclusive experience.

xi

Chapter 1

Introduction

Principles of universal design [54] dictate that technologies and services, including mobile

apps, must be accessible to everyone regardless of their abilities. These principles are often

overlooked in development practices, where developers build and test their apps based on

the assumption that by default, a user views the app content on the screen and interacts

with it by touch. Such assumptions exclude about 15% of the world’s population with some

form of disability, especially users with visual impairments.

People with visual impairments rely on assistive technologies (ATs) such as screen readers

to understand app content and interact with it. Mobile operating systems such as Android

and iOS have also integrated screen readers to assist universal access to the app services.

ATs provide alternative interaction modes for the users to explore the app. For example,

TalkBack, the o”cial screen reader in Android, navigate through UI elements as the user

swipes and describe each element to the screen reader user. For image button, TalkBack

announces textual labels that are provided by developers. Without a proper description of

the functionality initiated by these buttons, screen reader users are unable to interact with

an app, compromising the app accessibility.

1

To improve app accessibility, various technology institutes and companies such as World

Wide Web Consortium [159], Apple [33], and Google [27] have released accessibility guidelines

and best practices. These guidelines are accompanied by accessibility analysis tools that

automatically analyze an app’s compliance with the guidelines and identify accessibility

issues [25, 17, 31, 34]. These tools scan the graphical user interface (GUI) of an app and

produce reports of accessibility guideline violations, such as the lack of textual labels for

image buttons.

However, research has shown that developers often fail to adopt these accessibility analysis

tools or disregard the reported results due to the sheer number of relevant and irrelevant

warnings [12]. This lead to many apps su!ering from issues such as missing informative

labels [136, 45]. With an automated label generation technique, we can tackle this problem

by reducing the burden on developers and enhancing app accessibility.

Moreover, previous studies have shown that guidelines only cover half of the accessibility

issues [129], and worse yet, less than half of these guidelines are checked by the existing

accessibility analysis tools [157]. For instance, certain accessibility issues that arise when

interacting with the app using ATs cannot be captured by existing tools. Case in point, a

button that is easily visible to sighted users and clickable by touch, may not be localized or

selected by screen readers. Additionally, these tools do not account for dynamic app content

changes that may a!ect accessibility. Despite of sighted users that can see the entire screen

at a glance, blind users, with the help of screen readers, can only perceive on one element

at a time. Therefore, they may not be aware of a newly appearing button on top of the

screen. Further automated detection approaches are necessary to localize such issues that

hinder screen reader users’ ability to interact with apps.

This research proposes to advance app accessibility testing and repair by: (1) introducing an

automated accessibility repair technique to generate informative labels for unlabeled icons,

(2) enhancing automated accessibility testing by considering ATs and how users interact

2

with them, and (3) analyzing dynamic content changes and their impact on screen reader

users.

1.1 Dissertation Overview

This dissertation proposes a three-pronged approach to advance testing and repair of acces-

sibility issues in android apps related to screen reader users.

First, it addresses the challenge of labeling icons in mobile apps, a crucial aspect for users

relying on screen readers. Current research reveals a significant issue with missing or non-

informative icon labels, which impedes app usability for blind users. Building upon existing

techniques, this dissertation introduces COALA, a deep learning approach designed to im-

prove automatic label generation for icons. Through an extensive empirical study of 9,658

Android apps, it was found that previous methods, such as LabelDroid, su!ered from a

data-driven bias, often predicting predefined labels that are not useful for unlabeled icons.

COALA overcomes these limitations by incorporating various data sources and context-

aware learning, achieving a 24% improvement in label accuracy over its predecessor.

Second, this work introduces automated techniques to detect accessibility issues by analyzing

inconsistencies between using the app with and without assistive technologies. This approach

overcomes the limitations of rule-based accessibility analysis tools, which often miss acces-

sibility problems that occur when interacting with the app via screen readers. Specifically,

this method led to the development of Groundhog, which automatically identifies issues

related to locatability and actionability during app exploration with assistive technologies.

Additionally, OverSight addresses the inverse problem—identifying elements that are ac-

cessible with assistive technologies but not otherwise. User studies confirmed that the issues

detected by Groundhog and OverSight were indeed problematic for screen reader users.

3

Third, it investigates the impact of dynamic visual content on screen reader users, particu-

larly focusing on how dynamic changes can cause accessibility challenges for screen reader

users. Traditional accessibility guidelines and tools have largely overlooked this issue. To

address this gap, the dissertation introduces TimeStump, an automated framework that

detects issues related to dynamic content changes in Android apps. TimeStump uses a

crawler to monitor app states before, during, and after actions, identifying problematic dy-

namic changes that a!ect screen reader users. By analyzing these changes, TimeStump

helps developers recognize and rectify accessibility issues that arise from dynamic content,

ensuring a more inclusive user experience.

1.2 Dissertation Structure

The research presented in this dissertation has been published in the following venues:

• Forough Mehralian, Navid Salehnamadi, and Sam Malek, Data-driven Accessibility

Repair Revisited: On the E!ectiveness of Generating Labels for Icons in Android

Apps, ESEC/FSE 2021, the ACM Joint European Software Engineering Conference

and Symposium on the Foundations of Software Engineering (ESEC/FSE), Athens,

Greece, August 2021 [112].

• Navid Salehnamadi*, Forough Mehralian*, and Sam Malek, Groundhog: An Auto-

mated Accessibility Crawler for Mobile Apps, 2022 37th IEEE/ACM, International

Conference on Automated Software Engineering (ASE), Michigan, USA, October 2022 [143].

• Forough Mehralian*, Navid Salehnamadi*, Syed Fatiul Huq, and Sam Malek, Too

Much Accessibility is Harmful! Automated Detection and Analysis of Overly Acces-

sible Elements in Mobile Apps, 2022 37th IEEE/ACM, International Conference on

Automated Software Engineering (ASE), Michigan, USA, October 2022 [111].

4

• Forough Mehralian, Ziyao He, and Sam Malek, Automated Accessibility Analysis of

Dynamic Content Changes on Mobile Apps, To appear at 2025 International Confer-

ence on Software Engineering (ICSE), Ottawa, Canada, April 2025.

The following publications are not included in the dissertation but are related:

• Mahan Tafreshipour, Anmol Deshpande, Forough Mehralian, Iftekhar Ahmed, and

Sam Malek, MA11y: A Mutation Framework for Web Accessibility Testing, ISSTA

2024, Proceedings of the 33rd ACM SIGSOFT International Symposium on Software

Testing and Analysis (ISSTA), Vienna, Austria, September 2024 [151].

• Reyhaneh Jabbarvand, Forough Mehralian, and Sam Malek, Automated Construc-

tion of Energy Test Oracle for Android, ESEC/FSE 2021, the ACM Joint European

Software Engineering Conference and Symposium on the Foundations of Software En-

gineering (ESEC/FSE), Sacramento, CA, November 2020 [89].

5

Chapter 2

Research Problem

Mobile apps are a vital component of our technology-driven world, and it is essential that

they provide equal access to all individuals, including people with visual impairments who

utilize screen readers to interact with the app. Unfortunately, numerous studies have shown

that accessibility issues persist in mobile apps, hindering their use by screen reader users.

To address this problem, various automated accessibility analysis techniques have been pro-

posed to detect accessibility issues in mobile apps. These tools typically use predefined rules

derived from accessibility guidelines to identify potential problems. However, while it is

important for developers to follow these guidelines, the rules alone may not fully capture all

the accessibility challenges that blind users face.

Therefore, it is necessary to examine accessibility barriers resulting from the inconsistencies

between how blind users and sighted users interact with the app. Automated accessibility as-

sessment techniques that consider the GUI context, interaction modes, and dynamic changes

can help detect and address these issues e!ectively, resulting in more accessible apps.

6

2.1 Problem Statement

Mobile apps have become an integral part of our daily lives, and it is essential to ensure

that they are accessible to all, including individuals with visual impairments. However,

integrating accessibility into software development is a challenging task, especially in agile

app development processes where examining app accessibility with real users is a time-

consuming and resource-intensive process.

To assist developers in designing and developing accessible software, various accessibility

guidelines have been published [159, 33, 27]. Additionally, automated accessibility analysis

tools have been designed to check for violations of these guidelines in apps [25, 17, 31,

34]. However, despite such tools, several apps are still riddled with accessibility issues [12,

136, 45]. These studies also demonstrate wide-spread violation of label-based accessibility

concerns such as missing labels, making it di”cult for screen reader users to understand

app functionalities and interact with them. This necessitates the need for automated label

generation techniques to predict labels for image-based buttons.

Although accessibility guidelines and automated tools are helpful in developing and testing

accessible apps, they do not cover the various accessibility challenges faced by screen reader

users while interacting with the app. Studies have shown that accessibility guidelines only

consider about 50.4% of the problems encountered by users [129], as few as 40% of which

were covered by automated evaluation tools [157]. These tools cannot identify accessibility

issues that manifest themselves when using ATs. Furthermore, app content that changes over

time poses accessibility challenges for disabled users, which are not addressed in traditional

testing techniques.

Therefore, the challenge is to develop automated accessibility testing techniques that can

detect accessibility issues that real users face while navigating through the app and provide

e!ective repair strategies. This problem is summarized as follows:

7

“Mobile app accessibility is essential to prevent the exclusion of individuals with disabilities

from the digital world. Although examining app accessibility with real users is the most

reliable evaluation technique, it is often challenging to incorporate into agile app development

processes. This has resulted in an increased demand for automated tools that can assist with

accessibility testing. While accessibility guidelines and existing accessibility analysis tools

have been suggested to aid in designing and testing accessible apps, many apps still have

accessibility issues, such as missing textual labels for image buttons. An automated label

generation technique is required to alleviate this issue by providing hints to developers during

app development or prior to publishing the app. Furthermore, accessibility guidelines do

not encompass the various accessibility challenges that actual users face. Automated tools

that are based on these guidelines do not take into account how users navigate the app with

ATs. Additionally, these tools are unable to evaluate accessibility challenges of app content

that changes dynamically over time for screen reader users. Thereby, there is a need for

automated accessibility testing techniques that can identify accessibility issues that only arise

at real-time, when interacting with the app using ATs.”

2.2 Thesis Statement

This dissertation is motivated by two key observations. First, despite the existence of acces-

sibility guidelines and automated accessibility testing tools, there remain many accessibility

issues that these tools cannot detect, particularly those that arise during interactions with

screen readers at specific points in time. Second, existing accessibility analysis tools can

detect issues such as missing labels, but they do not o!er automated repair solutions, which

limits their adoption or leads to their reported issues being ignored. This research aims to

address these limitations as summarized below.

“The goal of this research is to improve the state-of-the-art in software accessibility testing

8

and repair by addressing the limitations of existing automated tools. Specifically, this re-

search aims to incorporate GUI context in generating high-quality labels for unlabeled icons,

and develop an automated tool to address this issue. Additionally, this work seeks to improve

accessibility testing by incorporating ATs and their navigation modes, and to develop tech-

niques for detecting accessibility issues that arise due to dynamic content changes for screen

reader users. By addressing these gaps in the current literature, this dissertation aims to

promote the development of accessible apps for screen reader users.”

2.3 Research Hypothesis

This research investigates the following hypotheses:

• Built-in screen readers in mobile devices facilitate interactions with mobile apps by

reading the screens out loud for the users. Similar to Alt-Text for web images [172],

the embedded textual labels for GUI images are essential for enabling usage of these

apps by the blind. These labels are even more critical for functional icons [3], which

are images that developers utilize to convey the availability of an action, not to convey

information. Without a proper description of the functionality initiated by icons,

screen-reader users are unable to interact with an app. App accessibility is thus directly

a!ected by the lack of informative icon labels.

Prior label generation technique [45] is context-agnostic, i.e., it predicts labels merely

based on the images. This model is not able to generate informative labels for sim-

ilar icons in di!erent apps. My study aims to incorporate usage context of icons in

predicting an informative label for them.

Hypothesis 1: Incorporating multiple sources of information from icon usage context

can improve the accuracy of generating informative labels for unlabeled icons using

9

deep learning models.

To demonstrate the feasibility of this hypothesis, the first step will be to automatically

create a dataset of labeled icons in Android and incorporate information from various

sources such as icon location, neighboring element, and screen title. Through data

exploration, I will study the characteristics of icon labels and the relationship between

words of icon labels and other contextual information from icons. I will then design a

deep learning model called coala to leverage additional sources of information from

icons in addition to their graphical representation to determine the probable words in

the label.

• ATs are crucial for testing app accessibility, as they provide alternative interaction

modes for users. To ensure equal access for all users, developers need to verify that

their app behaves similarly with and without ATs. When certain functionalities are

inaccessible to AT users or only provided to ATs, this violates the equal access prin-

ciple, resulting in accessibility issues. The former is referred to as the ”under-access”

problem, while the latter is the ”over-access” problem. Over-access not only degrades

app accessibility by confusing AT users but also poses severe security and privacy im-

plications, allowing one to bypass protected functionalities using ATs, such as using

VoiceOver to read notes on a locked phone.

Hypothesis 2: The development of an automated tool that compares the behavior

of Android apps with and without ATs can identify discrepancies that lead to under-

access and over-access problems.

To test this hypothesis, two automated tools, Groundhog and OverSight, will be

designed to interact with the app both with and without ATs. While Groundhog

examines the accessibility of all functionalities available without ATs, focusing on the

under-access problem, OverSight is designed to detect the dual issue, namely the

over-access problem.

10

• Dynamic content refers to UI elements that are updated as a result of external events

and may not always be triggered by user interaction. These changes can pose significant

accessibility challenges for visually impaired users who rely on screen readers to access

app content. Screen reader users may not be aware of changes occurring in other

parts of the app, which can lead to confusion or missed information. For example,

time-delayed close buttons for ads may appear a few seconds after the page is loaded,

remaining unknown to screen reader users. In this study, I will investigate accessibility

issues related to dynamic content changes and develop an automated tool to detect

these issues in mobile apps.

Hypothesis 3: It is possible to devise an automated tool to track dynamic content

changes on the GUI and detect accessibility issues for screen reader users.

To validate this hypothesis, I propose the design of an automated tool, called TimeS-

tump, which will track real-time content changes on the GUI and verify their acces-

sibility to screen readers. The tool detects dynamically changed content that is not

announced to screen reader users.

11

Chapter 3

Context-Aware Label Generation

Mobile apps are playing an increasingly important role in our daily lives, including the

lives of approximately 304 million users worldwide that are either completely blind or su!er

from some form of visual impairment. These users rely on screen readers to interact with

apps. Screen readers, however, cannot describe the image icons that appear on the screen,

unless those icons are accompanied with developer-provided textual labels. A prior study of

over 5,000 Android apps found that in around 50% of the apps, less than 10% of the icons

are labeled. To address this problem, a recent award-winning approach, called LabelDroid,

employed deep-learning techniques to train a model on a dataset of existing icons with

labels to automatically generate labels for visually similar, unlabeled icons. In this work, we

empirically study the nature of icon labels in terms of distribution and their dependency on

di!erent sources of information. We then assess the e!ectiveness of LabelDroid in predicting

labels for unlabeled icons. We find that icon images are insu”cient in representing icon

labels, while other sources of information from the icon usage context can enrich images in

determining proper tokens for labels. We propose the first context-aware label generation

approach, called coala, that incorporates several sources of information from the icon

in generating accurate labels. Our experiments show that although coala significantly

12

outperforms LabelDroid in both user study and automatic evaluation, further research is

needed. We suggest that future studies should be more cautious when basing their approach

on automatically extracted labeled data.

3.1 Introduction

There is an increased onus on app developers to make their products accessible for users

with a wide range of disabilities, including the approximately 304 million users worldwide

that are blind or visually impaired [40]. Blind users rely on screen readers to interact with

apps. Built-in screen readers in mobile devices facilitate interactions with mobile apps by

reading the screens out loud for the users. Similar to Alt-Text for web images [172], the

embedded textual labels for GUI images are essential for enabling usage of these apps by the

blind. These labels are even more critical for functional icons [3], images that developers

utilize to convey the availability of an action, not to convey information. Without a proper

description of the functionality initiated by icons, screen-reader users are unable to interact

with an app. App accessibility is thus directly a!ected by the lack of informative icon labels.

Recently, several projects have studied the extent of accessibility issues in mobile apps [136,

13, 45], among others demonstrating widespread violation of label-based accessibility guide-

lines in Android apps. Missing labels, duplicate labels, and non-informative labels are dif-

ferent types of label-based accessibility concerns, among which missing labels is the most

prominent one. Missing label occurs when an icon is not accompanied with a textual label

(a.k.a., content description in Android) describing its functionality. Ross et al. [136] report

that in 50% of their assessed apps, less than 10% of icons were labeled.

The increasing awareness of this accessibility issue has instigated some recent e!orts towards

alleviating it [63, 185, 45]. Notably, Chen et al. [45] developed a promising method, called

13

LabelDroid, which employs deep-learning techniques to train a model on a dataset of existing

icons with labels to automatically generate labels for visually similar, unlabeled icons.1

For data-driven approaches, such as LabelDroid, data exploration is a prerequisite. Perfect

model architectures may deliver misleading or unexpected results if the dataset is not care-

fully examined. Although prior works have empirically studied the severity of the missing

labels [136, 13], none have studied (1) the characteristics of natural language labels for the

labeled icons extracted from thousands of automatically explored apps in terms of their

categories, uniqueness, distribution, and dependency to other icon properties, which can be

relevant to the problem of automatic label generation, (2) e!ectiveness of existing repair ap-

proaches in predicting di!erent categories of labels, and (3) impact of incorporating di!erent

sources of information in generating icon labels.

To fill this gap, we conducted a large empirical study on icons extracted from 9,658 android

apps to understand the characteristics of icons and labels in Android apps. We then assessed

the e!ectiveness of learning and generating natural language labels using this dataset.

Our empirical study reveals that the dataset of automatically extracted icon labels is highly

imbalanced, resulting in a severe data-driven bias in the LabelDroid model. It is striking

that the introduced bias in LabelDroid is toward predicting predefined labels that are shipped

with icons in the widgets and templates of Android’s Standard Development Kit. Since in

practice it is extremely unlikely for these icons to be unlabeled, generating labels for them is

pointless. We found that excluding these predefined labels drops the LabelDroid’s accuracy

by 34%.

Besides, our empirical study shows the necessity but insu”ciency of images in representing

icon labels. We found that incorporating di!erent information sources for icons can enrich

their representation by providing their usage context, substantially improving the identifica-

1LabelDroid received the ACM SIGSOFT Distinguished Paper Award at ICSE 2020 [4].

14

tion of correct tokens in labels.

These findings subsequently informed the development of COALA—a deep learning (DL)

approach to generate context-aware labels for icons in Android apps. coala automatically

extracts high-quality labels for icons from the raw dataset of app screens and layouts, from

which it learns how to incorporate di!erent sources of information and translate the image

to a textual label. It then utilizes the learned model to generate informative labels for

unlabeled icons. Our experiments show that coala outperforms LabelDroid by 24% in

generating labels for unlabeled icons that exactly match the ground truth.

This chapter makes the following contributions:

• An empirical study of the nature of labels and how di!erent sources of information

contribute to predicting a correct label;

• An analysis of data imbalanceness, and how it invalidates the results reported in the

evaluation of LabelDroid [45];

• coala, the first context-aware label generation approach to generate textual labels for

Android icons and its implementation which is publicly available [142];

• Experimental results corroborating the superiority of coala in comparison to Label-

Droid in generating high-quality labels for icons.

The remainder of this chapter is organized as follows. Section 3.2 provides the background of

this study using an illustrative example. Section 3.3 explains the empirical study of natural

language labels and other sources of information of icons. Then, Section 3.4 describes coala

in detail, which will be evaluated in Section 3.5 along with the existing deep learning model,

LabelDroid. Section 3.6 explains the threats to the validity of the research. The chapter

concludes with a discussion of the related research and avenues of future work.

15

3.2 Background

An Android app’s user interface (UI) is implemented in terms of one or more activity compo-

nents, where each activity represents a screen. Figure 3.1 shows an activity for a messenger

app along with snippets of its XML layout and source code. A layout file specifies the place-

ment and design of UI elements in an activity. UI elements such as ImageView are objects

in the XML tree structure of layout.

Visually impaired users rely on screen readers, like Google’s TalkBack service, to interact with

apps. Screen readers describe images for blind users by announcing the developer-provided

textual label in android:contentDescription field of UI elements such as ImageView and

ImageButton. Figure 3.1 illustrates four icons in a messenger app, along with their content

descriptions in the layout.

Note that the icons comprising Android Standard Development Kit’s UI widgets and tem-

plates, such as action bars, come with predefined labels. The textual description of icon

number 2 in Figure 3.1, “Navigate up”, is an example of such predefined labels.

Prior studies [136] show that missing label (i.e., content description) is a prevalent accessi-

bility issue in Android apps, rendering screen readers inoperable. The plus icon in Figure 3.2

su!ers from this issue. TalkBack screen reader describes this button as “unlabeled button”,

seriously hindering a blind user’s ability to use the app. To tackle this issue, Chen et al.

proposed LabelDroid [45], which predicts natural language labels for icons given their images

using deep-learning techniques. In their work, the authors extracted thousands of labeled

icons from 7,594 Android apps. They then trained an image captioning deep-learning model

to transform icon images to natural language labels. However, images cannot fully represent

icon labels. For example, while the plus icon in Figure 3.1 and Figure 3.2 are visually simi-

lar, a proper label for the former, e.g., “create new contact”, is di!erent from the label for

the latter, i.e., “add a playlist”. The distinction between two labels comes from the usage

16

package phone.call

class ContactsHandler extends Activity

+ audioCall(Contact)

+ addContact
+ search
…

+ audioCall(phoneNumber)

APK com.app.voip

Contacts_list.xml

<ImageView…
android:id=“@+id/contactAdd”
android:contentDescription=“create new contact”
…/>

<ImageView…
android:id=“@+id/phoneIcon”
android:contentDescription=“audio call”
…/>

<ImageView…
android:id=“@+id/navigateUp”
android:contentDescription=“Navigate up”
…/>

<ImageView…
android:id=“@+id/dial”
android:contentDescription=“dial new number”
…/>

4
3

1

Natasha

Contacts

1

2

3

4

3

12

4

Figure 3.1: Icons and their content descriptions in a messenger app

context of icons. The former is used in the contacts page of a messaging app, while the latter

is used in a music player app. Our objective is to understand the nature of natural language

labels for icons, study the e!ectiveness of the prior work, and propose an automated label

generation model to alleviate the shortcomings of the prior work and motivate the need for

further studies.

3.3 Data Exploration

To develop a better understanding of icon labels and whether di!erent sources of information

have predictive impact on them, we conducted an empirical study to answer the following

17

APK media.music.musicplayer

activity_main.xml

<ViewGroup…
android:id=“@+id/fab_create_playlist”
<ImageView…
android:id=“@+id/myButton”
android:contentDescription=“null”
…/>

…/>

12

Figure 3.2: Plus icon in a music player app

research questions:

RQ1. What are the characteristics of labels regarding their uniqueness and distribution?

RQ2. How similar are the labels of icons with similar images?

RQ3. To what extent di!erent sources of information from icon context can reveal the label?

3.3.1 Experimental Setup

We conduct our study on a set of icons extracted from 15,087 Android apps included in

the LabelDroid dataset [45]. This dataset was collected through dynamic GUI exploration

18

of apps. We extracted visible, clickable Android ImageView and ImageButton icons from

XML layouts and screenshots to form our primary dataset for this study. Each icon in our

dataset corresponds to a triple of < image, label, usage context >. For image, we crop the

screenshot based on the coordinates of an icon’s boundary box as specified in the bounds

property of the icon considering the orientation of the device. For label, we use the value of

contentDescription property associated with the icon. For contextual information, we ex-

tract several parameters in three levels, i.e., app-level (app category), activity-level (activity

name, screen title), icon-level (Android id, screen region, ancestor id, siblings id/text).

The majority of contextual parameters directly map to a property in the XML layout, e.g., id

and text. To find the parent and siblings of an icon, we refer to the hierarchical structure of

XML layouts. Icons that share a parent node in the XML tree are considered to be siblings.

For the screen title, we refer to the text property of the top, leftmost TextView element in

the layout. For the screen region, we refer to the bounds property of an icon to determine in

which of the 9 screen regions, as specified with dashed lines in Figure 3.1, it belongs. Activity

names and package names are available in GUI exploration artifacts. We then use package

names to extract app categories from Google Play using BeautifulSoup [133] crawler.

To improve data integrity, we performed text normalization steps on textual information

of icons. Labels and textual parameters extracted using the above-mentioned techniques

are not restricted to follow a standard or commonly accepted structure. Developers may

use camelCase [175] or snake case [176] conventions, or even other types of characters as

delimiters. We transformed the textual information to lower case, replaced all the special

characters with a space and applied spell correction and lemmatization to their tokens. We

also filtered meaningless labels as introduced in the prior work [45].

In our dataset, icons with the same label in the same app would be counted once. Thus, our

dataset consists of 21,864 icons extracted from 17,839 di!erent screens of 9,658 apps.

19

Figure 3.3: Imbalanced distribution of labels for icons. To the left are the few dominant
classes, and to the right is the long tail. The cuto! separates the labels with more than 5
samples.

3.3.2 RQ1. Characteristics of Labels

For this research question, we first study the distribution of icon labels. In our dataset, we

found 3,061 di!erent labels with high-class imbalance. By considering each of these 3,061

labels as a class for icons, we observed a long-tailed dataset as shown in Figure 3.3, in which

51.57% of the data comes only from 3 most frequent classes, while 93.5% of the classes have

less than 5 samples in the whole dataset and 2,484 out of 3,061 occurred only once. The

average number of samples per class is 7.14 and the median is 1. The gap between mean

and median also indicates a left-skewed data distribution.

By further exploration of dominant classes of labels, we found that some Android icons come

with a predefined label. For example, if a developer uses an up button in the action bar,

similar to icon 2 in Figure 3.1, it comes with “Navigate up” label. We manually extracted

20

predefined labels for all icons in Android Studio, the most widely used IDE for Android devel-

opment. This analysis produced the following labels: {“navigate up”, “more options”, “next

month”, “previous month”, “open navigation drawer”, “close navigation drawer”, “search”,

“clear query”, “interstitial close button”}. If we exclude these labels, the average number of

samples per class drops by 63.79% and changes to 2.58.

This observation alerts us to the erroneous conclusions we may draw from the evaluation of

a label prediction approach. To facilitate the explanation of the issue, imagine 90% of the

data has label X. In that case, a model that just predicts X is already 90% accurate and

its e!ectiveness may not be interpreted realistically. This issue would be exacerbated if our

goal was to label unlabeled icons, but the model is only good at predicting dominant labels

that happen to be the aforementioned predefined labels.

In addition to dominant classes, it is also important to pay attention to low-frequency labels.

The long tail of label distribution demonstrates the labels for which the dataset may not be

representative enough. When we exclude predefined labels, 31.47% of the remaining labels

have only one sample in the dataset. That means, a proper label for them cannot be simply

retrieved from the previously seen data, challenging a deep learning model for prediction of

labels.

Observation 1: The data is highly skewed towards a limited set of labels, threatening

the validity of the evaluation of a label prediction model. Furthermore, low-frequency

and unique labels in the long tail challenge the construction of an e!ective learning-based

prediction model.

When we studied the distribution of tokens in the whole dataset, we observed the same

long-tailed distribution. That is, the tokens of predefined labels are the dominant classes.

We further studied the tokens for unique labels to determine to what extent the tokens of

21

unique labels can be derived from previously seen tokens. We found that for 53.99% of

unique labels, all of the tokens were observed in the previously seen tokens, and for 86.5%

of the unique labels, at least one non-trivial token was previously seen. By trivial tokens,

we mean stop words such as “for”, “the”, “to”, etc. Thus, a token-based label prediction

model may hold promise in correctly generating low-frequency and unique labels.

Observation 2: Substantial portion of tokens comprising the unique labels can be found

in the existing vocabulary of tokens, suggesting a token-based prediction model may be

e!ective in correctly generating low-frequency and unique labels.

3.3.3 RQ2. Labels of Visually Similar Icons

In order to study labels of icons with similar images, we trained an image classifier and

annotated the icons with their image class. Liu et al.[106] identified 99 common image

classes shared across apps through manual open coding of Android icons. They then trained

a Convolutional Neural Network (CNN) to classify icon images. Their model is 94% accurate

on average in predicting class of icon images. Rico dataset [58] provides the output of this

image classifier for icons existing in their dataset of Android screens. We augmented our

dataset with the class of icons to study the diversity of labels of visually similar icons.

On average, each class contains 225.4 icons with 20.03 di!erent labels. For example, among

178 icons in class “add” (the plus icon), 61 di!erent labels exist. In terms of tokens, the

average number of unique tokens for labels in each class of icons is 28.6 with the median of

16. For instance, there are 61 unique tokens comprising the labels of icons in class “add”.

22

Observation 3: While image similarity restricts the set of probable labels and tokens for

icons, there is still substantial level of diversity among labels and tokens for visually similar

icons.

3.3.4 RQ3. Labels and Icon Information

We study the relationship between tokens of icon labels and other contextual information

from the icon. We extract the contextual information in three levels: (1) App level that

contains the categories of apps, (2) Activity level including screen title and activity name,

and (3) Icon level that contains the identifier name of the icon itself, its parents, and its

siblings along with the region that the icon is located and the texts of its siblings.

To measure the dependency between two random variables, we calculate their Mutual In-

formation (MI) [123]. It quantifies the amount of information obtained about one random

variable through observing another random variable. In the context of our problem, MI

determines which parameter, C, has the highest likelihood of predicting correct tokens in

the label, T . MI(C, T) is defined as H(T)→H(T |C), where H is the entropy, representing

the uncertainty in a random variable. Although MI tells us how important the parameters

are in predicting tokens, it does not tell us whether the contextual information is a predictor

of presence or absence of tokens in icon labels. For that, we calculate the Pearson correlation

coe”cient, ω(T,C), to see how changes in the icon information result in predictable changes

in the tokens.

Table 3.1 summarizes the result of this experiment. As shown in Table 3.1, we observe

di!erent degrees of correlation between the various sources of information and the tokens.

The identifier name of the icon and its parent have the highest correlation with tokens in

the labels. While app category does not appear to associate with tokens. Apart from app

category, activity-level parameters have least correlations.

23

Table 3.1: Correlation, ω, and Mutual Information, MI, between icon information, C, and
tokens in labels, T .

Information Sources MI(T,C) ω(T,C)

App level Category 0.0908 0.1469

Activity level
Screen title 0.3474 0.0953
Activity name 0.3924 0.1808

Icon level

Android id 0.7337 0.4221
Screen region 0.2840 0.3187
Siblings id 0.5673 0.3266
Siblings text 0.4519 0.2814
Parent id 0.5699 0.426

Observation 4: Di!erent information sources exhibit di!erent degrees of e!ectiveness in

empowering a probabilistic model in predicting tokens for icon labels.

3.3.5 Summary

Our findings in data exploration motivated us to conduct further studies on the models and

develop coala, the first context-aware label generation approach.

First, the empirical study showed that the dataset of icons and labels in Android is highly

imbalanced towards predefined labels. Thus, we will study the impact of learning on such

data on the model fairness.

Second, the empirical study showed that while a significant subset of labels in the dataset

are unique, substantial portion of tokens comprising these unique labels can be found in the

existing vocabulary of tokens. To overcome the challenge posed by unique and low-frequency

labels for a DL approach, we devise a learning model to generates labels in terms of their

constituent tokens.

Third, the empirical study showed that while there exists a wide variety of labels for visually

similar icons, there are other sources of information available for improving the representa-

24

tion power of a probabilistic model. Our approach, in turn, leverages additional sources of

information of an icon in addition to its graphical representation to determine the probable

tokens in its label. This is akin to the intuition that sighted users can easily distinguish the

functionality of similar icons by virtue of their knowledge of each icon’s usage context.

In the following section, we describe the architecture of coala. We then study further

research questions related to the fairness and e!ectiveness of DL models in generating textual

labels for icons in Section 3.5.

3.4 COALA

In the following section, we introduce COALA—a deep learning (DL) approach to generate

context-aware labels for icons in Android apps. Figure 3.4 provides an overview of COALA,

which consists of two main modules: Data Pre-Processing and DL Architecture .

Data Pre-Processing module in COALA is responsible for extracting a dataset of labeled

icons along with their information in their usage context. After finding icon specifications

from thousands of XML layouts, it filters improper and duplicate icons similar to the prior

work [45] and creates a dataset of icons for the DL module.

The DL Architecture is responsible for encoding the icons to be later decoded to textual

labels. The encoding step has two phases: Image Encoder and Context Encoder, each of

which is tailored to compute the embedding of a specific type of data. These representations

are then fused in a Fully Connected Layer to prepare a vector, from which Label Decoder

generates the corresponding textual label.

