

A LEARNING-BASED FRAMEWORK FOR

ENGINEERING FEATURE-ORIENTED SELF-ADAPTIVE

SOFTWARE SYSTEMS

by

Ahmed Elkhodary

A Dissertation

Submitted to the

Graduate Faculty

of

George Mason University

in Partial Fulfillment of

The Requirements for the Degree

of

Doctor of Philosophy

Information Technology

Committee:

__ Dr. Sam Malek, Dissertation Director

__ Dr. Hassan Gomaa, Committee Member

__ Dr. Alexander Levis, Committee Member

__ Dr. Daniel Menascé, Committee Member

__ Dr. Daniel Menascé, Senior Associate

Dean

__ Dr. Lloyd J. Griffiths, Dean, Volgenau

School of Engineering

Date: ______________________________________ Fall Semester 2011

George Mason University

Fairfax, Virginia

A Learning-Based Framework for Engineering Feature-Oriented Self-Adaptive Software

Systems

A Dissertation submitted in partial fulfillment of the requirements for the degree of

Doctor of Philosophy at George Mason University

By

Ahmed Elkhodary

Master of Science

George Mason University, 2006

Bachelor of Science

King Abdul Aziz University, 2004

Director: Sam Malek, Assistant Professor

Department of Computer Science

Fall Semester 2011

George Mason University

Fairfax, VA

All rights reserved

INFORMATION TO ALL USERS
The quality of this reproduction is dependent on the quality of the copy submitted.

In the unlikely event that the author did not send a complete manuscript
and there are missing pages, these will be noted. Also, if material had to be removed,

a note will indicate the deletion.

All rights reserved. This edition of the work is protected against
unauthorized copying under Title 17, United States Code.

ProQuest LLC.
789 East Eisenhower Parkway

P.O. Box 1346
Ann Arbor, MI 48106 - 1346

UMI 3492118

Copyright 2011 by ProQuest LLC.

UMI Number: 3492118

ii

Copyright 2011 Ahmed Elkhodary

All Rights Reserved

iii

Dedication

To the greatest parents in the world (Mohamed Elkhodary & Wijdan Alshanti).

iv

Acknowledgements

I would like to thank my parents, Mohammad and Wijdan, for their continuous and

unlimited support and prayers.

I would like to thank my dissertation director, Dr. Sam Malek, for his scholarly direction,

teaching, encouragement, and support.

I would like to thank my Ph.D. committee (Dr. Hassan Gomaa, Dr. Alex Levis, and Dr.

Daniel Menasce) for their scholarly direction and guidance throughout the Ph.D.

program.

I would like to thank Dr. Daniel Menascé, Senior Associate Dean of the Volgenau School

of Engineering, for his generous support, in the form of PhD Fellowships, and

PhD Completion Grant.

I would like to thank my friends and school mates, Dr. Naeem Esfahani, Mohammad

Abu-Matar, Ashraf Abu-Sharekh, Ahmed Abu-Jbarah, and Mohammad Ababneh for their

good company, intellectual discussions, and help.

Last but not least, I would like to thank my family members Lama, Hani, May, and Ala

Elkhodary for their selfless help and continuous prayers.

v

Table of Contents

Page

List of Tables .. viii

List of Figures ... ix

Abstract... i

Chapter 1 : Introduction .. 1

1.1 Problem Statement ... 1

1.2 Research Statement and Hypotheses .. 3

1.3 Research Thrust Areas and Insights ... 4

1.4 Contributions .. 6

1.5 Organization of the Dissertation .. 7

Chapter 2 : Related Work .. 8

2.1 Modeling Software Adaptation Space ... 8

2.1.1 Parametric Adaptation .. 9
2.1.2 Architecture-Based Adaptation .. 9
2.1.3 Aspect-Oriented Adaptation ... 10
2.1.4 Feature-Oriented Adaptation ... 11

2.2 Approaches for Analytical Modeling .. 12

2.2.1 White-Box Approaches ... 13
2.2.2 Black-Box Approaches ... 14

2.3 Online Reasoning for Self-Adaptive Software Systems 15

2.3.1 Architecture-Based Reasoning .. 18
2.3.2 Rule-based Reasoning ... 20
2.3.3 Learning-Based Reasoning .. 21

2.4 Tool Support for Self-Adaptive Software Systems 23

Chapter 3 : Motivating Case Study .. 26

3.1 Concept Drifts.. 27

3.2 Dependencies .. 28

vi

3.3 Efficiency ... 29

Chapter 4 : FUSION Overview .. 30

Chapter 5 : FUSION Model ... 33

5.1 Feature-Oriented Adaptation .. 33

5.2 Goals ... 37

5.3 Context .. 38

5.4 Incorporating Engineers’ Knowledge ... 38

5.5 Assumptions and Limitations of the FUSION Model 40

Chapter 6 : FUSION Learning Cycle .. 42

6.1 Observe ... 45

6.2 Induce ... 47

Chapter 7 : FUSION Adaptation Cycle .. 52

7.1 Detect ... 53

7.2 Plan ... 53

7.3 Effect ... 57

Chapter 8 : FUSION Implementation .. 67

8.1 Modeling Self-Adaptation Logic ... 70

8.1.1 FUSION-Based Goal Management .. 70
8.1.2 Architecture-Based Change Management .. 73
8.1.3 Prism-MW Based Component Control .. 76

8.2 Connecting Self-Adaptation Models Together 79

8.2.1 Mapping FUSION to XTEAM .. 80
8.2.2 Mapping XTEAM to PrismMW .. 83

8.3 Training the Knowledge Base ... 88

Chapter 9 : Evaluation ... 92

9.1 Hypothesis #1: Concept Drifts .. 95

9.1.1 [Q1.1]Accuracy of Learning .. 96
9.1.2 [Q1.2] Adaptation in Presence of Concept Drifts.. 101
9.1.3 [Q1.2] Quality of Feature Selection .. 103

9.2 Hypothesis #2: Dependencies ... 105

9.2.1 [Q2.1] Prevention vs. Detection of Architectural Inconsistencies 105

vii

9.2.2 [Q2.2] Protecting System Goals During Adaptation.. 106

9.3 Hypothesis #3: Efficiency .. 107

9.3.1 [Q3.1] Overhead of Learning (Induce Activity) ... 108
9.3.2 [Q3.2] Efficiency of Optimization (Plan Activity) ... 109
9.3.3 [Q3.3] Efficiency of Path Search (Effect Activity) .. 110

Chapter 10 Conclusion .. 112

10.1 Contributions .. 112

10.2 Limitations and Future Work ... 113

References ... 117

viii

List of Tables

Table Page

TABLE 1. NORMALIZED OBSERVATION RECORDS ... 45

TABLE 2. INDUCED FUNCTIONS FOR METRICS MG1-MG4. AN EMPTY CELL MEANS THAT THE CORRESPONDING FEATURE HAS NO

SIGNIFICANT IMPACT. .. 48

TABLE 3.CONSTRAINTS TO THE OPTIMIZATION PROBLEM GENERATED BY PLAN. .. 55

TABLE 4. TRANSLATING COMPONENT CONTROL ADAPTATION OPERATORS INTO PRISM-MW CODE. 78

TABLE 5. FUSION KB REFINEMENT GUIDED BY FEATURE MODELS. .. 90

TABLE 6. IMPACT OF FEATURE REDUCTION HEURISTICS. ... 101

TABLE 7. INDUCTION EXECUTION TIME IN MILLISECONDS ... 108

ix

List of Figures

Figure Page

FIGURE 1. SOFTWARE ARCHITECTURE OF THE TRAVEL RESERVATION SYSTEM (TRS); THICK LINES REPRESENT AN EXECUTION

SCENARIO ASSOCIATED WITH RECEIVING A PRICE QUOTE. .. 27

FIGURE 2. OVERVIEW OF THE FUSION FRAMEWORK.. 31

FIGURE 3. TRAVEL RESERVATION SYSTEM: (A) GOALS ARE QUANTIFIED IN TERMS OF UTILITY OBTAINED FOR A GIVEN LEVEL OF

METRIC; (B) SUBSET OF AVAILABLE FEATURES, WHERE FEATURES WITH THICK BORDERS ARE SELECTED; (C) SOFTWARE

ARCHITECTURE CORRESPONDING TO THE SELECTED FEATURES, WHERE THE THICK LINES REPRESENT AN EXECUTION

SCENARIO ASSOCIATED WITH GOAL G1. .. 34

FIGURE 4. FEATURES CAN BE REALIZED IN MANY WAYS: (A) CONFIGURATION PARAMETERS MODIFIED BY THE SELF-MANAGEMENT

LAYER AT RUNTIME AND READ BY RUNNING SYSTEM; (B) ASPECTS THAT ARE WEAVED INTO THE RUNNING SYSTEM WHEN

THE CORRESPONDING FEATURE IS ENABLED; AND (C) ARCHITECTURE MAPPING, WHICH THEN MODIFIES THE RUNNING

SYSTEM BY ADDING/REMOVING COMPONENTS AND CONNECTORS. ... 36

FIGURE 5: FUSION USES THE FEATURE MODEL TO INCORPORATE ENGINEERS’ KNOWLEDGE OF ARCHITECTURAL DEPENDENCIES

AND THE VALID CONFIGURATIONS OF THE SYSTEM. .. 39

FIGURE 6. ALGORITHM FOR SIZING THE FEATURE SELECTION SPACE. ... 43

FIGURE 7: EFFECT FINDS SHORTEST PATH WITHIN THE SIGNIFICANT FEATURE SPACE USING A* SEARCH. 62

FIGURE 8. EFFECT HEURISTICS-BASED PATH SEARCH ALGORITHM. .. 65

FIGURE 9. EFFECT HELPER METHODS (HEURISTICS, UTILITY LOSS, AND NEIGHBOR EXPLORATION FUNCTIONS). 66

FIGURE 10. SUBSET OF TRS IN OUR PROTOTYPE IMPLEMENTATION OF FUSION: (A) GOALS AND METRICS, (B) FEATURE MODEL,

(C) IMPLEMENTATIONS OF CORE AND CACHING FEATURES. ... 68

FIGURE 11. SELF-ADAPTATION TOOL SUPPORT USING ONLINE MDA. .. 69

FIGURE 12. FUSION-BASED GOAL MANAGEMENT META-MODEL. ... 72

FIGURE 13. XTEAM’S-BASED CHANGE MANAGEMENT META-MODEL. .. 74

FIGURE 14. COMPONENT CONTROL META-MODEL EXTENDS PRISM-MW... 77

FIGURE 15. ADHOC REPORT ADAPTER CODE IN PRISM-MW. ... 78

FIGURE 16. THE STATE CHARTS OF C2 ADAPTATION PATTERN FOR ADAPTING A C2COMPONENT. 80

FIGURE 17. FUSION-TO-XTEAM TRANSFORMATION DEFINITION. ... 82

FIGURE 18. XTEAM-TO-PRISMMW TRANSFORMATION DEFINITION. .. 86

FIGURE 19. DEVELOPMENT LIFECYCLE FOR TRS. .. 88

FIGURE 20. ACCURACY OF LEARNED FUNCTIONS FOR “QUOTE RES. TIME” METRIC: (A) NORMAL TRAFFIC, (B) VARYING TRAFFIC,

(C) DATABASE INDEXING FAILURE, (D) RANDOMIZED DOS TRAFFIC. ... 97

FIGURE 21. PREDICTION ERRORS (%) FOR DIFFERENT SCENARIOS. ... 100

FIGURE 22. IMPACT OF FEATURE “PER-REQUEST AUTHENTICATION” ON METRICS “QUOTE RESPONSE TIME” AND “QUOTE

QUALITY” ... 102

FIGURE 23. GLOBAL UTILITY FOR DIFFERENT SCENARIOS. ... 104

FIGURE 24. QUALITY OF ADAPTATION PATHS... 107

FIGURE 25. OPTIMIZATION EXECUTION TIME FOR DIFFERENT SCENARIOS. ... 109

FIGURE 26: EFFECT EXECUTION TIME FOR DIFFERENT SCENARIOS. .. 110

Abstract

A LEARNING BASED FRAMEWORK FOR ENGINEERING FEATURE-ORIENTED

SELF-ADAPTIVE SOFTWARE SYSTEMS

Ahmed Elkhodary, PhD

George Mason University, 2011

Dissertation Director: Dr. Sam Malek

Self-adaptive software systems are capable of adjusting their behavior at runtime to

achieve certain functional or quality of service goals. Often a representation that reflects

the internal structure of the managed system is used to reason about its characteristics and

make the appropriate adaptation decisions. However, in practice, self-adaptive software

systems are often complex, dynamic, and the structure of managed system may not be

completely known at design time. In addition, runtime conditions can radically change

the internal structure in ways that were not accounted for during their design. As a result,

unanticipated changes at runtime that violate the assumptions made about the internal

structure of the system could make the adaptation decisions inefficient and inaccurate.

In this dissertation, we present an approach for engineering self-adaptive software

systems that brings about two innovations: (1) a feature-oriented approach for

representing engineers’ knowledge of adaptation choices that are deemed practical, and

(2) an online learning-based approach of assessing and reasoning about adaptation

decisions that does not require an explicit representation of the internal structure of the

managed software system. Engineers’ knowledge, represented in feature-models, adds

structure to online learning, which in turn makes online learning feasible.

We present an empirical evaluation of a proof-of-concept implementation of the

framework using a real world self-adaptive software system. Results demonstrate the

framework’s ability to accurately learn the changing dynamics of the system, while

achieving efficient analysis and adaptation.

1

Chapter 1 : Introduction

The unrelenting pattern of growth in size and complexity of software systems that we

have witnessed over the past few decades is likely to continue well into the foreseeable

future. As software engineers have developed new techniques to address the complexity

associated with the construction of modern-day software systems, an equally pressing

need has risen for mechanisms that automate and simplify the management and

modification of software systems after they are deployed, i.e., during runtime. This has

called for the development of self-adaptive software systems [33]. A self-adaptive

software system is capable of modifying itself at runtime to achieve certain functional or

Quality of Service (QoS) objectives. While over the past decade researchers have made

significant progress with methodologies and

frameworks [18] [20] [21] [30] [33] [39] [48] [52] [65] that target the development of such

systems, numerous challenges remain [10]. In particular, engineering the adaptation logic

poses the greatest difficult as further discussed below.