In the remainder of this section, we describe the details of each module in our DL Architecture

as illustrated in Figure 3.4.

25

LSTM
G

lo
Ve

LSTM
O

ne
 

ho
t LSTM

G
lo

Ve

to
ke

n 0
to

ke
n n

h 0
h n

h 1

re
g/

ca
t

Image

LabelData

Context Encoder

Re
sN

et

Fe
at

ur
e

Ve
ct

or

Li
ne

ar

Fu
lly

 C
on

ne
ct

ed
 L

ay
er

LS
TM

LS
TM

LS
TM

Soft 
Max

Soft 
Max

Soft 
Max

w0 w1 <EOS>

<SOS> w0 wn

Label Decoder

Image Encoder
Icon Extractor

[<image, label, context>]

Data Pre-Processing

Filter 
in 
g

Deep Learning Architecture

Figure 3.4: Overview of COALA framework

3.4.1 Image Encoder Module

Embedding visual data into low-dimensional space has been extensively studied using the

Convolutional Neural Networks (CNN) [100]. This type of network receives input images

as a matrix of their pixel values and extracts a feature vector of the input image through

various convolutional and pooling layers.

coala encodes images in the same fashion. However, instead of training a CNN model from

scratch, it utilizes the transfer learning technique. Transfer learning allows us to leverage

pre-trained CNN models such as ResNet [85], without the need for dealing with technical

challenges of training a model from scratch on a big enough set of training data for su”cient

amount of time. That means, we leverage the knowledge of a pre-trained ResNet model and

re-purpose it for icon image classification, a.k.a., fine-tuning.

To that end, we prepared a dataset of icon images with their annotated classes from Rico

26

dataset [58]. Using a tool in prior work [106], Rico augmented more than 66,000 screenshots

with semantic annotations which consist of icon classes. We extracted annotated icons in

Rico dataset and manually checked the consistency of images with their annotated class. We

also downsampled dominant classes of icon images to have a balanced dataset. We trained

and fine-tuned a pre-trained ResNet18 classifier [85] using this data and used it in coala

for encoding icon images.

3.4.2 Context Encoder Module

The input of Context Encoder is the sources of information from usage context of the icon as

shown in Table 3.1. The purpose of this module is to embed these parameters into a feature

vector. In choosing a proper model for Context Encoder, we should consider three main

characteristics of parameters. First, these parameters have two di!erent types: categorical

and textual. Second, textual parameters have a variable length. Third, often only a subset

of parameters are available for a given icon.

To support both categorical and textual parameters, Context Encoder utilizes two di!erent

input embedding components, namely: one hot encoder [81] and a word embedding model,

specifically GloVe [127].

One hot encoder maps the categorical parameters, i.e., category and screen region, to a

binary vector. Category can take either one of the 53 categories that exist in Google Play

or none if it was removed from Google Play by the time we checked. Screen region is one of

the 9 zones, as shown in Figure 3.1, that an icon can belong to. Thus, the encoded vector

should be at least 63 bits in length. However, it is zero-padded to have the same length as

the vector representation of other parameters.

For textual parameters, similar to [119], Context Encoder first summarizes all the parameters

27

into one sentence by joining the textual phrases with a dot, “.”, as a delimiter. For example,

for the plus icon in Figure 3.2, joining the page title, i.e., “playlist”, and its cleaned android

id, i.e., “create playlist”, results in the summary of “playlist.create playlist.” for textual

parameters of the icon (we filtered “fab” token since it specifies the icon type, i.e., floating

action button, and is not informative). Then, a pre-trained GloVe model is responsible for

mapping each token in the summarized sentence to its vector representation. GloVe is an

unsupervised pre-trained model that has proven its ability in capturing syntax and semantic

regularities using vector arithmetic [127]. This is mainly because (1) it is not needed for the

model to learn the exact vocabulary of these tokens, and (2) using a semantic preserving

word embedding enables the model to better generalize to unseen tokens whose synonyms

exist in the dataset.

Given the vector representation of icon information, Context Encoder utilizes a Recurrent

Neural Network (RNN) [86]. RNNs are known for their chain-like structure, which makes

them capable of learning from variable-length sequences of data. Specifically, we use a type

of RNNs, Long Short-Term Memory (LSTM) networks, shown to be superior to the standard

RNNs by avoiding the long-term dependency problem caused by Vanishing Gradients [38].

LSTMs consist of a chain of repeating modules, a.k.a., LSTM cells. The vector representa-

tion of icon information passes through the LSTM cells in which four neural network layers

interact in a special way. Several adjustable weights control the information each cell remem-

bers, forgets, or passes to the next cell (a.k.a., hidden state). During training, the model

tunes these internal weights towards decreasing the overall training loss.

The output of the last LSTM cell is fused in a fully connected layer with the image embedding

to provide the input for the Label Decoder module.

28

3.4.3 Label Decoder Module

Given the image and other information of an icon, the Label Decoder is responsible for

generating natural language labels. Icon labels are variable-length sequences of tokens. Thus,

a proper model should be able to generate accurate tokens of labels sequentially. To that

end, COALA employs an LSTM network with an internal loop that lets it iteratively generate

icon labels token by token.

At each time step, the Label Decoder chooses the most probable token from a vocabulary of

tokens. COALA builds this vocabulary based on frequent tokens in the labels of the training

set. This vocabulary also includes sos (Start of Sequence), eos (End of Sequence), and

unk (Unknown). Then, each label will be represented by a sequence of ids of its comprising

tokens surrounded by sos and eos tokens. unk stands for tokens of labels that are not in

the vocabulary.

Label Decoder initializes the hidden state of the first LSTM cell with the encoder output.

Similar to the LSTM network of Context Encoder module, four internal neural network layers

with adjustable weights regulate the information flow through the network. Label Decoder

also sends an sos token to the first LSTM cell to signal the start of the label generation

process. Next the LSTM cells get the previously generated token as input and calculate the

score of choosing each token in the vocabulary. A Softmax [131] layer gets the LSTM cell

output to transform the scores to a probability function. The most probable token is the

final output at each step. Label Decoder terminates this procedure when eos token is the

output of current time step.

To train DL model, Label Decoder calculates cross-entropy loss function to measure the

extent to which the predicted probability diverges from the actual token. COALA trains the

whole DL architecture end-to-end. Thereby, this loss function back propagates through the

whole network, i.e., encoder and decoder, to adjust the internal weights.

29

During training, the aforementioned process of passing the last generated token to the next

LSTM cell can be followed. However, this process results in model instability and slow

convergence [70]. To alleviate these issues, COALA uses Teacher Forcing strategy. Teacher

forcing is a training-time procedure in which the model receives the ground truth output yt

as input at time step t+1 [178]. This means Label Decoder passes the tth token of the target

label as the input to the t + 1th LSTM cell during training. However, in the testing phase,

we pass the previously generated tokens to the next LSTM cell and we only use the ground

truth labels to calculate the performance of the model.

3.5 DL Model Assessment

To study the impact of imbalanced training data on the state-of-the-art model, LabelDroid,

and also the e!ectiveness of our context-aware approach, we study the following research

questions:

RQ4. How e!ective is LabelDroid in practice?

RQ5. To what extent is the DL architecture of LabelDroid capable of coping with imbalanced

data?

RQ6. How e!ective is the context-aware model of coala in label prediction? To what extent

coala outperforms the context-agnostic model of LabelDroid?

RQ7. To what extent the labels provide an informative explanation of the icon functionality?

RQ8. How long does it take for coala to train and predict labels?

30

Table 3.2: Details of coala dataset

App Activity Icon

Train 7,728 14,230 17,462
Test 965 1,821 2,274
Validation 965 1,788 2,128

Total 9,658 17,839 21,864

3.5.1 Experimental Setup

Datasets

We split the dataset of icons introduced in Section 3.3.1 into three separate sets with respect

to apps. In this way, train, validation, and test set are respectively 80%, 10%, and 10% of

apps selected randomly. Table 3.2 shows the details of our dataset. Note that we run our

experiments 5 times using di!erent random partitioning of the data to minimize evaluation

bias. This means in a di!erent random partitioning, the number of icons and screens may

be slightly di!erent in each partition since we split based on apps.

Moreover, as we aim to study the e!ects of imbalanced data on LabelDroid, inspired by

prior work [55], we created balanced datasets by downsampling dominant classes of data. A

parametric Sigmoid function on the inverse label frequency manages the balanceness of the

dataset. Sigmoid parameter adjusts the number of frequent labels included in the sampled

data by controlling the steepness of its curve. We experimented with 5 di!erent parameters

of Sigmoid, resulting in balanced datasets of size {2,557, 3,931, 7,599, 11,601, 15,495}. The

smallest dataset is completely balanced with one instance for each label.

DL Implementation and Configurations

Our DL model is implemented in PyTorch [126], a popular open-source Machine Learning

library for Python. We utilized Adam optimizer [95] to update the internal weights iteratively

31

based on the cross-entropy loss function. To prevent the predefined labels from overwhelming

the network during training and producing a biased model, we adapted weighted cross-

entropy [105] to enforce the model learn from the labels in minority. Each DL model has

several configurable parameters, a.k.a., hyperparameters, that can impact the performance

of the model. To tune these hyperparameters of the model, we also performed a guided grid

search strategy to choose the values that had the best performance on the validation data.

The details of our configurations are available on coala’s website [142].

Evaluation Metrics

We evaluate the e!ectiveness of DL models using 4 evaluation metrics that are commonly

used for image captioning problems, namely: BLEU [124], METEOR [36], ROUGH [103],

CIDEr [154]. We also report exact match, i.e., the percentage of data for which the generated

label is an exact match of the ground truth. That means, it only awards the model if all

the tokens of the ground truth appear in the generated label with the same order. BLEU

score, however, focuses on n-gram overlaps to measure the quality of the generated label.

It calculates precision for n-grams, denoted by BLEU-1, BLEU-2, and BLEU-3, for n in

{1, 2, 3}.

BLEU score has some drawbacks, for example in not considering sentence structure or word

meanings, which has led to the advent of other evaluation metrics. METEOR (Metric for

Evaluation of Translation with Explicit ORdering) is based on the harmonic mean of unigram

precision and recall [36]. ROUGH is a set of recall-oriented measures, from which we use

ROUGH L that is based on the Longest Common Subsequence in the ground truth and

the generated label [103]. CIDEr (Consensus-based Image Description Evaluation) leverages

term frequency-inverse document frequency (tf-idf) to measure the similarity of the ground

truth and the generated label [154].

32

The implementation of these metrics is available in a Python library, called NLGEval li-

brary [147], which we have used to evaluate coala.

3.5.2 RQ4. LabelDroid’s E!ectiveness

Our empirical study (Section 3.3) revealed a severely imbalanced label distribution for icons.

We conducted an experiment to study whether overlooking this data-driven bias leads to

misinterpretation of prior work’s e!ectiveness. For that purpose, we trained LabelDroid [45]

on their dataset using their default configurations and evaluated the model on generating (1)

predefined labels, which as introduced in Section 3.3.2 correspond to the default catalog of

icons in widgets that come with Android Studio, and (2) non-predefined labels, i.e., all the

icons in the test set except the ones with predefined labels. Among 1,876 icons in their test

set, 866 of them have predefined labels and the remaining 1,010 icons have non-predefined

labels. Note that for this research question, we use the original dataset of LabelDroid to

only study the impact of data balanceness and keep their approach as close as possible to

their original version. For next questions, we use the dataset introduced in Section 3.5.1,

which is the extended version of LabelDroid’s dataset since the dataset they used in their

work lacks additional sources of information from icons.

Table 3.3 summarizes the results of this experiment. As shown in Table 3.3, the e!ectiveness

of LabelDroid, in all metrics, is significantly higher in generating predefined labels than the

non-predefined labels. The unfortunate outcome is that this variation impacts the overall

result: resulting in an incorrect interpretation of the model’s e!ectiveness in predicting

proper labels for unlabeled icons.

For a better illustration of the impact of imbalanced data on the overall e!ectiveness of

LabelDroid, consider the stacked bar chart of Figure 3.5. Here, each bar indicates the ratio

of correctly predicted labels according to a di!erent metric. Within each bar, the solid

33

Table 3.3: LabelDroid’s e!ectiveness in generating predefined/non-predefined labels in their
test set.

Exact match BLEU-1 BLEU-2 BLEU-3 METEOR ROUGE L CIDEr

Predefined 0.90 0.90 0.90 0.82 0.69 0.91 4.54
Non-predefined 0.17 0.24 0.18 0.18 0.12 0.27 0.89
All 0.51 0.55 0.53 0.41 0.32 0.55 2.58

0

0.1

0.2

0.3

0.4

0.5

0.6

BLEU_1 BLEU_2 ROUGE_L 0.1CIDEr Exact_match

Non-predefined Labels Predefined Labels

Figure 3.5: Biased e!ectiveness of LabelDroid towards predefined labels

blue fill indicates the ratio of correctly predicted non-predefined labels, while the dashed

fill indicates the ratio of correctly predicted predefined labels. Figure 3.5 clearly shows the

overall evaluation is highly impacted by the model’s e!ectiveness on predefined labels.

This observation indicates that the imbalanced data produced a biased model for predicting

predefined labels. But the issue is substantially more severe than it may appear at first

blush, since there is no point in predicting icons with predefined labels. After all, these are

the labels of icons that are shipped with the popular Android Studio. In practice, it is a

rare occurrence for Android Studio icons to appear in apps with no labels. This would only

occur if the developer intentionally removes the label automatically associated with the icon

by the IDE. The ultimate goal of label prediction is to generate labels for unlabeled icons,

which often have non-predefined labels.

34

Figure 3.6: Overall evaluation of LabelDroid model trained on re-sampled data

3.5.3 RQ5. Impact of Balanced Data on LabelDroid’s E!ective-

ness

To further evaluate LabelDroid, we also studied its performance if it were to be trained

on balanced data in predicting non-predefined labels. To that end, we performed balance

sampling with regard to distinct labels of the training data to downsample dominant labels.

Then, we trained a new model on the newly sampled training set and evaluated the model

on the test set.

Figure 3.6 depicts the results of training LabelDroid on balanced data using CIDEr metric.

The orange dashed line corresponds to the e!ectiveness of the model trained on balanced

data. We should note that in balanced sampling, as well as changing the data distribution,

we are reducing the amount of training data, which a!ects the model’s ability to learn.

To monitor this variable, we also performed random downsampling on the training data to

make the dataset have the same number of training data as in our balanced datasets. In

figure 3.6, the blue solid line depicts the performance of the model trained on randomly

sampled data. Figure 3.6 shows that having balanced training data does not improve La-

belDroid’s e!ectiveness. The general trend in the blue solid line shows that reducing the

35

Table 3.4: Comparison of coala and LabelDroid e!ectiveness in generating non-predefined
labels

model Exact match BLEU-1 BLEU-2 BLEU-3 METEOR ROUGH L CIDEr

coala 0.38 0.4 0.2 0.15 0.21 0.489 1.34
LabelDroid 0.14 0.21 0.125 0.09 0.12 0.24 0.7

training data slightly degrades the model’s e!ectiveness. However, increasing the data bal-

anceness drastically drops the model’s e!ectiveness. The same behavior was observed in the

model’s e!ectiveness in generating non-predefined labels and when we used other evaluation

metrics. However, to comply with the page limits, those results are available on coala’s

website [142].

This concludes that learning from balanced data did not provide any remarkable improve-

ment in the e!ectiveness of LabelDroid in generating non-predefined labels.

3.5.4 RQ6. E!ectiveness of coala

The ultimate goal of coala is to generate labels for unlabeled icons. Thus, our main objec-

tive is to evaluate coala’s e!ectiveness in generating non-predefined labels and compare it

with the prior work [45].

Table 3.4 summarizes the e!ectiveness of coala and LabelDroid in generating non-predefined

labels and shows the superiority of coala over LabelDroid in all metrics. Figure 3.7 illus-

trates two icons in a painting app in our test set for which coala was able to generate

correct labels, but LabelDroid failed.

In this app, there are di!erent icons for di!erent painting tools such as a marker in a

vertical, left toolbar, as well as other essential icons in the horizontal, top toolbar. It is

clear that without considering the context of these icons, generating the correct label may

be impossible. For example, the Marker icon in the vertical toolbar has been widely used

36

LabelDroid previous

COALA undo
Ground truth undo

1

LabelDroid edit

COALA marker
Ground truth marker

Figure 3.7: Examples of inability of the context-agnostic model, LabelDroid, in generating
correct labels.

to denote the “Edit” icon. However, by considering the adjacent icons, coala was able to

detect the icon as a painting tool. For the Undo icon, in addition to commonly co-occurred

icons, existing hints in their textual information, such as Android id, enabled the model to

generate accurate labels. More examples of LabelDroid’s failures, for which coala was able

to generate correct labels are available on our website [142].

We also examined common failure scenarios for coala. As shown in Figure 3.8, coala has

generated incorrect labels, particularly for icons 1 and 2. Due to the black-box nature of DL

models, pinpointing the exact reason for these failures is not possible. However, examining

the icons gives us an overview of probable culprits. In the first snapshot, the contextual

information for minus icon is not informative. Thereby, coala was unable to recognize its

functionality. Furthermore, the existence of the token “wheel” in the identifier name of its

sibling may have confused the model to generate a wrong label. There are also some failures

37

- +

4 5 6

LabelDroid Open Navigate up Pause

COALA Open menu Hide sidebar Pause

Ground truth Open navigation
drawer Collapse Congratulations

1 2 3

LabelDroid Remove <UNK> Refresh

COALA Go <UNK> menu Refresh result

Ground truth Decrease Value Filter call Refresh

1

Figure 3.8: Examples of failures in label generation using coala and LabelDroid

in generating labels for infrequent icons, e.g., icon 2. Not having su”cient training data to

help the model learn the icon is a probable cause of this failure.

Besides these model failures, there are certain cases that are not mistakes, yet penalize the

e!ectiveness of our model in the manner evaluated here. Case in point, consider icon 3 in

Figure 3.8, where coala has generated more valid tokens, possibly conveying more useful

information to a blind user than the ground truth. Additionally, the generated labels may be

semantically valid alternatives, as in icons 4 and 5 in Figure 3.8. There are also some cases,

such as icon 6, in which the ground truth is invalid, not the generated label. These examples

indicate that in practice coala is more e!ective than the NLP metrics suggest, since they

are simply comparing the generated labels against the ground truth. These metrics do not

account for situations in which coala either generates a semantically equivalent label as

the ground truth label, or the ground truth itself is wrong. This observation motivated us

to conduct a user study to better evaluate coala.

38

3.5.5 RQ7. Informative Explanation for Users

In addition to the automated evaluation of models using metrics described in Section 3.5.1,

we conducted a user study to understand the quality of automatically generated labels by

LabelDroid and coala. Since manual investigation of all icons in our test set was not

practical, we randomly selected a sample from the test data based on the image classes of

icons. This ensures having a representative and balanced dataset of icons with di!erent

images (e.g., plus, backward-arrow, etc.). We used our icon image classifier introduced in

Section 3.4.1 to get image classes and randomly selected up to 10 icons from each class,

resulting in 198 icons from 61 distinct image classes. Next, we highlighted the icon under

investigation on the screenshot of the app as shown in Figure 3.9. For each icon, we show

four types of labels (1) ground truth, which is the content description extracted from the

XML layout, (2) the generated label by LabelDroid, (3) the generated label by coala, and

(4) a random label, di!erent from the ground truth, selected from all labels in the dataset.

We then used Google form to display the icons on the screenshots, as well as four di!erent

labels to the users and get their responses. We shared the survey on social media and asked

volunteers to rate the quality of the labels from 1 to 5 after reading an instruction (the

instruction is available at [142]). To avoid bias, we collected and aggregated responses of at

least three di!erent users for each icon, resulting in 730 answers in total.

Prior to analysis, we filtered out the unreliable data as follows:

- Incomprehensible icons. The highlighted area on a screenshot may not specify a proper

icon due to capturing the screenshot of an app at a transition point during app exploration.

Alternatively, the user may not be able to determine the functionality of a designated icon

from the screenshot. We remove such images from our analysis by asking users if the icon

on the screenshot is valid and understandable.

- Inconsistent scores. We expect users to assign the same score to the same labels of

39

Figure 3.9: A sample question from the user study.

an icon; otherwise, there is inconsistency in scores. For example, the ground truth and

coala’s candidates for an icon can both be “collapse”, and users should assign the same

score to both of them. We remove all scores of users who have inconsistent scores since

such users are not reliable.

- Insu”cient rating. We have a threshold of three responses for each icon. Thus, if

applying the prior filtering steps drops the number of responses for an icon below three,

we remove the icon entirely.

Our filtering criteria removed 216 responses, resulting in 514 responses for 156 icons. We

then aggregated the users’ responses by calculating the average of all the scores for each

icon. Therefore, for each type of labels in {ground truth, coala, LabelDroid, and Random}

there is a list of 156 scores corresponding to each icon, which we call score list. The average

of all score lists of ground truth, coala, LabelDroid, and Random are 3.91, 3.15, 2.83, and

1.13, respectively.

To determine if the di!erences observed between the means of score lists are statistically

significant, we performed hypothesis testing. Since the scores failed the Shapiro-Wilk nor-

40

Table 3.5: Statistical analysis of scores. Given the significance level of 0.05, the scores of
coala’s labels are significantly better than the scores of LabelDroid’s labels. µ̄Diff is the
average of di!erence between score lists.

H0 (Null Hypothesis) µ̄Diff p-value

Ground truth - coala = 0 0.76 5.14e-6
Ground truth - LabelDroid = 0 1.08 8.68e-10
coala- LabelDroid = 0 0.33 1.7e-2
Ground truth - Random = 0 2.78 2.94e-25
coala- Random = 0 2.02 7.49e-20
LabelDroid - Random = 0 1.67 6.43e-16

mality test [138], we performed non-parametric testing using Wilcoxon signed-rank test [177]

with significance level of 0.05. Table 3.5 shows the result of this analysis. As seen on the

upper half of the table, the quality of ground truth labels is better than the quality of labels

generated by coala and LabelDroid, since the mean of ground truth’s score list is signifi-

cantly better than the mean of coala’s and LabelDroid’s score list (p-value equal to 5.14e-6

and 8.68e-10 respectively). Similarly, it shows that the quality of labels generated by coala

is significantly higher than the quality of labels generated by LabelDroid (p-value=1.7e-

2). Moreover, the lower half of the table shows that labels of ground truth, coala, and

LabelDroid have higher quality than random labels.

An outcome of this analysis is that although coala significantly improves the state-of-the-

art technique in generating natural language labels for icons, it is still not as good as the

labels provided by actual developers. This observation suggests that there is still room for

improvement and further research in this area.

3.5.6 RQ8. Performance

To answer this research question, we evaluated the time required to train a new model and

used the resulting model to generate a label for an icon. We ran the experiments on a

Ubuntu computing cluster using an NVIDIA GP102 GPU and 128G memory. It took 241

minutes on average for coala to train a new model on our dataset. This time includes

41

evaluating the model at each time step on the validation set for model selection purposes.

However, it took only 17 milliseconds on average for the trained model to generate the label

of an icon given its specification. This indicates that coala is e”cient for use in a variety

of settings, including automated repair of inaccessible apps, and inclusion in screen readers

to dynamically resolve unlabeled icons.

3.6 Threats to Validity

Sampling bias: The selection of Android apps in this study may introduce bias. We

mitigated this threat by exploring another dataset, RICO [58]. We obtained similar results

as that reported here. The results of our study on RICO dataset are available online [142].

Moreover, both LabelDroid and RICO datasets consist of more than 20 thousands apps

selected from various categories of Google Play store.

Learner bias: For the empirical study on DL models, we use two architectures, coala and

LabelDroid. One possible threat to the validity of our results is the choice of the neural-

network modules and hyper parameters of our models. For coala, our focus was studying

the impact of incorporating di!erent sources of information using a well-known architecture.

Also, for training LabelDroid, we used their original implementation and hyper-parameters.

Evaluation bias: We evaluated LabelDroid and coala under the same evaluation metrics

used in LabelDroid’s publication and consistent with natural language processing literature.

We report the e!ectiveness of models on a test set, left out from the whole dataset of labeled

icons. However, the generalizability of models on unlabeled icons needs to be studied further.

This signifies the need for creating high quality benchmarks of icons in Android apps in

future. We further reduce the evaluation bias by running our experiments 5 times and

averaging the results.

42

3.7 Related Work

Accessibility issues have been extensively studied for websites [91, 82] and more recently

for mobile apps either in specific categories such as e-government [146], smart cities [117],

and health [170] or in general [125, 136, 57, 181, 155, 13, 139]. The increased awareness of

the prominence of accessibility issues has motivated the development of several accessibility

guidelines, and accessibility assessment and repair tools.

Accessibility guidelines: The World Wide Web Consortium (W3C) [159] is the main

organization in determining protocols and standards for websites whose primary initiative

is to develop accessibility standards. They have provided detailed tutorials for constructing

inclusive web pages [158]. For mobile apps, Google and Apple, the primary organizations

facilitating the app marketplace, have published accessibility guidelines for Android and iOS

developers [21, 32]. Despite the existence of these guidelines, according to [13], developers

are still not aware of the issues or find it costly to address them.

Android accessibility evaluation and repair tools: Accessibility evaluation tools lever-

age static analysis and/or dynamic analysis techniques to report various accessibility is-

sues. Lint [23] is a static tool that checks project files and warns the developers about

missing labels. Espresso [22], Robolectric[134] and Accessibility Scanner [17] are based on

Accessibility Testing Framework of Android [2], with the capability to dynamically scan

the app for accessibility issues [20]. PUMA [83], MATE [63], and IBM Mobile Accessibility

Checker (MAC) [181] are other dynamic testing frameworks that check accessibility issues

at runtime.

Despite several tools for accessibility assessment, only a few repair tools are available to fix

accessibility issues for blind users. To enable runtime accessibility repair and enhancement

for Android, Zhang et al. [184] proposed interaction proxies to layer on top of the original

implementation of app. In their subsequent work [185], they utilize this platform for social

43

annotation of GUI elements for missing labels. Di!erent from their work, coala is capable

of automatically generating labels for icons by learning from the previously labeled ones.

Furthermore, Liu et al. [106] utilize a deep learning classifier to semantically annotate icon

images based on around 100 categories they defined for the icons. Although their initiative

was not fixing accessibility issues, screen readers can take advantage of their proposed textual

annotations for unlabeled icons. Unlike their work, coala generates textual labels not only

from icon images but also from their usage context. In this work, we leverage from their

annotated icons to fine-tune an image classifier which is capable of embedding icon images.

The most relevant work to our study is LabelDroid [45], which is a context-agnostic model

for generating labels for icons. As discussed heavily throughout the paper, LabelDroid’s

insu”cient representation of Android icons only by their images, as well as its biased model

negatively a!ect its e!ectiveness.

3.8 Conclusion and Future Work

Missing labels seriously hinder blind users’ ability to interact with mobile apps. In this

work, we studied the characteristics of icon labels and demonstrated how overlooking the

imbalanced nature of labels result in a biased deep-learning model. We also presented coala,

a context-aware label generation approach for icons in Android. Our experimental results

show that by incorporating additional sources of information, coala could outperform the

prior work [45] in automatically generating labels for unlabeled icons.

In future, we will explore incorporating additional sources of information from source code

to enrich icon representation and improve the accuracy of our model by studying di!erent

DL models. We also aim to integrate our model with (1) IDE analysis tools, such as Lint,

to not only detect missing labels, but to also recommend fixes, and (2) screen readers to

44

facilitate blind users’ interactions with apps.

Our research artifacts are available to the public [142].

45

Chapter 4

AT-Aware Accessibility Testing

Accessibility is a critical software quality a!ecting more than 15% of the world’s population

with some form of disabilities. Modern mobile platforms, i.e., iOS and Android, provide

guidelines and testing tools for developers to assess the accessibility of their apps. The

main focus of the testing tools is on examining a particular screen’s compliance with some

predefined rules derived from accessibility guidelines. Unfortunately, these tools cannot

detect accessibility issues that manifest themselves in interactions with apps using assistive

services, e.g., screen readers. A few recent studies have proposed assistive-service driven

testing; however, they require manually constructed inputs from developers to evaluate a

specific screen or presume availability of UI test cases. In this work, we propose an automated

accessibility crawler for mobile apps, Groundhog, that explores an app with the purpose of

finding accessibility issues without any manual e!ort from developers. Groundhog assesses

the functionality of UI elements in an app with and without assistive services and pinpoints

accessibility issues with an intuitive video of how to replicate them. Our experiments show

Groundhog is highly e!ective in detecting accessibility barriers that existing techniques

cannot discover. Powered by Groundhog, we conducted an empirical study on a large set

of real-world apps and found new classes of critical accessibility issues that should be the

46

focus of future work in this area.

4.1 Introduction

The ever-growing reliance of people on mobile apps to perform daily tasks necessitates app

accessibility for all, notably for more than 15% of the population who have disabilities [174].

Developers are obliged by law and expected by ethical principles to build accessible apps for

users regardless of their abilities. However, prior studies reveal that many popular apps are

shipped with some form of accessibility issues, hindering disabled users ability to interact

with them [45, 135, 12].

To assist developers in enhancing app accessibility, technology institutes such as World Wide

Web Consortium [163] and companies such as Apple [33] and Google [27] have published

accessibility guidelines and best practices. These guidelines are backed by accessibility anal-

ysis tools to automatically analyze app compliance with guidelines and detect accessibility

issues [25, 17, 31, 34]. For instance, by analyzing User Interface (UI) elements, they can

report whether the contrast between elements and their backgrounds are above a certain

threshold or the area of a button is smaller than a specific area defined in the guidelines.

Unfortunately, guidelines cannot detect about %50 of the accessibility issues that users

with disabilities may encounter while interacting with apps [130]. Static assessment of UI

specifications cannot reveal many critical accessibility issues that only manifest themselves

in interacting with an app using assistive services, such as a screen reader. For example,

users with visual impairment rely on screen readers, i.e., TalkBack in Android, to navigate

through UI elements and perform actions on them. TalkBack users click on a desired element

by double tap gesture. When this gesture entails no change in the app state, the element is

not actionable by TalkBack and can render the app inaccessible.

47

(a) (b)

(c)

(d)

Figure 4.1: (a) The login activity of Facebook app, (b) The exit dialog appears when users
press back button on Facebook app, (c) a screen in BudgetPlanner app, the highlighted
boxes and arrows depicts the directional navigation to the “ADD” button by TalkBack, (d)
a dialog appears after tapping “ADD” button

The great majority of prior automated accessibility testing techniques do not take assistive

services into account in their analysis. Salehnamadi, et. al [139] incorporate assistive services

in evaluating the feasibility of executing GUI test cases. Their work, however, assumes the

availability of GUI tests for validating the functionalities of the app under test, which are

then repurposed for accessibility analysis. Unfortunately, developers do not usually write

GUI tests for their apps, making their approach applicable to only situations in which GUI

tests are available. Studies show that more than 92% of Android app developers do not have

any GUI test for their apps [104]. Even if GUI tests are available for proprietary apps, the

test cases are rarely available to the public or app store operators that may want to assess the

accessibility of apps for users. Furthermore, GUI tests may fail to achieve good coverage,

making their approach ine!ective at finding accessibility issues in uncovered parts of the

app under test. The work by Alotaibi, et. al [11] also utilizes TalkBack to find inaccessible

elements in navigating sequentially through all the elements on the screen without GUI tests.

This work is limited to analyzing a single screen that developers should provide manually.

48

Moreover, it cannot detect other types of reachability issues that may occur while exploring

the app with TalkBack by touch or with other assistive services. Their work also does

not consider the di!erent ways of performing actions with and without assistive services,

potentially resulting in unactionable elements for assistive services

To address the limitations of existing tools, we have developed a fully automated approach,

called Groundhog, for validating the accessibility of Android apps that replicates the

manner in which disabled users actually interact with apps, i.e., using assistive services.

Groundhog gets the app in a binary form, i.e., APK, and installs it on a Virtual Ma-

chine (VM). It utilizes an app crawler to explore a diverse set of screens to be assessed.

For each screen, Groundhog extracts all the possible actions and executes the same ac-

tion with di!erent interaction models, including di!erent assistive services, to validate if the

app is accessible. Groundhog leverages the VM to repeatedly reevaluate the app from

the same state, performing the same action using di!erent assistive services to identify the

accessibility issues that may a!ect users with various forms of disability.1 In particular,

Groundhog checks if UI elements can be located by users, i.e., locatability, and all ac-

tions can be performed, i.e., actionability, regardless of the way users interact with the

device, e.g., touch-based interaction or assistive-service interaction. Instead of just reporting

violations of accessibility guidelines as in prior work, Groundhog produces a summary of

the accessibility issues containing a video that describes how a user with disability cannot

perform an action in an app. This type of reporting can help developers to pinpoint the

issue and increase their awareness of the challenges faced by users with disability.