1.1 Problem Statement

The state-of-the-art [10] [33] in engineering self-adaptive software systems is to

employ an architectural representation of the software system (e.g., component-and-

connector view [66]) for reasoning about the adaptation decisions. We refer to this as the

2

white-box approach, since it requires knowledge of the system’s internal structure of the

managed system. The adaptation decisions are thus made at the architectural level, often

in terms of structural changes, such as adding, removing, and replacing software

components, changing the system’s architectural style [53], rebinding a component’s

interfaces, and so on. This paradigm is commonly referred to as architecture-based

adaptation [33] [52] [66]. At design-time engineers create analytical models using this

architectural representation. The analytical model is then used to assess the system’s

ability to satisfy an objective using the monitoring data obtained at runtime. The result

produced by an analytical model thus serves as indicators for making the adaptation

decisions. For instance, Queuing Network models [25] and Hidden Markov models [56]

have been used previously for assessing the system’s performance and reliability

properties, respectively.

While state-of the-art approaches have achieved noteworthy success in many

domains, they suffer from several key shortcomings when faced with the following

issues:

1. Concept drifts. White-box approaches, in general, make simplifying assumptions or

presume certain properties of the internal structure of the system that may not bear

out in practice. They cannot cope with the runtime changes (i.e., concept

drifts [96] [97] [98]) that were not accounted for during their formulation. In practice,

the internal structure of managed software systems may not be completely known at

design time. Even when partially known, runtime conditions can radically change the

internal structure of the system in ways that were not accounted for during design.

3

Thus, unanticipated changes at runtime that violate the assumptions made about the

internal structure of the system could make the analysis and hence the adaptation

decisions inaccurate.

2. Dependencies. White-box approach assumes adaptation can be localized in atomic

structural changes that can be carried out independently, while often in practice

changes in different parts of the architecture need to occur in concert. Thus, ensuring

the correct functioning during and after the adaptation is difficult using such

approaches, in particular when changes crosscut the software system.

3. Efficiency. The efficiency of analysis and planning is of utmost importance in most

self-adaptive software systems that need to react quickly to situations that may arise

at runtime. However, often searching for an optimal configuration (i.e., solution) at

the architectural-level is computationally very expensive. In fact, many architecture-

based optimization algorithms are shown to be NP-hard [10] [43] [48]. We argue this

is because architectural models do not provide an effective medium for representing

the engineer’s knowledge of practical alternatives, hence forcing the automated

analysis to explore a large number of invalid configurations.

1.2 Research Statement and Hypotheses

This thesis aims to develop a black-box approach for reasoning about software

adaptation. The approach combines feature modeling, as the technique for explicitly

representing the engineers’ knowledge of practical software adaptation choices, with

online machine learning, as the technique for automatically deriving analytical models

4

predicting the impact of features on quality of service objectives. Engineers’ knowledge,

represented in feature-models, adds structure to online learning and limits the

configuration space to the space of valid feature selections, which in turn makes online

learning feasible. Black-box –yet fine-grained– analytical models derived through

continuous online learning make adaptation efficient and accurate.

The research statement entails investigating the following three hypotheses:

Hypothesis #1: Online learning could be used to generate a predictive model that

quantifies the impact of features on the system’s goals based on continuous

observation and induction.

Hypothesis #2: Features’ inter-relationships could be used to devise adaptation

plans that 1) enforce dependencies among the system’s constituents during and

after adaptation (e.g., components, protocols), and 2) ensure the system maintains

QoS goals during adaptation.

Hypothesis #3: Feature models together with online learning could be used to

prune the configuration space, and thereby achieve efficient analysis and

adaptation.

1.3 Research Thrust Areas and Insights

The first thrust of this research is feature-orientation, which has played a central role

in achieving systematic evolution and large-scale reuse in traditional software product

lines [11] [70], thus it is natural to believe its importance will only grow in the more

5

complex domain of self-adaptive systems. A feature is an abstraction of a capability

provided by the system that affects one or more of its properties [7]. A feature is

traditionally used during the requirements engineering phase to model a variation point in

the software system. At design-time, the engineer develops a mapping for each feature to

part of the underlying software architecture that realizes it.

In this research, we propose an additional role for features that manifests itself at

runtime. We use features as black-box units of adaptation. A feature provides a granular

abstraction of an adaptation point (i.e., runtime variability) in the software system, and

since it may crosscut the underlying software architecture, it could be used to address

global architectural dependencies during the adaptation. Moreover, since a feature model

incorporates the engineer’s knowledge of the system (i.e., the interrelationships among

the system’s functional capabilities), it could be used to reduce the space of valid

configurations, and thus make the runtime analysis very efficient.

The second thrust of this research is to empower the system to “automatically learn

how to adapt”. In other words, instead of requiring a white-box knowledge about the

software system, we propose a learning-based approach in which a predictive model of

the system is automatically induced from the monitored data. The approach not only

allows for automatic online fine-tuning of the adaptation logic to unanticipated

conditions, but also reduces the upfront effort required for building such systems. Indeed,

the goal as stated above is too ambitious and unrealistic for architecture-based adaptation,

since learning is known to be computationally expensive and the number of alternative

architectures is prohibitively large. For this reason, we constrain our approach to the

6

aforementioned feature-oriented adaptation paradigm, where the space of configuration

choices is significantly smaller.

1.4 Contributions

In this dissertation, we present a black-box approach for engineering self-adaptive

systems that brings about two innovations for solving the aforementioned challenges: (1)

a new method of modeling and representing a self-adaptive software systems that builds

on the notions of feature-orientation from the product line literature [11], and (2) a new

method of assessing and reasoning about adaptation decisions through online

learning [3]. The result of this research is a framework, entitled FeatUre-oriented Self-

adaptatION (FUSION), which combines feature-models (i.e., as an explicit representation

of domain experts’ knowledge) with online machine learning. Domain knowledge,

represented in feature-models, adds structure to online learning, which in turn improves

the quality of adaptation decisions. Below lists the key contributions of the FUSION

framework as an approach for building self-adaptive software systems:

1. FUSION reduces the complexity of building adaptation logic for software

systems, since it does not require an explicit representation of the managed

system’s internal structure. It only requires a black-box specification of the

system’s adaptation choices (i.e., features) as input.

2. FUSION copes with the changing dynamics of the system, even those that were

unforeseen at design time, through incremental observation and induction (i.e.,

online learning).

7

3. By encapsulating the engineer’s knowledge of the inter-dependencies among the

system’s constituents, FUSION can ensure stable functioning and protect system

goals during and after adaptation.

4. FUSION uses features and inter-feature relationships to significantly reduce the

configuration space of a sizable system, making runtime analysis and learning

feasible.

1.5 Organization of the Dissertation

The thesis is organized as follows: Chapter 2 provides background and representative

related work found in the literature relative to software adaptation, analytical modeling

approaches, online reasoning for adaptation, and tool support for self-adaptive software

systems. Chapter 3 presents a motivating case study that is used to describe the research

challenges and concepts presented throughout the thesis. Chapter 4 presents an overview

of the FUSION framework. Chapter 5, 6, and 7 provide detailed description of the

framework. Chapter 8 describes FUSION MDA-based tool support framework. 0Chapter

9 provides an empirical evaluation of FUSION using TRS to test and compare the

learning and decision-making cycles in terms of accuracy and efficiency. Chapter 10

provides concluding remarks, limitations of the work, and directions for future research.

8

Chapter 2 : Related Work

Over the past decade, researchers and practitioners have developed a variety of

methodologies, frameworks, and technologies intended to support the construction of

self-adaptive systems [5] [6] [10] [33]. We provide an overview of the most notable

research in this area and examine them in light of FUSION.

We begin the related work with an overview of key approaches for modeling

dynamism and variability in software systems in Section 2.1. Then, Section 2.2 covers a

number of approaches for analytical modeling that are commonly used in autonomic and

adaptive systems. Section 2.3 lists key literature related to online reasoning for

adaptation. Finally, Section 2.4 covers literature related to model driven support for

adaptation.

2.1 Modeling Software Adaptation Space

Several methods of modeling adaptation space of dynamic software systems have

been proposed. Each approach advocates a different abstraction for modeling the unit of

adaptation in the system. We sort the approaches based on the scale of adaptations

possible (i.e., local to global).

9

2.1.1 Parametric Adaptation

Ryutov et al. [59], for instance, provide a security framework that supports adaptive

access control and trust negotiation through parameterization. Two parameters change the

behavior of the system at runtime: system threat-level, which is collected from an

intrusion detection subsystem, and user suspicion-level, which is collected from security

logs. Parameterization as a paradigm of adaptation has the advantage of simplicity.

However, it lacks support for large-scale adaptation at the system wide level.

Similarly, Menasce et al. [47] [94] [95] propose a parameterizable model (i.e., an

online analytical model) for estimating the system’s performance by incorporating system

characteristics (e.g., workload) that become known at runtime.

While parameterization is an effective method of building self-adaptive software, it is

not applicable for structural adaptation with large-scale reconfigurations.

2.1.2 Component-Based Adaptation

In component-based adaptation [33] [48] [52] [66], adaptation is made at the

architectural level, often in terms of structural changes, such as adding, removing, and

replacing software components, changing the system’s architectural style [53], rebinding

a component’s interfaces, and so on.

Usually, changes at the architecture level involve prerequisite steps to make sure the

system is in a safe state for adaptation. Kramer et al. [33] describe the problem of change

management in architecture-based adaptation formally in [107] and introduce the notion

10

of quiescence. Gomaa et al. [23], uses a component-based approach to model adaptation

patterns.

Hence, this paradigm enables large-scale adaptation at a system-wide level by

swapping distributed components at runtime. Since this work serves as a foundation for

this work, we further discuss this paradigm and how it relates to architecture-based

reasoning in Section 2.3.1.

2.1.3 Aspect-Oriented Adaptation

The aspect based paradigm was invented to address crosscutting concerns that are

related to non-functional requirements. In past work [83], we presented MATA

(Modeling Aspects using a Transformation Approach), a UML aspect-oriented modeling

technique that uses graph transformations to specify and compose aspects into complete

software architectures. The approach uses unified aspect weaving operators for UML

class diagrams, sequence diagrams and state diagrams. MATA maintains separation of

aspects throughout the lifecycle by generating AspectWerkz code, which uses dynamic

weaving facility (i.e., byte-code manipulation) to compose aspects.

Morin et al. [49] [50] use aspects as course-granular units of adaptation. Aspects

reduce the configuration space significantly and make runtime analysis feasible for large

systems. However, since aspects are casually connected, there is no support for

specifying user-defined inter-aspect relationships.

A key advantage of this paradigm is its ability to reduce the configuration space

significantly when crosscutting concerns are taken in consideration in the system.

11

However, aspects may have significant interactions for which no accepted modeling

formalism can be used to expresses inter-aspect relationships and constraints.

2.1.4 Feature-Oriented Adaptation

FODA is an engineering method that enables massive and large-scale reuse by

identifying the common and variant features of a system family [88]. FODA development

cycle is based on three phases:

• Context Analysis: analyzes the scope of the domain and defines its boundary

by examining external environment and capturing that in a context model.

• Domain Modeling: elicits common and variants functional requirements

capabilities within the domain using features. The relations among the

features of the domain are represented using a tree structure in which features

are hierarchically decomposed.

• Architecture modeling: develops task structures and internal modules of the

tasks as well as their relationships using a high-level architectural

representation.

PLUS [22] is an engineering method for software product lines that is based on the

Unified Modeling Language (UML). PLUS uses features as well to encapsulate

commonality and variability in the product line family. throughout the development

lifecycle. PLUS enables two lifecycles to run in parallel:

• Product Line Engineering Cycle: enables analysis of the commonality and

variability within the system family as a whole using features, which are

12

categorized into kernel, optional, and alternative. Features are then mapped to

the software architecture that is modeled using multiple UML views.

• Application Engineering Cycle: enables instantiation of member applications

by tailoring a member application specific architecture that realizes user

selected features only.

Finally, previous works [26] [36] [69] have used feature-orientation as a method of

modeling the requirements of a dynamic product line. FUSION adopts a similar modeling

methodology. However, in FUSION features are used at run-time as the units of

adaptation and reasoning, and learning is employed in finding optimal feature selections.

In Section 5.1, we discuss how features in FUSION differ from traditional dynamic

product line features semantically.

2.2 Approaches for Analytical Modeling

A key feature of self-adaptive systems is the ability to use analytical models of the

system as runtime artifacts to reflect on the level of satisfaction of goals and constraints.

Such reflection depends on the nature and amount of knowledge represented in these

models. We describe in this section a number of analytical models emphasizing on the

ones that can or have been used at runtime (i.e., online models).

Analytical models differ in terms of the way knowledge of the behavior of the system

is represented. From that perspective, analytical models fall under two broad categories:

white-box and black box. We compare the two approaches in the follows sub-sections.

13

2.2.1 White-Box Approaches

White-box approaches for analytical modeling require an explicit model of the

internal structure of the software system (i.e., typically an architectural model). We

describe a number of examples in this section. Queuing Networks (QN) [25] are a

mathematical models used for performance analysis of a software systems that is

represented as a collection of Queues (i.e., system resources) and Customers (i.e., user

requests). Queuing models can be either open, where the number of customers can be

infinite, or closed, where the number of customers is known and finite. Layered queuing

networks (LQN) models were developed as an extension of QN to model software

entities and hardware devices. Software Queuing Networks-Hardware Queuing Networks

(SQN-HQN) [103] are 2-layered QNs in which the SQN can be open and the underlying

calculations are simple.

Markov models [56] in their simplist form are stochastic models that capture the state

of the system using a random variable that changes overtime according to the probability

distribution of the previous state. They are heavily used in assessing the reliability of

software applications. An important extenstion to simple Markov models is Markov

Decision Processes (MDP), which allow multiple probabilistic behaviors to be specified

as output from a state.

Petri Nets are mathematical models for the description of distributed systems. In Petri

Nets, systems are represented as nodes (i.e., events that may occur), places (i.e.,

conditions), and arcs (i.e., connect places to arcs). One application of Petri Net to

14

adaptive systems can be found [109] [110] [111] where a visual model is used to describe

the adaptation process of variable organizations as morphing sequence. In each node, one

member configuration of the variable organization is depicted. A member configuration

is obtained through unfolding the Petri Net that represents the variable organizations.

Hence, the approaches mentioned above require an explicit model of the internal

structure of the software system. Such models are typically used at design time to analyze

the trade-offs of different architectural decisions before implementation [101]. However,

they are being used increasingly at runtime to conduct dynamic analysis using monitoring

data. For instance, Menasce et al. [47] [48] provide an approach for service discovery in

SOA-based systems by using online analytical modeling. The scope of variability in such

model is limited to simple parametric adaptation in [47] and is extended to be

component-based in [48]. The structure of these models cannot be easily changed at

runtime in ways that were not accounted for during their formulation (e.g., appearance of

new queues in a QN model due to emerging software contentions).

2.2.2 Black-Box Approaches

Black-Box models (often called surrogate models) do not require knowledge of the

internal structure of the system. Black-box approaches are also called data-driven

modeling since machine learning on data is the basis for these approaches. A number of

these approaches is explained.

Artificial Neural Networks (ANN) is an effective way of solving a large number of

nonlinear estimation problems. Kriging [108] is another model that is based on treating

15

predicted response as a realization of a random function with respect to the actual system

response. Other types of models include Radial Basis Functions (RBF), Least

Interpolating Polynomials, and inductive learning are also widely used.

Model trees are an extension of regression trees that associate leaves with multiple

regression models (i.e., M5 Model Trees [10] and Multivariate Adaptive Regression

Splines (MARS) [17]). M5 model trees are more understandable than ANNs. In addition,

they are easy to configure and to train and capable of handling large number of

attributes [105]. In addition, they provide the opportunity for letting users participate

interactively in building the classifier at design-time due to the simplicity of the produced

model trees [106].

Being a member of the black-box analytical modeling family, the above approaches

do not require knowledge of the internal structure of the system as mentioned earlier.

However, they require sufficient sampling of the input/output parameters to construct an

approximation of the relationship between the inputs and outputs.

A key advantage of black-box approaches is that they can be used to detect concept

drifts (i.e., changes to the underling properties of a software system overtime at runtime).

FUSION follows the black-box approach in representing the behavior of a software

application.

2.3 Online Reasoning for Self-Adaptive Software Systems

IBM’s Autonomic Computing initiative advocates a reference model known as

MAPE [30], which is structured as hierarchies of feedback-control loop consisting of the

16

following activities: Monitor, Analyze, Plan and Execute. These activities are consistent

with existing self-adaptive framework’s that are based on the feedback control loop

reference model [5] [10].

At runtime, these activities are performed in the following logical flow:

• Monitor: Collects data through instrumentation of the running system. If a

functional failure or a violation of QoS objective is detected, it correlates the

data into symptoms that can be analyzed.

• Analyze: When a problem is detected, it searches for a configuration that

resolves it. It may perform a trade-off analysis between multiple conflicting

goals.

• Plan: Chooses a path of adaptation steps towards the target configuration. The

path has to abide by the system constraints. In addition, adaptation steps must

not cause further failures in the system.

• Execute: Takes the required actions to effect the changes delineated in the

plan. This may require adding, removing, and replacing the components and

the way they are interconnected in the running architecture.

Oreizy et al. pioneered the architecture-based approach to runtime adaptation and

evolution management in their seminal work [52]. The work introduces a framework for

runtime component evolution that is based on type theoretic language level support. The

framework uses an Architecture based representation that separates computation concerns

(i.e., Components) from communication concerns (i.e., Connectors). Runtime time

17

adaptation is facilitated using a C2 architectural style that uses C2 Connectors to route

messages among components through implicit invocation thus minimizing component

interdependencies.

Kramer and Magee [33] introduced a three-layer reference model for self-adaptation

(The terms self-adaptation and self-management are used interchangeably in this

document). Designing and developing self-managed systems have shown to be

significantly more challenging than traditional systems. The following briefly

demonstrates the different levels of abstraction on which reasoning takes place in self-

adaptive software systems:

1. Goal management is an ongoing runtime process that aims to maintain

satisfaction of system goals. Adverse changes in the system or its environment

may result in violation of goals. For instance, a sudden traffic spike may cause

significant increase in response time and break system objectives. In such

conditions, the role of Goal Management is to reflect on system requirements and

devise a plan that transitions the system to a configuration in which goals can be

satisfied. Goal management is the focus of this research.

2. Change management is the process that is responsible for making consistent

changes to the software architecture to reach a desired configuration. This may

involve effecting changes in arbitrary deployment architectures in which

geographically distributed components interact and depend on one another.

3. Component control executes individual change steps (i.e., addition, removal,

linking, and unlinking) and report success at the end of each step. It needs to

18

detect and report component’s state (i.e., active, passive, quiescent, failed, etc)

accurately before any changes take place to it.

These works served as the foundation of this research. The following subsections

discuss different approaches of online reasoning and decision making for runtime

adaptation.

2.3.1 Architecture-Based Reasoning

Garlan et al. present Rainbow framework [18], a style-based approach for developing

reusable self-adaptive systems. In Rainbow, an architectural model is used to monitor and

detect the need for adaptation in a system. In particular, instead of generating an optimal

adaptation plan, an explicit language of representation is provided to capture routine

human expertise about system adaptation. The self-adaptation language describes rule-

like constructs (condition-action), that is, mapping between invariants and adaptation

strategies in the architectural model. Invariants define conditions that the system should

maintain and an adaptation strategy is a script that modifies the architecture in response

to changes in the executing system properties. Thus, when the running system violates

the invariant imposed by the architectural model, the appropriate adaptation strategy is

executed to adapt the system.

Malek et al. [73] [74], provide a generic framework for improving QoS satisfaction by

finding an improved deployment architecture. The framework provides a set of estimator

algorithms that can scale for large number of components and hosts. Also, domain

19

experts can express QoS properties using a generic architecture-based representation of

the system.

Oreizy et al, [75] [76] describe an architectural approach for runtime adaptation and

self-healing. Their work uses architectural differences between a previous architectural

model and a new one in order to produce an adaptation plan. Then, the adaptation plan is

analyzed to validate the change to the architectural model. This technique relies on the

use of a predefined set of rules.

Georgiadis et al. [21] propose a decentralized adaptation approach, where each self-

organizing component manages its own adaptation with respect to the overall system

goal. The goal of each component manager is to find a binding, for each of its required

ports, that satisfies the global architectural constraints. If the architecture as a whole

needs to evolve, it changes the global constraints.

All of the above approaches, including many others (e.g., see [10]), share three traits:

(1) use white-box analytical models for making adaptation decisions, and (2) rely on

architectural representation for the analysis, and (3) effect a new solution through

architecture-based adaptation. As manifested by the key role of architecture in FUSION,

the above approaches form the basis of our work. However, unlike these approaches,

FUSION adopts a feature-oriented black-box approach to reasoning and adaptation,

which not only makes the runtime analysis efficient, but also reduces the effort required

in applying FUSION to existing systems. Moreover, unlike them, FUSION is capable of

coping with unanticipated changes through online learning.

20

2.3.2 Rule-based Reasoning

Related to our research are adaptation frameworks that employ logic and rule based

methods of induction. Sykes et al. [65] present an online planning approach to

architecture-based self-managed systems. Based on the three-layer model for self-

management [33], their work describes plan (i.e., a set of condition-action rules)

generation with respect to a change in the environment or a system failure.

Georgas et al. [20] suggest a knowledge-based approach, such that the adaptation

polices are specified as logic rules, which are in turn leveraged to derive new policies.

The policies connect a contectual condition (i.e., trigger for adaptation) with adaptation

actions (i.e., architecture-level changes).

Fleurey and Solberg [77] use two feature oriented representations: one for the system,

and the other for the context of the system. At design-time, domain experts specify the

rules that relate these two feature models and how they impact system properties.

The above approaches bear resemblance to the proposed work in their use of

induction. While rule-based approaches have been shown useful in some settings (e.g.,

ensuring certain properties hold in the system), they cannot be used for making

quantitative analysis of trade-offs between goals. Moreover, these approaches are known

to suffer from conflicts in the knowledge base.

21

2.3.3 Learning-Based Reasoning

Related to our work are autonomic approaches that have employed online learning for

reasoning about adaptation. Gambi et al. [104] proposed the use of online machine

learning using surrogate models (i.e., a family of Black-Box models) to limit violations of

SLA of software applications within Virtualized Data Centers (VDCs). The approach has

very close proximity to FUSION. However, the study was focused on relocation of

Virtual Machines and the associated resources in a data center rather than adaptation of

software application logic itself. In addition, unlike FUSION, the machine learning

approach does not apply any state space pruning heuristics to reduce the learning space

and improve runtime convergence.

Tesauro et al. [67] [68] have proposed a hybrid approach that combines white-box

analytical modeling with (i.e., QN models) with Reinforcement Learning (RL) to make

resource allocation decisions in data centers. Online learning uses a simplified black-box

representation of the running system thus making learning feasible. The white-box QN

model is used as a training facility to avoid direct exploration of adaptation decisions on

the actual running system. A key assumption of the work is that white-box QN model of

the system is available and can accurately predict its behavior under different adaptation

decisions. The approach is also focused on the problem of managing redeployment of

applications in Data Centers.

Kim and Park. [31] propose a reinforcement learning approach to online planning for

robots. Their work focuses on improving the robot’s behavior by learning from prior

22

experience and by dynamically discovering adaptation plans in response to environmental

changes.

Zhao et al. [115] [114] uses a hybrid Supervised Reinforcement Learning (SRL)

approach [114] that combines the merits of Supervised Learning (SL) and Reinforcement

Learning (RL) to develop an adaptive real-time cruise control system. SRL is

particularly used for learning problems in which 1) learning space is very large, 2)

decision-making time is limited, and 3) there is plenty of domain knowledge that can be

used as heuristics to reduce the learning space. For example, SRL was used for real-time

adaptive cruise control, robot steering tasks, manipulator control, peg insertion task.

The works in Rieck et al. [57] and Sabhani et al. [60] demonstrate the use of several

machine learning algorithms on four types of cyber attacks. The algorithms were used to

detect the drifting of a system from its normal patterns of behavior, which is typically a

sign of misuse of the system.

FUSION’s objective is to provide a general-purpose approach for self-adaption of the

software systems itself, which is fundamentally different from the above works that are

concerned with a specific problem. Due to the malleability of software applications,

adaption space can be enormously large. Thus, FUSION combines a number of

techniques (i.e., feature-based knowledge, significance testing, heuristics search, etc) to

make online reasoning feasible.

23

2.4 Tool Support for Self-Adaptive Software Systems

There have been efforts to hire the best practices in Model-Driven Development

(MDD) to generate adaptive software. Matevska et al. [78] discusses the need for

dynamic models to enable reconfiguration. In [79] feedback (i.e., monitoring)

implemented using models where adaptation is based on simple parameter changes.

Languages have been developed for adaptive systems’ requirements modeling [80],

architecture design [81] and runtime platforms [40]. However, there has been limited tool

support for self-adaptation throughout the development lifecycle. Such tool support

would mainly rely on MDD and more specifically MDA.

Model Driven Architectures (MDA) is a framework for software development that

takes MDD a step further by stressing on 1) precise modeling and 2) automated

transformations. In MDA, a model is a description of a system or part of it using a

language that has well-formed syntax and semantics such that a computer can interpret it

automatically. Models in MDA can be of three types:

1. Computation Independent Models (CIM): enable a level of domain modeling

that is independent of the underlying computation architecture. CIMs are typically

used to model software requirements and user-centric concerns.

2. Platform Independent Models (PIM): enable a level of architecture level

modeling (i.e., using more views) to capture a specification of the system while

abstracting away programming language/platform specific details.

24

3. Platform Specific Models (PSM): captures precise details of the software

execution platform (e.g. Java or .NET) for which the running system is

implemented.

A transformation is specification of a relationship between two or more models (e.g.

higher-level model to lower level model or vice versa) that is defined using a well-form

transformation language such that it can be executed by a transformation tool. A key

transformation language is that Query-View-Transformations (QVT) language, which is a

standard transformation definition language created by OMG. QVT defines three sub-

languages (QVT-Operational, QVT-Relations, and QVT-Core) all of which operates on

models. A transformation in itself can be regarded as a model. QVT-Relations received

high attention due to its intuitive declarative style that permits bi-directional

transformation naturally. The QVT-Relations has both textual and visual syntax in order

to facilitate definition of consistency rules.

MDA provides a comprehensive lifecycle that takes the system from requirements all

the way to code. In the context of self-adaptive systems, however, there has been limited

work in integrating MDA throughout the lifecycle of a self-adaptive system. Notable

exceptions include code generation from architectural diagrams [82], work in aspect-

oriented model-driven engineering [50] [83], and Giese et al.’s work on runtime model

synchronization [84] [85] [86]. Lack of such lifecycle-wide support for self-adaptive

systems makes the process of building self-adaptive systems unwieldy. Moreover, the

complexity involved in constructing such systems grows exponentially with the level of

sophistication of self-adaptation logic.

25

Giese et al. work on runtime model synchronization [85] lays the foundation for

enabling online fine-tuning of models for self-adaptive systems by introducing

incremental model transformation. It shows how this facility can be used to efficiently

implement monitoring [87] which is the first step towards having self-* system. The

model synchronization facility provided in the work is bidirectional i.e., it can both

transfer change from a source model to a target model and backwards at runtime.

In [86], the approach augments a MAPE model with model synchronization. MAPE

provides the control-loop while model synchronization provides the flexibility to change

the architecture and therefore achieve compositional adaptation. The approach does not

address specific self-management concerns (i.e., goal management, change management,

and component control). In Becker et al. the work addresses self-management concerns

specifically by attempting to provide model-driven support for the 3 layer reference

model using model transformation and synchronization [84]. However, the work uses

architecture based representations for both Goal and Change Management layers, where

both layers use PIM. Goal Management layer is based on relatively low level

representations, which reduces the potential for maintaining separation of goal and

change management concerns. This problem also holds for some other related works [50]

where adaptation logic is expressed in terms of platform specific artifacts and as such

separation of concerns is not achievable. In addition, Component Control concerns are

not addressed as they can be best handled using PSM.

26

Chapter 3 : Motivating Case Study

For illustrating the concepts in this thesis, we use an online Travel Reservation

System (TRS) that provides a web portal for making travel reservations remotely. Figure

1 shows a subset of this system’s software architecture using the traditional component-

and-connector view [66]. TRS aims to provide the best airline ticket prices in the market.

To make a price quote for the user, TRS takes trip information from the user, and then

discovers and queries the appropriate travel agent services. The travel agents reply with

their itinerary offers, which are then sorted and presented in ascending order of the

quoted price.

In addition to the functional goals, such a system is required to attain a number of

QoS objectives, such as performance, security, and accountability. To that end, solutions

for each QoS concern are developed, e.g., caching for performance, authentication for

security, and logging of transactions for accountability purposes.