Our empirical experiments show that Groundhog can detect 293 accessibility issues that

could not be detected by existing accessibility testing tools.

This chapter makes the following contributions:

1The name of our tools is inspired by the popular Hollywood movie “Groundhog Day” from 1993, where
the lead character is stuck in a time loop, forcing him to relive the same day, which is akin to our repeated
reevaluation of an app from the same state.

49

• A novel, high-fidelity, and fully automated form of automated accessibility analysis that

evaluates the accessibility of mobile apps from the perspective of users with various forms

of disability.

• A publicly available implementation of the above-mentioned approach for Android, called

Groundhog [144];

• An empirical evaluation on a large set of real-world Android apps, showing the e!ectiveness

of Groundhog in detecting new accessibility issues in popular apps (even with more than

1 billions installs on Google Play), and

• A qualitative study of the di!erent types of accessibility issues that can be detected by

Groundhog, which can aid future researchers with developing automated means of fixing

these specific kinds of issues.

The rest of this chapter is organized as follows: Section 4.2 motivates this study with an ex-

ample. Section 4.3 provides a background on accessibility testing and Android fundamentals.

Section 4.4 explains the details of our approach, and Section 4.5 describes the optimizations

over our technique. The evaluation of Groundhog on real-world apps is finally presented

in Section 4.7. The chapter concludes with a discussion of the related research and avenues

of future work.

4.2 Motivating Example

In this section, we provide two examples to illustrate the types of accessibility issues that

cannot be detected with conventional accessibility testing tools and prior studies.

Figure 4.1(a) shows the login screen of the Facebook app with more than 1 billion installs

on Google Play [76]. This screen provides the ability for the user to log in, which obviously

is crucial to be accessible, since it is the entry point of the app.

50

A user with a disability relies on an assistive service to interact with the app. For example, a

blind user utilizes TalkBack [72], the standard screen reader in Android, to perceive the screen

content by listening to what TalkBack announces for each element on the screen. A TalkBack

user can navigate through the elements sequentially by swipe (Directional Exploration), or

focus on a specific element by touch (Touch Exploration). Using either of these exploration

strategies on the app screen illustrated in Figure 4.1(a), TalkBack can only detect the two

text boxes, annotated in green in Figure 4.1(a), and is incapable of detecting the rest of the

elements, including crucial buttons such as “Log in” or “Create new account”. However,

a regular user can see all the elements on the screen, provide login credentials, and tap on

the buttons to log in and use the app without any problem. Interestingly, a TalkBack user

cannot even exit the app using the back button as none of the elements on the exit dialog,

in Figure 4.1(b), are accessible by TalkBack. This is an example of locatability issue, since

a user with a disability cannot locate (reach) an element on the screen.

Existing accessibility testing approaches are not capable of detecting these issues. Google

Accessibility Scanner [17] evaluates the top screen on a device, checks a few rules for the

elements, and reports their violations as accessibility issues. In running Scanner on the

screen in Figure 4.1(a) 4 issues are detected for text boxes, 2 of them are warning about

their “small touch target size”, and 2 of them are noting the “missing speakable text” for

them. Neither Scanner nor other rule-based accessibility testing tools [23, 22] are capable of

detecting navigational issues in Android apps.

Assistive services also enable users to perform actions on elements. When there are no

locatability issues, Assistive services such as TalkBack can focus on the desired element. In

the case of TalkBack, double-tap gesture triggers the “Click” action on the focused element.

Unfortunately, actions performed under di!erent interaction models may have inconsistent

behaviors. Figure 4.1(c) shows a screen in a popular budget tracker app, with more than 1

million installs, where users can add income or expenses to their budgets. To add an income

51

to the budget, a user without a disability simply taps on the “ADD” button and a form

appears to input the amount, as shown in Figure 4.1(d). For the same action, a TalkBack

user, first locates the “ADD” button, either by touch exploration (tapping on the location

of the button) or directional exploration (swiping right until the target element is focused,

as shown by arrows in Figure 4.1(c)). Once the element is located, the user double taps to

perform a click action through TalkBack. However, in this case, The income addition form

in Figure 4.1(d) will not be shown, preventing TalkBack users from adding any income and

rendering the app inaccessible for them as a result. This is an example of actionability

issue, since the action is not supported consistently under di!erent interaction models.

The insight underlying our work is that the two types of accessibility issues discussed above

cannot be revealed accurately unless the apps are examined in the manner disabled users

interact with apps, i.e., using assistive services.

4.3 Background

We provide a brief overview of User Interface (UI) components and accessibility support in

Android to help the reader understand the material that is presented later.

4.3.1 Android UI

Android provides a variety of pre-built UI components such as structured layouts and widgets

that allow developers to build the GUI of their app. This section provides background on

UI components and GUI testing in Android.

The UI of an Android app is a single-root hierarchical tree where the leaf nodes are called

Views or Widgets that users can see and interact with, e.g., buttons, text fields, and check

52

Figure 4.2: A part of the excerpted XML representation of UI structure in the Budget
Tracker app shown in Figure 4.1(c).

boxes. The non-leaf nodes, on the other hand, are invisible to user. These non-leaf nodes

are called ViewGroups or Layouts and used for arranging or positioning the widgets.

Both Widgets and Layouts have variety of attributes. For example, the content-desc at-

tribute is used by accessibility services to provide description for widgets without textual

representation or clickable attribute shows if the widget is clickable. The UI hierarchy of a

screen in an Android device can be retrieved as an XML file. Figure 4.2 shows part of the

UI structure in the Budget Tracker app. Lines 8-14 represents the first “ADD” button in

Figure 4.1(c) where its attributes such as clickable or text are represented.

XPath [1] (XML Path Language) is an expression language that supports various queries

in XML documents. In particular, XPath can be used to identify nodes accurately using

the structural information. For example, the first “ADD” button in Figure 4.1(a) can be

identified by its absolute path in XPath created by the class attribute as “/Framelayout/Lin-

earLayout/FrameLayout[2]/Button” (the “android.widget” part is ommitted from classes).

Since the class of an android widgets cannot be changed at runtime, the absolute path in

53

XPath, or in short apath, is a reliable identifier of widgets in Android.

4.3.2 Accessibility in Android

Android provides an accessibility API for alternative modes of interacting with a device. It

also o!ers several assistive services, including TalkBack, which is the o”cial screen reader in

Android and built on top of the accessibility API. We briefly describe accessibility API in

Android and how an assistive service like TalkBack can leverage this API.

The Android framework provides an abstract service, called AccessibilityService, to assist

users with disabilities. The o”cial assistive tools in Android, such as TalkBack, are also

implementations of this abstract service [18]. AccessibilityService works as a wrapper around

an Android device interacting with it (performing actions on and receiving feedback from

it).

The feedback is delivered to accessibility services through AccessibilityEvent objects. Acces-

sibility services should implement the method onAccessibilityEvent to receive feedbacks in

form of AccessibilityEvent objects. AccessibilityManager is a system-level service that mon-

itors any changes in device and manage accessibility services. When anything important

happens on the device, AccessibilityManager creates an AccessibilityEvent object that de-

scribes the changes and passes it to onAccessibilityEvent method of accessibility services. The

accessibility services can analyze the delivered event and may provide feedback to the user.

For example, TalkBack announces the textual description of an element to the user when it

is focused. An AccessibilityEvent object is associated with an AccessibilityNodeInfo object

that contains the element’s attributes. For instance, when a user clicks on “ADD” button

(Figure 4.1(c)), the system creates an AccessibilityEvent of type TYPE VIEW CLICKED,

which is associated with the AccessibilityNodeInfo object corresponding to the element shown

in lines 8-14 in Figure 4.2.

54

Si

Touch
Proxy User

App

Si

App
Crawler

Action
Extractor

Oracle

Snapshot
Manager

Si

TalkBack
Proxy User

Si

A11y API
Proxy User

Accessibility
ReportTalkBack

Proxy

TalkBack

Abstract
Proxy

Accessibility API

Touch
Proxy

VM Snapshot

Figure 4.3: An overview of Groundhog

Moreover, an AccessibilityService can access all GUI elements on the screen in the form of

an AccessibilityNodeInfo object. An AccessibilityNodeInfo object not only represents the

attributes of a GUI element on the screen, but also provides the ability to perform actions on

the corresponding element. For example, an AccessibilityService can perform a click action

on an AccessibilityNodeInfo by sending ACTION CLICK event to it.

55

4.4 Approach

Regardless of di!erent interaction models, the ability to locate elements on the screen and

perform actions consistently are fundamental needs in app accessibility. As a result, lo-

catability and actionability form the basis of our approach. The goal of our approach is to

automatically detect apps that fail to meet these accessibility requirements at runtime.

To that end, we propose Groundhog, an automated assistive-service driven testing tool.

Figure 4.3 shows the overview of our approach. Groundhog utilizes an App Crawler to

explore di!erent states of the app. After each change in the app, App Crawler invokes the

Snapshot Manager to capture a VM snapshot if the current state (screen) has not already

been seen. Snapshot Manager provides the VM Snapshots to Action Extractor, where all

the possible actions on the given state of the app are subsequently extracted. Groundhog

then tries to locate the elements and perform these actions on them using three di!erent

proxies: Touch Proxy, TalkBack Proxy, and Abstract Proxy. Finally, the new state of the

app after performing the action is provided to the Oracle along with the initial app state.

Oracle assesses if each proxy successfully performs the action and produces the final report.

In this section, we describe each component of Groundhog in detail.

4.4.1 Snapshot Manager

The goal of Snapshot Manager is to allow a diverse set of app states obtained through

crawling to be later analyzed. Snapshot Manager is a connector between an app crawler

and the rest of the system. Groundhog can be integrated with any of the existing app

crawling techniques like Monkey [77], Stoat [149], Ape [80], Sapienz [108], etc. These crawlers

employ various techniques in modeling the app to trigger transitions between app states. For

example, Stoat models app behavior as a Finite State Machine (FSM) whose nodes are UI

56

elements and attempts to maximize node coverage as well as code coverage. InGroundhog,

even a human agent, e.g., developer or tester, can be involved to replace or enhance an

automated app crawler to reach any desired state of the app.

For each app state, Snapshot Manager checks whether this state is a newly discovered state

to take a snapshot for further analysis or not. To that end, Snapshot Manager calculates

a hash value of the hierarchical representation of UI elements on the screen. Screen hash

calculation in Snapshot Manager only incorporates elements and attributes that impact

obtaining a diverse set of app screens. For example, elements that do not belong to the app

under test, i.e., have a di!erent package name or belong to an advertisement widget, are

not included. Similarly, not all elements’ attributes can distinguish di!erent screens. For

example, if the app crawler taps on an edit text box or writes a random string in it, its

focused and text attributes change; however, they are not indicators of a new screen. The

practice of excluding some values in defining GUI states is also widely adopted in Mobile

GUI testing studies [60, 51, 52].

Snapshot Manager provides VM snapshots of diverse app screens to the rest of Ground-

hog’s components.

4.4.2 Action Extractor

The Action Extractor component takes a VM snapshot of an app state as input and extracts

a list of available actions from it. To that end, Action Extractor loads the snapshot on

a VM equipped with an Accessibility Service such as UIAutomator. This service runs in

the background and enables capturing a hierarchical representation of UI elements, similar

to Figure 4.2. Action Extractor performs further analysis on the dumped hierarchy of UI

elements. It explores the tree of elements and searches for those that support action, e.g.,

have clickable=true in their attributes.

57

An action consists of two parts: the operation, e.g., click, and an identifier of the element on

which the action is performed. The target element can be identified uniquely by its apath,

i.e., the absolute path from the root to the target node in the UI hierarchy tree. For example,

assuming the target element is the first “ADD” button in Figure 4.1(c), the corresponding

apath is /Framelayout/LinearLayout/FrameLayout[2]/Button, as shown in lines 8-14 in Fig-

ure 4.2. Also, the operation of this action can be determined from the “clickable” attribute

(line 9 in Figure 4.2). Therefore, this action can be represented as the following JSON object

that is passed to proxies to be executed in di!erent interaction modes:

{

operation: ’click ’,

apath: ’/Framelayout/LinearLayout/FrameLayout [2]/ Button ’

}

4.4.3 Proxies

Proxies represent various interaction models with a device. The goal of each Proxy is to

execute a given action on a given app state and return the app state after performing the

action along with the execution logs. To that end, each Proxy utilizes Android’s Accessibil-

ityService to support two main functionalities: (1) locating the element specified in action

and (2) performing the intended action on the element. In this study, we consider three dif-

ferent models: Touch, TalkBack, and an Abstract assistive service with all the capabilities

of accessibility API. The details of each Proxy are as follows.

Touch Proxy

This Proxy interacts with the system from the standpoint of users without disabilities. These

users do not use any assistive service and see the elements that are depicted on the screen

to locate them. Touch Proxy first determines the coordinates of the bounding box of the

58

element on the screen to locate the element. It then sends a tap gesture event to the element

to simulate the touch-based interaction model.

To locate an element, Touch Proxy searches for the corresponding node of the target element

identified by its apath in the UI hierarchy. It starts from the root node of the screen and

follows the address specified in the apath in a depth-first traversal order of the UI tree. If

at a level, no branch matches the apath, it means the node is not locatable.

To perform an action on the located element, Proxy calculates a tap point considering the

bounding box of the element. To that end, it calculates the coordinate of the center of the

element using its bounding box coordinates. For example, the coordinate for the tap action

on the “ADD” button (113, 604) can be calculated from line 8 in Figure 4.2. Once the

coordinate of the target element is determined, Touch Proxy performs the click operation by

sending a tap gesture event for that coordinate.

TalkBack Proxy

This Proxy utilizes TalkBack to interact with the device. TalkBack supports two UI ex-

ploration modes: Directional Exploration (by swiping) and Touch Exploration (touching

di!erent screen parts). Similarly, TalkBack Proxy leverage both exploration modes. When

we enable TalkBack, it focuses on the first node on the screen. Swipe right (left) changes

the focus on the next (previous) element on the screen. The Proxy first employs directional

exploration to locate an element, i.e., iteratively draws swipe right gestures using the Acces-

sibility API to navigate to the desired element. The Proxy terminates navigation if it focuses

on the desired node or visits an element twice. The latter case indicates either there is a

navigation loop or all existing elements have been visited once. When this process fails in lo-

cating the element, there is a locatability issue in using directional exploration. For example,

a revolving list of elements can cause a navigation loop for a TalkBack user, preventing the

59

user from reaching the elements residing afterward. To alleviate this problem, in practice,

disabled users transition to explore by touch mode to focus on a random element outside of

the loop and resume directional exploration forward or backward from there. This Proxy,

similarly, tries to use touch exploration.

If the element is not found in Directional Exploration, TalkBack Proxy tries Touch Explo-

ration mode by touching on the coordinates of the target element. If the element cannot

be focused, TalkBack Proxy reports a violation of Locatable rule for the element. Once the

element is located (focused), TalkBack Proxy uses Accessibility API to perform the intended

operation., e.g., perform a double tap on the screen to click on the focused element. If the

target element cannot be focused by Directional Exploration or Touch Exploration modes,

a locatability failure is reported using TalkBack.

Abstract Proxy

As mentioned in Section 4.3, all assistive services in Android are built on top of the Accessi-

bility API. To evaluate the app accessibility, given all the capabilities of Accessibility API,

we introduce Abstract Proxy. Accessibility issues revealed for Absract Proxy exist for all

other assistive services (e.g., SwitchAccess [16] for users with motor impairment) since they

use Accessibility API to locate elements and perform actions on them.

For locating an element, Abstract Proxy locates the elements by their apath similar to what

was explained for Touch Proxy. Then, it sends the event corresponding to the action, e.g.,

ACTION CLICK to the located node using Accessibility API.

All the proxies return the next state of the app along with the execution logs to the Oracle

component to be further analyzed. The execution logs contain all the triggered events, the

action specification, node information, and failure reports.

60

4.4.4 Oracle

The Oracle component is responsible for analyzing each app state and corresponding execu-

tion logs to determine if an accessibility issue exists in executing an action with a proxy.

For locatability issue, Oracle refers to failure reports of proxies to check if the Proxy

was successfully locating the element. For actionability issue, Oracle first analyzes

event logs to check if the events which are indicating a change in the content of

the UI, i.e., TYPE WINDOW CONTENT CHANGED, and executing an action, e.g.,

TYPE VIEW CLICKED, occurred. It also compares the app’s previous state with the

new state to ensure the event occurred. In comparing app states, Oracle compares their UI

hierarchy similar to Snapshot Manager by comparing their hash values. However, Oracle

does not exclude the same attributes as Snapshot Manager in calculating the hash value.

For example, changes in the text attribute are not demonstrating a new screen for Snapshot

Manager but can indicate an action execution. In the end, if the UI hierarchy before and

after the action execution is the same, and there is no corresponding AccessibilityEvent of

the executed action, the oracle reports an actionability issue for a given User Proxy.

Furthermore, the Oracle compares the actionability of each element across di!erent proxies

to check if there exists at least one Proxy that can successfully perform the action. This

way, we are assured the element is associated with behavior (it is operative) and not just a

decorative element.

4.5 Optimization

In the previous section, we explained how, given a snapshot of an app, Groundhog extracts

all possible actions for each of them, and locates and performs the available actions using

di!erent proxies. For example, Figure 4.4 depicts the process of locating two elements (a)

61

(a) (b)

20

1 2

3
4

5
6

7
8

9 10

11
12

13
14

15 16

17
18

19

1 2

3
4

5
6

7
8

9 10

11
12

13
14

15 16

17
18

19

21
22

Figure 4.4: Locating (a) the last “ADD” button, and (b) the “Done” button with TalkBack
Proxy in directional navigation. 18 directional navigation interactions in (b) are redundant
since they have been performed in (a) already.

the last “ADD” button, and (b) the “Done” button. Note that TalkBack traverses the UI

hierarchy with each swipe starting from the top left element on the screen. As can be seen

in Figure 4.4, the elements 1 to 19 appear both in (a) and (b). In other words, there is

substantial redundancy between the steps required to locate these two elements.

We introduce an optimization technique using a memoization algorithm to minimize the

number of interactions in the Directional Exploration strategy without losing the accuracy

of detecting locatability issues in an app. The basic idea is to memorize the elements that

62

TalkBack has located directionally in previous action executions and start the exploration

from the closest located element to the target element. To locate the target element, Talk-

Back Proxy first sends a direct AccessibilityEvent, called ACTION FOCUS to element e

which asks TalkBack to focus on it directly. The element e is a visited element in the past

action executions of TalkBack Proxy, closest to the target element in the UI hierarchy. This

way, all directional navigation from the start to the element e is bypassed, allowing the

exploration to proceed much faster.

4.6 Implementation

Groundhog is designed as a Client-Server architecture model where the server is on the

host machine and the client resides on an Android device. The server side, implemented

in Python, orchestrates the whole analysis from running an app crawler, taking snapshots,

executing actions with proxies, creating reports, and visualizing the results. The client,

implemented in Java, is basically an accessibility service, i.e., proxies, that controls the

device to execute actions.

Groundhog utilizes Android Debug Bridge (ADB) [26] to manage communications between

the server and client. Groundhog also modifies Stoat app crawler [149] and employs it to

explore di!erent states of the app. As discussed in Section 4.4, any app crawler can be used

in Groundhog. The rationale behind choosing Stoat is that it is completely open-source

and conveniently works with the latest Android versions. It also has been widely used in

previous studies. Lastly, Pillow [53] Python imaging library and Flask [122], python web

framework, assist in visualizing the detected accessibility issues.

In our experiments, for actionability evaluation of GUI elements, we only focused on click

actions that are most commonly associated with app behaviors. However, Groundhog can

63

be similarly configured for any other type of action, e.g., long-click.

4.7 Evaluation

We conduct several research experiments to evaluate Groundhog and answer the following

research questions:

RQ1. How e!ective is Groundhog in detecting accessibility issues?

RQ2. How does Groundhog compare to Google Accessibility Scanner (the o”cial acces-

sibility testing tool in Android)?

RQ3. What are the characteristics of the detected accessibility issues? How do they impact

app usage for users with disabilities?

RQ4. What is the performance of Groundhog? To what extent optimization improves

its performance?

4.7.1 Experimental Setup

We evaluateGroundhog on three di!erent sets of real-world apps. First, a set of 20 random

apps with more than 10 million installs in Google Play Store [28] (labeled as P). Second,

20 randomly selected apps from AndroZoo [8], a collection of Android apps collected from

several sources including Google Play (labeled as A). All of these 40 apps are published in

Google Play in 2021 and 2022. We also included 17 apps from the 20 apps that were evaluated

by Latte [139] (labeled as L).2 Latte is a related prior tool, discussed in Section 5.1, to which

we compare against. Out of the 17 apps from the Latte dataset included in our study, 11

have confirmed accessibility issues.

2We had to exclude 3 outdated apps that do not work anymore.

64

In total, our dataset consists of 57 apps that have been published in 21 di!erent categories

in Play Store. The complete list of datasets can be found on our companion website [144].

We ran Groundhog on each app until at least 10 states (screens) were captured (in total

570 di!erent states).

To answer the research questions, we carefully examined the results to check if the reported

issue is correct (true positive) or wrong (false positive). Therefore, we create a smaller set of

results by selecting 5 UI states from 10 apps in each dataset (P, A, and L). In total, a set of

150 di!erent UI states with 1,133 actions is created which can be seen in Table 4.1 (sorted

based on installs).

All experiments were conducted on a typical computer setup for development (MacBook Pro,

2.8 GHz Core i7 CPU, 16 GB memory). We used the most recent distributed Android OS

(SDK30), and the latest versions of assistive services, i.e., TalkBack 12.1 and SwitchAccess

12.1.

4.7.2 RQ1. E!ectiveness of Groundhog

Table 4.1 summarizes the accessibility issues detected by Groundhog. The Actions column

represents the total number of extracted actions from all di!erent states of the app and the

number of actions that Groundhog found to be operative, i.e., leading to a modification

in the GUI state. As shown in the Table, on average, each snapshot has 7.5 actions to be

evaluated by proxies. The columns entitled TalkBack Unlocatable, TalkBack Unactionable.,

and Abstract Unactionable represent locatability and actionability issues by TalkBack Proxy,

and actionability issues by Abstract Proxy, respectively. For each type of issue, we show the

total number of detected issues and the number of issues manually verified by authors or

True Positives (TP).

65

T
ab

le
4.
1:

T
h
e
ev
al
u
at
io
n
su
b
je
ct

ap
p
s
w
it
h
th
e
d
et
ai
ls
of

d
et
ec
te
d
ac
ce
ss
ib
il
it
y
is
su
es

by
G
r
o
u
n
d
h
o
g

Id
A
p
p

C
at
eg
or
y

#
In
st
al
ls

#
A
ct
io
n
s

T
al
kB

ac
k

U
n
lo
ca
ta
b
le

T
al
kb

ac
k

U
n
ac
ti
on

ab
le

A
b
st
ra
ct

U
n
ac
ti
on

ab
le

#
A
ll
Is
su
es

S
ca
n
n
er

T
ot
al

O
p
er
at
iv
e

T
ot
al

T
P

T
ot
al

T
P

T
ot
al

T
P

S
A

T
ot
al

T
P

P
1

In
st
ag
ra
m

S
oc
ia
l

¿1
B

31
17

0
0

0
0

0
0

0
0

0
9

P
2

F
ac
eb

oo
kL

it
e

S
oc
ia
l

¿1
B

20
18

14
14

0
0

7
6

6
21

20
33

P
4

Z
oo

m
B
u
si
n
es
s

¿5
00
M

26
25

1
0

0
0

0
0

0
1

0
13

P
7

M
ic
ro
so
ft
T
ea
m
s

B
u
si
n
es
s

¿1
00
M

23
19

0
0

2
0

2
0

0
2

0
6

P
11

M
ov
et
oi
O
S

T
oo

ls
¿1
00
M

12
10

2
2

0
0

0
0

0
2

2
11

P
12

B
ib
le

B
oo

ks
¿5
0M

44
39

6
6

0
0

0
0

0
6

6
20

P
13

T
oo

n
M
e

P
h
ot
og
ra
p
hy

¿5
0M

48
41

18
17

1
0

0
0

0
19

17
43

P
19

V
en
m
o

F
in
an

ce
¿1
0M

24
17

0
0

0
0

0
0

0
0

0
6

P
21

L
yf
t

N
av
ig
at
io
n

¿1
0M

21
18

2
0

0
0

0
0

0
2

0
2

P
22

E
xp

ed
ia

T
ra
ve
l

¿1
0M

40
34

9
6

0
0

0
0

0
9

6
71

A
1

Y
O
N
O

F
in
an

ce
¿1
00
M

92
59

54
41

9
9

1
1

1
64

51
39

A
2

N
or
to
n
V
P
N

T
oo

ls
¿1
0M

21
16

9
8

1
0

0
0

0
10

8
8

A
3

D
ig
it
al
C
lo
ck

T
oo

ls
¿1
0M

57
42

7
7

0
0

1
0

0
8

7
21

A
5

T
o-
D
o-
L
is
t

P
ro
d
u
ct
iv
it
y

¿5
M

45
32

2
1

0
0

0
0

0
2

1
19

A
6

E
st
ap

ar
V
eh
ic
le
s

¿1
M

41
31

23
21

2
0

0
0

0
25

21
11

A
9

M
yC

en
ts
ys

H
ou

se
¿1
0K

34
19

0
0

0
0

9
9

9
9

9
14

A
10

H
M
an

ag
er

P
ro
d
u
ct
iv
it
y

¿1
0K

17
17

2
2

0
0

0
0

0
2

2
5

A
11

G
re
ys
h
ee
t

L
if
es
ty
le

¿1
0K

44
24

1
0

0
0

19
18

18
20

18
10

A
13

M
G
F
la
sh
er

V
eh
ic
le
s

¡1
0K

54
37

5
5

2
2

6
6

6
11

11
19

A
18

A
u
d
it
M
an

ag
er

P
ro
d
u
ct
iv
it
y

¡1
0K

15
10

0
0

5
5

5
5

5
5

5
6

L
3

Y
el
p

F
oo

d
¿5
0M

62
56

10
9

0
0

0
0

0
10

9
9

L
4

G
ee
kS

h
op

p
in
g

S
h
op

p
in
g

¿1
0M

29
28

5
3

0
0

0
0

0
5

3
13

L
5

D
ic
ti
on

ar
y

B
oo

ks
¿1
0M

42
38

3
1

0
0

2
1

0
5

2
16

L
6

F
at
S
ec
re
t

H
ea
lt
h

¿1
0M

37
37

11
9

1
1

0
0

0
12

10
14

L
8

S
ch
oo

lP
la
n
n
er

E
d
u
ca
ti
on

¿1
0M

52
48

8
8

0
0

1
0

0
9

8
52

L
9

C
h
ec
ko

u
t5
1

S
h
op

p
in
g

¿1
0M

29
22

6
6

0
0

0
0

0
6

6
4

L
11

T
ri
p
It

T
av
el

¿5
M

52
39

9
8

0
0

0
0

0
9

8
6

L
12

Z
ip
R
ec
ru
it
er

B
u
si
n
es
s

¿5
M

31
27

1
0

0
0

0
0

0
1

0
5

L
13

F
ee
d
ly

N
ew

s
¿5
M

63
34

34
34

14
12

24
23

23
58

57
1

L
15

B
u
d
ge
tP

la
n
n
er

F
in
an

ce
¿1
M

27
25

2
0

6
6

6
6

6
8

6
26

T
ot
al

11
33

87
9

24
4

20
9

43
34

83
75

74
34
1

29
3

51
2

P
re
ci
si
on

0.
85

0.
79

0.
90

0.
86

66

To verify if an issue is detected correctly by Groundhog, we load the corresponding snap-

shot on an emulator and interact with the app manually. For TalkBack locatability issues,

we explored the app using TalkBack’s two exploration modes, i.e., Directional and Touch

Exploration strategy and check if the target element cannot be located in either way. Note

that since Abstract Proxy directly interacts with the corresponding AccessibilityNodeInfo

objects, it has no locatability issue.

For the actionability issues, first, we perform the action with touch (by tapping on the

element) and observe the changes in the app state, e.g., by tapping on a checked box, its

state changes, or by clicking a button, a new page may appear. Once we confirmed the

target element is associated with an action by touch, we reload the snapshot to the same

state two other times. The first time, we use TalkBack to click on the element (double

tap), and the second time we send ACTION CLICK to the target element using ADB and

Groundhog. Then we monitored all changes to see if anything happened. We follow a

conservative strategy and assume that any changes after clicking (even if it is not the same

as the change after tapping the element) show the element is actionable.

With the number of verified issues (TPs), we evaluated the e!ectiveness of Groundhog in

terms of Precision as the ratio of the number of TPs to the number of all detected issues.

We also report Action Coverage and Recall of Groundhog as follows.

Precision

The number of locatability and actionability issues that are confirmed manually are shown in

Table 4.1. In total, Groundhog could detect 293 true accessibility issues with a precision

of 86%. Two-thirds of the apps in our test set have locatability issues. Note that, when an

element is not locatable by TalkBack, it cannot be verified if it is actionable. Therefore, the

number of TalkBack Proxy actionability issues is expected to be less than Abstract Proxy

67

actionability issues. A9 and A11 are the only two exceptions in our test set. Our further

investigations of these apps reveal that TalkBack dispatches touch events to the screen when

performing ACTION CLICK fails. TalkBack utilizes this workaround to overcome some

accessibility issues in apps.

Our analysis of Groundhog’s failures showed that 39 out of 48 false positives could be fixed

by rerunning Groundhog on the app for the second time. The reason for these failures

in the first attempt is the improper timing between performing an action and retrieving

the results from the device, e.g., some of AccessibilityEvents are not captured, which is a

common challenge in dynamic analysis techniques due to concurrency issues.

In a few of the false positives, although the assistive services did not make any changes to

the app’s state, the changes by touch interaction do not contribute to any functionality of

the app. For example, Figure 4.5 (a) shows the login page of MicrosoftTeams app (P7).

Clicking on the email text box on the login page results in di!erent behaviors based on the

way it is performed. When a user with an assistive service clicks on the text box, nothing

happens; however, if a user touches the text box, the decorative figure disappears, as shown

in Figure 4.5 (b). Groundhog reports this as an actionability issue. However, since this

change does not impact assistive-service users, we mark it as a false positive.

Some false positives happen because of changes in the app state during exploration. For

example, Groundhog reports a button in a slider list of the To-Do-List app (A5) as locata-

bilty issue, as shown in Figure 4.5 (c). However, the reason behind this is that the element

is the last item on the list and when TalkBack focuses on it, the sliding widget fetches new

elements and moves the elements to the front. This changes the GUI hierarchy layout and

Groundhog does not realize the current first element is the same as the last element on

the list seen previously. Moreover, Groundhog detects a TalkBack actionability issue for

the SchoolPlanner app (L8), as shown in Figure 4.5 (d), since performing a click on the

focused element does not change the UI state (since the tab is already active). However, by

68

touching on the tab, we are in fact touching on the overlay, resulting in the disappearance

of the overlay element.

Action Coverage

To understand the e!ectiveness of Groundhog in extracting all possible actions from the

screen, we manually examined all 150 UI states by touch interactions to extract the set

of all elements that are associated with an action. In total, we found 1,149 actions, where

Groundhog could extract 1,133 of them (98% action coverage). In cases thatGroundhog

missed an action, there was a custom-implemented UI widget without proper specifications

for accessibility services. For example, two missing actions, back and search buttons from

apps Greysheet and Feedly apps (A11 and L13), depicted in Figure 4.5(e), and (f), are

layouts with attribute clickable set to False. Thus, Groundhog cannot identify them as

actionable elements.

Recall

To calculate the recall of Groundhog in detecting real accessibility issues, we used the set

of confirmed accessibility issues by Latte [139] as the ground truth. In total, Latte found

12 accessibility issues, where 10 of them could be detected by Groundhog (83% recall in

detecting existing issues). One false negative happens for the Feedly app whereGroundhog

did not extract the search button, depicted in Figure 4.5 (e), as an action. The other false

negative happens in the Dictionary app, where the accessibility issue can be revealed after

performing three consecutive actions on the app. Since Groundhog analyzes an app only

with one action, this issue could not be detected. We also found 87 new accessibility issues

in the dataset of apps from Latte that were not detected by Latte.