A system such as TRS needs to be self-adaptive to deal with unanticipated situations,

such as traffic spikes or security attacks. To that end, the adaptation logic of TRS would

need to select from the available adaptation choices. For instance, enable caching to

improve performance during a traffic spike, increase authentication to thwart a security

attack, and enable logging to ensure non-repudiation of transactions (i.e., accountability).

27

To do so, heterogeneous analytical models are required. For example, security engineers

may use attack graphs to prevent intrusions and find the best counter measures, while

performance engineers may use queuing network models to assess the latency goals. For

a complex system engineers may need to connect analytical models of multiple layers of

abstraction (i.e., network, software, user, etc.) to characterize software behavior

As mentioned earlier, the construction of adaptation logic for such a system is

challenging.

3.1 Concept Drifts

Consider a QN model that quantifies the impact of an adaptation decision on the

Figure 1. Software architecture of the Travel Reservation System (TRS); thick lines

represent an execution scenario associated with receiving a price quote.

28

response time of receiving price quotes from travel agents (thick lines in Figure 1). Such

a model would inevitably make simplifying assumptions based on what the engineers

believe to be the main sources of delay in the system. For instance, if a particular

architectural layout is assumed, such a model may be unaware of the delay/overhead of

communication and estimate the response time simply as summation of the execution

time associated with the participating components; a more elaborate model would also

include the hardware layer details, but potentially for a presumed architectural layout

(e.g., physical hardware versus Virtual Machines deployed on a shared pool of hardware

dynamically); and so on. Since the underlying characteristics of complex dynamic

systems change at runtime, design-time assumptions on the structure of the system may

not hold, making the analysis and hence the adaptation decisions inaccurate.

3.2 Dependencies

Ensuring the correct functioning of the software system during and after the

adaptation is a challenging task. This is often dependent on the application and cannot be

represented effectively in the general purpose architectural description languages [46].

For instance, consider the problem of representing a constraint in TRS that requires the

same authentication protocol to be used on an end-to-end execution flow from the Web

Portal all the way to the Travel Agent and back (thick lines in Figure 1). Prior to

switching to a new protocol, the system is required to negotiate new credentials among

all of the components involved in the execution flow. The fact that this authentication

29

protocol crosscuts multiple components is difficult to represent and enforce using

architectural constructs.

3.3 Efficiency

To satisfy multiple goals, self-adaptation logic needs to search in a configuration

space that is equivalent to the combined complexity of all possible architectural choices

possible. As an example, consider how TRS would make use of N authentication

components for authenticating the network traffic between its M software components,

which may be deployed on P different hardware platforms. In this case, analyzing the

impact of authentication alone on the system’s goals would require exploring a space of

(M
P
 possible deployments)

 N possible ways of authentication
 = M

NP
possible configurations. Such

problem is computationally expensive to solve at runtime for any sizable system. This is

while authentication is only one concern out of many in any typical system.

These difficulties form the prime motivation behind our work, which instead of using

a pre-specified analytical model, uses a feature-oriented representation of the system to

continuously learn the impact of adaptation choices on system’s goals and adjust the

induced models.

30

Chapter 4 : FUSION Overview

Figure 2 depicts the envisaged framework as it adapts a running system composed of

a number of features. We assume the running system is variable in the sense that features

can be “selected” and “deselected" on demand. FUSION makes new feature selections to

resolve QoS tradeoffs and satisfy as many goals as possible. For example, if the TRS

system violates Quote Response Time goal, it is adapted to a new feature selection that

brings down the response time and keeps other goals satisfied. The details of how

features and goals are modeled will be discussed in Chapter 5.

As depicted in Figure 2, FUSION makes such adaptation decisions using a

continuous loop, called adaption cycle. The adaptation cycle collects metrics

(measurements) and optimizes the system by executing three activities in the following

sequence:

• Based on the metrics collected from the running system, Detect calculates the achieved

utility (i.e., measure of user’s satisfaction) to determine if a goal violation has

occurred.

• When a goal is violated, Plan searches for an optimal configuration (feature selection).

The optimal feature selection minimizes the negative impact of goal violation on the

system’s overall utility.

31

• Given a new feature selection, Effect determines a set of adaptation steps (i.e.,

enable/disable features) to place the system in the new configuration. The steps have

to abide by the feature model constraints (i.e., dependencies and mutual exclusion

relations) to ensure consistency during the adaptation.

FUSION uses learning cycle (depicted in Figure 2) to induce the impact of adaptation

decisions in terms of feature selection on the system’s goals. The first execution of

learning cycle occurs before the system’s initial deployment. The system is either

simulated or executed in offline mode and metrics corresponding to each feature selection

Figure 2. Overview of the FUSION framework.

32

is collected. This data is then used to train FUSION, as it induces a preliminary model of

the system’s behavior.

At runtime, the learning cycle continuously executes, and as the dynamics of the

system and its environment change, the framework tunes itself. For example, when

FUSION adapts TRS to resolve a “quote response time” violation, it keeps track of the

gap between the expected and the actual outcome of the adaptation. This gap is an

indicator of the new behavioral patterns in the system. Learning cycle collects such

indicators and tunes itself by executing two activities in the following sequence:

• Based on the measurements collected from the running system, Observe normalizes

the data in preparation for learning and detects any emerging patterns of behavior. A

potential emergent pattern is detected when the system sets wrong expectations (e.g.,

inaccurate prediction of utility for an adaptation step).

• Induce learns the new behavior and stores the refined model in the knowledge base so

that informed adaptation decisions can be made in the adaptation cycle.

In the following section, we demonstrate the key ideas in FUSION that make online

learning feasible for self-adaptive software systems.

33

Chapter 5 : FUSION Model

We first describe FUSION’s modeling methodology, which forms the centerpiece of

our approach. As will be detailed in Sections 5.1 and 5.2, FUSION’s feature-oriented

models enable effective learning and analysis by allowing domain experts to specify key

factors in the software system (i.e., whether at the domain, architecture, or platforms

level) that affect system goals.

5.1 Feature-Oriented Adaptation

In FUSION the unit of adaptation will be a feature. A feature is an abstraction of a

capability provided by the system [7] [11]. A feature may affect either the system’s

functional (e.g., ability to select seats in a reservation) or non-functional (e.g.,

authentication feature for security) properties. In traditional software product lines, a

feature is used during the requirements engineering phase to model a variation point in

the software system. At design-time, the engineer develops a mapping for each feature to

part of the underlying software architecture that realizes it. We assume an additional role

for features that manifests itself at runtime. We use features as the units of adaptation.

34

A feature provides a granular abstraction of an adaptation point (i.e., runtime

variability) in the software system, and since it may crosscut the underlying software

architecture, it could be used to address the consistency issues during the adaptation.

Moreover, since a feature model incorporates the engineer’s knowledge of the system

(i.e., the interrelationships among the system’s functional capabilities), it could be used to

reduce the space of valid configurations, and thus make the runtime analysis very

efficient. In that sense, features in our approach belong to the solution domain (i.e.,

Figure 3. Travel Reservation System: (a) goals are quantified in terms of utility

obtained for a given level of metric; (b) subset of available features, where features

with thick borders are selected; (c) software architecture corresponding to the

selected features, where the thick lines represent an execution scenario associated

with goal G1.

35

software architecture) rather than the problem domain (i.e., requirements) as in traditional

software product lines.

The use of features as an abstraction makes the FUSION framework independent of a

particular implementation platform or application domain. For example, features may

correspond to configuration parameters that are expressed in configuration files as in

Figure 4a. Features may be realized using aspects that are weaved to the running system

dynamically when the corresponding feature is enabled [27] [83] as in Figure 4b. In this

research, we adopt a particular realization of a feature: a feature represents an extension

of the architecture at well-defined variation points as in Figure 4c. A feature maps to a

subset of the system’s software architecture (refer to 8.2.1). For example, Figure 3b

shows the mapping of Evidence Generation feature to a subset of the TRS architecture,

which then maps to the platform specific representations of the running system.

Figure 3b shows a simple feature model for TRS. There are four features in the

system and one common core. The features in the example use two kinds of

relationships: dependency and mutual exclusion. The dependency relationship indicates

that a feature requires the presence of another feature. For example, enabling the

Evidence Generation feature requires having the core feature enabled as well. Mutual

exclusion is another relationship, which implies that if one of the features in a mutual

group is enabled, the others must be disabled. For example, Per-Request Authentication

and Per-Session Authentication cannot be enabled at the same time as they belong to the

same mutual group. Feature modeling supports several other types of feature

relationships (see [89] [90]) that for brevity are not discussed here.

36

We adopt the feature modeling notation used in [22], which supports several other

types of inter-feature relationships such as all-or-zero-of groups and at-least-one-of

groups described in further details in section 8.1.1.

At runtime, the feature model is used to identify the current system configuration in

terms of a feature selection string. In a feature selection string, enabled features are set to

“1”; disabled features are set to “0”. For example, one possible configuration of TRS

would be “1101111”, which means that all features from Figure 3b would be enabled

except Per-Request Authentication. The adaptation of a system is modeled as a transition

from one feature selection string to another, which we describe in Section 7.3.

We incorporate additional feature relationships into the FUSION framework. For

instance, some other feature relationships not depicted in Figure 3b include zero-or-one-

of, one-or-more-of, mutually-include, etc [22] [28]. 0Chapter 8 demonstrates how features

Figure 4. Features can be realized in many ways: (a) configuration parameters

modified by the self-management layer at runtime and read by running system; (b)

aspects that are weaved into the running system when the corresponding feature is

enabled; and (c) architecture mapping, which then modifies the running system by

adding/removing components and connectors.

37

are specified and mapped to the underlying software architecture in a tool support chain.

5.2 Goals

In FUSION, a goal construct represents the user’s functional or QoS objectives for a

particular execution scenario. A goal consists of a metric and a utility. A metric is a

measurable quantity (e.g., response time) that can be obtained from a running system. We

revisit the issue of how metrics can be obtained from the running system in Chapter 8.

A utility function is used to express the user’s preferences (satisfaction) for achieving

a particular metric. For instance, G1 in Figure 3a specifies the user’s degree of

satisfaction (U) with achieving a specific value of Quote Response Time (M). A utility

function could be used to simply express hard constraints. In that case the utility function

would be a step-function such as the utility of G4 depicted in Figure 3a. A utility function

may take on more advanced forms (e.g., sigmoid curve), and express more complex

preferences, such as G1, G2, and G3.

FUSION places one constraint on the specification of utility functions: they need to

return a value less than zero for the range of metric values that are not acceptable to the

user. As will be discussed in Section 7.1, when a utility associated with a goal is less

than or equal to zero, FUSION considers that goal to be violated and initiates adaptation.

Several previous works [54] [63] [64] have demonstrated the feasibility of accurately

capturing the user’s QoS preferences in terms of utility. We rely on these works in the

development of FUSION’s support for the elicitation of user’s QoS preference. Some

possible methods of eliciting user’s preferences include: (1) discrete—select from a finite

38

number of options (e.g., a certain level of QoS for a given service is excellent, good, bad,

or very bad), (2) relative—a simple relationship or ratio (e.g., 10% improvement in a

given QoS has 20% utility), and (3) constant feedback—input preferences based on the

delivered QoS at runtime (e.g., given a certain QoS delivered at runtime ask for better,

same, or ignore).

5.3 Context

In FUSION, a context is an input from the environment of the software system that

affects system goals. A typical example of a context variable is workload. Workload

affects performance related QoS goals such as response time. Security goals may also be

sensitive to context variables such threat level, which is used by intrusion detection

systems to raise/lower the level of authentication and access control to system resources.

We describe in Section 6.2 how FUSION quantifies the impact of such context variables.

5.4 Incorporating Engineers’ Knowledge

Figure 5 demonstrates the inherent advantage of FUSION’s approach for reducing

software adaptation space. In architecture based approaches, runtime reasoning operates

on the full architectural configuration space in which a vast majority of the configurations

can be invalid. Recall from 3.3, analyzing the impact of N authentication components on

M software components, which may be deployed on P different hardware platforms

requires exploring a space of (M
P
 possible deployments)

 N possible ways of authentication
 = M

NP

possible configurations. As a result, not only does the process become inefficient, but

39

also engineers end up defining a significant number of complex constraints most of

which are for validation purpose (i.e., to detect invalid configurations and exclude them

from the space).

In FUSION, instead of operating on the full architectural configuration space, the

feature model eliminates a significant portion of the configurations by design and

provides only the universe of valid configurations. Engineers of the self-adaptive logic

expose sensible adaptation choices to the feature level (i.e., as features). As mentioned in

Section 5.1, features produce a Boolean action space (i.e., a feature can be either “1” =

enabled or “0” = disabled). Thus, the full adaptation space is limited to 2
F
, where F

Figure 5: FUSION uses the feature model to incorporate engineers’ knowledge of

architectural dependencies and the valid configurations of the system.

40

represents the set of all the features in the system.

In addition, engineers create feature relationships as constraints that limit the space of

valid combinations of features even further. This produces the Feature Selection Space as

depicted in Figure 5. Note that applying feature model constraints at runtime is a feasible

process due to their simplicity (i.e., linear expressions) compared to architecture-level

ones as will be demonstrated in Section 7.2.

In addition to these reductions, which are determined at design time by engineers,

FUSION can further narrow down the Feature Selection Space through machine learning.

Often, machine learning algorithms use some mechanism to determine the subset of

features (principle components) that have significant impact on a metric. This produces

the Significant Space that is depicted in Figure 5.

5.5 Assumptions and Limitations of the FUSION Model

FUSION model makes the following key assumptions:

1. Metrics can be collected from the running system and be exposed at the FUSION

model level. The FUSION model abstracts away the complexity involved in

collecting such data accurately.

2. Utility functions accurately represent users’ preference.

3. Utility function does not require any elements of the system’s internal structure in

its formulation. In other words, utility is merely a function of metrics.

41

4. FUSION does not have access to the architecture space. Therefore, adaptation

choices are limited to the ones exposed at the feature level by the engineers.

42

Chapter 6 : FUSION Learning Cycle

FUSION copes with the changing dynamics of the system through learning. Learning

discovers relationships between features and metrics. Each relationship is represented as

a function that quantifies the impact of features, including their interactions, on a metric.

In TRS, for example, the result of learning would be four functions for each of the four

metrics MG1 through MG4. Each function takes a feature selection –in addition to other

contextual parameters- as input and produces an estimated value for the metric as output.

Learning is typically a very computationally intensive process. Learning at the

architecture-level is infeasible for any sizable system, which is the reason why its

application in this domain has been limited. As you may recall from Section 3.3, there

are M
NP

possible configurations for a software system with M software components, N

authentication options, and P platforms. Clearly, learning in such an enormous solution

space is infeasible. FUSION’s feature-oriented model offers three opportunities for

tackling the complexity of learning:

1. Learning operates on feature selection space, which is significantly smaller than the

traditional architectural-level configuration space. The features in FUSION encode

the engineer’s domain knowledge of the adaptation choices that are practical in a

given application. For instance, in the above authentication example, the engineer

may expose only the authentication strategies that are meaningful. Figure 3b shows

43

two authentication strategies modeled as features in TRS: F3 and F4. These two

features represent what the TRS engineer envisioned to be the reasonable applications

of authentication in the system.

2. By using the feature relationships (e.g., mutual exclusions, dependencies), one can

significantly reduce the feature selection space. For instance, Figure 3b shows a

mutual exclusive relationship between F3 and F4. This relationship is a manifestation

of the domain knowledge that applying the two authentication protocols at the same

time is not appropriate. Such relationships reduce the space of valid feature

SelectionCounter(Feature F) :int
int Count = 1;
switch (F.Type)

case “LeafFeature”:
Count = 2;

case “exactly-one-of-group”:
foreach (C in F.Children)

Count +=SelectionCounter(C) - 1;
case “zero-or-one-of-group”:

foreach (C in F.Children)
Count +=SelectionCounter(C) - 1;
Count ++;

case “zero-or-all-of-group”:
foreach (C in F.Children)

Count +=SelectionCounter(C);
Count -= F.Children.Count + 1;

case “at-least-one-of-group”:
foreach (C in F.Children)

Count *=SelectionCounter(C);
Count --;

default:
for each (C in F.Children)

Count *=SelectionCounter(C);
Count ++;

return Count;

Figure 6. Algorithm for sizing the feature selection space.

44

selections, further aiding FUSION to learn their trade-offs with respect to goals.

3. FUSION applies a significance test that further narrows the feature space for a given

metric down to the features that affect its values. For instance, in TRS, it has been

shown (see Section 9.1.2) that approximately 88% of TRS features can be eliminated

from the learning space of a given metric on average.

Figure 6 shows an algorithm that determines the size of the valid feature selection

space in our preliminary feature model recursively. Applying this algorithm to the feature

model in Figure 3b yields a space of 48 valid feature selections, calculated as follows:

2 from F1 × 2 from F2 × (2 from F3 + 2 from F4 – 2)×2 from F5 ×(2 from F6 + 2 from F7

– 1). Without considering the inter-feature relationships to prune the invalid selections,

the space of feature selections would have been 2
number of features

= 2
7
= 128.

The first cycle of learning takes place when engineers’ populate FUSION’s

knowledge base with training data and an initial set of induced functions. Consequently,

at runtime, the learning cycle fine-tunes the induced functions to accommodate emergent

behaviors. In 8.3, we demonstrate some practical considerations for the training. The rest

of this section describes the two activities that take place to populate and fine-tune the

knowledge base.

45

6.1 Observe

Observe is a continuous execution of two activities that: (1) normalize raw metric

values so that they are suitable for learning, and (2) test the accuracy of learned functions

to determine whether further learning is needed or not. We will describe each of these

activities below.

Learning in terms of raw data hampers the accuracy. For instance, consider the fact

that the actual impact of a feature on a metric may depend on time in the day, which is

one factor that has been overlooked by engineers. Therefore, the actual metric data

obtained from executing the same software system (i.e., same feature selection) under

different times may result in starkly different metric readings, thus making it difficult to

generalize in the form of a induced function.

Table 1. Normalized observation records

Independent Variables Dependent Variables

F1 F2 F3 F4 F5 F6 F7 .. MG1 MG2 MG3 MG4 ..

0 0 0 1 0 0 0 .. -0.842 -0.308 1.432 0 ..

1 0 0 1 0 0 0 .. 0.650 0.513 1.371 2 ..

0 1 0 1 0 0 0 .. -1.470 -0.719 1.378 1 ..

0 0 1 0 0 0 0 .. -0.132 -0.103 0.740 0 ..

0 0 0 1 0 0 0 .. -0.736 -1.335 1.103 1 ..

..

1 0 1 0 0 0 0 .. 1.574 1.951 0.550 2 ..

1 1 0 1 0 0 0 .. 0.153 0.513 1.090 2 ..

1 1 1 0 0 0 0 .. 0.804 -0.513 0.562 2 ..

..

46

To address this issue, Observe takes raw metric data through an automated

normalization process prior to storing them as observation records. Many normalization

techniques can be applied to transform the learning inputs into a representation that is less

sensitive to the execution context. Table 1 demonstrates how observations are collected

in FUSION. Observation records are normalized using studentized residual [8] as

follows: ���������	
���
�, where�� and � are the mean and the standard deviation of

the collected data, respectively. Normalization using studentized residuals does not

require knowledge of population parameter, such as absolute min-max values and

population mean. It only requires knowledge of mean and standard deviation for sample

data. Other normalization methods, such as min-max normalization [8], time-series

detrending [12], were not used in this research due to certain limitations. For instance, if

the data contains outliers, min-max normalization compresses the data points down to a

very small interval.

Once a preliminary set of functions are learned (details of the approach provided in

the next section), Observe continuously tests the accuracy of induced functions against

the latest collected observations. Accuracy is defined as the difference between predicted

value of a metric using the induced functions and actually observed value. For that

purpose, one could use the learning error ratio provided by the learning algorithm itself.

Note that the majority of learning algorithms provide an error ratio that indicates the

noise in learned functions. On top of this, one may specify an additional margin of

inaccuracy that can be tolerated, in cases where it is not desirable to run the learning

algorithm frequently. If the accuracy test fails, Observe takes this as an indicator that

47

either learning is incomplete or new patterns of behavior are emerging in the system and,

thus, notifies the Induce activity to fine-tune the induced functions using the latest set of

observations.

6.2 Induce

Based on the collected observations, the Induce activity constructs a function that

estimates the impact of making a feature selection on the metrics. Induce executes two

steps in order to obtain these functions as described below. The first step is a significance

test that determines the features with the most significant impact on each metric (also

known as feature extraction). This allows us to reduce the number of independent

variables (recall Table 1) that learning needs to consider for each metric. After the

significance test, we apply the learning algorithm, which for each goal, given the

normalized observations and the features with significance, derives the corresponding

relationships.

While FUSION is not tied to a particular learning algorithm, in our implementation

we have used the M5 model tree (MT) algorithm [10], which is a machine learning

technique with three important properties: (1) ability to eliminate insignificant features

automatically, (2) fast training and convergence, (3) robustness to noise, and (4)

simplifies significance testing.

Table 2 shows an example of how the induced relationships among features and

metrics look like. We eliminated contextual variables (e.g., workload) from the table to

the simplify the demonstration of the approach. The empty cells correspond to

48

insignificant features. The information in this table can also be represented simply as a

set of functions. For instance, a function estimating ��� corresponds to the second

column of the table as follows:

 ���=1.553 F1 - 0.673 F2+ 0.709 F3 + 0.163 F1F3 - 0.843 (Eq. 1)

Each feature is assigned a coefficient that is effective only when the feature is enabled

(i.e., it is set to “1”). For example, the expected value of MG1 for a feature selection where

only F1 and F3 are enabled (“1010000”) can be calculated as follows:

 ���=1.553×1 + 0 + 0.709×1+ 0.163×1×1 - 0.843 = 1.482 (Eq. 2)

When making adaptation decisions, values obtained from the induced functions (e.g.,

1.482 from Eq. 2 above) would need to be denormalized by applying the inverse of

normalization equation used in Observe. The denormalized value for a metric is then

Table 2. Induced functions for metrics MG1-MG4. An empty cell means that the

corresponding feature has no significant impact.

Significant

Variables

Induced Functions

MG1 MG2 MG3 MG4 ..

Core -0.843 -0.161 1.332 0 ..

F1 1.553 1.137 2 ..

F2 -0.673 -0.938 ..

F3 0.709 -0.672 ..

F4 -0.174 1 ..

F5 4 ..

F6 0.244 ..

F7 0.591 ..

F1F3 0.163 ..

..

49

plugged into the corresponding utility function to determine the impact of feature

selection on the goal.

Note that Induce could also learn the impact of feature interactions on metrics. For

example, Eq. 1 specifies that enabling both F1 (Evidence Generation) and F3 (Per-

Request Authentication) at the same time increases ���. This is because according to

Table 2, F1F3 increases the response time by a magnitude of 0.163, which decreases the

utility of G1 (utility of G1 is shown in Figure 3a). This feature interaction is depicted in

Figure 3c and can be explained as follows. F1 introduces a delay by adding a mediator

connector, called Log, that records the transactions with remote travel agents. At the same

time, F3 changes the behavior of the Log ,as it causes an additional delay in mediating the

exchange of per session authentication credentials .Enabling the two features at the same

time has a negative ramification that is beyond the individual impact of each.

In reality, learning needs to incorporate some contextual factors as independent

variables, due to their impact on metrics. Consider the impact of system workload at

different times of day on response time. In that case, the result of learning would be a set

of equations that estimate the impact of feature selection in different contexts. For

example, the following equations estimate the impact of feature selection on MG1 under

different workloads (w):

��� � ��� ����
 �� ���� � �� ������������������������������� � ������ !��
 �� �"�� � �� �������������������� # � � ���$%� ��� � %� ""�� � %� �������������������������� & ���$' (Eq. 3)

50

Where w is the average inter-arrival time between requests in milliseconds; lower

inter-arrival time implies higher workload. Here, the generated functions indicate that

TRS reaches saturation when w is in the range of 1.21–1.29 milliseconds. Since the

impact of features on MG1 changes dramatically in that range, the learning algorithm

produces a separate equation targeted at that. Although these equations may be of any

type (e.g., linear, sigmoid, or exponential), for clarity we have limited the discussion to

multi-linear equations only that can be generated from the M5 algorithm.

Note that other methods of representing feature-metric relationships (i.e., induced

functions) are also possible. For instance, in the case of discrete metrics, classification-

based techniques [29] are more suitable, as they can efficiently represent such

relationships in the form of decision trees [72].

MG4 for example is a discrete variable that has five levels: Very-Low=0, Low=1,

Medium=2, High=3 and Very-High=4. In this case, learning needs to use a classification

based learning algorithm, such as Decision Trees [72], which typically produces a set of

rules in the form of implications. In order to be able to apply a utility function to such

metrics, they must be converted to a branch function form as follows (Hence, each level

is mapped to distinct integer value (i.e., 1-5)):

��(�)���������������������������������* � ����������������������������������� � ����������������������������������+ � �%������������������������������������	��	 '

51

Induce can leverage sophisticated learning techniques, such as CART [19] and

MARSplines [17], which provide hybrid representations that combine classification and

regression in one model to find an optimal configuration of the system.

52

Chapter 7 : FUSION Adaptation Cycle

In this chapter, we describe how Detect, Plan, and Effect use the learned knowledge

to adapt a software system in FUSION. The underlying principle guiding the adaptation

strategy in FUSION is that “if the system works, do not change it; when it breaks, find the

best fix for the broken part”. While intuitive, this approach sets FUSION apart from the

existing research that either attempts to optimize the entire software system (e.g., [45]),

or solely solves the constraints (i.e., violated goals) in the system (e.g., [18]). FUSION

will adopt a middle ground that performs only partial optimization of the architecture. We

argue this is the most sensible approach, and achieves the following objectives:

1. Reduce Interruption: Adaptation typically interrupts the system’s normal operation

(e.g., transient unavailability of certain functionality and higher response time during

adaptation). In turn, even if at runtime a solution with a higher overall utility is found,

the engineer may opt not to adapt the system to avoid such interruptions. FUSION

reduces interruptions by adapting the system only when a goal is violated.

2. Efficient Analysis: Since the adaptation occurs at runtime, the computing overhead of

executing the analysis and performing adaptation is crucial. As detailed below,

FUSION uses the learned knowledge to scope the analysis to only the parts that are

affected by adaptation, hence making it significantly more efficient than assessing the

entire software system.

53

3. Stable Fix: Given the overhead and interruption associated with adaptation, effecting

solutions that provide a temporary fix are not desirable. We would like FUSION to

minimize frequent adaptation of the system for the same problem. To that end,

instead of simply satisfying the violated goals, FUSION finds a solution that is

optimal and hence less likely to be broken due to fluctuations in the system.

7.1 Detect

The adaptation cycle is initiated as soon as Detect determines a goal violation. This is

achieved by monitoring the utility functions (recall Section 5.2). A utility function serves

two purposes in the adaptation cycle: (1) when the metric values are unacceptable, returns

zero or a value less than zero but greater than “-1” to indicate a violated goal (i.e., hard

constraint), and (2) when the metric values satisfy the minimum, returns a positive value

less than “1” to indicate the engineer’s preferences for improvement. Therefore, utility is

not only used to initiate adaptation, but to also perform a trade-off analysis between

competing adaptation solutions (i.e., feature selections), such that an optimization of the

solution can be achieved.

7.2 Plan

To achieve the adaptation objectives, FUSION relies on the knowledge base to

generate an optimization problem tailored to the running software:

• Given a violated goal, it uses the knowledge base to eliminate all of the features with

no significant impact on the goal from the set F, which represent the full space of

54

adaptation units (i.e. features). We call the list of features that may affect a given goal

Shared Features , F. Consider a situation in the TRS where G2 is violated. By

referring to column ��- in Table 2, we can eliminate feature F3, since it has no impact

on G2’s metric. In this example Shared Features = {F1,F2,F4}.

• Shared Features represent our adaptation parameters. These features may also affect

other goals, the set of which we call the Conflicting Goals. To detect the conflicts,

again we use the knowledge base, except this time we backtrack the learned

relationships. For each feature in the Shared Features, we find the corresponding row

in Table 2, and find the other metrics that the feature affects. In the above example, we

can see that features F1, F2, and F4 also affect metrics MG1 and MG4, and hence the

corresponding goals, G1 and G4.

By using the knowledge base, FUSION generates an optimization problem

customized to the current situation. The objective is to find a selection of Shared

Features, F
*
, that maximizes the system’s overall utility for the Conflicting Goals given a

system context C (e.g., workload) as follows:

55

�. � ��/0�123456789:397;<89=>? @ABA4CDEFGHI;HEA��D7G= 2�A2�� J>>
where @A represents the utility function associated with the metric �A of goal g (recall

Figure 3a). Since we do not want the solution to violate any of the conflicting goals, the

optimization problem is subject to:

B/ 4 JKLM�NOPNL/QK���� �@A2�A2�� J>> & R

Note that we do not need to include the goals that are not affected by Shared Features.