In comparison with Latte, we can see Groundhog is able to detect a much larger number

69

of accessibility issues. This is mainly because Latte assumes the availability of manually

written GUI tests and does not achieve the same level of coverage as Groundhog that uses

a crawling technique. At the same time, in a few cases, Groundhog is missing certain

accessibility issues that are detected by Latte because manually written tests can exercise

non-native UI elements that do not have a proper specification for accessibility services (i.e.,

attributes of AccessibilityNodeInfo object are not properly set), while Groundhog cannot

properly analyze such elements.

4.7.3 RQ2. Comparison with Scanner

Google Accessibility Scanner [17], or Scanner for short, is the most widely used accessibility

analyzer for Android. Scanner leverages Accessibility Testing Framework (ATF) [24] to

evaluate screen accessibility. To compare Groundhog with Scanner, we analyzed all the

examined app states in Table 4.1 with Scanner and checked what it reports. The last

column of Table 4.1 displays the number of issues detected by Scanner. By comparing the

accessibility issues reported by Groundhog against what Scanner reports, we found that

there is no intersection between the type of issues each of them detects. Scanner evaluates

a screen against predefined accessibility rules and reports issues such as low contrast, small

touch target size, and missing speakable text for unlabeled icons. It cannot detect issues

related to interactions with an app using assistive services. However, the accessibility issues

reported by Scanner are also important to be addressed to have an accessible app. We believe

thatGroundhog complements Scanner and other ATF-based testing techniques [12, 64, 84]

in evaluating app accessibility.

70

(a) (b)

(c)

(d)

(e) (f)
Figure 4.5: (a-d) are examples of false positives, and (e-f) are examples of missing actions
in Groundhog

71

(a)

(b) (d) (g)

(e)

(f)

(c)

(a) (d)

(e) (g)

(c)

(f)

(b)

Figure 4.6: Qualitative study of Groundhog’s report on subject apps

4.7.4 RQ3. Qualitative Study

Wemanually examined all the detected accessibility issues to understand how the issues a!ect

users with a disability and what are their root causes. We found four di!erent categories of

issues as follows.

Unlocatable elements with TalkBack

Groundhog evaluates locatability of elements by TalkBack in using both directional and

touch exploration strategies. In severe cases, neither of these strategies can locate an element.

For example, Figure 4.6 (a) shows a screen in the Expedia app where none of its elements,

even the back button, can be detected by TalkBack. We found that the root cause of this

issue is having the important-for-accessibility attribute set to false, meaning that TalkBack

should treat them as decorative elements and skip them in exploring the app. Developers

should set this attribute properly. We found this issue in Facebook, Expedia, Checkout51,

ToonMe, SchoolPlanner, and Yelp apps.

72

In some cases, the element can be located by directional exploration, but not by touch

exploration. For example, Figure 4.6 (b) depicts the entry screen of YONO (a banking app),

where the highlighted button can be located by directional exploration, yet, the element does

not get accessibility focus when touched. This issue happens when there is an overlap among

the active elements on a screen, similar to Figure 4.6 (b), where the highlighted button is

placed under the top layout. Such elements confuse users about the screen’s content and

may also have security implications when a malicious functionality is hidden by malware

authors in such elements. The security implications of this accessibility issue are further

studied in [111]. This type of issue can be found in YONO, Feedly, Dictionary, Estapar,

TripIt, NortonVPN, Facebook, DigitalClock, ToonMe, AuditManager, and SchoolPlanner

apps.

The remaining cases of locatability issues occur in elements that TalkBack skips in directional

exploration but can be focused on by touch. For example, Figure 4.6 (c) shows a part of

the Bible app, when the user uses TalkBack in Directional exploration and reaches the end

of the text, the highlighted bottom menu disappears. For a sighted user who sees all the

changes on the screen, the disappearance of the menu can aid in reading the rest of the text

more conveniently; however, it confuses blind users who may not even know the menu exists

in the first place. The FatSecret, Geek, ToonMe, TripIt, Bible, MoveToiOS, and HManager

apps have this type of issue.

Actionability

This issue manifests itself when an assistive service cannot be used to perform an action.

Groundhog could find this type of issue in Facebook, Dictionary, Feedly, BudgetPlan-

ner, MyCentsys, Greysheet, MGFlasher, AuditManager, FatSecret apps. For example, Fig-

ure 4.6 (d) shows a button in Feedly app that can only be clicked by touch.

73

Generally speaking, Abstract Proxy has more capabilities than TalkBack in performing ac-

tions as it uses Accessibility API to directly click on AccessibilityNodeInfo object. However,

this was not the case in MyCentsys and Greysheet apps. Our further investigation and study

on TalkBack source code [19] revealed that TalkBack utilizes a workaround to mitigate ac-

cessibility issues in apps. Talkback first uses Accessibility API to perform and check if the

action is sent successfully; otherwise, it sends a touch event to the center of the focused

element. Although this workaround may address inaccessibility in some situations, it may

confuse users even more in some other situations. For example, Figure 4.6 (e) highlights a

button under the Register button with the text “Help”. However, when a TalkBack user

double taps, the Register button is clicked instead.

A common theme of apps with actionability issues is that they are developed using hybrid

frameworks or utilize WebViews [29]. Hybrid frameworks enable a developer to implement

mobile apps in one codebase with one language, like C# in Xamarin[114]. Similarly, Web-

View renders web elements that are developed in HTML, CSS, and JavaScript code in mobile

apps. One of the advantages of hybrid apps and Webviews is reusing the same code on dif-

ferent platforms, like iOS, Android, and even the Web. We could find YONO, ToonMe,

Estapar, and Greysheet apps in Apple Store with similar accessibility issues detected by

Groundhog, manifested by Voiceover (the iOS’ o”cial screen reader). We believe further

studies are required to assess the accessibility issues resulting from hybrid frameworks.

Counterintuitive Navigation

One type of information produced by Groundhog as part of its reporting is short videos

in GIF format showing how Talkback navigates directionally to reach an element. Checking

these videos revealed a new type of accessibility issue where developers set an unexpected

traversal order for elements. For example, Figure 4.6 (f) shows the visiting order of a

calendar’s elements in SchoolPlanner. As seen, there is no pattern in visiting the elements.

74

In another example, Yelp’s home page has counterintuitive navigation where the search

button (which is at the top of the page) will be reached when all other elements have been

visited.

Inoperative Actions

We examined the inoperative actions reported by Groundhog to see how they impact users

with disabilities. Such clickable elements without any impact on the app content increase

the number of interactions for TalkBack users to reach an element. For example, it takes

25 directional navigation to reach the farthest element in a state of DigitalClock; however,

if the inoperative actions are removed by developers it can be reduced to 20 interactions,

saving 20% of time spent by users with disabilities.

However, in some instances, there is a usability bug in inoperative actions which concerns

regular users. For example, Figure 4.6 (g) shows a profile page of a user in Yelp where

Groundhog detects the Follow button is not operative. Here, the other buttons in the

same row (Compliment and Message) are associated with an action (the login page appears).

It seems, there is a bug that makes the Follow button inoperative.

4.7.5 RQ4. Performance

We measured the time that Groundhog takes to create reports to understand how

Groundhog can be integrated into the development lifecycle. For an app on average,

Groundhog takes 3,541 seconds to explore an app, execute all actions using di!erent prox-

ies, and produce an accessibility report with visualized information. Since Groundhog

does not require any manual input from developers, analyzing an app in less than an hour

is completely practical, and can be done on a nightly basis.

75

The breakdown of the execution time is as follows. The app crawler (Stoat) takes 420 seconds

on average to explore di!erent states of the app. The action extraction part virtually takes

no time (less than a second). The heavy part of Groundhog is executing each action via

proxies. Groundhog executes each action in 21, 24, and 40 seconds for Abstract, Touch,

and TalkBack Proxy, respectively. There are some common time-consuming parts for all

proxies: reloading snapshot takes 4.1 seconds, reconnecting ADB takes between 2 to 12

seconds, and Groundhog waits for 5 seconds after each action is executed to ensure all

changes in the app state are finalized. TalkBack Proxy takes more time to execute because

the communication betweenGroundhog and TalkBack is a slow process sinceGroundhog

actually performs touch gestures and waits for TalkBack to change its internal state.

Groundhog’s performance can be improved significantly by parallelizing the snapshot anal-

ysis thanks to its Client-Server model. Each VM snapshot is less than 1GB of data and can

be easily transferred in less than 10 seconds.

Locating an element using TalkBack Proxy takes 9.71 seconds on average per action. With-

out our optimization technique, it would take 26 seconds on average. In other words, the

optimization improves the performance of this aspect of Groundhog by more than 2.5

times per action, which reduces the app analysis time by 10 minutes on average.

4.8 Threats to Validity

External validity. A key threat to validity is preserving the state of the app under test since

three di!erent proxies should perform the same action on the same element. We mitigate

this threat by capturing a VM snapshot of the device used for all proxies. The virtualization

technique may not preserve the state of apps that update their content dynamically or

retrieve information from the server. For example, in a shopping app, if one proxy adds an

76

item to an empty shopping cart that is synchronized with an external database, the same

VM snapshot may be in a di!erent state when it is loaded for another proxy. We have not

observed this situation occurring in our experiments; however, to prevent reporting false

positives/negatives in similar cases, we check the UI hierarchy of the apps after loading the

VM snapshots. If they are not exactly similar, we report a flag indicating that the VM

snapshot is di!erent and the result may not be reliable. It would be interesting for future

work to examine elegant solutions for handling dynamic and online content.

Another threat resides in the variety of actions supported by Groundhog. Our current

implementation supports clicking action. Other touch gestures are not implemented. Al-

though clicking is one of the most essential touch gestures for interacting with GUI elements,

our claimed benefits of Groundhog can be more confidently generalized by providing and

evaluating support for other types of actions. However, it is worth noting that most other

complex touch gestures, like pinching in/out or double-tap, are not supported by assistive

services in the first place. For example, pinching can be used for zooming in on an image,

but it does not have an equivalent in TalkBack since blind users may not see visual images.

Internal validity. We implemented Groundhog using several libraries and tools, includ-

ing ADB, Android Virtual Device, Stoat [80], and AccessibilityService in Android, which may

introduce defects in the crawling and analysis steps of our implementation. Furthermore, our

prototype may contain bugs in its implementation. We have tried to minimize this threat

by upgrading all libraries to the latest available versions, writing automated unit tests, and

conducting code reviews. In addition, we tested the prototype extensively on numerous

popular Android apps.

77

4.9 Related Work

Empirical studies on mobile accessibility [12, 155, 137, 45] have revealed the prevalence of

various accessibility issues in mobile apps, preventing disabled users from utilizing their

services. These findings have motivated the research community to develop techniques to

automatically detect accessibility issues [64, 12, 23, 48], and to repair the detected issues [45,

112, 10, 183].

In general, automated accessibility testing techniques evaluate app compliance with acces-

sibility guidelines [163] using static or dynamic analysis approaches [148]. Static analysis

approaches such as Lint [23] identify accessibility violations in the source code upon com-

pilation. Thus, they are not able to detect issues that can be detected at runtime. To

mitigate their limitations, dynamic analysis techniques are proposed to analyze the runtime

attributes of rendered UI components on the screen. Google accessibility Scanner [17] and

other tools that are built on top of Accessibility Testing Framework [84, 88, 64] take a single

app screen from the developers to run their tests and report issues such as small touch target

size or duplicate name issues. The capabilities of these tools are limited to a small number

of issues that were supported by accessibility guidelines that are found to only cover around

50% of the issues [130]. Thereby, they are not able to detect issues that manifest themselves

in interactions with apps. This limitation, similarly, exists for enhanced dynamic techniques

that evaluate the same accessibility rules but replace the developers’ e!ort in exploring an

app with a crawler [12, 64] or provide the ability to write app exploration scenarios in form

of GUI tests [22, 134].

A related prior work is Latte [139], which was already discussed in Section 4.1 and empirically

compared against in Section 4.7. Alotaibi, et al. [11] have proposed a method of detecting

certain accessibility failures that may occur when using TalkBack. However, in contrast to

Groundhog, their approach requires the developer to manually navigate through the app,

78

i.e., the input to their tool is a screen of an app, rather than the app under test. Furthermore,

their approach cannot detect unactionable elements. Such manual exploration is expensive,

time-consuming, and may not result in good coverage.

Unlike prior testing techniques, Groundhog is a fully automated accessibility testing tech-

nique that only requires app in binary form and detects accessibility issues in interactions

with the app using several interaction models. Groundhog can be generalized to any as-

sistive service in the context of Android and with di!erent exploration modes to evaluate all

GUI elements at each state.

4.10 Conclusion

Prior accessibility testing tools can only point out a small portion of the problems that

people with disabilities encounter while interacting with an app [109]. In this work, we

proposed Groundhog, a fully automated assistive-service driven accessibility crawler to

detect accessibility issues that only manifest themselves through interactions with the app.

Groundhog explores apps and assesses the locatability and actionability of each element

on the screen using di!erent interaction modes provided by assistive services. Our future

work involves evaluating the extent to which the ideas presented here can be applied to other

computing domains (e.g., iOS, Web), and expanding Groundhog’s support to additional

assistive services and more complex gestures.

79

Chapter 5

AT-Aware Accessibility Testing:

Over-Accessibility Issues

Mobile apps, an essential technology in today’s world, should provide equal access to all,

including 15% of the world population with disabilities. Assistive Technologies (AT), with

the help of Accessibility APIs, provide alternative ways of interaction with apps for disabled

users who cannot see or touch the screen. Prior studies have shown that mobile apps are

prone to the under-access problem, i.e., a condition in which functionalities in an app are not

accessible to disabled users, even with the use of ATs. We study the dual of this problem,

called the over-access problem, and defined as a condition in which an AT can be used to

gain access to functionalities in an app that are inaccessible otherwise. Over-access has se-

vere security and privacy implications, allowing one to bypass protected functionalities using

ATs, e.g., using VoiceOver to read notes on a locked phone. Over-access also degrades the

accessibility of apps by presenting to disabled users information that is actually not intended

to be available on a screen, thereby confusing and hindering their ability to e!ectively navi-

gate. In this work, we first empirically study overly accessible elements in Android apps and

define a set of conditions that can result in over-access problem. We then present Over-

80

Sight, an automated framework that leverages these conditions to detect overly accessible

elements and verifies their accessibility dynamically using an AT. Our empirical evaluation

of OverSight on real-world apps demonstrates OverSight’s e!ectiveness in detecting

previously unknown security threats, workflow violations, and accessibility issues.

5.1 Introduction

Principles of universal design [54] dictate that technologies and services, including mobile

apps, must be accessible to everyone regardless of their abilities. These principles are often

overlooked in development practices, where developers build and test their apps based on

the assumption that by default, a user views the app content on the screen and interacts

with it by touch. Such assumptions exclude about 15% of the world’s population with some

form of disability, especially users with visual and fine-motor impairments. To facilitate

disabled users’ interaction with apps, mobile platforms support Assistive Technologies (AT)

such as screen readers or special physical keyboards, which utilize the information exposed

by Accessibility APIs to provide an alternative interaction model.

Prior studies have shown that many apps are shipped with functionalities that are not

accessible using ATs [140, 12]. We call this the under-access problem. In this paper, we

look at the dual of this issue, which we call the over-access problem. That is, some apps

are shipped with functionalities that in certain states can be accessed using ATs but not

otherwise.

An element is Overly Accessible (OA) when it provides more information and functionality

to AT users than regular users. In security-sensitive apps, OA elements can jeopardize

the security of password-protected apps such as banking, investment, health, etc. Case

in point, for several iOS versions, users have reported scenarios of using VoiceOver, the

81

standard screen reader in iPhones, to bypass iOS passcode and gain access to contacts,

photos, notes, etc [43, 97, 96]. Moreover, OA elements can be used to provide unauthorized

access to premium functionalities in apps with in-app purchases, endangering around 60%

of companies on app stores that derive revenue from such functionalities in their apps [115].

As an example, the Mediation Moments app [42] has premium articles that are available

to subscribed users; however, we found that an AT user can read these articles without

purchasing the subscription. Lastly, bypassing the designed workflow can result in invalid

inputs to be provided to an app, breaking its logic and leading to unexpected crashes. For

example, in using the Airbnb app to book a place, the “decrement” button is disabled for

touch when there is only one traveler, preventing zero and negative inputs. We found that

an AT user can still click this button and submit a request for a room for a negative number

of people.

Interestingly, over-access also degrades the accessibility of apps. Blind users utilize screen

readers to navigate through the elements on a screen sequentially. Even if the OA elements

are not security-sensitive, presenting information that the developer did not intend to be

available on the screen can confuse the screen-reader users. OA elements also increase the

number of required interactions to reach the desired element, resulting in a less optimal user

experience.

Despite the severe impacts of OA elements, they have received practically no attention in

prior accessibility analysis of apps or security-related studies. Neither Google Accessibility

Scanner [17], nor Apple Accessibility Inspector [34] check any rules for over accessibility.

They only check a set of accessibility rules (e.g., proper text size and color) on displayed UI

elements. Most other accessibility testing studies [22, 134] extend the accessibility rules of

standard scanners and cannot detect OA elements consequently. A recent accessibility testing

study proposed Latte [140], an accessibility testing framework to examine the accessibility

of UI elements by executing a specific use case using AT. Nevertheless, OA elements are not

82

a concern of Latte as it focuses on finding inaccessible elements.

Prior security-related studies [118, 87] have investigated the feasibility of constructing ma-

licious software (e.g., malware) to launch a security attack by exploiting accessibility APIs.

No prior study has investigated the vulnerabilities caused by OA elements in benign apps

that can be exploited by any user, and using the standard ATs.

To fill this gap, we conducted an empirical study on 100 di!erent UIs from 20 randomly

selected apps to understand OA elements and their specifications. We then developed a

tool, OverSight, to automatically detect them on a given state of the app.

OverSight first leverages the findings of our empirical study and devises a static checker

to analyze currently displayed UI elements and localize OA smells, i.e., elements with one

of the OA characteristics that may lead to revealing information or functionality that is

unavailable for sighted users and available for AT users. Then, OverSight validates the

accessibility of these elements dynamically using a custom AT with all the capabilities of

Accessibility API and Talkback, which is the standard screen reader on Android devices.

Finally, OverSight reports accessibility issues resulting from OA elements. Our empirical

evaluation on 30 apps reveals that OverSight can precisely detect more than 83% of OA

elements.

This chapter makes the following contributions:

• First study that introduces the problems caused by apps that are overly accessible.

• An empirical study of OA elements and their characteristics.

• The first automated tool, called OverSight, for localizing and detecting OA elements

in Android apps, which has been made publicly available [121].

• An empirical evaluation on real-world apps, corroborating the e!ectiveness of OverSight

83

in detecting OA elements.

The remainder of this chapter is organized as follows. Section 5.2 motivates this study

with an example and provides background information. Section 5.3 introduces OA elements

according to our empirical study. Section 5.4 explains OverSight, an automated approach

to detect OA elements. In Section 5.5, the evaluation of OverSight on real-world apps is

presented. The chapter concludes with a discussion of the related research and avenues of

future work.

5.2 Motivating Example & Background

Figure 5.1 shows screenshots of AppLock [92], a popular app locker with more than 5,000,000

installations and rating of 4.2. As shown in Figure 5.1 (a), the app lists all the installed apps

on a phone on its first page, enabling users to add a lock to any desired app. App lockers

protect themselves and other requested apps by preventing access to their content without

providing a secret pattern or passcode. When a user opens the AppLock or any locked apps,

e.g., Files or Messages as shown in Figure 5.1(a), she first sees the lock screen, depicted in

Figure 5.1(b), and should first unlock it with a preset pin. Many other types of apps (e.g.,

investment, health monitoring, diary, etc.) employ a similar protection strategy for their

contents.

A user without disability can see the pin pad and the text asking to “Enter pin” on the screen.

She would try to unlock the app by entering the pin through touching the numbers on the

screen. However, a user with disability has to rely on ATs to interact with apps. Mobile

platforms such as Android have integrated ATs such as TalkBack [72]—the standard Android

screen reader—and SwitchAccess [16]—a special keyboard with two keys, Next and Select—

to enable app exploration for disabled users. Both of these ATs focus on each element on

84

(a) (b)
Figure 5.1: Built-in lock for a security-sensitive app.

85

the screen and navigate through them sequentially, from top left to bottom right. The Select

switch in SwitchAccess or the double tap gesture in TalkBack perform the Click action that

is similar to touching the element without ATs. To represent each element to blind users,

TalkBack also announces a textual description of the focused element on the screen. For

visual elements like icons, these textual descriptions, which are called Content Description

in Android, should be provided by developers in the UI specification, a hierarchical structure

of elements represented in an XML file.

Unfortunately, developers oftentimes only test their apps’ functionality under conventional

ways of interaction, leading to many inaccessible functionalities in apps. A developer who is

aware of the disabled users’ limitations may utilize accessibility testing tools, such as Google

Accessibility Scanner [17], to evaluate the accessibility of their app. For example, for the

lock page of AppLock, Accessibilty Scanner reports an issue for the text contrast of “Enter

pin”. Accessibility Scanner may also report “missing speakable text” if there is a clickable

image without a content description, or “small touch target size” if the clickable area is too

small for an element. Google Accessibility Scanner, as well as all other prior accessibility

testing tools (e.g., [140, 17, 23, 113]), are aimed at finding under-access, i.e., features that

should be available to the user but cannot be accessed using ATs. None of these tools report

issues related to over-access, i.e., features that should not be available to the user but can

be accessed using ATs.

In practice, a blind user may need to understand the screen content by exploring and nav-

igating through all the elements on the screen. Figure 5.1(b) shows which elements can be

focused by TalkBack. The numbers indicate the order in which elements are focused. After

passing pin pad elements, TalkBack detects some elements that are not visible to sighted

users. We call these elements Overly Accessible (OA) as they are not visible to sighted users

or clickable by touch. Announcing these elements not only misleads the blind user about

the content of the page, but in many cases also requires an exorbitant number of interac-

86

tions to pass a long list of OA elements until the user reaches the visible functionality that

the developer intended to be available. Such OA elements remain undetected in the prior

accessibility testing tools.

These OA elements, as specified in Figure 5.1(b), can also pose security concerns. By listening

to what TalkBack announces, we can understand that the OA elements correspond to the

first page of AppLock as shown in Figure 5.1(a). This page contains the list of device apps

and the mechanism to enable or disable their locks. For instance, element 17 in Figure 5.1(b)

is the lock toggle for the Files app. This means that, using TalkBack, a user can access the

locked apps and disable their protections, without even entering the pin code. In essence, she

can bypass the lock screen protection. Prior research has demonstrated how Accessibility

APIs can be used by malware authors to launch a security attack [118, 87] and how to

prevent such attacks [132, 128]. No prior work, however, has aimed to develop a method

of assisting developers with detecting vulnerabilities caused by OA elements in benign apps

that can be readily exploited by any user, and using the standard ATs.

To fill this gap, we took a deeper look at how UI elements are represented to ATs. In modern

platforms such as Android, Accessibility Service runs in the background and provides the

required information about a window’s content to ATs. From the perspective of Accessibility

Service in Android, a window’s content is presented as a tree of AccessibilityNodeInfos

(nodes) [75]. Android 12 documentation lists 65 di!erent types of information that are

provided by nodes. Table 5.1 illustrates a sample set of this information. We hypothesize that

nodes with peculiar specifications can lead to OA elements. For example, in Figure 5.1(b),

by comparing the Bounds and DrawingOrder of elements, the second and third method in

Table 5.1, we found that the layout that expands the whole window is drawn on top of some

of the elements. While the elements underneath are covered for a sighted user, an AT can

still navigate through them and announce them to an AT user. Our objective in this study

is to study specifications of OA elements and propose an automated tool to detect such OA

87

Table 5.1: Sample types of information exposed from nodes to ATs.

Attribute Description

1 ActionList The actions that can be performed on the node.
2 Bounds The coordinates of the bounding box of the node.
3 DrawingOrder The drawing order of the view of this node.
4 Text The text of this node.
5 Enabled Whether this node is enabled.
6 VisibleToUser Whether this node is visible to the user.
7 Clickable Whether this node is clickable.
8 ContentDesc The content description of this node.
9 ChildCount The number of children.
10 PackageName The package this node comes from.

<node …
packageName
=“app1"/>

packageName=“app2”
(a) Out of boundary

(b) Covered

(c) Belongs

(d) Camouflaged

natural

com.google.android.apps
.messaging

com.gamemalt.applocker

Figure 5.2: Over Accessibility Conditions.

elements that can have severe security, privacy, and accessibility impacts on apps.

5.3 Overly Accessible Elements

An element is OA if it is exposing more information/functionality to ATs than what is

available through the conventional interaction mode. To understand to what extent node

specifications can reveal OA elements, we perform an empirical study on manually detected

OA elements on some real world apps. In this section, we explain the data collection and

88

results of this study.

5.3.1 Data Collection

Our goal is to collect all the available information from nodes to ATs. To that end, we

first developed an accessibility service, called OverSight Service (OSS), which is capable

of capturing di!erent types of information exposed from nodes. OSS runs in the background

on an Android device and receives commands from Android Debug Bridge (ADB) [26], a

command line tool that ships with Android devices. Using this service, we conducted an

empirical study on 100 di!erent screens of 20 real world apps. Our app list consists of 5 apps

with built-in lock from Google play and 15 randomly selected apps from 38,106 apps that

were published in 2021 in AndroZoo [9]. We installed each app on a Google Pixel 4 device,

along with OSS. Then, one author interacted with each app to find 5 di!erent states and

explored each state with TalkBack and without it. We aimed at finding elements that are

not visible to sighted users but TalkBack announces them or performs an action on them.

We utilized OSS to dump OA nodes screenshot and specification in the hierarchy of nodes.

We then performed open coding of these elements iteratively. Two authors of the paper

coded the elements, noting any condition that was not discovered before. To facilitate

e”cient coding, we developed a web application to visualize unannotated elements with

search and batch tagging capabilities. In this way, authors can search and tag elements in

batches using queries specified by di!erent types of information from nodes, for example,

Text ↑= ↓ ↔ ContentDesc ↑= ↓ filters elements without any information. After the initial

coding, the authors discussed disagreements to reach a consensus.

89

5.3.2 Results

We categorized the conditions of OA elements that were yielded during the coding procedure

into two main classes:

• Overly Perceivable: elements that reveal content to an AT that is not available through

regular interaction mode.

• Overly Actionable: elements that provide action to an AT that is not available through

regular interaction mode.

These classes are inline with two accessibility principles from Web Content Accessibility

Guidelines (WCAG) [159]: (1) Content should be equally perceivable by di!erent users [160],

and (2) UI elements should be equally operable by di!erent users [161]. These principles

can be violated due to bias in the level of access granted to any type of user, e.g., screen

reader users vs. sighted users. While providing more access through conventional interaction

modes, i.e., under-access problem, has been studied extensively and supported by a series of

guidelines, not many works have investigated its counterpart, i.e., over-access problem. Our

study is based on these principles and we organize detected OA elements’ conditions under

them. These conditions can be considered as accessibility guidelines to be later expanded

or tailored to di!erent platforms. Below, we list the conditions of OA elements we found in

Android apps.

Overly Perceivable

A node with a textual data or content description is Overly Perceivable if it cannot be read

or viewed by a sighted user, but can be accessed through programmatic means. We found

the following conditions for such elements that are hidden to sighted users:

90

P1. Out of boundary: Nodes that are outside of the screen boundary, either with neg-

ative coordinates or with coordinates exceeding the device size. On the left, Figure 5.2(a)

illustrates a schematic of the screen in layers corresponding to the drawing order of compris-

ing elements. The orange element is OA as it is out of screen boundary and is not visible

on the rendered screen. Figure 5.2(a) also shows an example in our empirical study on the

right.

P2. Covered: Nodes that are covered by other nodes in the rendered UI. Dashed boxes in

Figure 5.1 are examples of covered nodes. Figure 5.2(b) also schematically shows how the

orange OA element is covered by a blue sliding pane.

P3. Zero area: Nodes whose bounding box has zero area. These nodes will not be depicted

on the screen but can be focused by an AT that will announce their content.

P4. Invalid bounds: Nodes whose captured bounds contradict the bounding box defini-

tion in Android documentation. The bounds attribute is supposed to be presented as the

coordinates of the top-left and bottom-right points of the box. For example, if the coordi-

nates of the ending point are smaller than the start point, the node has invalid bounds.

P5. Android invisible: Nodes that are not out of screen boundary and have positive area

but they are specified as invisible to user.

P6. Belongs: Nodes that belong to a package name that is di!erent from the app under

test. Left side of Figure 5.2(c) illustrates that the green screen from app2 is placed on top

of the elements of app1. In the rendered screen, the elements from app1 are not visible to

sighted user but may be announced by ATs. The right side of Figure 5.2(c) shows a locker

in our study, in which the elements of the Messages app are detected on the lock screen.

91

user

Figure 5.3: Neat button is not working when touched by enabled users but is available to TalkBack
users.

Overly Actionable

The ActionList attribute of nodes specifies the list of actions available to ATs. When a

node support click action for ATs, the following conditions are barriers in performing that

action through conventional interaction modes.

A1. Hidden: Nodes that are hidden to sighted users, i.e., with any of P1 to P6 conditions

stated above.

A2. Disabled: Nodes that are disabled under certain conditions in the app and cannot be

triggered by touch. Figure 5.3 provides an example for this condition, where the teeth cor-

rection function is disabled for unsubscribed user but using TalkBack, the user can activate

it.

A3. Camouflaged: Empty nodes that are used as placeholders and are not detectable

by sighted users, e.g., empty text boxes. Figure 5.2(d) provides the schematic placement of

these nodes on the screen on the left and a real example on the right.

92

5.4 Approach

In this section, we introduce OverSight, an automated tool that gets the information

from a specific state of the app and returns a list of OA elements confirmed by an AT.

Figure 5.4 illustrates the overview of our approach. OverSight engine consists of two main

components: OA Detector (Section 5.4.1) and OA Verifier (Section 5.4.2).

OA Detector gets a window’s content specification in XML along with its screenshot through

OverSight Service (OSS). As described in Section 5.3, OSS runs in the background, dumps

hierarchical representation of nodes in an XML file, and enables communication with the

device through broadcast messages. OA Detector analyzes nodes on the window and re-

turns Over Accessibility Smells, i.e., nodes that meet one of the conditions derived from

our empirical study (Section 5.3). Confirming over accessibility issues in these nodes is the

responsibility of OA Verifier . Our approach only relies on available information to Accessi-

bilityServices; therefore, it is applicable to any app regardless of its technology or even if it

is obfuscated. OA Verifier communicates with the device and explores the window with an

AT to validate the reachability and actionability of over accessibility smells. OverSight

also visualizes over accessibility smells as well as OA elements on the screenshot along with

their specification for developers. In the following sections, we describe the details of each

component.

5.4.1 OA Detector

Our empirical study organizes a set of conditions under the basis of over-perceivability and

over-actionability. OA Detector implements these conditions to automatically check the

nodes against them.

Here, we describe the details of P1, P3-P6, and A1-A2 as implemented, and also elaborate

93

Over Accessibility
Smells

OA Verifier

OA Detector

Overly Accessible
Elements

PNG

OverSight

Draw pattern
 to unlock

Developer

Oversight
Service

Draw pattern
 to unlock

Visualizer

Figure 5.4: Overview of OverSight framework.

on the algorithms used to calculate covered nodes (P2) and camouflaged nodes (A3). Imple-

mentation details of all conditions are available with our open-source tool available at [121].

First, we define the conditions for perceivable and actionable nodes, and then we formally

define all over-perceivable and over-actionable nodes. Recall from the description of these

conditions in the previous section that all P1 to P6 nodes must be perceivable, and all A1

to A3 nodes must be also actionable.

Perceivable: A node is perceivable if it has a textual information. Based on Table 5.1, the

attributes text and ContentDesc may contain such information.

↗n ↘ Node;n.Text ↑= ↓ ↔ n.ContentDesc ↑= ↓

≃ perceivable(n) = True
(5.1)

Actionable: A node is actionable if it has an attribute that is associated with an action,

94

e.g., Clickable, LongClickable, or the existence of these actions in ActionList.

↗n ↘ Node;n.Clickable ↔ n.LongClickable↔

{CLICK,LONGCLICK} ⇐ n.ActionList ↑= ↓

≃ actionable(n) = True

(5.2)

P1. Out of boundary: To detect these nodes, we compare the boundary of the node with

the size of the window, i.e. Window.width, Window.height. The bounds of an element is

shown as the coordinates of the top left and bottom right of its bounding box.

↗n ↘ Node, n.bounds ⇒ [x0, y0, x1, y1];

x0 < 0 ↔ x1 > Window.width ↔ y0 < 0 ↔ y1 > Window.height

≃ out of bound(n) = True

(5.3)

P2. Covered: To find out covered elements, we investigate how Android draws elements on

a window. Android draws a window starting from the root node and recursively draws the

child elements according to their drawingOrder. To determine what nodes are covered, we

simulate Android’s drawing in reverse order using a depth-first search algorithm. We start

visiting nodes from the last drawn node to the first drawn node and keep track of covered

areas. A node is “covered” if any of the covered areas obscure its bounding box.