We then apply feature model constraints to the optimization problem. Table 3

demonstrates formulation of feature model constraints. For example, to prevent feature

selections that violate the mutual exclusion relationship, we specify the following

constraint:

Table 3.Constraints to the optimization problem generated by Plan.

Feature Relation Optimization Constraint Variability Type

«zero-or-one-of-

group»
? MI � �BFS4�T98DUD8UDE9UDFUA8D<V Optional

«exactly-one-of-

group»
? MI � �BFS4�9W7I;GXUDE9UDFUA8D<V Mandatory

«at-least-one-of-

group»
? MI Y �BFS4�7;UG97=;UDE9UDFUA8D<V Mandatory

«zero-or-all-of-

group»

? MI �0KZ�[\
BFS4�T98DUD8U7GGUDFUA8D<V� R� Optional

Feature

Dependency

BMI6HG: 4]^��	Z�	�P��	�� MV789E;
 MI6HG: Y R

Based on type of “Child”

feature

56

B/�K�_ 4 M	�P��	�0KZ	��? �MI � �BFS4A8D<V

Here when more than one feature from the same mutual exclusive group is selected, the

left hand side of the inequality brings the total to greater than 1 and violates the

constraint. Similarly, and as another example, we ensure the dependency relationship as

follows:

BMI6HG: 4]^��	Z��	�P��	�� �MV789E;�
 MI6HG:� Y R

This inequality does not hold if a child (dependent) feature is enabled without its parent

being enabled. Applying this formulation to the TRS scenario in which G2 is violated

generates the following optimization problem:

Shared features = {F1, F2, F4} ��/0�123>@��2���2�>> � @�-2��-2�>> � @�(2��(2�>>
Subject to: @��2���2�>> & R @�-���-2�>� & R @�(���(2�>� & R �̀ � �(� �
Where: MG1=1.553 F1- 0.673 F2+0.709 F3+0.163 F1F3- 0.843

 MG2=1.137 F1 - 0.938 F2 - 0.174 F4- 0.161

 ��(�)+�������������������������������������* � �� � ���������������������������������������+ � �R���	��	 '

Note that by eliminating F3 , F5 , F6 , and F7 (as well as @�`) from the optimization

problem, we obtain an optimization problem tailored to the violated goals. The

customized problem has less number of features and goals than the original problem. It is

57

reasonable to expect that in large software systems pruning the features and goals from

the optimization problem results in significant performance gains.

We can then use both exact and approximation methods of solving the above

optimization problem. By representing each feature with a binary decision variable, we

solve the optimization problem using well-known Integer Programming Solvers [71],

which provision the optimal solution. Stochastic algorithms, such as greedy and

genetic [58], that rely on FUSION specific heuristics can also be used for providing near-

optimal solutions very fast.

7.3 Effect

Once the optimal feature selection is determined in Plan, Effect is invoked and

provided with the optimal feature selection as a target configuration (Recall A3 from

Figure 2). In our previous work [119], the managed system is transitioned to the target

configuration directly in one step. At the software architecture level, we compute the

Architecture-Diff between current and target feature selections and devise a sequence of

adaptation steps accordingly. In the general case, however, architecture-diffing may not

be feasible in some cases, especially when features map to different layers of the system

stack (e.g., software architecture, network, operating system, etc). For instance, consider

a situation where an authentication feature in the software architecture has a dependency

on a feature in the network architecture such as IPsec. To address such situation, Effect

provides the option of devising a sequence of adaptation steps that enforces such

dependencies at the feature level.

58

Figure 8 depicts the Effect heuristics based search algorithm for devising an

adaptation path. In the remainder of this section, we describe the algorithm using an

example. Since there are many possible paths to reach a target feature selection, the Effect

algorithm is responsible for picking a path that does not result in a transition to an invalid

feature selection. In the TRS example, enabling F3 and F4 at the same time produces a

feature selection that violates the mutual exclusion relationship in the feature model. If

two features are mutually exclusive, the system should never be in a state where both

features are enabled. Similarly, dependent features should never be enabled without their

prerequisites being enabled. The Effect activity enforces feature model constraints in

every step.

More formally, Effect achieves this by devising a plan with several consecutive

adaptation steps. Each step has a different type (P 4 a) such as, enable or disable for an

optional feature, or swap of two features for a mutually exclusive group. Recall from

section 7.2, set � corresponds to the adaptation units. In turn, we define the set of all

possible adaptation steps as] � ab�. Note that some adaptation steps may not be valid

for a given feature selection. For instance, when an optional feature is already enabled it

cannot be enabled again. We call consecutive adaptation steps an adaptation path c
which transitions the current feature selection towards another feature selection: d �
e�e-e`feghgi 2eH 4]>.

As shown below, we can reduce the problem of finding such path to a graph search

problem. To model the problem as a graph we first define the set of nodes (j) and edges

(k). We define each node � 4 j to be a feature selection. Similar to Table 1, we encode

59

each feature selection as a binary string � l�l-flE<mn98�DF�F97;<89= , where each bit

reflects the status of corresponding feature (lo � � if Fj is enabled and lo � R if Fj is

disabled). Figure 7a shows that the current feature selection of the TRS system before

adaptation is “1110111”, which means all the features expect F4 (Per-Session Auth.) are

currently enabled. In turn, we define each edge 	 4 k to be a valid adaptation step that

can transition one feature selection to the other (� �=8I pq �:=;i e 4]).Therefore, an

adaptation path will correspond to a path in this graph: �=8I hq �:=; � �=8I prq �� psq �-
ptq �`f pgugvwx �:=;.

To search through the graph we developed the Effect algorithm following the A*

search technique [58] which is a heuristic-based graph search approach. A* based search

requires an admissible heuristic for the estimation of the distance from each vertex �H to

the target. We discovered that the binary representation of the current and target feature

selection can be used to compute a feature-based admissible heuristic, which we refer to

as Feature Diff. Feature Diff can be obtained by applying bitwise XOR operator on the

binary representation of �H and target and simply counting the number of bits that have

the value of 1 as follows: yz{|}~z|�������}����}�. For example, Feature Diff between

a configuration “1110111” and a target configuration “0010111” would be

OK�LP~KL	�2����R��������RR�R����>�� = OK�LP~KL	�2���RRRRR�>�= 2.

Effect uses this heuristic combined with a minimum step cost function to determine

the order of exploration of neighbor vertexes in the graph. Calculating the minimum step

60

cost is as simple as finding the minimum edge weight (0NL�) in the graph and is

calculated once for the feature space graph. So, the heuristic function can be defined as:

^2�H> � 0NL� . OK�LP~KL	���H��;78A9;�.
Note that in Effect we are looking for a path (c) that goes from the vertex

corresponding to the current configuration of the system to the vertex corresponding to

the target configuration while minimizing a total cost function. We consider two types of

costs in our formulation:

1. Adaptation Overhead: corresponds to the level of interruption as a result of,

for example, disruption in the system’s components, temporal delay in moving

data between the servers, and so on. We model this cost by assigning weights

to edges in the feature space graph. The weight of an edge depends on the

source node and the adaptation step taken at the edge, since adaptation steps

can have different costs when they are applied in different states. We

formalize the weights as �i 2jb]> � ��. In turn, we define the cost of a

path to be the accumulative cost of its steps:

/2c> � � �2�HU�� �H>g�gH�� where �� � �=8I.

2. Utility Loss: corresponds to the level of violation of system goals incurred.

Based on the knowledge we obtained in the learning cycle (recall Table 2), we

can calculate utility loss as: �2�H> � g � �@2�H>BA4�HDG7;9:��D7G= g , where

Violated Goals is the set of goals that will have utility less than zero at vertex

�H. Intuitively, y takes the absolute value of the sum of all negative utilities at

61

a given feature selection. In turn, we define the utility loss of a path to be the

utility loss of the worst adaptation step:

�2c> � �����H�g�g �2�H> where �� � �=8I.

Figure 7 depicts the process of finding the adaptation path for disabling the first two

features in TRS system where the target feature selection is “0010111”. Figure 7a depicts

the current feature selection of the system, we used underline to indicate the bits that are

different from the target feature selection (i.e., the first two bits from the left). Effect

keeps track of search scope by a priority queue, in Figure 7 we indicate the members of

this queue with an oval with a bolded perimeter.

In each iteration, a vertex, which is indicated by black oval in Figure 7, is extracted

from the queue and the vertexes neighbor to it (i.e., reachable with one valid adaptation

step) are added to the queue (and if already in the queue will be updated). If any of the

recently added vertexes to the queue is the target the Effect algorithm stops as the target is

reached. Finally, the extracted vertex is added to the visited list. We keep the record of

the visited vertexes so we can build the path starting from the initial vertex (i.e., the

current feature selection) to each vertex � in the queue; we call it partial path for that

vertex and depict it as dV2�>.

62

As indicated in Figure 7a the process starts with the current feature selection of the

system as the only item in the queue. Therefore, in the next step (Figure 7b) that only

vertex is extracted from the queue and its neighbors are added to the queue. Effect

algorithm creates the graph gradually (directed by the heuristic) as it progresses and does

not assume a complete graph to be present. On top of this, given the Conflicting Goals,

we use Table 2 to eliminate insignificant features; (i.e., pruning them, since they are not

Figure 7: Effect finds shortest path within the significant feature space.

63

going to have a significant impact on Conflicting Goals). This drastically decreases the

neighborhood size of each vertex as the insignificant features are generally more than the

significant ones. For example, assuming the situation shown in Figure 7 we are

concerned about G2 and G3 (i.e., Agent Reliability and Quote Quality), then we can prune

F3, F4 and F7 (i.e., Per-Request Auth., Per-Session Authentication, and Semantic) as they

do not have significant effect on the goal. Using the heuristic in exploring the graph and

avoiding the insignificant features helps us to reduce the search space significantly and

makes Effect applicable and efficient for finding adaptation paths in systems with large

feature spaces. Insignificant features in Figure 7 are indicated using a strikethrough line.

A priority queue is used in FUSION’s Effect algorithm to sort its items and extracts

them in order. The priority queue in Effect extracts vertex which has the least estimated

total cost, defined as M2�> � �2c> . �/2c> � ^2�H>�. The first item in this order is always

the head of the priority queue. In other words, Effect gives priority to finding a path that

does not degrade the performance of the system For instance, Figure 7b shows two

vertexes that can potentially produce the lowest path length. However, since they violate

one goal and since there are other vertexes that satisfy all goals, they are not explored

first (Figure 7c). In Figure 7 we have provided all the required values (i.e., �, ^, /, and M)

for each queued vertex. These values are calculated when the vertex is added (updated) in

the queue.

When the number of goal violations and estimated cost for two vertexes in the queue

are equal, we break the tie by choosing the one that has smaller ^2�> assuming it is closer

to the target. For example in Figure 7d between the two items that have total estimated

64

cost of 4 the one with less heuristic value (i.e., ^ � �) is selected to be the next head. If

there are two items that have the same ^2�> value, we select between them non-

deterministically. For instance, in Figure 7c, the algorithm selects the vertex with less

heuristic value until the target is added to the priority queue which by our definition will

become the head of the queue.

Note that, in some cases, adding utility loss to the formulation increases the number

of steps in the path. These extra steps represent exploration (information collection) that

helps with keeping the knowledge base up-to-date and potentially improving the learning

cycle.

65

function Effect(node src, node tgt)

 g_score[src] := 0

 h_score[src] := h(src, tgt)
 y_score[src] := Y(src)
 f_score[src] := y_score[src] * (g_score[src] + h_score[src])

 closed_set := the empty set
 open_set := matrix containing start node
 came_from := the empty map

 significant_features := significant_feature_space()

 while openset is not empty

 x := the node in openset having lowest f_score[] value

 if x = tgt
 return reconstruct_path(came_from, came_from[tgt])

 remove x from open_set
 add x to closed_set
 neighbor_nodes = expand(x, significant_features);

 foreach v in neighbor_nodes
 if v in closed_set
 continue;

 if v not in open_set
 add v to open_set

 came_from[v] := x
 g_score[v] := g_score[x] + w(x,v)
 h_score[v] := h(v, tgt)
 y_score[v] := y(v)
 f_score[v] := y_score[v] * (g_score[v] + h_score[v])

 return failure

function reconstruct_path(came_from, cur_node)
 if came_from[cur_node] is not null
 p = reconstruct_path(came_from, came_from[cur_node])
 return(p + current_node)
 else
 return current_node

Figure 8. Effect heuristics-based path search algorithm.

66

function h(node v, node tgt) //computes heuristic for a given node v

 diff := to_binary(v) � to_binary(tgt)

 return minw * count_ones(diff)

function Y(node v) //computes utility loss for a given node v

 conflicting_goals := set of <metric, utility> tuples of the goals from Plan
 tentative_metric := 0;
 tentative_utility := 0;
 utility_loss := 0;

 for each metric, utility in conflicting_goals
 tentative_metric := metric(context, v); //learned function
 tentative_utility := utility(tentative_metric);
 if tentative_utility < 0
 utility_loss += (-1 * tentative_utility);

 return utility_loss

function significant_feature_space()

 conflicting_goals := set of goals from Plan as <metric, utility> tuples
 induced_functions := set of all <metric, feature, coef> tuples in KB
 relations := set of all <child, parent> feature relationship tuples in KB
 neighbor_nodes_set := the empty set

 //select features to flip from the set of (significant features)
 features_to_flip := select feature from induced_functions
 where coef is not null and
 metric in (select mwetric from oonflicting_goals)
 features_to_flip += select parent from relations
 where child in features_to_flip

 return features_to_flip

Figure 9. Effect helper methods (heuristics, utility loss, and significant feature space

functions).

67

Chapter 8 : FUSION Implementation

Figure 10 shows snapshots of a prototype implementation of FUSION. This figure

closely matches the structure of Figure 3, and illustrates the realization of the modeling

concepts in FUSION using the 3-layer-model reference architecture in [33], which

distinguishes between three kinds of concerns in self-adaptation logic: Goal

Management, Change Management, and Component Control (Recall from Section 2.3).

Each part in Figure 10 is developed using a dedicated editor as will be detailed in the

following subsections. As mentioned in section 5.1, although other realizations are

possible a feature in our approach is realized as an extension of the software architecture

at well-defined variation points. For example, Adhoc Reports feature in Figure 10b is

realized using the architectural fragment AddHoc Reports in Figure 10c, which extends

TRS’s base architecture.

Note that self-adaptation logic crosscuts FUSION (i.e., in Figure 10a and Figure 10b)

to reach the architecture in Figure 10c and eventually to the running system. In other

words, self-adaptation logic resides at different levels of abstraction, and thus make it

impractical to use a single modeling language.

68

In this chapter, we present a tool support framework for self-adaptation that aligns

self-adaptation logic as elicited in the 3-layer-architecture [33] to an Online Model

Driven Architecture (Online MDA). The framework, depicted in Figure 11, assigns an

additional role to MDA that manifests itself at runtime. In particular, models and

transformations are used at runtime to realize a hierarchical control loop. For example,

enabling the AdHoc Reports feature in Figure 10b triggers a transformation rule that

Figure 10. Subset of TRS in our prototype implementation of FUSION: (a) goals and

metrics, (b) feature model, (c) implementations of Core and Caching features.

69

effects the corresponding AdHoc Reports architectural fragment in Figure 10c, which

then deploys the corresponding components and connectors into the running system.

The following subsections describe the implementation framework in details.

Section 8.1 describes self-adaptation models depicted in Figure 10 along with their meta-

models (i.e., FUSION, XTEAM, and Prism-MW in Figure 11). It also describes how

changes in each model are realized by an underlying implementation platform that is kept

in sync with the model. Section 8.2 describes how the models connect and propagate

changes among one another through transformation rules that are defined at the meta-

model level (i.e., Online Transformations in Figure 11). Section 8.3 describes a

component of the framework that aims to facilitate incremental training of FUSION’s

Figure 11. Self-Adaptation tool support using Online MDA.

70

knowledge base since it adds overhead to the process of implementing self-adaptive

software systems.

8.1 Modeling Self-Adaptation Logic

The following subsections provide an overview of the individual components

involved in implementing self-adaptation logic for each concern in conformance with the

3-layered-model.

8.1.1 FUSION-Based Goal Management

We utilize FUSION as a Goal Management platform. Figure 12 depicts a portion of

the meta-model of FUSION. The corresponding concrete syntax is depicted in Figure 10a

for the TRS system. The FUSION modeling tool provides three editors for: 1) feature

modeling, 2) goal modeling, and 3) contextual variables. The feature model editor

(depicted in Figure 10b) produces MOF compliant feature models following the approach

in [22] that supports creation of Features and Feature Group model elements. Each

Feature is associated with an attribute, which is used to capture runtime state (i.e.,

enabled=”1”, disabled=”0”). For example, when FUSION decides to disable feature F1,

it updates the value of the selected attribute to “0”. Features can be of any of the

following types:

• Core: must be enabled all the time as long as the system is running,

• Optional: can be enabled/disabled at runtime, and

71

• Alternative: can be enabled only when all features under mutual exclusive

relationship are disabled.

• Default: is a special kind of Alternative feature that is enabled by default at

system starts up time.

Feature Group model elements are used to capture the following feature

interrelationships:

• Exactly-one-of-group: captures a mutual exclusion relationship among all

features associated with it where one-and-only-one feature must be enabled.

• Zero-or-one-of-group: also captures a mutual exclusion relationship except in

this case the system can operate without any of the features enabled.

• At-least-one-of-group: captures a mandatory variation at which multiple

features may be enabled.

• Zero-or-all-of-group: captures a mutual inclusion relationship, that is either all

features are enabled or none. The features also apply to an optional variation

point.

In addition, a number of consistency rules apply to the feature model both at design

time and runtime. Below are some examples of design time consistency rules that apply

to the feature model:

• Core feature cannot be dependent on an optional feature

• Exactly-one-of groups must include one Default feature.

72

• Optional features shall not be part of an Exactly-one-of group.

At runtime, a number of rules ensure consistency of feature selections and

enforcement of Feature Group semantics (i.e., Feature relationships) such as the

constraints listed in Table 3. The Goal Model editor (depicted in Figure 10a) supports

two types of model elements. The first type of model elements is the Goals, which can be

of a number of subtypes based on a pre-defined utility function template (i.e., Linear,

Step-Function, Exponential, and Sigmoid). The second type of model elements is

Metrics, which can be of the following two sub-types: Continuous, which allows for any

Figure 12. FUSION-Based Goal Management meta-model.

73

rational number to populate its value, and Discrete, which requires a predefined array of

valid values.

FUSION underlying platform is kept synchronized with an online version of the

FUSION Model, which includes the Feature Model, Goal Model, and Contextual

Variables, in memory and updates it when runtime changes occur such as it makes new

feature selections or receiving a metric reading from the running system in order to keep

track of runtime state changes. For instance, the metricVal attribute on the Metric class is

updated at runtime with the most recent read value. Section 8.2.1 describes how metric

readings are kept up-to-date.

The runtime platform also interacts with a number of tools. For instance, we use

WEKA API [91], which provides an open source implementation of a number of learning

algorithms [92] leveraged in our work, to realize the Induce activity. The outputs of

Induce activity (i.e., FUSION’s Knowledge Base) as well as all observations provided as

input are stored in a relational database.

8.1.2 Architecture-Based Change Management

We have provided support for Change Management by extending XTEAM, an

architectural modeling and analysis environment developed in [14] for the representation

of system’s architecture. XTEAM supports modeling of a system’s software architecture

using heterogeneous Architectural Description Languages (ADLs) [46], where each ADL

is suitable for representing a particular concern. For instance, XTEAM supports Finite

State Processes (FSP) [37] and eXtensible Architectural Description Language

74

(xADL) [13] for modeling the behavioral and structural properties of a software system,

respectively. (see Figure 13). We have modified the notation of XTEAM in Figure 10c

and the underlying meta-model in Figure 13 to simplify the framework. However, we

reused the underlying dynamic QoS analysis facilities.

A snapshot of xADL model for a subset of TRS is shown in Figure 10c. The models

are organized in ArchitectureFolders. Each folder may contain one or more

Architectures. The internal structure of the architecture is defined interms of Components

(i.e., distributed software units) which interact using Connectors (i.e., communication

lines). For example, Figure 10c depicts the TRS ArchitectureFolder, which contains three

Architectures: TRS Web, TRS Agents, and TRS Backend. The TRS Backend architecture

Figure 13. XTEAM-Based Change Management meta-model.

75

has three interfaces: IQuote, IPay, and IReport. Internally, TRS Backend is composed of

four components, which are Quote Processor, Payment Processor, Agents Interface, and

Master Data Hub. Components interact through connector links. Components also

expose interfaces but we do not show them in Figure 10c to reduce cluster. In addition,

the TRS Backend architecture contains an FSP that supports a number of activities where

each activity processes a message incoming for an interface. For example, Build Report

activity processes messages coming from the IReport interface.

We extended XTEAM to provide means for change management too. A Fragment,

for instance, is a snippet of Components and Connectors that can be weaved into the core

architecture at well-defined variation points using change management operators (i.e.,

<<create>> and <<delete>>). The architectural fragment uses references to the model

elements in the core architecture as variation points to specify the insertion points for the

changes. For example, Figure 10c shows the impact of weaving the Adhoc Reports

fragment on the core architectural model, i.e., it results in the addition of Report Builder

and Report Generator components, some connector modifications, and the new

Customize() activity in the FSP of TRS Backend architecture. Hence, the stereotypes

<<create>> and <<delete>> represent ChangeActions depicted in Figure 13.

We also extended XTEAM to capture runtime state information. For instance, the

enacted attribute of a Fragment (marked red in Figure 13) identifies if the fragment is

weaved into the base architecture (i.e., when weaved, it takes the value “1”; otherwise it

takes the value “0”). Similarly, Interfaces that are associated with the Gauge stereotype

capture runtime state information. Figure 10c highlights the Quote response time

76

interface, which acts as a Gauge that collects roundtrip time for a message to go

throughout the architecture and return to that interface. The gauge captures roundtrip

response time using the gaugeVal attribute depicted in Figure 13.

8.1.3 Prism-MW Based Component Control

We provide support for Component Control using Prism MW [40]. Typically, a

software system operates on a number of platforms. For instance it may use a platform

for implementing the internals of a software component. It can then use another platform

for implementing the interfacing logic (i.e., using Web Services). We focused our

experimentation on Prism-MW to simplify the framework.

Prism-MW is an architectural middleware, which supports architectural abstractions

by providing implementation-level classes for representing each component and

connector (i.e., Bricks), with operations for creating, manipulating, and destroying

instances of the bricks. A subset of the meta-model of Prism-MW is depicted in Figure

14. These abstractions enable direct mapping between a system’s software architectural

model and its implementation. Prism-MW provides three key capabilities that we have

relied on to implement the component control layer. It provides support for (1) basic

architecture-level dynamism, (2) multiple architectural styles, and (3) architectural

reflection.

On top of Prism, we created an online Platform Specific Model (PSM) that conforms

to the meta-model depicted in Figure 14. The model also keeps track of two key dynamic

state variables: deployed and probVal.

77

 At design time, code generation from the PSM model takes place following the

approach introduced in [83]. For instance, applying the <<create>> stereotype to Report

Builder component in the AdHoc Reports fragments corresponds to generating a

command in Prism-MW that adds the component to the TRS Agent. Figure 15 depicts a

snapshot of the generated Prism-MW code for the AdHoc Reports architectural fragment

depicted in Figure 10c. The code generation follows the rules listed in Table 4.

Figure 14. Component control meta-model extends Prism-MW.

78

At runtime, the PSM model is synced with the underlying Prism-MW platform. A

change in the PSM model results in the execution of code. For instance, setting the

deployed attribute of the Adapter AdHoc Reports to “0” results in executing undeploy()

method in Figure 15.

Prism-MW has been enhanced in [118] to support adaptation patterns [23]. When the

adaptation steps are carried out, Prism-MW uses adaptation patterns to put dependent

components (passive set) into passive state to be able to provide quiescence property for

Table 4. Translating Component Control Adaptation Operators into Prism-MW code.

Architecture Adaptation Prism-MW Operation

Adaptation

Operator

Type of Target

Artifact

Deploy Undeploy

<<add>> Component Architecture.add() Architecture.remove()

<<remove>> Component Architecture.remove() Architecture.add()

<<add>> Connector Architecture.weld() Architecture.unweld()

<<remove>> Connector Architecture.unweld() Architecture.weld()

public class AdHocReports extends Adapter{

public static boolean deploy(){

Component ReportBuilder = new Component(ReportBuilderImpl);

TRSAgents.add(ReportBuilder);

TRSAgents.weld(ReportBuilder, IQuote);

Component ReportGenerator = new Component(ReportGenerator);

TRSBackend.add(ReportGenerator);

TRSBackend.unweld(IQuote , MasterDataHub);

TRSBackend.weld(IQuote , ReportGenerator);

}

public static boolean undeploy(){

TRSAgents.unweld(ReportBuilder, IQuote);

TRSAgents.remove(ReportBuilder);

TRSBackend.unweld(IQuote , ReportGenerator);

TRSBackend.remove(ReportGenerator);

}

}

Figure 15. AdHoc Report adapter code in Prism-MW.

79

the component that is being changed. This ensures the consistency of the system after

each adaptation step and in turn after the whole adaptation. To infer the dependencies and

construct passive set, we use the rules and constraints of an architectural style. This

inference is valid for any software system built according to a particular style. For each

style, we used the dependency rules to determine a reusable sequence of changes that

need to occur for placing a node in quiescence. Such a recurring sequence of changes is

called an adaptation pattern. An adaptation pattern provides a template for making

changes to a software system built according to a given style without jeopardizing its

consistency.

Figure 16 depicts a state machine of a subset of such a pattern for C2 style describing

C2 component that is being changed. The state machine suggests that for a C2 component

to go from an Active to Passive, first it should go through Passivating Dependents (nodes

below it) and then it should pass the Passivating Itself step. For instance, to add

connector between Reports Generator and Master Data Hub in Figure 10c. As a result,

dependent components and connectors (i.e., Report Generator) must be passivated first

then the connector passivates itself.

8.2 Connecting Self-Adaptation Models Together

This section provides an overview of the transformations that are used to connect

self-adaptation models together. Transformations are defined at the meta-model level

using QVT-Relations. Interested reader may refer to [117] for full specification of the

80

QVT Relations language. We provide a brief description of the key constructs that will be

used in the following two subsections.

QVT-Relations enables a source model to be transformed into a target model by

applying a set of transformation rules. Each rule is expressed declaratively as a relation

between two patterns (i.e., source pattern and a target pattern). A pattern match is

accomplished if and only if all variables depicted in the pattern are bound to elements in

the models. The when construct is used to express a precondition for the execution of the

transformation rule. Transformation rules can be either one-way (forward or backward)

or bi-directional.

8.2.1 Mapping FUSION to XTEAM

Our experimental environment uses FUSION as the goal management model and

XTEAM as the change management model. As such, we defined a transformation bridge

Figure 16. The state charts of C2 adaptation pattern for adapting a C2Component.

81

(i.e., FUSION-to-XTEAM) that maps goal management concepts to change management

concepts in the two meta-models. For example, in Figure 17, the FeatureToFragment

relation maps a Feature in FUSION to a Fragment in XTEAM. As a precondition, the

name of the ArchitecureFolder associated with the fragment must match the name of the

feature. For example, the AdHoc Reports feature in Figure 10b maps to the AdHoc

Reports fragment in Figure 10c since they both have the same name. Note that the name

of a fragment comes from the name of the ArchitectureFolder to which the stereotype is

attached. Similarly, the MetricToGauge relation maps a Metric in the FUSION models

(e.g., M1: Quote Response Time in Figure 10a) to a Gauge in the XTEAM models if the

names match.

FUSION-to-XTEAM defines two additional relations (i.e., adapt and monitor) that are

related to self-adaptation since they operate on model elements that represent runtime

state. For example, the adapt relation in Figure 17 maps the selected attribute in FUSION

to enacted attribute in XTEAM. To make sure that the attributes on both sides correspond

to each other, a precondition is defined (i.e. the when operator) to verify that their owners

also correspond to each other (i.e., the owning feature matches the owning fragment).

Otherwise, the QVT-Relations rule engine will make all selected tagged values match the

values of all enacted tagged values. QVT allows the use of chaining of relations so that

sub-relations can be enforced before super relations. In the case of adapt relation, it

achieves this by using FeatureToFragment relation as a super-relation.