Algorithm 1 explains our approach in details. For a given node, n, and a set of bounds

that may cover it, BC , DetectCovered first checks if n is covered to set all the descendants

up to the leaf node as covered. (Line 2-4) If n is not covered, we will assess if its children

are covered. To that end, we first sort the children in descending order based on their

drawingOrder in line 5. The first element in the ordered list is the last child drawn by

Android on the window among the other children. Then, in line 6, we iterated through the

children and check if they are covered by any bounds in BC . If that is the case, in the

95

Algorithm 1: Overlap Analysis Algorithm
Input: n ↘ Node(The visiting node), BC : {b1, · · · , bk}(The set of covering bounds)

1 Function DetectCovered(n, BC):

2 if n.covered then

3 ↗d ↘ n.descendants : d.covered ⇑ True

4 return

5 ordered ⇑ Sort n.children based on decreasing order of drawingOrder

6 foreach m ↘ ordered do

7 if m.bounds is covered by BC then

8 m.covered ⇑ True

9 DetectCovered(m, BC)

10 BC ⇑ BC ⇓m.bounds

recursion call, the algorithm set all the descendants covered. Otherwise, in the recursion

call, children of node m will be assessed. In line 10, we add the bounds of node m to the set

of covering bounds since the other children in the for loop of line 6 may be covered by m.

P3. Zero area: The bounding box of any node forms a rectangle which can have a zero

area.

↗n ↘ Node, n.bounds ⇒ [x0, y0, x1, y1];

x0 = x1 ↔ y0 = y1 ≃ zero area(n) = True
(5.4)

P4. Invalid bounds: We use Equation 5.5 to find the nodes whose bounding box –

bottom-left and top-right coordinates – is not a rectangle.

↗n ↘ Node, n.bounds ⇒ [x0, y0, x1, y1]; x0 > x1 ↔ y0 > y1

≃ invalid bounds(n) = True
(5.5)

P5. Android invisible: To detect nodes with this condition, we look for nodes without any

of the above-mentioned conditions that are marked as invisible to user in node attributes.

96

(Recall row 6 in Table 5.1)

↗n ↘ Node;¬n.V isible ⇔ ¬out of bound(n)⇔

¬n.covered ⇔ ¬zero area(n) ⇔ ¬invalid bounds(n)

≃ android invisible(n) = True

(5.6)

P6. Belongs: We compare the package name of nodes with the package name of the UI

under test (UIUT) to find if nodes belong to its corresponding app.

↗n ↘ Node;n.pkgName ↑= UIUT.pkgName

≃ belongs(n) = True
(5.7)

A1. Hidden: An actionable node that has any conditions in Equations 5.3 to 5.7 is

considered hidden, since a sighted user cannot perform any touch gesture on it.

↗n ↘ Node; out of bounds(n) ↔ n.covered ↔ zero area(n)↔

android invisible(n) ↔ invalid bounds(n) ↔ belongs(n)

≃ hidden(n) = True

(5.8)

A2. Disabled: The enabled attribute of a disabled actionable node should be False to be

considered as over-actionable (Recall row 5 in Table 5.1).

↗n ↘ Node;¬n.enabled ≃ disabled(n) = True (5.9)

A3. Camouflaged: Detecting camouflaged nodes (A3) is challenging since there is no

attribute in nodes indicating their color. This condition occurs when developers want to

utilize some empty views as a placeholder. To detect these elements, we filter out nodes

that have any child. Then, we evaluate the image associated to the remaining nodes. To

97

get the image, we crop the screenshot based on the coordinates of the bounding box of the

node. Then, we check if all the pixels of the image have the same color. With the advent

of advanced computer vision and machine learning algorithms, analyzing app screenshots

has been recently studied in prior works [46, 179, 44]. Such techniques can infer not only

UI nodes, but also their structure from screenshots. While these advanced UI analysis

techniques can be adopted here, we opt for the simple aforementioned technique that can

e!ectively detect empty boxes without the need for complex models.

OA Detector evaluates compliance of each node with the defined conditions to find nodes

that has Over Accessibility Smells, i.e., they have symptoms that can lead to revealing

information or functionality to AT users that is not available to sighted users. To verify

their accessibility with an AT, we propose OA Verifier as below.

5.4.2 OA Verifier

The behavior of di!erent ATs in focusing on the elements and performing an action on them

cannot be predicted statically. To confirm if an AT can reach the detected over accessibility

smells, we utilize OA Verifier . The goal of this component is to evaluate the reachability

and actionability of nodes identified by OA Detector on a real device with an AT. To

interact with the device, we expand the capabilities of OverSight Service (OSS) that was

previously only responsible for capturing information from nodes. OSS receives commands

from OA Verifier, perform the required gestures on the device, broadcast commands and

return the results.

To achieve its objective, OA Verifier uses two subcomponents: 1) Reachability Analyzer,

and 2) Actionability Analyzer. The first component verifies if an AT can focus on the

node, while the second one checks if the AT can perform the action on it. In this work, we

describe our approach for TalkBack as the standard screen reader in Android, and a custom

98

AT, called Super AT (SAT), as it has all the information and functionalities provided by

Accessibility Service. As briefly mentioned in Section 5.2, Accessibility Service in Android

runs in the background and provides the required information to ATs. Each AT specifies

a list of flags [73] to request for the corresponding information and capabilities from the

Accessibility Service. For example, flagRetrieveWindowContent is required to be able to

get the events indicating that something on the window has changed. In this work, we give

all the capabilities to SAT, making it a representative of all ATs that are using a subset of

its capabilities. In other words, SAT-verified nodes show what can potentially be accessible

to di!erent ATs, while OA nodes verified by TalkBack show that any user, who utilizes the

standard platform screen reader, can get access to their content. The input for both of these

subcomponents is an emulator snapshot, captured from a specific state of the UI under test,

and a list of nodes to be verified, i.e., over accessibility smells.

Reachability Analyzer

If an AT can focus on a node, we call the node reachable by that AT. In Android, Accessibility

API can perform actions on given nodes by calling the performAction method. OA Verifier

identifies nodes by their XPath, i.e., their absolute path from the root node, and performs

the focus action, ACTION ACCESSIBILITY FOCUS, on them. If this focused node, returned by

AccessibilityService, is the desired node, OA Verifier determines the node reachable

by SAT.

To assess the reachability of a node with TalkBack, we utilize the “Explore by swiping”

strategy instead of the touch exploration as OA elements are not viewable on the screen

to be enabled by tapping/touching. Since OA elements most likely appear after the ones

that are visible to sighted users, OA Verifier first explores the screen backward by drawing

“swipe left” gesture. Whenever TalkBack focuses on a node, OA Verifier calls the node

TalkBack Reachable. TalkBack continues screen exploration until either it reaches all the

99

nodes in the given list, or sees a repetitive node.

Some UI components such as scrollable widgets may render some elements on the app un-

reachable. In practice, to break such infinite loops, a screen-reader user can touch on an

element outside of the loop and resume exploring the app. To work around these loops, OA

Verifier performs both forward and backward navigation from the top of screen when it

does not meet its stopping criteria. Eventually, nodes that TalkBack cannot focus on by

either backward or forward app exploration are determined to be unreachable by TalkBack.

Actionability Analyzer

An element is considered actionable, if it 1) is reachable and 2) performs the action success-

fully. Thus, Actionability Analyzer first evaluates reachability of over actionability smells

using the same strategy as Reachability Analyzer.

Once Actionability Analyzer determines reachable nodes, it attempts to performing the

action on them. This means it requires to first focus on the element and trigger the action

using TalkBack or SAT. Since reachability of these nodes have already confirmed, we directly

put the accessibility focus on the node under test using Accessibility API. Then, we utilize

the specific AT to perform action. For TalkBack, OA Verifier performs a double-tap gesture

to click the focused node. For SAT, OA Verifier calls performAction(ACTION CLICK)

on any given node. To verify if the action was performed successfully, OA Verifier listens

to the AccessibilityEvents and denotes the node clickable by either TalkBack or SAT if

VIEW CLICK event or WINDOW CONTENT CHANGED was logged.

100

5.5 Evaluation

In this section, we evaluate OverSight on real-world apps to answer the following research

questions:

RQ1. How accurate is OverSight in detecting OA elements?

RQ2. How prevalent are over-access problems in security-concerned apps?

RQ3. What are the potential impacts of OA elements on di!erent apps and communities?

RQ4. What is the performance of OverSight?

5.5.1 Experimental Setup

Datasets

We evaluated our approach on 60 app screens from 30 real-world Android apps. Our test set

consists of three groups of apps: (group1) 10 app lockers similar to the motivation example

from Google Play, (group2) 10 apps with known accessibility issues in a prior study [140],

and (group3) 10 randomly selected apps from di!erent categories of Google Play. For each

app, we captured two di!erent states of the app. For apps in group1, the first state is the lock

screen of the app itself, and the second state is the lock screen that protects a third-party

app, e.g., Messages, when it is locked. For apps in group2, we selected two di!erent screens

of the app with the confirmed accessibility issue. Lastly, for apps in group3, we randomly

explored the apps and captured two di!erent screens. For the second question, we mainly

focus on app lockers, security-critical apps that are responsible for protecting user apps. We

picked 5 highest-rated, 5 lowest-rated, and 5 randomly selected app lockers from Google Play

and followed the same strategy as group1 to capture two di!erent states from each app. We

101

did not incorporate the low-rated app lockers in RQ1 to keep the quality of apps in that

study consistent.

Implementation details

We ran our experiments on an Android emulator based on Android 11.0 and with TalkBack

version 12.1 on a typical development machine, using a MacBook Pro with 2.4 GHz core i7

CPU and 16 GB memory. OverSight Service is implemented in Kotlin and communicates

with OA Detector and OA Verifier components, implemented in Python, using ADB [26].

5.5.2 RQ1. Accuracy of OverSight

To answer this question, we ran OverSight on each snapshot in our test set and carefully

examined the reports. We separately evaluate OverSight’s two main components, OA

Detector and OA Verifier.

OA Detector: To evaluate OA Detector, we carefully checked the reported OA smells in

each category and tagged them as True Positive (TP) if it was correctly detected with one

of the OA conditions and False Positive (FP) otherwise. We then calculate OA Detector’s

precision as the ratio of the number of nodes that were correctly detected by OA Detector

to the number of all detected OA smells.

Table 5.2 summarizes the results of this experiment. Each row in this Table corresponds to

one state of an app. The number of nodes in each state varies as shown in the second column

(N). In our test set, it can be as few as 6 nodes and as many as 656. Smell column indicates

the number of nodes with Overly Perceivable (P) or Overly Actionable (A) conditions on

each screen. We display the precision per app state under the DP (Detector Precision)

column, and the average precision is in the last row.

102

Table 5.2: Accuracy of OverSight in running on 30 apps.

App N
Smells

DP
TalkBack SAT

VP VR
P A R A A

...domobi...
47 0 2 0.00 0 2 2 1.00 1.00
26 9 6 1.00 8 3 6 1.00 0.95

...alpha...
12 0 0 1.00 0 0 0 1.00 1.00
8 0 0 1.00 0 0 0 1.00 1.00

...sp.pro...
42 0 0 1.00 0 0 0 1.00 1.00
26 9 6 1.00 8 5 6 1.00 0.90

...thinky...
18 0 0 1.00 0 0 0 1.00 1.00
17 1 0 1.00 0 0 0 1.00 0.50

...litetoo...
73 6 7 1.00 6 7 7 1.00 1.00
73 0 0 1.00 0 0 0 1.00 1.00

...nevways...
55 1 1 0.00 0 1 1 1.00 1.00
6 0 0 1.00 0 0 0 1.00 1.00

...ammy.a...
16 0 0 1.00 0 0 0 1.00 1.00
26 9 6 1.00 8 6 6 1.00 0.95

...gsmobile...
53 0 0 1.00 0 0 0 1.00 1.00
37 0 0 1.00 0 0 0 1.00 1.00

...cd.app...
12 0 0 1.00 0 0 0 1.00 1.00
12 0 0 1.00 0 0 0 1.00 1.00

...saeed.ap...
13 0 0 1.00 0 0 0 1.00 1.00
16 0 1 0.00 0 1 1 1.00 1.00

...c51
83 4 1 0.00 4 1 1 1.00 1.00
29 0 1 0.00 0 0 1 1.00 1.00

...fatsec...
41 0 1 1.00 0 0 1 1.00 0.50
147 14 5 1.00 2 0 5 1.00 0.70

...colpit...
18 2 0 1.00 0 0 0 1.00 0.50
67 2 1 1.00 0 0 1 1.00 0.50

...tripit
202 55 20 0.91 6 1 20 1.00 0.54
270 68 23 1.00 4 4 23 1.00 0.55

...contex...
52 0 26 1.00 0 0 5 1.00 0.50
57 1 0 0.00 1 0 0 1.00 1.00

...yelp.an...
66 0 0 1.00 0 0 0 1.00 1.00
129 15 9 0.86 0 0 6 1.00 0.50

...devhd.f...
71 19 4 1.00 4 0 4 1.00 0.60
138 44 21 1.00 8 0 21 1.00 0.67

...ziprecr...
36 0 0 1.00 0 0 0 1.00 1.00
63 5 5 1.00 0 0 2 1.00 0.50

...diction...
102 8 5 1.00 2 1 4 1.00 1.00
177 98 5 0.89 98 1 1 1.00 1.00

...and...
110 16 10 0.95 0 0 8 1.00 0.50
69 16 10 0.53 16 9 9 1.00 1.00

...airbnb...
42 0 1 1.00 0 0 0 1.00 0.50
56 0 3 1.00 0 0 1 1.00 0.50

...carfax...
30 0 0 1.00 0 0 0 1.00 1.00
20 0 0 1.00 0 0 0 1.00 1.00

...expedi...
53 0 2 1.00 0 0 1 1.00 0.50
98 6 0 0.33 4 0 0 1.00 0.83

...houzz
22 0 0 1.00 0 0 0 1.00 1.00
169 37 27 1.00 9 3 5 1.00 0.85

...mcdona...
42 1 0 1.00 0 0 0 1.00 0.50
126 35 10 0.32 35 5 5 1.00 0.94

...meditat...
22 3 2 1.00 0 0 2 1.00 0.50
46 15 1 0.75 14 0 1 1.00 0.94

...pinterest
32 1 1 1.00 1 1 1 1.00 1.00
24 0 0 1.00 0 0 0 1.00 1.00

...popular...
36 5 3 1.00 0 0 3 1.00 0.50
158 40 19 1.00 21 0 2 1.00 0.68

...theathl
20 0 1 1.00 0 1 1 1.00 1.00
77 35 5 1.00 34 5 5 1.00 0.99

...weawow
32 2 2 0.00 0 0 2 1.00 1.00
656 280 52 1.00 194 3 5 1.00 0.87

Average: 84.23% 100% 83.27%

103

As shown in the Table 5.2, on average, OA Detector has a precision of 84.23% in detect-

ing OA smells. For 56 di!erent states in 28 number of apps, the precision is 100%. We

analyzed the elements recognized as False Positive, i.e., with FP tag, to better understand

OA Detector failures. Figure 5.5 shows some examples where OA Detector erroneously eval-

uates a node as OA. In Figure 5.5(a), the map and the text on it is annotated as OA.

Further inspection of this layout showed us that the map is behind a transparent layout and

made our algorithm classify the underlying nodes as “covered” (recall P.2 in Section 5.4.1).

In Android, transparent layouts pass the touch gesture to the underlying elements so that

they are not recognizable through conventional interaction modes. Since layout colors are

not included in node information, OA Detector cannot distinguish transparent layouts from

color-filled ones. Moreover, having a stack of transparent nodes, if not maintained properly,

can cause troubles for AT users. For example, if all the stacked nodes are focusable, AT will

focus on each of them separately, confusing AT users about what is shown on the screen and

resulting in a less optimal navigation experience. Partially covered nodes are another failure

of OA Detector as shown in Figure 5.5(b). There is a “Sort and Filter” button covering the

elements underneath. However, as the underlying texts are partially recognizable to sighted

users they are tagged as FPs. OA Detector does not exclude partially covered elements in

the “covered” category since a developer may have intentionally blocked access to part of a

node content.

To evaluate if OA Detector fails to detect any issues, i.e., False Negatives, we ran OA Detector

on a set of apps with known issues. OA Detector’s False Negatives are the OA elements that

OA Detector fails to report. Since no prior dataset exists, we take our apps from the empirical

study that were manually investigated for OA elements (recall Section 5.3). We investigated

the manually confirmed OA issues that do not appear in the list of OA smells. Figure 5.3

shows the only case that the OA Detector failed to detect. The reason for this failure is

that instead of disabling the button, the app intercepts the click event at runtime when

it is touched to show an error message. This means the button performs the click action

104

successfully with and without AT. However, its inconsistent behavior cannot be detected by

OA Detector. We also noticed in some cases the issue was captured not in the first attempt

but after the second attempt. This issue is due to the challenges of interacting with the

device using OSS and analyzing the results at a proper time. To mitigate such validity

threats, we ran our experiments 3 times on each app.

Further investigation of conditions of detected OA elements revealed that the “covered”

condition (recall P.2 in Section 5.4.1) is the most frequent symptom of OA elements. 18 apps

out of 30 had at least one “covered” OA element. According to Android documentation,

Android attempts to evaluate whether a node is visible to user [71] (recall row 6 of Table 5.1)

to be announced by TalkBack. However, our review of Android’s source code [74] indicates

the platform only compares the bounds of a child node with its parents to evaluate if they

are visible to user (i.e., the corresponding VisibleToUser flag is set to true). However, such

a comparison does not exist for nodes that are siblings or children of siblings. We believe

Android platform should reassess its strategy of detecting visible nodes to minimize such

issues.

OA Verifier: To evaluate the OA Verifier component, we investigate the nodes specified

as reachable and actionable with TalkBack and SAT. To check the reported nodes by OA

Verifier, we load the corresponding snapshots of the app states on the emulator and utilize an

AT, e.g., TalkBack, to explore the app and assess Reachability (R) and Actionability (A) of

OA smells. In terms of reachability, if the AT can focuses on a node, we consider it reachable.

For actionability, the node is actionable if it is reachable and is clickable, i.e., the click

gesture, such as double tap in TalkBack, broadcasts a click event. When an element is clicked

successfully in Android, an AccessibilityEvent, called VIEW CLICKED, is created and sent

to AccessibilityServices. To determine if the action was performed, OverSight service

captures the events and shows if an event of type VIEW CLICKED or WINDOW CONTENT CHANGED

is logged. Since OA Verifier follows the same strategy in detecting clicked nodes, the accuracy

105

of OA Verifier equals to its accuracy in detecting reachable nodes. Thereby, we label the

output of OA Verifier as true if it matches with our manual investigation and false otherwise.

Using these tags, we calculate precision and recall of OA Verifier as follows: Precision is the

ratio of number of nodes that correctly verified to be reachable to the number of reachable

nodes detected by OA Verifier, while recall is the ratio of number of nodes that correctly

verified to be reachable to the number of OA smells that are manually verified to be reachable.

Table 5.2 shows the average precision and recall of OA Verifier using TalkBack and SAT

in the last two columns, VP (Verifier Precision) and VR (Verifier Recall). As shown in

the last row, the average precision and recall on all apps is 100% and 83.27% respectively.

While OA Verifier is 100% precise in its reports, the recall shows that it has missed some

issues. Figure 5.5(c) shows an example of a set of nodes that were erroneously detected

to be unreachable by OA Verifier. On this state of the “Weawow” app, there is a map of

all the cities that a user can get the weather information for. When TalkBack reaches this

widget, it navigates through all the nodes on the map, as depicted by number annotations

on the map, and gets stuck there in an infinite loop. Thus, all the nodes on the second half

of the screen were mistakenly reported by OA Verifier as unreachable or not over accessible

(False Negative). OverSight attempted to address such issues for scrollable widgets by

navigating both forward and backward on the screen. However, backward navigation on

this app does not help since the app content loads dynamically in forward navigation, while

scrolling to the bottom. OA Verifier also has a similar issue in web apps such as Dictionary.

In this app, every time the app is scrolled forward, it fetches a totally new UI specification

which although looks visually similar, uses di!erent XPaths for nodes, making the logged

information inaccurate.

106

(c)(b)

(a)

1
2

3108

9

31018

31085

19

10

Figure 5.5: OverSight Failures: (a) and (b) are false positives of OA Detector, where dashed
green boxes are erroneously detected as covered; (c) is a false negative of OA Verifier, where
TalkBack is stuck in the world map.

5.5.3 RQ2. OA Elements in Security-Sensitive Apps

OA elements in security-sensitive apps, such as app lockers, put the privacy and security of

both users and apps at stake by divulging private content or granting access to functionality

that they are supposed to protect. To understand the prevalence of such critical issue in

these apps, we utilize OverSight to test 15 real-world app lockers. All app lockers require

two permissions from the users to work, 1) “Usage Access”, to track what other apps the

users are using, 2) “Display Over other Apps”, to place their lock screen on top of the other

apps. We grant the required permissions to the apps and evaluate two main functionalities

of lockers: 1) locking the locker app itself, and 2) locking another third-party app that they

are to protect. Table 5.3 summarizes the test set and results. The table contains three

groups of 5 app lockers — most popular, randomly selected and least popular — from a

list of 125 lockers we got from the Google Play store. The list includes the app locker from

our empirical study, marked by ‘*’ in the table. ‘x’ indicates that the protection could be

bypassed by an AT, while ‘↭’ indicates no OA element was detected by OverSight. We

107

also manually confirmed the automatically diagnosed over-access problem by OverSight

and reported all the issues to the developers.

As Table 5.3 shows, 13 cases out of 30 di!erent states have over-access problems not only

by SAT, but also by TalkBack, the standard screen reader. 5 of these issues belong to the

most popular apps, endangering the security of hundreds of millions of users.

We also observed that apps with lower rating and installation number are not as robust as

popular ones. For example, we had to reopen the locked app using “com.saeed...” multiple

times to finally see the lock screen. On the other hand, interestingly, the over-access problem

is not as common in the last 5 apps. We realized that app lockers utilize di!erent strategies

in providing a lock screen. For example, in the last app in Table 5.3, we found that the app

locker first puts the app in the background and then displays the lock screen. In this way,

OA elements still exist, yet they will not endanger the target app as they are the nodes on

the home screen. Such strategy is time and energy consuming and would be less appealing

to users. Among other apps, some inflate a full-screen overlay on the locker without creating

a new Activity such as “com.gamemalt.ap...” or “com.litetools...”, while the other ones such

as “com.sp.protec...”, “com.domobile....” and “com.ammy...” create a new Activity for the

lock screen. Android provides mechanisms for both approaches to manage the hierarchy of

nodes for the UI elements. The default behavior in inflating an overlay on the same Activity

results in appearance of all the elements of the Activity, including those that should not

be accessible, in the UI hierarchy. Thus, developers need to take proper actions to avoid

that by setting their nodes not important for accessibility for example. However, by default,

the hierarchy of nodes for a new activity only incorporates nodes that are specified in this

activity and will not leak the elements from prior activities.

Developer’s decision in utilizing these strategies can impact app stability, robustness and

usability. We strongly encourage them to consider security threats of OA elements, resulting

from their design decisions as well as the other app qualities.

108

Table 5.3: Over accessibility issues in app lockers.

App Version #Installed Rate
State 1 State 2

TB SAT TB SAT

com.netqin.ps 293 +100M 4.3 ↭ ↭ ↭ x

com.domobile.... 2021052001 +100M 4.2 ↭ ↭ x x

com.alpha.app... 412 +50M 4.7 ↭ ↭ ↭ ↭
com.sp.protec... 231 +50M 4.4 ↭ ↭ x x

com.thinkyeah... 166 +10M 4.6 ↭ ↭ ↭ ↭
com.litetools... 91 +10M 4.3 x x ↭ ↭
*com.gamemalt... 108 +5M 4.3 x x x x

com.nevways.a... 92 +5M 4.3 ↭ ↭ ↭ ↭
com.ammy.app.... 151908296 +1M 4.6 ↭ ↭ x x

com.gsmobile.... 34 +500K 4.5 ↭ ↭ ↭ ↭
me.ibrahimsn.... 134 +50K 4.0 ↭ ↭ ↭ x

com.cd.applo.... 2 +10K 4.5 ↭ ↭ ↭ ↭
com.saeed.app... 4 +10K 4.4 ↭ ↭* ↭ ↭*
com.applockli... 8 +10K 4.0 ↭ ↭ ↭ ↭
com.mms.applo... 1 +5K 4.0 ↭ ↭ ↭ ↭
app.lock.hide... 6 +5K 3.5 ↭* ↭* ↭* ↭*

5.5.4 RQ3. Qualitative Analysis of OA Elements

We manually examined all reported OA elements by OverSight in Table 5.2 and cate-

gorized them based on their impact on disabled users and app developers in terms of app

accessibility, app security, and work flow violations.

App Accessibility

Both over perceivable and over actionable elements degrade app accessibility, hindering dis-

abled users’ ability to explore the app conveniently. For example, in “30 days workout”

app, Figure 5.6(a), a blind user has to navigate through the covered elements, highlighted

in green. Although these OA elements, requiring paid subscription to access, are not ac-

tionable, a user who wants to understand the app content would be confused of what is

shown on the screen. Moreover, if she wants to reach a specific button, e.g., Profile, she

has to pass through all OA elements, resulting in a less optimal user interaction. A sim-

ilar scenario happens in the welcome page of “iSaveMoney” app. The intended use-case

109

So owning a new house, a bigger car
or having a busy social life only
affects 10% of your happiness. And
often it will only give you a short
boost of happiness. The rest comes
from within and meditation is a very
useful 'tool' for achieving inner
contentment.

(a)
(b)

(c)

(d)

Figure 5.6: Impacts of OA elements. (a) Accessibility issue of overly perceivable elements. (b)
Accessibility issue of overly actionable elements. (c) Workflow violation, giving access to premium
content. (d) Workflow Violation, breaking app logic.

is for the user to follow the introductory steps; however, the information from next steps

are available to AT user from the beginning, making the introduction complicated. School

Planner, ZipRecruiter, and McDonlads have a similar issue. It is worth mentioning that OA

elements in app lockers discussed in RQ2 not only undermine app functionality for AT users

but also complicate their interaction with apps. When they explore app by swipe, there is

no lock preventing their access. However, app exploration by touch will not activate the OA

elements that supposedly exist on the screen.

In some cases, OA elements provide actions to AT users. Case in point, background images in

Geek, shown in Figure 5.6(b), are not accompanied with any textual data but are actionable.

Although none of them are associated with any functionalities, i.e., they do not change the

screen content when triggered, they complicate app exploration for AT users who believe

there are real buttons on the screen. Interestingly, this app was also diagnosed with under-

access problem in a prior work [140] because of a rolling dynamic widget in the background.

The AT user gets stuck in an infinite loop and cannot login if she wants to explore the screen

110

by swiping.

App Security

In RQ2, we extensively explained the critical impact of OA elements on the security of app

lockers. OA elements in such apps can reveal the screen content of other apps that they are

designed to protect. They can also provide access to the settings page, where the AT user

can disable the lock totally. As the app lockers are mainly responsible for protecting app

content, OA elements put a vulnerable app’s reputation at stake. The issue is, however, not

limited to app lockers. For example, parental control apps, which provide a mechanism to

lock specific apps on the child’s device, or variety of built-in locks in apps such as banking

are also vulnerable to OA elements.

Workflow Violations

Developers design a workflow by which users interact with apps. Violating such workflows

can 1) break app logic, 2) provide unauthorized access to premium content.

Developers restrict access to some functionalities to avoid false inputs and gather required

information from users. For example, in the Airbnb app depicted in Figure 5.6(c), when the

number of passengers is zero, the decrease button for the number of travelers is disabled.

However, using AT one can decrease the number of passengers to less than zero. Similarly,

in Expedia and FatSecret apps, the continue button is disabled until the user enters the

required information at each step. Using ATs, users can pass invalid inputs, which can

result in the app malfunctioning or crashing.

In some cases, the workflow violation targets developer’s revenue model. Figure 5.6(d)

illustrates an article in a meditation app which is only available fully for the subscribed

111

users. However, TalkBack announces the whole content of this article and scrolls through

it without asking for a subscription. The same issue exists for the premium articles in the

“The Athletics” app. While these examples are related to the restricted scroll functionality,

the same issue threatens any other blocked functionalities that are intended to be available

to subscribed users.

5.5.5 RQ4. Performance

The time-consuming component of OverSight is OA Verifier which needs to interact with

the device and perform actions on elements. On average, it takes 54 seconds for OA Verifier

to perform an action. The execution time varies in di!erent apps as their number of nodes

and OA smells are di!erent. For the apps in our test set, the average execution time of

OverSight is 571 seconds, which can be e!ectively used in practice. Any dynamic analysis

tool, including OverSight, is costly in time compared to simple static checkers. The OA

Detector runs very fast, under one second. By identifying the OA smells, OA Detector

reduces the number of nodes that need to be verified by 84% on average. Without OA

Detector, an expensive verifier would need to assess every single node on the screen.

5.6 Threats to Validity

External validity. An important threat is the completeness of OA elements’ conditions,

extracted from examining 100 di!erent states of 20 randomly selected apps. To mitigate

this issue, we carefully selected a diverse set of app states considering the limitations of

manual exploration. The extracted conditions were organized under two main classes, Over

Perceivability and Over Actionability, inspired by accessibility guidelines. Although this

process gives us confidence that the conditions provide a good coverage for di!erent variations

112

of app states, having a larger set of app states would increase the validity of generalization

of our findings.

Another threat is the generalizability of the reported results of OverSight on real world

apps. Our evaluation dataset for RQ1 consists of 60 screens from 30 apps. While including

more apps and screens would increase the validity of this experiment, we have attempted

to mitigate this threat by selecting the apps from three di!erent sources: (1) apps with

confirmed under-accessibility issues, (2) apps with an intention to make users’ information

secure, and (3) a diverse selection of popular apps – 30 apps in 16 di!erent categories in

total. The first two groups are intentionally selected, since they are related to under- and

over-accessibility, respectively.

While Oversight mainly relies on XML layout of a screen to detect OA conditions, for

detecting camouflaged elements it requires a screenshot of the screen, which is not possible

for apps that restrict the ability to capture screenshot. This tends to be the case for apps

displaying copyrighted content. In such situations, Oversight may miss OA elements with

the camouflaged condition.

Internal validity. Our implementation of OverSight is built on top of several tools,

like ADB and AccessibiltiyService, which can introduce bugs in the process of OA element

detection. Moreover, it is possible there are defects in our implementation of the prototype.

To address these threats, we used the latest versions of third-party tools, conducted code

review on our implemented program via Github, and extensively tested the prototype in a

set of apps (with no intersection with the empirical study or the evaluation data sets).

113

5.7 Related Work

Accessibility Analysis of Mobile Apps. Analyzing mobile app accessibility has been

an active research area with the focus on proposing accessibility guidelines [159], empirical

study [12, 155, 135], automated testing [23, 17, 84, 22, 134, 64], and repair techniques [45,

112, 10, 183]. Although accessibility principles [162] have implications for both under-access

and over-access problems, there is no guideline regarding over accessibility and prior studies

and tools are merely aimed at analyzing inaccessible functionalities in apps. OverSight is

the first work in introducing the over-access problem and the first attempt to detect them.

The biggest challenge in detecting these issues is that OA elements manifest themselves

in interactions involving ATs. However, the majority of accessibility testing tools are AT-

agnostic. Static analysis tools like Lint [23] parse screen content and configuration files upon

compilation to identify accessibility violations in code. To find issues that are undetectable

in code, dynamic approaches [17, 22, 134, 64, 88] have been developed that analyze the

rendered UI components on the screen, either after manual navigation to the target state of

the app [88, 17, 22] or with an automated crawler [64]. These techniques, however, do not

consider the use of ATs like screen readers and external keyboards in app exploration.

A prior technique, called Latte [140], utilizes ATs to evaluate if an app’s functionalities,

generated from its UI test cases, can be performed by disabled users. However, test cases are

not always available, without which assessing UI elements with ATs is a time and memory

intensive process. To mitigate this issue, Groundhog [143] proposes an optimized app explo-

ration approach for accessibility testing. However, both Latte and Groundhog only focus on

inaccessible elements. OverSight’s contribution is in taking advantage of characteristics

of OA elements to detect and verify over accessibility issue and its impacts on mobile apps.

Security Studies on Accessibility. Accessibility has also been studied in a security

context, considering how accessibility APIs on mobile platforms can be exploited by attack-

114

ers [90]. Kraunelis et al. [99] showed how malicious apps can abuse accessibility service

to detect app launches and bypass security measures [156]. Researchers have also investi-

gated the potentials of using accessibility APIs in designing attacks such as ClickJacking

attacks [15, 182, 93]. These targeted the BIND ACCESSIBILITY SERVICE permission to take

full control of the UI, as demonstrated by Cloak and Dagger technique [68]. Studies have

devised defense schemes [180] and solutions to this attack [132, 128, 87].

These security studies approached accessibility from a malware’s perspective, designing po-

tential attacks, analyzing the framework and proposing solutions based on the assumption

that the assistive app is malicious. Conversely, we introduced OA elements as a new vul-

nerability that can be exploited using a benign app or standard ATs such as TalkBack.

The privacy implications of such elements for users as well as their negative impact on de-

velopers’ revenue and reputation has remained unnoticed in security studies. While prior

security studies have shed light on what attackers can do through exploitation of accessibil-

ity APIs, our paper aims to provide software engineers with a tool to detect and eliminate

vulnerabilities due to over-access in their apps.

5.8 Conclusion

Assistive Technologies help disabled users have equal access to mobile apps by providing

alternative modes of interaction. An inconsistency between di!erent interaction modes may

result in both under-access as well as over-access problems. The former has been extensively

studied in prior works, concerning inaccessible data and functionality. However, in this study,

we presented the latter and discussed the threats of overly accessible elements, enabling an

assistive-technology user to get access to app content or functionality that is not available

otherwise. We also studied the characteristics of overly accessible elements and proposed

OverSight to automatically detect them in mobile apps with high accuracy. Our evaluation

115

reveals overly accessible elements have severe impacts on both disabled users and developers.

They can degrade app accessibility, endanger app security, and put developers’ reputation

and revenue at stake. To avoid such issues, in the future, we investigate the application of

automatic program repair techniques in resolving the over-access problem in mobile apps.

116

Chapter 6

Time-Aware Assessment of App

Accessibility

With mobile apps playing an increasingly vital role in our daily lives, the importance of ensur-

ing their accessibility for users with disabilities is also growing. Despite this, app developers

often overlook the accessibility challenges encountered by users of assistive technologies, such

as screen readers. Screen reader users typically navigate content sequentially, focusing on

one element at a time, unaware of changes occurring elsewhere in the app. While dynamic

changes to content displayed on an app’s user interface may be apparent to sighted users,

they pose significant accessibility obstacles for screen reader users. Existing accessibility

testing tools are unable to identify challenges faced by blind users resulting from dynamic

content changes. In this work, we first conduct a formative user study on dynamic changes

in Android apps and their accessibility barriers for screen reader users. We then present

TimeStump, an automated framework that leverages our findings in the formative study

to detect accessibility issues regarding dynamic changes. Finally, we empirically evaluate

TimeStump on real-world apps to assess its e!ectiveness and e”ciency in detecting such

accessibility issues.

117

User double
taps

Events:
(a) (b) (c) (d) (e)

TYPE_VIEW _CLICKED TYPE_WINDOWS_CHANGED TYPE_WINDOW_CONTENT_CHANGED
time

(f)

Figure 6.1: Evolution of content loading on the screen across various states over time: (a)
represents the initial screen state before the user initiates an action, (b) captures the moment
when the user interacts with the app by clicking on a button, and (c) to (f) illustrate the
gradual appearance of new screen content over time. Notably, in (f), the close button,
indicated by a dashed red circle, appears above the accessibility focus. Since it is not tagged
with liveRegion attribute, it is also not announced, and a screen reader user does not notice
it.

6.1 Introduction

Dynamically changing visual content of screen (e.g., through animation) is a commonly used

technique for enhancing the visual aesthetics of an app and to guide users’ attention to

specific parts of the app. However, these visually appealing techniques should not come at

the cost of making apps inaccessible. In adherence to legal frameworks [120, 5], established

guidelines [159, 33, 27], and ethical principles, the digital realm should be inclusive and

accessible to all. This is especially crucial for the approximately 15% of the global population

with some form of disability, including more than 300 million users that are blind or visually

impaired [174].

Visually impaired users rely on assistive technologies like screen readers to interact with

mobile apps. These tools enable users to navigate to a specific element on the screen and

listen to the content in focus. However, the tunnel-like focus provided by screen readers

may lead to unawareness of dynamic changes occurring elsewhere on the screen. A known

118

example of such dynamic content is error notifications. When an app assesses user inputs

and provides feedback, such as an error message through a notification, these changes may

go unnoticed by screen reader users. Mobile platforms let developers designate these dy-

namically changing parts of a screen as “live regions”, assisting screen readers to detect

and announce such changes to users. Unfortunately, developers often neglect using proper

accessibility attributes, posing significant accessibility challenges for the blind.

Earlier studies and guidelines addressing software accessibility have only scratched the sur-

face of this critical issue. The related accessibility guidelines on this matter primarily center

on designating live regions for screen reader announcements. Specifically, in scenarios involv-

ing error messages, Web Content Accessibility Guidelines (WCAG) success criterion 3.3.1

emphasizes the crucial need for users to be informed about errors and comprehend what

went wrong and recommends techniques such as annotating error notifications as live re-

gions [168]. However, the challenge extends beyond these scenarios. Dynamic changes have

been neglected from prior studies and tools that rely on screen captures from an app to

detect accessibility issues [106, 110, 59]. GUI crawlers and app explorers typically capture

screenshots of an app under test after it is in stable conditions by waiting for certain amount

of time [143, 65]. Unfortunately, these approaches fail to capture app states during the entire

rendering process, overlooking changes that occur over time on the screen. Consequently,

they are not capable of detecting accessibility issues caused by dynamic contents.

To bridge this gap, we initiated a formative study aimed at identifying various types of

dynamic changes and assessing their impact on screen reader users. This study revealed

characteristics of accessibility issues related to dynamic content changes that negatively im-

pact blind users. Building on these insights, we developed TimeStump, an automated

framework designed to detect such issues in Android apps. TimeStump comprises an auto-

mated crawler, randomly exploring diverse app states and capturing data before, during, and

after each action. Subsequently, this data undergoes processing using the identified patterns

119

from our initial study to pinpoint problematic dynamic changes for screen reader users. The

identified issues are then reported and visualized for developers.

This chapter makes the following contributions:

• The first study on accessibility issues arising from dynamic content changes in Android

apps.

• The introduction of the first automated crawler capable of capturing dynamic content

changes, complemented by the creation of the initial dataset cataloging such behaviors.

• The development and public release of the first automated tool, named TimeStump,

designed for localizing and detecting accessibility issues related to dynamic content

changes in Android apps [30].

• An empirical evaluation on real-world apps, corroborating the e!ectiveness of TimeS-

tump in detecting accessibility issues induced by dynamic screen changes.

• A user study involving blind participants to assess the impacts of dynamic screen

change on app accessibility.

The remainder of this chapter is organized as follows. Section 6.2 provides the background

information. Section 6.3 describes our formative user study that motivated this work. Sec-

tion 6.4 presents TimeStump, an automated approach for detection of problematic dynamic

content changes. Section 6.5 details the evaluation of TimeStump on real-world apps and

in collaboration with blind participants. This chapter concludes with a discussion of threats

to validity, related research, and future work.

120

6.2 Background

Mobile platforms o!er the possibility of dynamic content changes, allowing developers to

alter the screen content in real-time. Figure 6.1 displays an Android app called “I Am” [116]

that provides daily a”rmations for users and has more than 5 million downloads. When

the screen reader focuses on the continue button as shown in Figure 6.1(b), the user can

double-tap to perform the click gesture. Soon after clicking the button, the window changes,

and some promotional content appears gradually, such as text, buttons, and other elements.

For example, the “already a member” button, dotted in blue in Figure 6.1(e), and the close

button, dashed red circle in Figure 6.1(f), appear after the bullet points are displayed.

This kind of screen rendering can pose severe challenges to screen reader users. Blind users

utilize screen readers to interact with apps, and when encountering an unfamiliar app, they

navigate through the on-screen elements sequentially to understand the app’s layout. The

swipe right and left gestures allow the screen reader to move to the next or previous element,

respectively, highlighting it with a green box as shown in Figure 6.1(b). When an element

is focused, the screen reader vocalizes its textual description, enabling blind users to gauge

its functionality in a manner analogous to how sighted users depend on the visual cues

of an element. Should the textual description align with their expectations, blind users

execute a double-tap, mirroring the single-tap action typical of sighted users. The following

example illustrates the challenges blind users can face when dealing with dynamic changes.

In Figure 6.1, as the user navigates to screen (c), the top element, which is the text view

component, receives the accessibility focus. Screen reader users explore the screen by moving

through the elements sequentially from top to bottom using a swipe-right gesture. However,

the close button annotated in dashed red is not recognizable as it appears on top of the

screen and users are less likely to traverse backward, to the area they already visited. Such

barriers can lead to unintentional interactions with ads or di”culties navigating away from

them.

121

In Android, the guidelines suggest using an attribute called liveRegion to help screen read-

ers recognize the appeared content. When an element is annotated as liveRegion, it is

announced by the screen reader. Android system utilizes an event-based model to inform

screen readers of changes in live regions. A GUI element emits an AccessibilityEvent

when there are changes to its state, which is received by assistive technologies such as a

screen reader. Figure 6.1 illustrates several di!erent types of events that can be triggered

during the loading of app content, with each color representing a distinct event. For exam-

ple, TYPE VIEW CLICKED events occur after a view is clicked, TYPE WINDOWS CHANGED events

happen when the app transitions to a di!erent window, and TYPE WINDOW CONTENT CHANGED

events take place after the content inside a window changes.

Assistive technologies can also identify the element that is the source of events. In Android,

GUI elements are represented by a tree of AccessibilityNodeInfo objects that mirror the

XML hierarchy of elements and their attributes.

AccessibilityNodeInfo tree can be likened to the Document Object Model (DOM) tree

in the case of web pages, o!ering a hierarchical representation of rendered elements on a

web page. Prior studies on exploring various states of web apps for testing purposes have

characterized dynamic content changes as modifications to the DOM that occur without

reloading the page [107, 98]. These changes include updating or disappearing content [167],

reordering elements [166], and inserting specific elements [165], as outlined in the WCAG

guidelines. Similar to WCAG guidelines, Android suggests using accessibility attributes to

notify screen reader users of such changes [169].

However, these guidelines only scratch the surface of the issues that may arise as a result of

dynamic contents. For instance, when a temporary button, like an undo button, pops up on

the bottom of the screen, users may struggle to locate it within the brief time frame of its

visibility. This challenge intensifies when content disappears before users become aware of

its existence. Merely relying on accessibility attributes does not fully resolve this issue.

122

6.3 Formative Study

We conducted a formative study to investigate the impact of various dynamic content changes

on screen reader users.

6.3.1 Study Design

Prior studies and guidelines on Web defined dynamic content changes as modifications to

the DOM that occur without reloading the page [107, 98]. Consequently, in Android apps,

dynamic content changes encompasses any modifications to the hierarchical representation

of elements, i.e., a tree of AccessibilityNodeInfos, in a rendered window. These mod-

ifications include adding, removing, or changing attributes of elements. To have a better

understanding of di!erent types of dynamic content changes in Android, two authors con-

ducted an empirical analysis of 50 Android apps. These apps were randomly chosen from

the Google Play Store, representing various app categories. Additionally, to ensure the sig-

nificance and popularity of the apps studied, each app selected had a minimum of 1 million

downloads. For each app, two authors manually explored the app screen using a combination

of actions, such as clicking, scrolling, and typing, to observe if that would trigger dynamic

content changes. If so, a recording from the screen is taken with a brief description of the

dynamic content change. Following this, two authors engaged in an iterative open-coding

process to categorize the types of dynamic content changes identified.

Through our empirical analysis, we identified 5 types of dynamic content changes.

Appearing Content. This content change type is characterized by an element that ini-

tially is not present on a loaded window, but appears a few moments later and remains on

the screen. For example, in Figure 6.1(f), the close button, marked by a red circle, appears

after a few seconds.

123

Disappearing Content. This content change type describes an element that disappears

either after a set period or as a result of user interaction. For example, in Figure 6.2(i),

the navigation bar at the bottom including element a as well as the more button on top,

element b, disappear when users navigate through the list of items.

Short-Lived Content. This content change type relates to an element that initially is not

present on the screen but appears and remains on the screen only for a brief duration. Due

to its transient nature, we refer to this as short-lived content. For example, as illustrated in

Figure 6.2(iii), when users save a restaurant, a notification message annotated as e appears

to notify them that they have successfully saved the store and to o!er an option to view

all saved stores. This message disappears after a few seconds.

Moving Content. This content change type refers to an element that is initially visible

on the screen but subsequently gets relocated to a di!erent part of the screen. For instance,

in Figure 6.2(ii), the app-related information, marked as c, is shifted to the bottom of the

screen and goes out of screen bounds after user presses the install button. Users must locate

that information at a di!erent position within the sequence of elements on the screen, as

perceived by screen readers.

Content Modification. This content change type pertains to an element that remains on

the screen but its attributes change. For example, in Figure 6.2(ii), the TextView annotated

as d, continuously refreshes its text to display the progress of the app installation process.

Having identified di!erent types of dynamic content changes in Android, our objective was

to understand their impacts on screen reader users. To this end, we selected 4 apps that

collectively represented all identified types of dynamic content changes. We then designed

5 specific tasks that would involve interactions with these dynamic changes. Our objective

was to understand whether the users can perform the tasks, whether they can perceive

the dynamic changes in the apps, and to generally develop a better understanding of how

the dynamic changes impact app accessibility. To recruit participants, we leveraged the

124

Fable platform [101], which connects tech companies with disabled users for accessibility

testing. Each user interview session was conducted over a one-hour period. During these

sessions, we requested participants to share their phone screens and perform our designed

tasks while vocalizing their thoughts and actions, aka think aloud [153]. This think-aloud

method, combined with in situ questioning, enabled us to observe their understanding of

the dynamic content changes and assess their ability to complete the tasks successfully. Our

3 blind participants included one female and two males, all of whom demonstrated a high

proficiency in using the TalkBack.

e

d

c

(i) (ii) (iii)

a

b

Figure 6.2: Examples of dynamic content changes: (i) the add button (annotated as a) and
the more button (annotated as b) disappear when users continue exploring the screen, (ii)
the app information (marked as c) moves to the bottom of the screen after hitting the Install
button; the text (annotated as d) constantly changes to indicate installation progress, (iii)
the short-lived notification (annotated as e at the bottom) after saving a restaurant.

6.3.2 Results

The user interviews focused on all the apps depicted in Figures 6.1 and 6.2. To generate

a comprehensive list of accessibility issues related to dynamic content changes, two authors

thoroughly examined each interview session. Initially, they independently identified areas

where screen reader users faced confusion and attempted to ascertain the underlying reasons.

Then, they engaged in discussions to reach a consensus. The following list outlines the

125

dynamic content changes that proved challenging for screen reader users in our study.

Latent Appearing Content. When content appears without being annotated as a live

region and is situated in an area previously explored by the user, it remains latent or

unknown. For instance, the close button on an app’s promotional page, as shown in Fig-

ure 6.1(f), emerges after a few seconds without alerting blind users. During the interview,

blind users had already navigated past it, possibly interacting with elements located lower

on the screen. This led to confusion when attempting to exit the promotional page, requiring

users to employ various strategies such as using the TalkBack back gesture or re-navigating

the screen.

Latent Disappearing Content. Content that vanishes before the user explores that re-

gion of the app stays undiscovered. In Figure 6.2(i), annotated buttons b and a disappear

as users swipe through the list of items. The disappearance of the add button (element a)

presented specific challenges for blind participants, as the button disappears in an unex-

plored area. As a result, they were unable to locate the element to add a new cost entry to

the list. Conversely, the more button (element b) remains accessible, as users had already

visited that element before its disappearance and when navigating backward, the more

button becomes visible again.

Latent Short-Lived Content. When an element appears temporarily, it may be in-

accessible to the user, especially if the element is actionable. The time it takes for the

user to navigate to that element and perform the action might exceed the visibility pe-

riod of short-lived content, leading to accessibility issues. In Figure 6.2(iii), we observe

a brief notification annotated as e that emerges after users save a restaurant. Our user

interviews revealed that participants were aware of this notification, understanding that

they had successfully saved the restaurant and that the app o!ered an option to view all

saved stores. However, this notification disappeared within a few seconds. For this type of

dynamic content, participants only partially grasped the situation. While they recognized

126

the appearance of the notification, thanks to the live region annotation, they did not fully

understood its transient nature and were unable to click on the View Saved Stores button.

One interviewee expressed, “It was a flash or pop up, and it went away. I would expect to

be able to navigate to that button, but when I move back and forth, it is gone.”

Latent Moving Content. When the location of a previously visited element changes,

it can cause confusion for blind users. As illustrated in Figure 6.2(ii), the app-related

information, including app rating and download number, relocates to the bottom of the

screen after pressing the install button. In our study, blind users were assigned the task

of installing an app and finding its download number. After installation, they navigated

backward, relying on the previous announcement by TalkBack about the download number

during their journey to the install button. However, to their surprise, upon navigating back,

the information they sought was no longer present, resulting in confusion and a period of

being stuck on the page. None of the participants completed the task, with one participant

believed that he could eventually locate the download number by navigating further down,

acknowledging it would take more time.

Latent Content Modification. Changes in attributes of elements that are noticeable by

sighted users may go unnoticed by users relying on screen readers. During the formative

study, the TextView (element d) in Figure 6.2(ii) continuously updated its text to reflect

the progress of the app installation. The proper implementation of the liveRegion feature

ensured that changes in the TextView content were e!ectively announced to blind par-

ticipants, enabling them to accurately comprehend the status of the installation process.

Conversely, this suggests that if the liveRegion feature is not correctly implemented, it

becomes challenging for screen reader users to understand content modification, such as the

installation status. In addition. changes in attributes such as size and color, which are not

perceptible by screen readers, do not impact their perception of the app.

127

6.4 Approach

Relying on the insights gained from formative interviews with screen reader users, we devel-

oped an automated framework called TimeStump, designed to identify accessibility issues

associated with dynamic content changes. Figure 6.3 provides an overview of TimeStump,

highlighting the three distinct phases of its operation. In the initial phase, we install an

Android app on a Virtual Machine (VM) and utilize a GUI crawler to automatically explore

the app, generating a diverse set of states in an app. The Snapshot Recorder tracks app

states and records snapshots of distinct screens. In the second phase, we extract the list

of actionable elements in each recorded snapshot. Then, the Interaction Automator sys-

tematically executes each action, capturing information before, during, and after the action.

This rich dataset is passed to the third phase, where the Localizer component assesses the

gathered information, precisely flagging accessibility issues stemming from dynamic content

changes.

We now describe the details of each phase.

6.4.1 Phase 1: Capturing Unique App Screens

The main goal of this phase is to navigate through an app and explore its di!erent states for

subsequent examination. Interacting with the app leads to various state changes, ranging

from subtle modifications in attributes, such as selecting a checkbox on the screen, to more

significant changes like transitioning to an entirely new screen, resulting in a completely

di!erent hierarchical structure of elements. In this phase, our focus is on identifying a diverse

set of screens from each app that have undergone significant changes. Detailed assessment

of minor changes is reserved for subsequent phases.

To facilitate the testing of GUI apps, a variety of tools, such as STOAT [149], Monkey [77],

128

APK App Crawler

Interaction Automator

Accessibility
Report

Captured
Data

Snapshot
Recorder

screen
Analyzer

Ph
as

e
1

Ph
as

e
2

Ph
as

e
3

Localizer

Figure 6.3: TimeStump’s approach overview.

129

Spaienze [108], and APE [80], have been specifically designed to traverse the expansive

domain of an app’s di!erent states. TimeStump seamlessly integrates with any existing

app exploration tool, providing the flexibility to traverse various app states. Additionally,

TimeStump allows manual testers to explore the app with diverse scenarios in mind or

leverage existing GUI test cases.

The Snapshot Recorder plays a pivotal role in tracking alterations. As the crawler interacts

with the app, Snapshot Recorder keeps track of the screen structure and Activities, i.e.,

an Android component representing a single screen. It then captures VM snapshots from

app states involving changes to activity names or the hash value of hierarchical structure of

elements. Similar to previous studies [143], the hash function excludes nodes that are not

important for accessibility, i.e., those not notified by screen readers, as well as attributes

such as checked or enabled that do not contribute to recognizing a di!erent screen in an

app. VM Snapshots enable us to load the app from the exact state and perform further

analysis.

6.4.2 Phase 2: Monitoring Apps in Action

During this phase, each potential interaction within a given app snapshot is automatically

executed, all while monitoring the app for dynamic content changes.

To achieve this, we first load a VM snapshot. The Screen Analyzer employs an accessibility

service to extract and dump the hierarchical structure of elements on the screen. The

outcome is a tree structure wherein each node represents an element, accompanied by various

attributes such as clickability. Parsing this node tree, the Screen Analyzer identifies all

interactable elements and enumerates the types of actions they support, such as click, type,

or swipe.

130

Every element is uniquely identified by its resource-id and a set of other attributes such as

text, content description, and class name. The resource-id serves as a distinctive marker for

locating each element. In instances where developers have not assigned a resource-id, the

combination of other attributes can help in locating the element.

The Interaction Automator receives the comprehensive list of actions identified by the Screen

Analyzer and executes them on the app while collecting certain data before, during, and after

each action. The Interaction Automator consists of two main components: Controller and

Accessibility Service.

The Controller functions as a server, sending commands to the client—the Accessibility

Service, which operates in the background. The Accessibility Service is responsible for

interacting with elements on the device. The client captures two frames of the app: first

frame and last frame. The first frame corresponds to the initial state of the window, while

the last frame corresponds to the app’s state once all the content has finished rendering. The

first frame primarily reflects the state of the app before any action takes place. However, if an

action triggers a window change, this first frame then denotes the app’s status immediately

following the action. To accomplish this, TimeStump tracks accessibility events that signal

either the loading of a new window or shifts in accessibility focus. When a window change

occurs, the first frame is recorded immediately after detecting the event that indicates a

change in the window. For example, in Figure 6.1, the TYPE WINDOWS CHANGED

event, highlighted in purple, signifies a window transition. Consequently, Figure 6.1(c) is

identified as the first frame. In the absence of such events, the first frame defaults to the

state of the app before executing the action.

For the last frame, TimeStump listens for accessibility events indicating window content

changes and, if none occur for more than 5 seconds, it captures that final state. For instance,

Figure 6.1(f) is designated as the last frame, indicating that all changes on the app screen

have been finalized. This practice is common in prior studies [143] and automation tools [79],

131

ensuring app stability before data capture. The waiting time can be configured to be as long

as necessary, or even adaptive to the specific app to optimize e”ciency [65]. In instances

of continual changes, such as animations or ads, a timeout period is implemented to bypass

waiting.

The Controller stores these frames, as well as real-time logs of accessibility events gener-

ated by the Accessibility Service throughout the entire action execution period. Leveraging

this extensive dataset empowers the Localizer to pinpoint accessibility issues arising from

dynamic content changes.

6.4.3 Phase 3: Localizing Problematic Dynamic Changes

TimeStump analyzes the collected data to identify various categories of latent content

changes for screen reader users. This analysis is conducted across captured frames of the

app, as well as the accessibility events captured during the execution of each action on the

screen.

When a screen element undergoes a change, it triggers an event of type

Window Content Changed. TimeStump identifies sources of such events within the cap-

tured frames of the app, forming the initial set of candidate elements within a window that

undergo a problematic change. The Localizer then compares elements in the final frame

against those in the first frame to pinpoint the problematic changes.

As explained in Section 6.4.2, if the execution of an action results in a window transition, the

first frame is the newly loaded window, i.e., the frame captured immediately after performing

the action, similar to Figure 6.1(c). To detect window transitions, Localizer examines acces-

sibility events of type Windows Changed and Window State Changed, which are also used in

the Android source code to detect the appearance of a new window [78]. Subsequently, we

132

elaborate on the logic employed for detecting various types of problematic changes.

Due to space limits, we provide an intuitive explanation of how TimeStump localizes each

issue here, and provide the detailed algorithms on the companion website [30].

Latent Appearing Content: As explained in Section 6.2 and Section 6.3, if certain content

appears in previously explored areas (i.e., above the accessibility focus in default navigation

order) and is not designated as a live region, it remains unknown to the screen reader user.

The Localizer classifies elements in the final frame that trigger a content change event as

latent appearing content if (1) they do not appear in the first frame, (2) are not designated

as live regions, and (3) are positioned before the current accessibility focus.

Latent Disappearing Content: When an element disappears from the screen, a change

event is triggered, similar to the case of appearing content. However, in this scenario, the

event’s source is the container of the vanishing element. For example, if a button within a

linear layout disappears, the event source will be the linear layout, potentially covering the

entire screen. Consequently, the Localizer evaluates all the children of an event publisher

node in the first frame to verify their presence in the final frame. A child node is categorized

as latent disappearing content if (1) it is not observed in the last frame, (2) it is not designated

as a live region, and (3) it is positioned after the current accessibility focus.

Latent Short-lived Content: Elements that appear and disappear have a brief visibility

period. Even if this content is announced, navigating to them and interacting with them

using screen readers is challenging. The Localizer identifies these elements by searching for

pairs of change events and localizing their sources denoted as <S1, S2> in two consecutive

frames, checking whether S2 is the container of S1. For any such found pair, an element S1

is categorized as latent short-lived content if (1) S1 is not present in the first frame, (2) its

container S2 is observed in the second frame, and (3) S1 is not designated as a live region

or is actionable.

133

Latent Moving Content: The Localizer examines elements displaying a shift in their

position on the screen across di!erent frames while maintaining consistent identifiers such as

resource-id, and content description. Elements are flagged as problematic if their changed

position is above the accessibility focus or if they move beyond the screen boundaries.

Latent Content Modification: The change of attributes in an element refers to any

modification in the properties that define an element’s behavior, or metadata within a UI.

Localizer uses a hash function to detect such modifications across di!erent frames. The hash

function encodes the element attributes that are important in exploring the app with screen

readers. A discrepancy in the hash values of an element between any two frames signifies a

modification in the element’s content. When the liveRegion attribute is absent, the change

remains unknown to screen reader users.

6.5 Evaluation

We evaluated TimeStump on real-world apps and with the help of several blind users to

answer the following questions:

RQ1. How accurate is TimeStump in detecting dynamic content changes and di!erent cat-

egories of accessibility issues?

RQ2. How do the issues reported by TimeStump impact the screen reader users?

RQ3. What is the performance of TimeStump? Can TimeStump e”ciently be used in

practice?

134

6.5.1 RQ1. Accuracy of TimeStump

Experimental Setup

For this experiment, we utilized STOAT [149] as the app exploration tool. We evaluated

our approach on 30 real-world Android apps. Our test set consists of two groups of apps:

(group1) 10 apps with manually verified dynamic content changes from di!erent categories of

Google play store, (group2) 20 randomly selected apps with known accessibility issues from

a prior study [143]. For apps in group1, the authors installed top rated apps in di!erent

categories of Google play store and manually explored each app, looking for dynamic content.

They captured a VM snapshot of each app at that state, with the accessibility focus set on

the target element such that performing the action on the target element results in the

dynamic change. For apps in group2, we set the crawler to automatically get VM snapshots

from two random unique states of the app. The tool then explores the actionable elements

in each state to get the real-time data.

The precision of the captured data directly impacts the ability of TimeStump to detect

changes in dynamic content. Before evaluating TimeStump’s e!ectiveness, we manually

reviewed the captured data from a test set to confirm alignment with our definitions of the

first and last frames, and encountered no issues. For this experiment, we chose 15 unique app

states from 5 random apps from a prior study [65], encompassing a range of app transitions

such as implicit loading, explicit loading, and transitions. Additional information about this

study can be found on the companion website [30].

All experiments were conducted on a typical computer setup for development (MacBook

Pro, Apple M1 Max, 32 GB memory). We used the most recent distributed Android OS

(SDK34), and the latest versions of Android screen reader.

135

Results

To answer this question, the authors manually examined the issues reported by TimeStump

and tagged them as False Positive (FP) if the reported issue is not correct, and True Posi-

tive (TP) if the reported issue correctly detects and categorizes problematic dynamic content

changes. The authors used an emulator to load the captured snapshot and manually inter-

acted with the app using TalkBack. This process allowed for the identification of legitimate

dynamic elements in exploring the app with screen readers. We then report precision as the

ratio of the number of TPs to the number of all detected issues. As shown in Table 6.1,

the overall precision over all the elements in 130 actions of apps is 0.94. To compute recall,

we manually reviewed apps in both group 1 and group 2 to identify dynamic changes and

establish the ground truth. In group 1, snapshots were captured during manual exploration

of the app, revealing states with dynamic content changes. In contrast, for group 2 apps,

we manually inspected automatically captured snapshots of random app states for dynamic

content changes. Dynamic elements missed by TimeStump were identified and manually

labeled as False Negatives (FN). The overall recall across 130 actions is 0.92, as depicted in

Table 6.1.

Figure 6.4 presents examples of problematic dynamic elements detected by TimeStump. In

Figure 6.4(a), the four elements highlighted by orange boxes emerge above the accessibility

focus after tapping on the plus button. Figure 6.4(b) illustrates short-lived elements, in-

cluding a button, indicated by blue boxes, appearing after adding a song to favorites. As

all of those elements are actionable, TimeStump reports them as problematic. In Figure

6.4(c), a TextView, annotated by the black box, is updated following the tap on the CAL-

CULATE button. Since this element is not tagged as live region, it remained unannounced

while exploring the app with TalkBack. Thus, TimeStump reports it as problematic.

We analyzed the failures of TimeStump and identified issues falling into two main themes,

136

resulting in both false positives and false negatives.

The first pattern relates to inadequate identifiers assigned by developers to elements. For in-

stance, in the Fuelio app, a FrameLayout serves as a container for its child elements, lacking

essential identifiers such as resource id, text, and content description. As a result, its

unique identification relies solely on its screen bounds. However, when an action triggers a

layout modification, the element’s screen bounds also change, leading TimeStump to mis-

takenly interpret this as an appearing element, thus generating a false positive. Moreover,

the absence of su”cient identifiers can result in false negatives. In the ESPN app, certain ele-

ments possess identifiers that are neither empty nor unique. TimeStump primarily depends

on these identifiers to match an element, but since they are not distinctive, TimeStump

fails to di!erentiate between elements on the screen, consequently failing to report associated

issues.

Another category of failures occurs when the screen displays multiple windows, such

as step-by-step guidelines overlaid on the main app. ADB allows us to capture the

AccessibilityNodeTree of the foremost window only, thereby missing content in other

windows. This limitation contributes to both false positives and false negatives.

6.5.2 RQ2. Qualitative Study

To assess the impact of the issues detected by TimeStump on screen reader users, we con-

ducted 15 user studies. We randomly selected three apps from RQ1, representing various

types of dynamic content changes, corresponding to IDs P8, G1, and G7, as listed in Ta-

ble 6.1. Our qualitative study consisted of 10 self-guided tasks and 5 user interviews with

blind testers, recruited through the Fable platform [101]. In the self-guided tasks, testers

were given concise task descriptions to execute o#ine on apps while recording their screens

and articulating their thoughts aloud. This approach, without a moderator present during

137

Table 6.1: The accuracy of TimeStump on subject apps

ID App Category #Installs # Issues TP FP FN Precision Recall
P1 Autozone Auto & Vehicles >5M 5 5 1 0 0.83 1
P2 Duolingo Education >500M 19 18 1 1 0.94 0.94
P3 Forest Productivity >10M 7 5 0 2 1 0.71
P4 Gratitude LifeStyle >1M 8 8 0 0 1 1
P5 Motivation Health & Fitness >5M 3 3 0 0 1 1
P6 Starbucks Food & Drink >10M 4 4 1 0 0.8 1
P7 TicketMaster Events >10M 1 1 0 0 1 1
P8 Spotify Music & Audio >1B 5 4 0 1 1 0.8
P9 H&M Lifestyle >50M 1 1 0 0 1 1
P10 File Manager Tools >1B 20 11 0 9 1 0.55
G1 Booking.com Travel & Local >500M 39 36 0 3 1 0.92
G2 Easy Bills Reminder Finance >100K 2 2 0 0 1 1
G3 Burn Education NA 6 2 0 4 1 0.66
G4 Dictionary.com Books & Reference >10M 4 4 0 0 1 1
G5 ESPN Sports >50M 3 2 0 1 1 0.66
G6 Calorie Counter by FatSecret Health & Fitness >50M 58 58 5 0 0.92 1
G7 Fuelio Auto & Vehicle >1M 101 92 5 9 0.94 0.91
G8 Life360 Lifestyle >100M 4 4 0 0 1 1
G9 Master Lock Vault Enterprise Lifestyle >100K 4 1 0 3 1 0.25
G10 Nike Shopping >50M 25 24 0 1 1 0.96
G11 Weee! Asian Grocery Delivery Food & Drink >1M 8 8 0 0 1 1
G12 Norton Secure VPN Tools >10M 2 2 0 0 1 1
G13 TripIt Travel & Local >5M 7 7 1 0 0.87 1
G14 ToonMe photo cartoon maker Photography >50M 2 2 0 0 1 1
G15 Vimeo Entertainment >10M 6 6 0 0 1 1
G16 Yelp Food & Drink >50M 1 1 0 0 1 1
G17 The Clock Productivity >10M 56 55 11 1 0.83 0.98
G18 King James Bible Books& Reference >50M 23 21 2 2 0.91 0.91
G19 Lyft Maps & Navigation >50M 11 11 0 0 1 1
G20 To-Do List - Schedule Planner Productivity >10M 50 47 2 3 0.95 0.94
Overall 485 445 29 40 0.94 0.92

sessions, helped mitigate interviewer bias. Additionally, user interviews were conducted to

explore incidents in di!erent states of one app, G7, and ask follow-up questions. Due to

the limited size of the tester pool on the platform, some tasks involving di!erent apps were

assigned to the same tester. However, no tester evaluated the same app multiple times. In

total, 8 distinct testers participated in this study: 6 males, 2 females, with 7 identifying as

White and 1 as Asian. Participant ages ranged from 20 to 45. Below, we first outline the

issues that users confirmed. We then discuss the observed shortcomings and insights gained.

User Confirmed Issues

Of the 30 issues identified, users directly confirmed 25, yielding a confirmation rate of 0.83.

Appearing elements in explored areas. Figure 6.4(a) depicts an instance from this

138

category. Blind testers were tasked with locating the Gas entry button, which appears after

tapping the Plus button. The target button, along with three other elements highlighted

with orange boxes on Figure 6.4(a), emerged in areas previously explored by users, without

any notification. Consequently, users felt as if nothing had changed after tapping the Plus

button. One participant expressed, “It’s very confusing and disorienting when the screen

changes without any audio feedback from the screen readers” Another noted, “Usually, new

elements appear below [the current TalkBack focus], but in this case, they appeared above.”

The appearance of elements in previously explored areas caused confusion for screen reader

users, resulting in longer times to locate the desired element. Two out of five interviewees

were unable to find the targeted button and complete the task, while others had to explore

the screen multiple times to do so. A similar issue in self-guided tasks resulted in confusion

for all the participants. For elements that appear dynamically, blind testers recommended

setting the liveRegion attribute appropriately. They suggested moving the TalkBack focus

to the first new element on the screen in cases of significant window changes. For minor

window changes, introduce dynamic elements in unexplored screen areas.

Disappearing elements in unexplored areas. In one of the test apps, activating a

switch at the top caused some form entries to disappear. Testers interacting with the switch

were not informed of the changes and were confused as to why they could not find certain

elements. Four out of five interviewees were unable to complete the task, concluding that

the required element was not present on the screen. Conversely, one interviewee managed

to find the desired element by turning o! a switch, leveraging his prior experience with such

controls. Among the interviewees who failed to perform the task, one person remarked, “[I]

Thought the Recurrence section was either not on the screen or not visible to TalkBack. I

just couldn’t find it.” The tester expressed a preference for receiving a notification indicating

that “new controls are available or shown” once the checkbox is ticked. This would enable

them to recognize that the layout of the app has changed on the same screen and understand

how to revert the layout to its original configuration.

139

Short-lived buttons. As depicted in Figure 6.4(b), when users add a song to their

favorites, a notification pops up and let them revert the action by tapping on the Change

button. Three of the users became aware that they could potentially use this element.

Two participants missed the button because TalkBack simultaneously announced three

short-lived elements, which overwhelmed them. Moreover, during self-guided tasks, none

of the participants could interact with the Change button as it disappeared quickly. As

a result, three participants could not accomplish the task for removing a song from the

favorites. Two participants were able to remove the song through an alternative method,

using the ticked button, annotated by a green box in Figure 6.4(b). Therefore, short-lived

elements should not overwhelm blind users with excessive information. Additionally, it is

recommended to avoid including clickable elements in a short-lived manner, as blind users

navigating sequentially with a screen reader are likely to miss them before they vanish.

Unannounced Short-lived Elements. In the Spotify app, when users removed a song

from their favorites, a short-lived notification, with the text Removed from Liked Songs,

appeared signaling this change, providing immediate feedback to sighted users. However,

TalkBack did not announce the change to the screen reader user, leading to confusion.

Only two participants advanced to the step of removing a song from the favorites in our

self-guided tasks. For those screen reader users, they were uncertain if the song had been

successfully removed and felt compelled to navigate through the entire screen to verify that.

When a song has not been added to favorites, the Plus button is labeled with the content

description Add Item. Conversely, when the song is in the favorites, its description changes

to Item Added. As a result, the blind users need to navigate the screen to check if the

content description has reverted to Add Item. in order to confirm that their action was suc-

cessful. Their experience suggested that the liveRegion attribute should be appropriately

configured for short-lived notifications.

Unannounced Content Modification In Figure 6.4(c), tapping the CALCULATE button

triggers an update of the result, indicated by the black box, appearing above the button.

140

However, this change is not communicated to screen reader users, forcing them to navigate

back to check the calculation result. Although all participants in our self-guided tasks

managed to find the calculation result by navigating back and forth, they reported it as

confusing and inconvenient. Additionally, if users press the CALCULATE button without

providing any input for prior entries, they receive an error message advising them to input

values before proceeding. One participant noted, ”For the sake of consistency, having the

calculation result announced just like the error message would not disappoint me.” Proper

utilization of the liveRegion attribute would alleviate such issues.

Observed Shortcomings

The user study also shed light on TimeStump’s shortcomings and enhancement opportuni-

ties.

Reverting Changes. TimeStump evaluates the changes resulting from each action.

However, a series of actions may have counteractive impacts. For instance, For example, in

the Spotify app, top views move up as users navigate toward the bottom. As soon as they

attempt to navigate back to those top elements, the views are restored to their original

position, and users do not perceive any problem. Our manual exploration of our test set

reveals 8 elements with similar issues that may not be problematic for users. However, for

users who rely on alternative interaction modes, such as explore by touch where TalkBack

shifts its focus to the coordinates of the touch gesture, these cases can still be confusing.

Severity of Issues. The dynamic elements identified as problematic exhibit varying de-

grees of severity and impact on blind users, with TimeStump unable to prioritize them

by severity. Factors such as the frequency of the issue among di!erent apps and users’

familiarity with it contribute to its severity. For instance, during interactions with the

Booking.com app, switching tabs changes the content of the window without altering the

141

screen reader focus or providing any notification. While this issue caused confusion for

participants, they relied on their intuition and manually adjusted the TalkBack focus to

the top of the screen to access the new content. However, all participants expressed that

it would be helpful if the focus were automatically moved to the newly appeared content.

Another factor influencing the severity of the issues is the distance of the changed element

from the accessibility focus. In Figure 6.4 (c), navigating one element back and forth could

help users find the results, while if the appearance of the result is far from the current focus,

it may become impossible for users to locate it.

Navigation Order. TimeStump relies on the default navigation order of elements for

TalkBack to determine if a dynamic change is problematic. However, users may have their

own interaction preferences when using screen readers. In our study, some users rely on

their prior knowledge and tap on specific parts of the app to find the requested element.

One interviewee mentioned that it would be helpful if the change was announced, but he

could still locate the dynamically updated TextView. Additionally, although customization

of the navigation order of elements was not observed in the apps used in our experiments,

it is important to note that developers can override the default TalkBack navigation order,

e.g., allowing the topmost element to be designated as the last element focused by TalkBack

on a screen. If so, the button in Figure 6.1(e), circled in red, would not trouble blind users

as it would be in an unexplored area.

6.5.3 RQ3. Performance

The performance evaluation of our tool, TimeStump, is structured into three phases: app

screen capturing (Phase 1), monitoring apps in action (Phase 2), and localizing problematic

dynamic changes (Phase 3). In RQ1, Phase 1 involves automated capturing of two distinct

app states from group2 apps, requiring an average of 167 seconds using STOAT [149]. Phase

2’s analysis of each state for the number of actions is rapid; however, executing each action,

142

Figure 6.4: Examples of detected issues by TimeStump: (a) Appearing Content, (b) Short-
Lived Content, and (c) Content Modification

capturing data, and transferring it to the server consumes about 66 seconds per action on

average. The bulk of this time, approximately 20 seconds, is dedicated to dumping and

transferring data, especially the captured video for each action. Developers can opt to

disable video capturing in the tool, relying instead on screenshots, to significantly improve

the tool’s performance. In Phase 3, the post-analysis of the technique includes analysis of

collected frames as well as the accessibility events, completing in approximately 7.5 seconds

for each action.

6.6 Threats to Validity

External Validity. In this study, we examined dynamic content changes following action

execution or screen transition. However, ad-related pop-ups or random rating requests may

appear without user actions. Investigating these requires analyzing the source code and

143

library calls to find them. Future research could focus on identifying and understanding

these instances.

Another concern is the completeness of our work, both in terms of the types of dynamic

content changes and the challenges they pose. We carefully selected and manually explored

a diverse range of apps to identify the types of dynamic change, ensuring these aligned with

web testing definitions related to element structure and attribute modifications.

Moreover, we utilized interviews to pinpoint scenarios where di!erent types of dynamic

content change might pose issues for screen reader users. Although our initial findings were

extracted from three interviews, the subsequent user study in RQ2 rea”rms the validity of

our conclusions.

Similarly, a concern related to RQ1 is the completeness of the identified accessibility is-

sues. The ground truth was manually created due to the lack of preexisting datasets. To

validate the manual construction of the ground truth, two authors independently reviewed

the snapshots, including the AccessibilityNodeInfo tree and AccessibilityEvents, to

identify problematic dynamic changes. Subsequently, they engaged in discussions to ensure

agreement in their evaluations.

Internal Validity. TimeStump integrates various libraries and tools, including Stoat,

ADB, AVD, and AccessibilityService, raising potential risks of defects. Additionally, there

is a possibility of defects in our prototype’s implementation. To counteract, we utilized the

latest version of third-party tools, conducted Github code reviews, and tested on varied apps.

We also assessed data capture accuracy on apps with di!erent transitions, detailed on our

website [30]. For rigorous testing, we used di!erent sets of apps for our formative studies,

accuracy evaluations, and tool assessments.

144

6.7 Related Works

Web Pages: Web accessibility testing primarily relies on the WCAG guidelines [159]. These

guidelines have led to the development of tools assessing web page accessibility compli-

ance [41, 69, 7, 37, 173, 6]. However, the guidelines overlook various accessibility challenges

encountered by assistive technology users, especially in the context of dynamic changes.

While a few criteria mandate developers to ensure dynamically displayed error/success mes-

sages are accessible to all, they fail to address other issues arising from dynamic content

changes. Existing tools [41, 69, 7, 37, 173, 6] cover only a fraction of the standards, thus

inadequately detecting these issues on web pages.

To address limitations of guidelines, dynamic techniques have been proposed to assess apps

while interacting with them. They resulted in studies that detect accessibility issues during

interactions with web pages [152, 39, 62] or evaluate and infer correct accessibility attributes,

like ARIA labels [164], for web content [61, 35]. In the evaluation of interaction issues, recent

studies have attempted to utilize assistive technologies, similar to how an end user explores

the app. They also account for changes introduced by JavaScript by evaluating multiple

states that a single web page can take [171, 66, 67, 145, 48, 49, 50]. These studies focus

on interaction failures which are only a subset of the challenges posed by dynamic changes.

While exploring the app dynamically, they overlook real-time changes, like unnannounced

buttons appearing in previously explored areas. Furthermore, these studies miss changes

like content modification that does not involve altering the DOM structure.

Mobile Apps: Similar to web accessibility testing, various automated tools are designed

for mobile apps to assess specific app states and report their adherence to accessibility

guidelines [23, 17, 84, 22, 134, 64, 47, 94, 56, 102]. Recognizing the limitations of accessi-

bility guidelines and the unique interaction modes of assistive technologies, recent studies

have focused on identifying inaccessible content by utilizing assistive technologies to nav-

145

igate various app states and comparing it with exploring the app without assistive tech-

nologies [150, 143, 111, 139, 11, 14, 141]. However, no technique tackles the challenges of

dynamic content changes.

6.8 Conclusion

The broad impacts of dynamic content changes on accessibility issues have not been thor-

oughly examined in prior research. We presented TimeStump, an automated framework

identifying accessibility issues due to dynamic screen changes. TimeStump navigates

through app states, collects data before, during and after each action, and applies a set

of rules to detect dynamic screen changes that may lead to accessibility problems for the

blind. An empirical study on real-world apps and a user study with blind participants prove

its e”cacy.

Future directions involve extending our work to ad-related pop-ups and unexpected rating

requests that may appear without user actions, and expanding our implementation to other

platforms, such as Web and iOS.

Our research artifacts are available publicly [30].

146

Chapter 7

Conclusion

In this dissertation, I proposed advancements in automated techniques to repair and test

accessibility issues for screen reader users. To address the common problem of missing

labels in Android apps, I developed coala, a context-aware label generation technique for

unlabeled icons. I also demonstrated that while prior automated tools can easily detect issues

like missing labels, they fail to identify various other accessibility issues that screen reader

users encounter. To bridge this gap, I introduced AT-aware and time-aware accessibility

testing, which automatically detects issues that only arise during runtime when interacting

with the app using assistive technologies.

In the remainder of this chapter, I conclude my dissertation by enumerating the contributions

of my work and avenues for future work.

7.1 Research Contribution

• Introducing notable factors in assessing and repairing accessibility issues

In advancing automated accessibility testing and repair, I introduced three critical

147

parameters essential for comprehensive accessibility assessment. I demonstrated how

considering app context can enhance automated icon labeling. Additionally, I high-

lighted Assistive Technologies and Time as crucial factors for detecting accessibility

issues that only manifest at runtime. I designed and built the proposed tools for the

Android platform and evaluated them on real-world, popular apps.

• Automated tools. I designed automated tools to repair and test accessibility issues

that prior techniques were unable to detect. The source code for these tools is publicly

available, facilitating adoption by di!erent companies and across various platforms.

• User study. I conducted user studies to assess the significance of the issues and the

e!ectiveness of the proposed tools in a realistic context. Insights from these studies can

guide other researchers to focus on previously unexplored and significant accessibility

problems.

• Dataset. Each of the accessibility challenges highlighted in my work is accompanied

by a dataset to evaluate the e!ectiveness of my automated tools. These datasets

include 60 apps with under-access problems, 30 apps with over-access problems, and

30 apps with problematic dynamic content changes. These datasets pave the way for

future researchers to build upon and enhance my work in this domain.

7.2 Future Work

Fixing Accessibility Issues While coala addresses the most common accessibility issue

for screen reader users, many other issues still need to be fixed. Single-purpose solutions are

not capable of addressing the wide range of issues present in mobile apps. In this dissertation,

I highlighted critical issues such as over-accessibility, under-accessibility, and latent dynamic

changes. We can develop solutions for these problems and use my accessibility testing tools

148

to verify the automated fixes. Additionally, to ensure that fixing one issue doesn’t introduce

new ones, we can explore fix architectures that tackle multiple types of issues simultaneously.

Automated testing of usability and accessibility Accessibility issues are inherently

challenging to repair as their fixes can impact the design, ease of use, and aesthetics of the

app. For example, WCAG guideline 1.4.4 requires apps to support text resizing up to 200%.

Reordering elements to provide enough space for each one on the screen might break the

app’s integrity. We need automated testing techniques that can not only fix the accessibility

issues but also ensure the preservation of app functionality and usability. Multi-objective

testing techniques can be a promising direction to extend my single-purpose accessibility

testing tools. These tools can also serve as an automated oracle to evaluate the e!ectiveness

of automatically generated fixes.

Early integration of accessibility in software development An e!ective way to en-

courage developers to build more accessible apps is to assist them in incorporating accessibil-

ity from the early stages of software development and testing. This approach reduces the cost

of building, testing, and repairing accessible apps. Currently, design tools allow specifying

accessibility annotations such as focus order. Assessing and recommending such annotations

can ensure that accessibility is a priority rather than an afterthought. Additionally, inte-

grating testing tools into app-building tools can be beneficial. At present, developers can

simulate the design of each screen. Providing a simulation of interacting with these designs

using ATs can help developers understand and address accessibility problems more quickly,

as they will know where to modify the code.

Optimize Accessibility Crawler through Hybrid approaches Evaluating accessibil-

ity issues for each interaction in an app dynamically is very expensive. In OverSight,

I demonstrated a hybrid approach by locating over-accessibility smells statically and then

149

assessing them using ATs at runtime. This approach can be extended by identifying pat-

terns in UI specifications that potentially lead to accessibility issues. Advancements in AI

and existing datasets of various accessibility issues can assist in learning these patterns and

locating them in apps.

150

Bibliography

[1] Xml path language. https://www.w3.org/TR/2017/REC-xpath-31-20170321/, 2020.
Last Accessed: May 6, 2022.

[2] Accessibility testing framework for android. https://github.com/google/
Accessibility-Test-Framework-for-Android, 2021.

[3] Functional images. https://www.w3.org/WAI/tutorials/images/functional/,
2021.

[4] Labeldroid - icse best paper award. https://tinyurl.com/yxndyovk, 2021.

[5] A guide to disability rights laws. https://www.ada.gov/cguide.htm, August 20,
2020.

[6] accessiBe. accessscan - website accessibility checker - free & instant - accessibe.
https://accessibe.com/accessscan, 2023. Last Accessed: December 5, 2023.

[7] A. M. Agency. Access monitor plus. https://accessmonitor.acessibilidade.gov.pt/,
2021. Last Accessed: December 5, 2023.

[8] K. Allix, T. F. Bissyandé, J. Klein, and Y. Le Traon. Androzoo: Collecting millions of
android apps for the research community. In 2016 IEEE/ACM 13th Working Confer-
ence on Mining Software Repositories (MSR), pages 468–471, Austin, TX, 2016. IEEE,
IEEE.

[9] K. Allix, T. F. Bissyandé, J. Klein, and Y. Le Traon. Androzoo: Collecting millions
of android apps for the research community. In Proceedings of the 13th International
Conference on Mining Software Repositories, MSR ’16, pages 468–471, New York, NY,
USA, 2016. ACM.

[10] A. S. Alotaibi, P. T. Chiou, and W. G. Halfond. Automated repair of size-based
inaccessibility issues in mobile applications. In 2021 36th IEEE/ACM International
Conference on Automated Software Engineering, pages 730–742, Virtual, Australia,
2021. IEEE, IEEE.

[11] A. S. Alotaibi, P. T. Chiou, and W. G. Halfond. Automated detection of talkback
interactive accessibility failures in android applications. In 2022 IEEE Conference on

151

https://www.w3.org/TR/2017/REC-xpath-31-20170321/
https://github.com/google/Accessibility-Test-Framework-for-Android
https://github.com/google/Accessibility-Test-Framework-for-Android
https://www.w3.org/WAI/tutorials/images/functional/
https://tinyurl.com/yxndyovk
https://www.ada.gov/cguide.htm

Software Testing, Verification and Validation (ICST), pages 232–243, Virtual, 2022.
IEEE, IEEE.

[12] A. Alshayban, I. Ahmed, and S. Malek. Accessibility issues in android apps: state
of a!airs, sentiments, and ways forward. In 2020 IEEE/ACM 42nd International
Conference on Software Engineering, pages 1323–1334, Virtual, 2020. ICSE.

[13] A. Alshayban, I. Ahmed, and S. Malek. Accessibility issues in android apps: State
of a!airs, sentiments, and ways forward. In 2020 IEEE/ACM 42nd International
Conference on Software Engineering. IEEE, 2020.

[14] A. Alshayban and S. Malek. Accessitext: automated detection of text accessibility
issues in android apps. In Proceedings of the 30th ACM Joint European Software
Engineering Conference and Symposium on the Foundations of Software Engineering,
pages 984–995, 2022.

[15] Y. Amit. Accessibility clickjacking–android malware evolution.(2016), 2018.

[16] Android. About switch access for android. https://support.google.com/
accessibility/android/answer/6122836?hl=en, 2020.

[17] Android. Accessibility scanner - apps on google play. https://play.google.com/
store/apps/details?id=com.google.android.apps.accessibility.auditor&hl=
en_US, 2020. Last Accessed: May 6, 2022.

[18] Android. Accessibilityservice in android. https://developer.android.com/guide/
topics/ui/accessibility/service, 2020. Last Accessed: May 6, 2022.

[19] Android. Talkback and switchaccess source code by google. https://github.com/
google/talkback, 2020. Last Accessed: May 6, 2022.

[20] Android. Test your app’s accessibility. https://developer.android.com/guide/
topics/ui/accessibility/testing, 2020. Last Accessed: August 20, 2020.

[21] Android. Build more accessible apps. https://developer.android.com/guide/
topics/ui/accessibility, 2021.

[22] Android. Espresso : Android developers. https://developer.android.com/
training/testing/espresso, 2021. Last Accessed: May 6, 2022.

[23] Android. Improve your code with lint checks. https://developer.android.com/
studio/write/lint, 2021. Last Accessed: May 6, 2020.

[24] Android. Accessibility testing framework. https://github.com/google/
Accessibility-Test-Framework-for-Android, 2022. Last Accessed: May 6, 2022.

[25] Android. Android accessibility overview. https://support.google.com/
accessibility/android/answer/6006564, 2022. Last Accessed: May 6, 2022.

152

https://support.google.com/accessibility/android/answer/6122836?hl=en
https://support.google.com/accessibility/android/answer/6122836?hl=en
https://play.google.com/store/apps/details?id=com.google.android.apps.accessibility.auditor&hl=en_US
https://play.google.com/store/apps/details?id=com.google.android.apps.accessibility.auditor&hl=en_US
https://play.google.com/store/apps/details?id=com.google.android.apps.accessibility.auditor&hl=en_US
https://developer.android.com/guide/topics/ui/accessibility/service
https://developer.android.com/guide/topics/ui/accessibility/service
https://github.com/google/talkback
https://github.com/google/talkback
https://developer.android.com/guide/topics/ui/accessibility/testing
https://developer.android.com/guide/topics/ui/accessibility/testing
https://developer.android.com/guide/topics/ui/accessibility
https://developer.android.com/guide/topics/ui/accessibility
https://developer.android.com/training/testing/espresso
https://developer.android.com/training/testing/espresso
https://developer.android.com/studio/write/lint
https://developer.android.com/studio/write/lint
https://github.com/google/Accessibility-Test-Framework-for-Android
https://github.com/google/Accessibility-Test-Framework-for-Android
https://support.google.com/accessibility/android/answer/6006564
https://support.google.com/accessibility/android/answer/6006564

[26] Android. Android debug bridge. https://developer.android.com/studio/
command-line/adb, 2022. Last Accessed: May 6, 2020.

[27] Android. Build more accessible apps. https://developer.android.com/guide/
topics/ui/accessibility, 2022. Last Accessed: May 6, 2022.

[28] Android. Google play. https://play.google.com/store/apps, 2022. Last Accessed:
May 6, 2022.

[29] Android. Webview - android documentation. https://developer.android.com/
reference/android/webkit/WebView, 2022. Last Accessed: May 6, 2022.

[30] Anonymous. Timestump companion website. https://github.com/timestump/timestump,
2024. Last Accessed: Mar 7, 2024.

[31] Apple. Apple accessibility - iphone. https://www.apple.com/accessibility/
iphone/, 2020.

[32] Apple. Content. https://developer.apple.com/design/
human-interface-guidelines/accessibility/overview/content/, 2021.

[33] Apple. Accessibility on ios. https://developer.apple.com/accessibility/ios/,
2022. Last Accessed: May 6, 2021.

[34] Apple. Apple accessibility scanner. https://developer.apple.com/library/
archive/documentation/Accessibility/Conceptual/AccessibilityMacOSX/
OSXAXTestingApps.html, 2022.

[35] M. Bajammal and A. Mesbah. Semantic web accessibility testing via hierarchical visual
analysis. In 2021 IEEE/ACM 43rd International Conference on Software Engineering
(ICSE), pages 1610–1621. IEEE, 2021.

[36] S. Banerjee and A. Lavie. Meteor: An automatic metric for mt evaluation with im-
proved correlation with human judgments. In Proceedings of the acl workshop on
intrinsic and extrinsic evaluation measures for machine translation and/or summa-
rization, 2005.

[37] C. Benavidez. Examinator, 2015.

[38] Y. Bengio, P. Simard, P. Frasconi, et al. Learning long-term dependencies with gradient
descent is di”cult. IEEE transactions on neural networks, 1994.

[39] J. P. Bigham, J. T. Brudvik, and B. Zhang. Accessibility by demonstration: enabling
end users to guide developers to web accessibility solutions. In Proceedings of the 12th
international ACM SIGACCESS conference on Computers and accessibility, pages 35–
42, Orlando, USA, 2010. Association for Computing Machinery.

153

https://developer.android.com/studio/command-line/adb
https://developer.android.com/studio/command-line/adb
https://developer.android.com/guide/topics/ui/accessibility
https://developer.android.com/guide/topics/ui/accessibility
https://play.google.com/store/apps
https://developer.android.com/reference/android/webkit/WebView
https://developer.android.com/reference/android/webkit/WebView
https://www.apple.com/accessibility/iphone/
https://www.apple.com/accessibility/iphone/
https://developer.apple.com/design/human-interface-guidelines/accessibility/overview/content/
https://developer.apple.com/design/human-interface-guidelines/accessibility/overview/content/
https://developer.apple.com/accessibility/ios/
https://developer.apple.com/library/archive/documentation/Accessibility/Conceptual/AccessibilityMacOSX/OSXAXTestingApps.html
https://developer.apple.com/library/archive/documentation/Accessibility/Conceptual/AccessibilityMacOSX/OSXAXTestingApps.html
https://developer.apple.com/library/archive/documentation/Accessibility/Conceptual/AccessibilityMacOSX/OSXAXTestingApps.html

[40] R. Bourne, J. Adelson, S. Flaxman, P. Briant, M. Bottone, T. Vos, K. Naidoo,
T. Braithwaite, M. Cicinelli, J. Jonas, H. Limburg, S. Resniko!, A. Silvester, V. Nan-
gia, and H. Taylor. Global prevalence of blindness and distance and near visual im-
pairment in 2020: progress towards the vision 2020 targets and what the future holds.
Investigative Ophthalmology and Visual Science, 2020.

[41] G. Broccia, M. Manca, F. Paternò, and F. Pulina. Flexible automatic support for web
accessibility validation. Proceedings of the ACM on Human-Computer Interaction,
4(EICS):1–24, 2020.

[42] M. M. B.V. Meditation moments. https://play.google.com/store/apps/details?
id=com.meditationmoments.meditationmoments&hl=en_US&gl=US, 2022. Last Ac-
cessed: March 10, 2022.

[43] M. Campbell. Lock screen bypass enables access to Notes in iOS 15, 2021.

[44] C. Chen, T. Su, G. Meng, Z. Xing, and Y. Liu. From ui design image to gui skeleton:
a neural machine translator to bootstrap mobile gui implementation. In Proceedings
of the 40th International Conference on Software Engineering, pages 665–676, 2018.

[45] J. Chen, C. Chen, Z. Xing, X. Xu, L. Zhu, and G. Li. Unblind your apps: Pre-
dicting natural-language labels for mobile gui components by deep learning. In 2020
IEEE/ACM 42nd International Conference on Software Engineering, page 322–334,
Virtual, 2020. IEEE, ICSE.

[46] J. Chen, M. Xie, Z. Xing, C. Chen, X. Xu, L. Zhu, and G. Li. Object detection for
graphical user interface: Old fashioned or deep learning or a combination? In pro-
ceedings of the 28th ACM joint meeting on European Software Engineering Conference
and Symposium on the Foundations of Software Engineering, pages 1202–1214, 2020.

[47] S. Chen, C. Chen, L. Fan, M. Fan, X. Zhan, and Y. Liu. Accessible or not an empirical
investigation of android app accessibility. IEEE Transactions on Software Engineering,
48:3954–3968, 2021.

[48] P. T. Chiou, A. S. Alotaibi, and W. G. Halfond. Detecting and localizing keyboard
accessibility failures in web applications. In Proceedings of the 29th ACM Joint Meeting
on European Software Engineering Conference and Symposium on the Foundations of
Software Engineering, ESEC/FSE 2021, pages 855–867, Virtual, Athens, Greece, 2021.
ACM New York, NY, USA.

[49] P. T. Chiou, A. S. Alotaibi, and W. G. Halfond. Bagel: An approach to automatically
detect navigation-based web accessibility barriers for keyboard users. In Proceedings
of the 2023 CHI Conference on Human Factors in Computing Systems, pages 1–17,
2023.

[50] P. T. Chiou, A. S. Alotaibi, and W. G. Halfond. Detecting dialog-related keyboard
navigation failures in web applications. In 2023 IEEE/ACM 45th International Con-
ference on Software Engineering (ICSE), pages 1368–1380. IEEE, 2023.

154

https://play.google.com/store/apps/details?id=com.meditationmoments.meditationmoments&hl=en_US&gl=US
https://play.google.com/store/apps/details?id=com.meditationmoments.meditationmoments&hl=en_US&gl=US

[51] W. Choi, G. Necula, and K. Sen. Guided gui testing of android apps with minimal
restart and approximate learning. Acm Sigplan Notices, 48(10):623–640, 2013.

[52] W. Choi, K. Sen, G. Necul, and W. Wang. Detreduce: minimizing android gui test
suites for regression testing. In 2018 IEEE/ACM 40th International Conference on
Software Engineering (ICSE), pages 445–455, Gothenburg, Sweden, 2018. IEEE, IEEE.

[53] A. Clark and Contributors. Pillow, python imaging library. https://pillow.
readthedocs.io/en/stable/, 2022. Last Accessed: May 6, 2022.

[54] B. R. Connell. The principles of universal design, version 2.0. http://www. design.
ncsu. edu/cud/univ design/princ overview. htm, 1997.

[55] Y. Cui, M. Jia, T.-Y. Lin, Y. Song, and S. Belongie. Class-balanced loss based on
e!ective number of samples. In Proceedings of the IEEE Conference on Computer
Vision and Pattern Recognition, 2019.

[56] H. N. da Silva, S. R. Vergilio, and A. T. Endo. Accessibility mutation testing of
android applications. Journal of Software Engineering Research and Development,
10:8–1, 2022.

[57] R. J. P. Damaceno, J. C. Braga, and J. P. Mena-Chalco. Mobile device accessibility
for the visually impaired: problems mapping and recommendations. Universal Access
in the Information Society, 2018.

[58] B. Deka, Z. Huang, C. Franzen, J. Hibschman, D. Afergan, Y. Li, J. Nichols, and
R. Kumar. Rico: A mobile app dataset for building data-driven design applications. In
Proceedings of the 30th Annual Symposium on User Interface Software and Technology,
2017.

[59] B. Deka, Z. Huang, C. Franzen, J. Hibschman, D. Afergan, Y. Li, J. Nichols, and
R. Kumar. Rico: A mobile app dataset for building data-driven design applications.
In Proceedings of the 30th annual ACM symposium on user interface software and
technology, pages 845–854, 2017.

[60] Z. Dong, M. Böhme, L. Cojocaru, and A. Roychoudhury. Time-travel testing of android
apps. In Proceedings of the 42nd International Conference on Software Engineering,
ICSE ’20, pages 1–12, Seoul, South Korea, 2020. IEEE.

[61] C. Duarte, A. Salvado, M. E. Akpinar, Y. Yeşilada, and L. Carriço. Automatic role
detection of visual elements of web pages for automatic accessibility evaluation. W4A
’18, New York, NY, USA, 2018. Association for Computing Machinery.

[62] F. Durgam, J. Grigera, and A. Garrido. Dynamic detection of accessibility smells.
Universal Access in the Information Society, pages 1–12, 2023.

[63] M. M. Eler, J. M. Rojas, Y. Ge, and G. Fraser. Automated accessibility testing
of mobile apps. In 2018 IEEE 11th International Conference on Software Testing,
Verification and Validation. IEEE, 2018.

155

https://pillow.readthedocs.io/en/stable/
https://pillow.readthedocs.io/en/stable/

[64] M. M. Eler, J. M. Rojas, Y. Ge, and G. Fraser. Automated accessibility testing
of mobile apps. In 2018 IEEE 11th International Conference on Software Testing,
Verification and Validation, pages 116–126, Väster̊as, Sweden, 2018. ICST.

[65] S. Feng, M. Xie, and C. Chen. E”ciency matters: Speeding up automated testing
with gui rendering inference. In 2023 IEEE/ACM 45th International Conference on
Software Engineering (ICSE), pages 906–918. IEEE, 2023.

[66] N. Fernandes, D. Costa, C. Duarte, and L. Carriço. Evaluating the accessibility of web
applications. Procedia Computer Science, 14:28–35, 2012.

[67] N. Fernandes, D. Costa, C. Duarte, and L. Carriço. Evaluating the accessibility of web
applications. Procedia Computer Science, 14:28–35, 2012.

[68] Y. Fratantonio, C. Qian, S. P. Chung, and W. Lee. Cloak and dagger: From two
permissions to complete control of the ui feedback loop. In 2017 IEEE Symposium on
Security and Privacy (SP), pages 1041–1057, 2017.

[69] G. Gay and C. Q. Li. Achecker: open, interactive, customizable, web accessibility
checking. In Proceedings of the 2010 International Cross Disciplinary Conference on
Web Accessibility (W4A), pages 1–2, Raleigh, USA, 2010. Association for Computing
Machinery.

[70] I. Goodfellow, Y. Bengio, and A. Courville. Deep Learning. MIT Press, 2016. http:
//www.deeplearningbook.org.

[71] Google. Accessibilitynodeinfo. https://developer.android.com/reference/
android/view/accessibility/AccessibilityNodeInfo#isVisibleToUser(),
2020. Last Accessed: March 6, 2022.

[72] Google. Get started on android with talkback - android accessibility help. https://
support.google.com/accessibility/android/answer/6283677?hl=en, 2020. Last
Accessed: May 6, 2022.

[73] Google. Accessibilityflags. https://developer.android.com/reference/
android/accessibilityservice/AccessibilityServiceInfo#attr_android:
accessibilityFlags, 2022. Last Accessed: March 16, 2022.

[74] Google. Accessibilityinteractioncontroller.java. https://android.googlesource.
com/platform/frameworks/base/+/80943d8/core/java/android/view/
AccessibilityInteractionController.java#680, 2022. Last Accessed: May
3, 2022.

[75] Google. Accessibilitynodeinfo. https://developer.android.com/reference/
android/view/accessibility/AccessibilityNodeInfo, 2022. Last Accessed:
March 12, 2022.

156

http://www.deeplearningbook.org
http://www.deeplearningbook.org
https://developer.android.com/reference/android/view/accessibility/AccessibilityNodeInfo#isVisibleToUser()
https://developer.android.com/reference/android/view/accessibility/AccessibilityNodeInfo#isVisibleToUser()
https://support.google.com/accessibility/android/answer/6283677?hl=en
https://support.google.com/accessibility/android/answer/6283677?hl=en
https://developer.android.com/reference/android/accessibilityservice/AccessibilityServiceInfo#attr_android:accessibilityFlags
https://developer.android.com/reference/android/accessibilityservice/AccessibilityServiceInfo#attr_android:accessibilityFlags
https://developer.android.com/reference/android/accessibilityservice/AccessibilityServiceInfo#attr_android:accessibilityFlags
https://android.googlesource.com/platform/frameworks/base/+/80943d8/core/java/android/view/AccessibilityInteractionController.java#680
https://android.googlesource.com/platform/frameworks/base/+/80943d8/core/java/android/view/AccessibilityInteractionController.java#680
https://android.googlesource.com/platform/frameworks/base/+/80943d8/core/java/android/view/AccessibilityInteractionController.java#680
https://developer.android.com/reference/android/view/accessibility/AccessibilityNodeInfo
https://developer.android.com/reference/android/view/accessibility/AccessibilityNodeInfo

[76] Google. Facebook lite - apps on google play. https://play.google.com/store/
apps/details?id=com.facebook.lite&hl=en_US&gl=US, 2022. Last Accessed: May
6, 2022.

[77] Google. Ui/application exerciser monkey. https://developer.android.com/studio/
test/monkey, 2022. Last Accessed: May 6, 2022.

[78] Google. clickandwaitfornewwindow. https://android.googlesource.com/
platform/frameworks/base/+/refs/heads/main/cmds/uiautomator/library/
core-src/com/android/uiautomator/core/InteractionController.java#252,
2024. Last ACCESSED: Feb 18, 2024.

[79] Google. Dumpcommand. https://android.googlesource.com/platform/
frameworks/testing/+/jb-mr2-release/uiautomator/cmds/uiautomator/src/
com/android/commands/uiautomator/DumpCommand.java#87, 2024. Last Accessed:
Feb 18, 2024.

[80] T. Gu, C. Sun, X. Ma, C. Cao, C. Xu, Y. Yao, Q. Zhang, J. Lu, and Z. Su. Practical
gui testing of android applications via model abstraction and refinement. In 2019
IEEE/ACM 41st International Conference on Software Engineering (ICSE), pages
269–280, Montreal, Canada, 2019. IEEE, IEEE.

[81] J. T. Hancock and T. M. Khoshgoftaar. Survey on categorical data for neural networks.
Journal of Big Data, 2020.

[82] V. L. Hanson and J. T. Richards. Progress on website accessibility? ACM Transactions
on the Web, 2013.

[83] S. Hao, B. Liu, S. Nath, W. G. Halfond, and R. Govindan. Puma: programmable ui-
automation for large-scale dynamic analysis of mobile apps. In Proceedings of the 12th
annual international conference on Mobile systems, applications, and services, 2014.

[84] S. Hao, B. Liu, S. Nath, W. G. Halfond, and R. Govindan. Puma: programmable ui-
automation for large-scale dynamic analysis of mobile apps. In Proceedings of the 12th
annual international conference on Mobile systems, applications, and services, pages
204–217, Bretton Woods, New Hampshire, USA, 2014. ACM New York, NY, USA.

[85] K. He, X. Zhang, S. Ren, and J. Sun. Deep residual learning for image recognition. In
Proceedings of the IEEE conference on computer vision and pattern recognition, 2016.

[86] S. Hochreiter and J. Schmidhuber. Long short-term memory. Neural computation,
1997.

[87] J. Huang, M. Backes, and S. Bugiel. A11y and privacy don’t have to be mutually ex-
clusive: Constraining accessibility service misuse on android. In 30th USENIX Security
Symposium (USENIX Security 21), pages 3631–3648, 2021.

[88] IBM. Ibm accessibility requirements. https://www.ibm.com/able/guidelines/
ci162/accessibility_checklist.html, 2022. Last Accessed: May 6, 2020.

157

https://play.google.com/store/apps/details?id=com.facebook.lite&hl=en_US&gl=US
https://play.google.com/store/apps/details?id=com.facebook.lite&hl=en_US&gl=US
https://developer.android.com/studio/test/monkey
https://developer.android.com/studio/test/monkey
https://android.googlesource.com/platform/frameworks/base/+/refs/heads/main/cmds/uiautomator/library/core-src/com/android/uiautomator/core/InteractionController.java#252
https://android.googlesource.com/platform/frameworks/base/+/refs/heads/main/cmds/uiautomator/library/core-src/com/android/uiautomator/core/InteractionController.java#252
https://android.googlesource.com/platform/frameworks/base/+/refs/heads/main/cmds/uiautomator/library/core-src/com/android/uiautomator/core/InteractionController.java#252
https://android.googlesource.com/platform/frameworks/testing/+/jb-mr2-release/uiautomator/cmds/uiautomator/src/com/android/commands/uiautomator/DumpCommand.java#87
https://android.googlesource.com/platform/frameworks/testing/+/jb-mr2-release/uiautomator/cmds/uiautomator/src/com/android/commands/uiautomator/DumpCommand.java#87
https://android.googlesource.com/platform/frameworks/testing/+/jb-mr2-release/uiautomator/cmds/uiautomator/src/com/android/commands/uiautomator/DumpCommand.java#87
https://www.ibm.com/able/guidelines/ci162/accessibility_checklist.html
https://www.ibm.com/able/guidelines/ci162/accessibility_checklist.html

[89] R. Jabbarvand, F. Mehralian, and S. Malek. Automated construction of energy test or-
acles for android. In Proceedings of the 28th ACM Joint Meeting on European Software
Engineering Conference and Symposium on the Foundations of Software Engineering,
pages 927–938, 2020.

[90] Y. Jang, C. Song, S. P. Chung, T. Wang, and W. Lee. A11y attacks: Exploiting
accessibility in operating systems. In Proceedings of the 2014 ACM SIGSAC Conference
on Computer and Communications Security, pages 103–115, 2014.

[91] S. K. Kane, J. A. Shulman, T. J. Shockley, and R. E. Ladner. A web accessibility report
card for top international university web sites. In Proceedings of the 2007 international
cross-disciplinary conference on Web accessibility, 2007.

[92] KewlApps. Applock. https://play.google.com/store/apps/details?id=com.
gamemalt.applocker, 2022. Last Accessed: March 10, 2022.

[93] S. Khandelwal. New ransomware not just encrypts your android but also changes pin
lock, Oct 2017.

[94] KIF. Keep it functional - an ios functional testing framework. https://github.com/kif-
framework/KIF, 2023. Last Accessed: December 7, 2023.

[95] D. P. Kingma and J. Ba. Adam: A method for stochastic optimization. arXiv preprint
arXiv:1412.6980, 2014.

[96] F. Koroy. Another BAD iOS 12 Passcode Bypass! 12.1/12.0.1 (Works on XS), 2018.

[97] F. Koroy. iOS 12 Passcode Bypass! Photos & Contacts (Works on XS), 2018.

[98] K. J. Koswara and Y. D. W. Asnar. Improving vulnerability scanner performance in
detecting ajax application vulnerabilities. In 2019 International Conference on Data
and Software Engineering (ICoDSE), pages 1–5. IEEE, 2019.

[99] J. Kraunelis, Y. Chen, Z. Ling, X. Fu, and W. Zhao. On malware leveraging the
android accessibility framework. In I. Stojmenovic, Z. Cheng, and S. Guo, editors,
Mobile and Ubiquitous Systems: Computing, Networking, and Services, pages 512–
523, Cham, 2014. Springer International Publishing.

[100] A. Krizhevsky, I. Sutskever, and G. E. Hinton. Imagenet classification with deep
convolutional neural networks. In Advances in neural information processing systems,
2012.

[101] F. T. Labs. Fable — digital accessibility, powered by people with disabilities.
https://makeitfable.com/, 2023. Last Accessed: December 7, 2023.

[102] L. Li, R. Wang, X. Zhan, Y. Wang, C. Gao, S. Wang, and Y. Liu. What you see is
what you get? it is not the case! detecting misleading icons for mobile applications. In
Proceedings of the 32nd ACM SIGSOFT International Symposium on Software Testing
and Analysis, pages 538–550, 2023.

158

https://play.google.com/store/apps/details?id=com.gamemalt.applocker
https://play.google.com/store/apps/details?id=com.gamemalt.applocker

[103] C.-Y. Lin and E. Hovy. Automatic evaluation of summaries using n-gram co-occurrence
statistics. In Proceedings of the 2003 Human Language Technology Conference of the
North American Chapter of the Association for Computational Linguistics, 2003.

[104] J.-W. Lin, N. Salehnamadi, and S. Malek. Test automation in open-source android
apps: A large-scale empirical study. In Proceedings of the 35th IEEE/ACM Inter-
national Conference on Automated Software Engineering, pages 1078–1089, Virtual,
Australia, 2020. ACM New York, NY, USA.

[105] T.-Y. Lin, P. Goyal, R. Girshick, K. He, and P. Dollár. Focal loss for dense object
detection. In Proceedings of the IEEE international conference on computer vision,
2017.

[106] T. F. Liu, M. Craft, J. Situ, E. Yumer, R. Mech, and R. Kumar. Learning design
semantics for mobile apps. In Proceedings of the 31st Annual ACM Symposium on
User Interface Software and Technology, 2018.

[107] N. F. Malik, A. Nadeem, and M. A. Sindhu. Achieving state space reduction in gen-
erated ajax web application state machine. Intelligent Automation & Soft Computing,
33(1), 2022.

[108] K. Mao, M. Harman, and Y. Jia. Sapienz: Multi-objective automated testing for
android applications. In Proceedings of the 25th International Symposium on Software
Testing and Analysis, pages 94–105, Saarbrücken, Germany, 2016. ACM New York,
NY, USA.

[109] D. A. Mateus, C. A. Silva, M. M. Eler, and A. P. Freire. Accessibility of mobile ap-
plications: evaluation by users with visual impairment and by automated tools. In
Proceedings of the 19th Brazilian Symposium on Human Factors in Computing Sys-
tems, pages 1–10, Diamantina, Brazil, 2020. ACM New York, NY, USA.

[110] A. Mathur, G. Acar, M. J. Friedman, E. Lucherini, J. Mayer, M. Chetty, and
A. Narayanan. Dark patterns at scale: Findings from a crawl of 11k shopping websites.
Proceedings of the ACM on Human-Computer Interaction, 3(CSCW):1–32, 2019.

[111] F. Mehralian, N. Salehnamadi, S. F. Huq, and S. Malek. Too much accessibility is
harmful! automated detection and analysis of overly accessible elements in mobile
apps. In 2022 37th IEEE/ACM International Conference on Automated Software En-
gineering, Michigan, USA, 2022. IEEE, ACM New York, NY, USA.

[112] F. Mehralian, N. Salehnamadi, and S. Malek. Data-driven accessibility repair revisited:
on the e!ectiveness of generating labels for icons in android apps. In Proceedings of
the 29th ACM Joint Meeting on European Software Engineering Conference and Sym-
posium on the Foundations of Software Engineering, pages 107–118, Virtual, Athens,
Greece, 2021. ACM New York, NY, USA.

[113] Microsoft. Accessibility insights for android. https://accessibilityinsights.io/
docs/en/android/overview/, 2022. Last Accessed: March 13, 2022.

159

https://accessibilityinsights.io/docs/en/android/overview/
https://accessibilityinsights.io/docs/en/android/overview/

[114] Microsoft. An app platform for building android and ios apps with .net and c#.
https://dotnet.microsoft.com/en-us/apps/xamarin, 2022. Last Accessed: May
6, 2022.

[115] M. Miller. Monetization insights from app professionals. https://www.data.ai/en/
insights/app-monetization/app-marketers-developers-survey-2/, 2017.

[116] Monkey Taps LLC. I am - Daily A”rmations. https://play.google.com/store/
apps/details?id=com.hrd.iam&hl=en_US&gl=US, 2024. Accessed: 2024-02-12.

[117] H. Mora, V. Gilart-Iglesias, R. Pérez-del Hoyo, and M. D. Andújar-Montoya. A com-
prehensive system for monitoring urban accessibility in smart cities. Sensors, 2017.

[118] M. Naseri, N. P. Borges Jr, A. Zeller, and R. Rouvoy. Accessileaks: Investigating
privacy leaks exposed by the android accessibility service. 2019.

[119] S. Nguyen, H. Phan, T. Le, and T. N. Nguyen. Suggesting natural method names
to check name consistencies. In 2020 IEEE/ACM 42nd International Conference on
Software Engineering. IEEE, 2020.

[120] U. D. of Justice. Americans with disabilities act. https://eur-lex.europa.eu/legal-
content/EN/TXT/?uri=CELEXLast Accessed: February 12, 2024.

[121] OverSight. Oversight. https://github.com/seal-hub/Oversight, 2022.

[122] Pallets. Flask, the python micro framework for building web applications. https:
//github.com/pallets/flask, 2022. Last Accessed: May 6, 2022.

[123] L. Paninski. Estimation of entropy and mutual information. Neural computation, 2003.

[124] K. Papineni, S. Roukos, T. Ward, and W.-J. Zhu. Bleu: a method for automatic
evaluation of machine translation. In Proceedings of the 40th annual meeting of the
Association for Computational Linguistics, 2002.

[125] K. Park, T. Goh, and H.-J. So. Toward accessible mobile application design: developing
mobile application accessibility guidelines for people with visual impairment. HCI
Korea, 2014.

[126] A. Paszke, S. Gross, S. Chintala, G. Chanan, E. Yang, Z. DeVito, Z. Lin, A. Desmaison,
L. Antiga, and A. Lerer. Automatic di!erentiation in pytorch. 2017.

[127] J. Pennington, R. Socher, and C. D. Manning. Glove: Global vectors for word repre-
sentation. In Empirical Methods in Natural Language Processing, 2014.

[128] A. Possemato, A. Lanzi, S. P. H. Chung, W. Lee, and Y. Fratantonio. Clickshield: Are
you hiding something? towards eradicating clickjacking on android. In Proceedings
of the 2018 ACM SIGSAC Conference on Computer and Communications Security,
pages 1120–1136, 2018.

160

https://dotnet.microsoft.com/en-us/apps/xamarin
https://www.data.ai/en/insights/app-monetization/app-marketers-developers-survey-2/
https://www.data.ai/en/insights/app-monetization/app-marketers-developers-survey-2/
https://play.google.com/store/apps/details?id=com.hrd.iam&hl=en_US&gl=US
https://play.google.com/store/apps/details?id=com.hrd.iam&hl=en_US&gl=US
https://github.com/seal-hub/Oversight
https://github.com/pallets/flask
https://github.com/pallets/flask

[129] C. Power, A. Freire, H. Petrie, and D. Swallow. Guidelines are only half of the story:
accessibility problems encountered by blind users on the web. In Proceedings of the
SIGCHI Conference on Human Factors in Computing Systems, pages 433–442, Austin
Texas USA, May 2012. ACM.

[130] C. Power, A. Freire, H. Petrie, and D. Swallow. Guidelines are only half of the story:
accessibility problems encountered by blind users on the web. In Proceedings of the
SIGCHI conference on human factors in computing systems, pages 433–442, Texas,
USA, 2012. CHI.

[131] PyTorch. Softmax. https://pytorch.org/docs/stable/generated/torch.nn.
Softmax.html, 2021.

[132] C. Ren, P. Liu, and S. Zhu. Windowguard: Systematic protection of gui security in
android. In NDSS, 2017.

[133] L. Richardson. Beautiful soup documentation. April, 2007.

[134] Robolectric. robolectric/robolectric. https://github.com/robolectric/
robolectric, 2021.

[135] A. S. Ross, X. Zhang, J. Fogarty, and J. O. Wobbrock. Epidemiology as a framework
for large-scale mobile application accessibility assessment. In Proceedings of the 19th
international ACM SIGACCESS conference on computers and accessibility, pages 2–
11, Baltimore, MD, USA, 2017. ASSETS.

[136] A. S. Ross, X. Zhang, J. Fogarty, and J. O. Wobbrock. Examining image-based button
labeling for accessibility in android apps through large-scale analysis. In Proceedings of
the 20th International ACM SIGACCESS Conference on Computers and Accessibility,
2018.

[137] A. S. Ross, X. Zhang, J. Fogarty, and J. O. Wobbrock. An epidemiology-inspired large-
scale analysis of android app accessibility. ACM Transactions on Accessible Computing,
13(1):1–36, 2020.

[138] P. Royston. Approximating the shapiro-wilk w-test for non-normality. Statistics and
computing, 1992.

[139] N. Salehnamadi, A. Alshayban, J.-W. Lin, I. Ahmed, S. Branham, and S. Malek. Latte:
Use-case and assistive-service driven automated accessibility testing framework for
android. In Proceedings of the 2021 CHI Conference on Human Factors in Computing
Systems, pages 1–11, Virtual, Okohama, Japan, 2021. ACM New York, NY, USA.

[140] N. Salehnamadi, A. Alshayban, J.-W. Lin, I. Ahmed, S. Branham, and S. Malek. Latte:
Use-case and assistive-service driven automated accessibility testing framework for
android. In Proceedings of the 2021 CHI Conference on Human Factors in Computing
Systems, New York, NY, USA, 2021. Association for Computing Machinery.

161

https://pytorch.org/docs/stable/generated/torch.nn.Softmax.html
https://pytorch.org/docs/stable/generated/torch.nn.Softmax.html
https://github.com/robolectric/robolectric
https://github.com/robolectric/robolectric

[141] N. Salehnamadi, Z. He, and S. Malek. Assistive-technology aided manual accessibility
testing in mobile apps, powered by record-and-replay. In Proceedings of the 2023 CHI
Conference on Human Factors in Computing Systems, pages 1–20, 2023.

[142] N. Salehnamadi, F. Mehralian, and S. Malek. COALA. https://github.com/
fmehralian/COALA, 2021.

[143] N. Salehnamadi, F. Mehralian, and S. Malek. Groundhog: An automated accessibil-
ity crawler for mobile apps. In 2022 37th IEEE/ACM International Conference on
Automated Software Engineering, Michigan, USA, 2022. IEEE, ACM New York, NY,
USA.

[144] N. Salehnamadi, F. Mehralian, and S. Malek. Groundhog companion website. https:
//github.com/seal-hub/Groundhog, 2022. Last Accessed: September 1, 2022.

[145] L. Sensiate, H. Lidio Antonelli, W. Massami Watanabe, and R. Pontin de Mat-
tos Fortes. A mechanism for identifying dynamic components in rich internet ap-
plications. In Proceedings of the 38th ACM International Conference on Design of
Communication, SIGDOC ’20, pages 1–8, New York, NY, USA, 2020. Association for
Computing Machinery.

[146] L. C. Serra, L. P. Carvalho, L. P. Ferreira, J. B. S. Vaz, and A. P. Freire. Accessibility
evaluation of e-government mobile applications in brazil. Procedia Computer Science,
2015.

[147] S. Sharma, L. El Asri, H. Schulz, and J. Zumer. Relevance of unsupervised metrics in
task-oriented dialogue for evaluating natural language generation. 2017.

[148] C. Silva, M. M. Eler, and G. Fraser. A survey on the tool support for the automatic
evaluation of mobile accessibility. In Proceedings of the 8th International Conference
on Software Development and Technologies for Enhancing Accessibility and Fighting
Info-exclusion, pages 286–293, Thessaloniki, Greece, 2018. DSAI.

[149] T. Su, G. Meng, Y. Chen, K. Wu, W. Yang, Y. Yao, G. Pu, Y. Liu, and Z. Su. Guided,
stochastic model-based gui testing of android apps. In Proceedings of the 2017 11th
Joint Meeting on Foundations of Software Engineering, pages 245–256, Paderborn,
Germany, 2017. ACM New York, NY, USA.

[150] M. Taeb, A. Swearngin, E. School, R. Cheng, Y. Jiang, and J. Nichols. Axnav: Re-
playing accessibility tests from natural language. arXiv preprint arXiv:2310.02424,
2023.

[151] M. Tafreshipour, A. Deshpande, F. Mehralian, I. Ahmed, and S. Malek. Ma11y: A
mutation framework for web accessibility testing. In Proceedings of the 33rd ACM
SIGSOFT International Symposium on Software Testing and Analysis, 2024.

[152] H. Takagi, C. Asakawa, K. Fukuda, and J. Maeda. Accessibility designer: visualizing
usability for the blind. ACM SIGACCESS accessibility and computing, (77-78):177–
184, 2003.

162

https://github.com/fmehralian/COALA
https://github.com/fmehralian/COALA
https://github.com/seal-hub/Groundhog
https://github.com/seal-hub/Groundhog

[153] M. Van Someren, Y. F. Barnard, and J. Sandberg. The think aloud method: a practical
approach to modelling cognitive. London: AcademicPress, 11:29–41, 1994.

[154] R. Vedantam, C. Lawrence Zitnick, and D. Parikh. Cider: Consensus-based image
description evaluation. In Proceedings of the IEEE conference on computer vision and
pattern recognition, 2015.

[155] C. Vendome, D. Solano, S. Liñán, and M. Linares-Vásquez. Can everyone use my app?
an empirical study on accessibility in android apps. In 2019 IEEE International Con-
ference on Software Maintenance and Evolution, pages 41–52, Cleveland, OH, USA,
2019. IEEE, IEEE.

[156] D. Venkatesan. “malware may abuse androids accessibility service to bypass security
enhancements, 2016.

[157] M. Vigo, J. Brown, and V. Conway. Benchmarking web accessibility evaluation tools:
measuring the harm of sole reliance on automated tests. In Proceedings of the 10th
International Cross-Disciplinary Conference on Web Accessibility, pages 1–10, Rio de
Janeiro Brazil, May 2013. ACM.

[158] W3. Web accessibility tutorials: Images concepts.
https://www.w3.org/WAI/tutorials/images/, 2021.

[159] W3. Web Content Accessibility Guidelines (WCAG). https://www.w3.org/WAI/
standards-guidelines/#wcag, 2021.

[160] W3. Principle 1: Perceivable. https://www.w3.org/TR/WCAG20/#perceivable, 2022.
Last Accessed: March 15, 2022.

[161] W3. Principle 2: Operable. https://www.w3.org/TR/WCAG20/#operable, 2022. Last
Accessed: March 15, 2022.

[162] W3. Understanding the four principles of accessibility. https://www.w3.org/TR/
UNDERSTANDING-WCAG20/intro.html#introduction-fourprincs-head, 2022. Last
Accessed: April 12, 2022.

[163] W3. Web content accessibility guidelines (wcag) overview. https://www.w3.org/WAI/
standards-guidelines/wcag/, 2022. Last Accessed: May 6, 2022.

[164] W3C. Accessible rich internet applications (wai-aria) 1.2. Technical report, World
Wide Web Consortium (W3C), 2014.

[165] W3C. Inserting dynamic content into the document object model immediately follow-
ing its trigger element. https://www.w3.org/WAI/WCAG22/Techniques/client-side-
script/SCR26.html/, 2023. Last Accessed: December 7, 2023.

[166] W3C. Reordering page sections using the document object model.
https://www.w3.org/WAI/WCAG22/Techniques/client-side-script/SCR27.html,
2023. Last Accessed: December 7, 2023.

163

https://www.w3.org/WAI/standards-guidelines/#wcag
https://www.w3.org/WAI/standards-guidelines/#wcag
https://www.w3.org/TR/WCAG20/#perceivable
https://www.w3.org/TR/WCAG20/#operable
https://www.w3.org/TR/UNDERSTANDING-WCAG20/intro.html#introduction-fourprincs-head
https://www.w3.org/TR/UNDERSTANDING-WCAG20/intro.html#introduction-fourprincs-head
https://www.w3.org/WAI/standards-guidelines/wcag/
https://www.w3.org/WAI/standards-guidelines/wcag/

[167] W3C. Understanding success criterion 2.2.2 — understanding wcag 2.0.
https://www.w3.org/TR/UNDERSTANDING-WCAG20/time-limits-pause.html,
2023. Last Accessed: December 7, 2023.

[168] WAI. Understanding sc 3.3.1: Error identification (level a). https://www.w3.org/
WAI/WCAG21/Understanding/error-identification.html, 2024. Last Accessed:
March 5, 2024.

[169] WAI. Using aria role=alert or live regions to identify errors. https://www.w3.org/
WAI/WCAG21/Techniques/aria/ARIA19, 2024. Last Accessed: March 5, 2024.

[170] F. Wang. Measurement, optimization, and impact of health care accessibility: a
methodological review. Annals of the Association of American Geographers, 2012.

[171] W. M. Watanabe, R. P. Fortes, and A. L. Dias. Acceptance tests for validating aria
requirements in widgets. Universal Access in the Information Society, 16:3–27, 2017.

[172] WebAIM. Alternative text. https://webaim.org/techniques/alttext/, 2021.

[173] WebAIM. Wave web accessibility evaluation tool. https://wave.webaim.org/, 2023.
Last Accessed: December 5, 2023.

[174] WHO. World report on disability. https://www.who.int/disabilities/world_
report/2011/report/en/, 2011. Last Accessed: May 6, 2022.

[175] Wikipedia. Camel case. https://en.wikipedia.org/wiki/Camel_case, 2021.

[176] Wikipedia. Snake case. https://en.wikipedia.org/wiki/Snake_case, 2021.

[177] F. Wilcoxon. Individual comparisons by ranking methods. In Breakthroughs in statis-
tics, pages 196–202. Springer, 1992.

[178] R. J. Williams and D. Zipser. A learning algorithm for continually running fully
recurrent neural networks. Neural computation, 1989.

[179] J. Wu, X. Zhang, J. Nichols, and J. P. Bigham. Screen parsing: Towards reverse
engineering of ui models from screenshots. In The 34th Annual ACM Symposium on
User Interface Software and Technology, pages 470–483, 2021.

[180] L. Wu, B. Brandt, X. Du, and B. Ji. Analysis of clickjacking attacks and an e!ective
defense scheme for android devices. In 2016 IEEE Conference on Communications and
Network Security (CNS), pages 55–63, 2016.

[181] S. Yan and P. Ramachandran. The current status of accessibility in mobile apps. ACM
Transactions on Accessible Computing, 2019.

[182] M. Zhang. Android ransomware variant uses clickjacking to become device adminis-
trator, 2016.

164

https://www.w3.org/WAI/WCAG21/Understanding/error-identification.html
https://www.w3.org/WAI/WCAG21/Understanding/error-identification.html
https://www.w3.org/WAI/WCAG21/Techniques/aria/ARIA19
https://www.w3.org/WAI/WCAG21/Techniques/aria/ARIA19
https://webaim.org/techniques/alttext/
https://www.who.int/disabilities/world_report/2011/report/en/
https://www.who.int/disabilities/world_report/2011/report/en/
https://en.wikipedia.org/wiki/Camel_case
https://en.wikipedia.org/wiki/Snake_case

[183] X. Zhang, L. de Greef, A. Swearngin, S. White, K. Murray, L. Yu, Q. Shan, J. Nichols,
J. Wu, C. Fleizach, et al. Screen recognition: Creating accessibility metadata for mobile
applications from pixels. In Proceedings of the 2021 CHI Conference on Human Factors
in Computing Systems, pages 1–15, Virtual, Okohama, Japan, 2021. ACM New York,
NY, USA.

[184] X. Zhang, A. S. Ross, A. Caspi, J. Fogarty, and J. O. Wobbrock. Interaction proxies
for runtime repair and enhancement of mobile application accessibility. In Proceedings
of the 2017 CHI conference on human factors in computing systems, 2017.

[185] X. Zhang, A. S. Ross, and J. Fogarty. Robust annotation of mobile application inter-
faces in methods for accessibility repair and enhancement. In Proceedings of the 31st
Annual ACM Symposium on User Interface Software and Technology, pages 609–621,
Berlin, Germany, 2018. UIST.

165

	LIST OF FIGURES
	LIST OF TABLES
	ACKNOWLEDGMENTS
	VITA
	ABSTRACT OF THE Dissertation
	Introduction
	Dissertation Overview
	Dissertation Structure

	Research Problem
	Problem Statement
	Thesis Statement
	Research Hypothesis

	Context-Aware Label Generation
	Introduction
	Background
	Data Exploration
	Experimental Setup
	RQ1. Characteristics of Labels
	RQ2. Labels of Visually Similar Icons
	RQ3. Labels and Icon Information
	Summary

	COALA
	Image Encoder Module
	Context Encoder Module
	Label Decoder Module

	DL Model Assessment
	Experimental Setup
	RQ4. LabelDroid's Effectiveness
	RQ5. Impact of Balanced Data on LabelDroid's Effectiveness
	RQ6. Effectiveness of coala
	RQ7. Informative Explanation for Users
	RQ8. Performance

	Threats to Validity
	Related Work
	Conclusion and Future Work

	AT-Aware Accessibility Testing
	Introduction
	Motivating Example
	Background
	Android UI
	Accessibility in Android

	Approach
	Snapshot Manager
	Action Extractor
	Proxies
	Oracle

	Optimization
	Implementation
	Evaluation
	Experimental Setup
	RQ1. Effectiveness of Groundhog
	RQ2. Comparison with Scanner
	RQ3. Qualitative Study
	RQ4. Performance

	Threats to Validity
	Related Work
	Conclusion

	AT-Aware Accessibility Testing: Over-Accessibility Issues
	Introduction
	Motivating Example & Background
	Overly Accessible Elements
	Data Collection
	Results

	Approach
	OA Detector
	OA Verifier

	Evaluation
	Experimental Setup
	RQ1. Accuracy of OverSight
	RQ2. OA Elements in Security-Sensitive Apps
	RQ3. Qualitative Analysis of OA Elements
	RQ4. Performance

	Threats to Validity
	Related Work
	Conclusion

	Time-Aware Assessment of App Accessibility
	Introduction
	Background
	Formative Study
	Study Design
	Results

	Approach
	Phase 1: Capturing Unique App Screens
	Phase 2: Monitoring Apps in Action
	Phase 3: Localizing Problematic Dynamic Changes

	Evaluation
	RQ1. Accuracy of TimeStump
	RQ2. Qualitative Study
	RQ3. Performance

	Threats to Validity
	Related Works
	Conclusion

	Conclusion
	Research Contribution
	Future Work

	Bibliography