82

Note that adapt is defined as an incremental transformation; that is, it is triggered to

execute dynamically whenever the selected attribute of a feature is modified without

affecting other parts of the models. As a result, the corresponding enacted attribute only

in XTEAM will be updated to have the same value. For example, if FUSION decides to

enable feature AdHoc Reports in Figure 10b, it modifies the attribute selected of that

Figure 17. FUSION-to-XTEAM transformation definition.

83

feature to “1”. As a result, the corresponding enacted attribute of the AdHoc Reports

fragment in Figure 10c will be modified to be “1”. Hence, a single execution occurrence

of this rule means that FUSION is commanding XTEAM to effect the feature by

changing the architecture (Notice the direction of the arrow in the definition of adapt

relation indicating that this is a one-way transformation).

Similarly, the monitor relation in Figure 17 maps the guageVal attribute of a Gauge in

XTEAM to a metricVal attribute in FUSION when the owning fragment and feature

match. The key difference between monitor and adapt is that monitor operates in the

reverse direction. FUSION receives metric readings from XTEAM and not the other way

around. The relation listens to modifications of gaugeVal in XTEAM so that it can

propagate them to FUSION. The efficiency of such incremental transformations and their

feasibility for use at runtime has be shown in [85].

8.2.2 Mapping XTEAM to PrismMW

The XTEAM-to-PrismMW transformation uses a number of relations to produce a

platform specific model. Relations in this transformation (depicted in Figure 18 and

Figure 19) are heavily chained together using the when construct to produce complex

output. The first group of relations, which operate on design models created by the

engineer in Figure 10c, capture relationships within the base architecture of the software

system (Figure 18). They are chained as follows:

84

1. FragmentToAdapter: maps a Fragment in XTEAM to an Adapter in PrismMW.

For example, the AdHoc Reports fragment maps to the AdHoc Reports adapter

code depicted in Figure 15.

2. XArchitectureToPArchitecture: maps an XTEAM Architecture to a Prism-MW

Architecture. For instance, TRS Backend architecture is mapped to TRSBackend

architecture in Prism-MW. Note that Prism-MW treats the presence of an

architecture that is not associated with the <<create>> operator as a reference to

an existing architecture in the base system.

3. XComponentToPComponent: maps a Component in XTEAM to a Component in

Prism-MW. For instance, the Report Generator is mapped to ReportGenerator

Prism-MW component. Note that Report Generator is associated with the

<<create>> operator, which will result in triggering the CreateToAdd relation

described next. Once the CreateToAdd relation is executed, Prism-MW will treat

this as an <<Add>> command and generate code for it as shown in the deploy()

and Undeploy() methods of Figure 15.

4. InterfaceToPort: For a given architecture, this relation maps an Interface in

XTEAM to a Port in Prism-MW. For instance, TRSBackend in AdHoc Reports

has a reference to a port. The port reference is mapped to Prism-MW.

5. XConnectorToPConnector: maps a Connector in XTEAM to a Connector object

in Prism MW. For instance, the link between Reports Generator and Master Data

Hub components (Figure 10c) maps to a Prism-MW connector. Prism-MW

generates code for it as in Figure 15.

85

The second group of relations maps elements that relate to adaptation logic (Figure

19). They are also chained with the first group of relations (i.e., the ones related to the

base architecture) to ensure consistency of execution.

1. CreateToAdd: this relation passes a <<create>> stereotype down to Prism-MW as

<<Add>> since Prim-MW code generator has been developed independently and

recognizes it. The code generation is based on the rules depicted in Table 4. Since

this particular stereotype applies to multiple kinds of model elements, the relation

chains itself to a number of super-relations and connect them together with or to

indicate that the execution context can be coming from any of these relations.

2. DeleteToRemove: similar to CreateToAdd, it passes the <<delete>> stereotype to

Prism-MW, which then generates code internally according to Table 4.

The third group of relations (i.e., adapt and monitor) operate on runtime state

information (marked red in Figure 13 and Figure 14) and therefore are related to runtime

self-adaptation. The adapt relation in Figure 19 maps the enacted attribute in XTEAM to

the deployed attribute in Prism-MW. To make sure that the attributes on both sides

correspond to each other, a precondition is defined (i.e. the when operator) to verify that

their owners also correspond to each other (i.e., the owning fragment matches the owning

adapter). Similarly, the monitor relationship maps a probe with a snapshot in the

XTEAM model. Whenever a new probe reading is available, this transformation kicks in

to update the XTEAM model with the latest readings, which eventually propagates the

readings upwards to FUSION.

86

Figure 18. Mapping base architecture elements in XTEAM-to-PrismMW transformation.

87

Figure 19. Mapping adaptation related elements in XTEAM-to-PrismMW transformation.

88

8.3 Training the Knowledge Base

Tool support covered in the last two section (i.e., Sections 8.1 and 8.2) facilitates

incremental design of complex self-adaptive systems by utilizing MDA best practices.

However, when a black-box approach like FUSION is used, tool support for the

extensive training process involved is essential. There are multiple sources of training

data (e.g., design experimentation, existing runtime data of an older version of the

system that is deployed at runtime, etc). Thus, a mechanism is needed to help identify

how much of the knowledge available (i.e., whether from design experimentation or from

older running versions) can be incorporated back into the design process.

In this section, we demonstrate how we used a key property of feature models to

facilitate incremental training in our implementation. Figure 20 demonstrates the design

Figure 20. Development Lifecycle for TRS.

89

phase engineers go through:

1. Design: Engineers develop design models that define self-adaptation logic (i.e.,

using the modeling languages described in Section 8.1 8.2).

2. Execution: Models are executed (i.e., using the tools described in Section 8.2) to

explore the configuration space and identify key variables to expose to FUSION

model level. The final outcomes of the execution activities is stored in FUSION

KB as training data.

3. Refinement: Engineers may change the feature model by adding, removing, or

modifying features in the feature-model. This has implications on the data stored

in the Knowledge Based of FUSION. Depending on the nature of refinements in

the design, the system may need to be retained accordingly.

The cycle between Execution and Refinement is where training data is generated. As

for the Execution phase, the focus of the training process is on addressing new feature

selections that were not supported in past versions of the system.

In the Refinement phase however, we found it difficult to know if the available

training data is usable without proper identification of the impact of refinements on

existing the feature selection space. We used a key property of feature models that helps

with identifying the impact of refinements on the knowledge base so that training can

also take place incrementally. That is, as engineers change the feature model, FUSION

applies refinement operators to identify obsolete data (Recall Table 1) and eliminate them

automatically while retaining the rest of the observations in the KB. The refinement

operators are listed in Table 5. Whenever a new version of the feature model is created,

90

FUSION applies the following intuitive rule: “A new feature model is an increment of an

old feature model if and only if Sold �, Snew, where S is the feature selection space”.

Depending on the relationship between the old and new feature models, the

refinement process differs. The first possibility of the relation between old and new

feature model is to be backward compatible. That is, the new feature model supports all

of the feature selections that used to be supported in the older version. In this case, no

refinement is needed.

The second possibility is to have some unsupported feature selections. This can

potentially happen if the engineers decide to either eliminate features completely or add

new dependencies among features. In these cases, some portions of the old feature

selection space become unsupported in the new system. As a result, the corresponding

observations must be removed from the KB according to the rules in Table 5.

The third possibility is for the engineers to modify the internal implementation of a

feature without making changes to the feature model. In this case, modified features will

Table 5. FUSION KB refinement guided by feature models.

Feature Model Refinement
KB Refinement Procedure

Type of Change Relationship

Backward

compatible
Sold
 Snew �� �� No KB refinements required

Unsupported

feature selections
Sold
 Snew���� Sunsupported Remove Sunsupported observations

Obsolete Feature

Selections
Sold
 Smodified�� Sobsolete Remove Sobsolete observations

91

be treated as if they were deleted and new ones were added since they do not anymore

exhibit the same behavior they used to have and therefore FUSION’s knowledge of their

behavior is obsolete. As shown in Table 5, FUSION simply removes observations that

correspond to the obsolete feature selections and reruns Induce.

Note that the refinement operators mentioned do not guarantee accuracy of the

knowledge obtained. For example, infrastructure upgrades can change the magnitude of

impact of a feature without any design changes to it. However, such data can be used to

produce first cut knowledge of the system. Once these refinement operators are applied,

engineers train the system on the new feature selections that are supported by the new

feature model.

92

Chapter 9 : Evaluation

In this chapter, we provide an evaluation of FUSION using a travel reservation

system to test and compare the learning and adaptation cycles in terms of accuracy and

efficiency empirically. The research hypotheses were used to guide the evaluation

Figure 21. Elicitation of adaptation choices (i.e., Features) in TRS.

93

process and determine needed validation exercises.

We demonstrate in the following subsections empirical results obtained from an

extended version of TRS, which consisted of 78 features and 8 goals. Figure 21 depicts a

portion of the full system. TRS offers services in five major business process areas (i.e.,

Flights, Hotels, Car Rental, and Account Management). Each of the first three business

process area (i.e., Flights, Hotels, and Car Rentals), involves four use cases that execute

consecutively as follows:

1. Price Quotes: Collects trip details from the customer, discovers travel agent

service providers to get a price quote, and returns a filtered list of price quotations

to the customer.

2. Booking: allows the user to select one of the quotes that are obtained from the

previous use case and then proceed with selecting detailed preferences. In some

cases, the preferences involve several rounds of interaction with the travel agent.

3. Payment Processing: Collects customer payment information and interacts with a

credit card processing service provider. Successful transactions result in updating

a user profile that is maintained for each customer to determine future discounts

and travel packages.

4. Travel Packages: Offers comprehensive travel packages (i.e., from other business

process areas) to the customer based on trip destination and user profile history.

Frequent customers qualify for additional discounts on travel packages.

94

Engineers of each QoS dimension (e.g., security, performance, forensics, reliability,

etc) analyze each use case and identify key adaptation choices that have significant

impact on the system’s goals based on stakeholder priorities.

To evaluate FUSION’s ability to learn and adapt under a variety of conditions, we set

up a controlled environment. We developed a prototype of the implementation

environment described in Chapter 8. We used XTEAM to simulate the execution context

of the software (e.g., workload) as well as the occurrence of unexpected events (e.g.,

database indexing failure). However, note that neither the TRS software nor FUSION

was controlled, which allowed them to behave as they would in practice. FUSION was

running on a dedicated Intel Quad-Core processor machine with 5GB of RAM.

We evaluated FUSION under four different execution scenarios, which we believe

correspond to one of the four situations in which FUSION may find itself:

(NT) Similar context—the system is placed under workload settings that are

comparable to those the system would face. We use a scenario, called Normal Traffic

(NT), in which the system is invoked with the typical expected number of price quote

requests.

(VT) Varying context—the system is placed under a workload fluctuation setting

that is different from that used during FUSION’s training. We use a scenario, called

Varying Traffic (VT), in which the system is invoked with a continuously changing inter-

arrival rate of price quote requests.

95

 (IF) Unexpected event with emerging pattern—the system faces an unexpected

change, which results in a new behavioral pattern (i.e., impact of adaptation on metrics)

that can be learned. We use a scenario, called database Indexing Failure (IF), in which

the index of one database table used by the Agent Discovery component during the

execution of the make quote workflow (recall Figure 3) unexpectedly fails, and forces a

full table scans for some tables.

(DoS) Unexpected event with no pattern—the system faces an unexpected change,

which results in new random behaviors that cannot be accurately learned. We use a

scenario, called Randomized DoS Traffic (DoS), in which the system is flooded with

totally randomized traffic representative of an online Denial of Service attack. The traffic

does not follow a typical skewed curve (i.e., exponential distribution).

Unless otherwise is stated, the experimental scenarios and all associated evaluation

exercises have been run 30 times and 95% confidence intervals have been computed and

shown in the figures.

9.1 Hypothesis #1: Concept Drifts

In this section, we demonstrate the ability of FUSION to learn new emerging patterns

of behavior at runtime and the impact of concept drifts on the quality of adaptation

decisions made by FUSION. The following subsections answer 3 research questions:

Q1.1 How accurate is the prediction outside of the trained behavior?

Q1.2
How does the quality of prediction increase with the number of

adaptation steps after a concept drift?

96

Q1.3 How good are the adaptation decisions during a concept drift?

9.1.1 [Q1.1]Accuracy of Learning

Throughout this section, we use the term observation to indicate an adaptation step

made by FUSION and its effect. In other words, an observation consists of: (1) a new

feature selection, and (2) the predicted and actual impact of the feature selection on

metrics. An observation error with respect to a metric is the difference between predicted

and actual impact of feature selection on that metric. We refer to this as Absolute

Difference Percent (ADP), which is defined as: ��HU�H�H � . �RR, where Pi is the predicted

value of the metric and Ai is the actual value that is collected from the running system at

observation i. In the experiments reported here, learning is initiated if the average

absolute difference in 10 most recent observations is more than 5%. Other learning

initiation policies could have been selected, each of which would present a tradeoff (i.e.,

overhead versus accuracy).

Figure 22 shows the error rate of observations for the Quote Response Time metric in

the four scenarios described earlier. Each data point corresponds to an observation error

at a particular point in time in the four evaluation scenarios. The Y-axis represents ADP

at a given observation. We used two online Queuing Network (QN) models as a

benchmark to ascertain the presence of a significant enough concept drift in the system.

By online, we mean that QN model parameters (i.e., workload and services demands) are

updated at runtime to cope with variability in the context and the behavior of the system.

The QN models are as follows:

97

1. QN1: This queuing model represents the system’s behavior in the NT scenario.

2. QN2: This queuing model represents the behavior of the system after IF scenario

(i.e. after concept drift has taken place). QN2 captures unforeseen contentions at

the software level that had appeared as a result of the runtime indexing failure.

Figure 22. Accuracy of learned functions for “Quote Res. Time” metric: (a) Normal

Traffic, (b) Varying Traffic, (c) Database Indexing Failure, (d) Randomized DoS Traffic.

98

Note that since each feature selection may result in a different architectural model,

and hence a different QN model, incorporating QN in our experiments was challenging.

In particular, a large number of QN models would have to be developed (we estimated a

total of 26×10
12

 valid feature selections from the total search space of 2
78

≈ 30×10
22

),

which corroborates our earlier assertion about the unwieldiness of building self-adaptive

systems by constructing analytical models that are tailored for the specific application

domain (This is while performance may be only one goal of interest out of many in the

system). In the accuracy comparisons reported below for TRS we constructed a subset of

QN models that correspond to the feature selections made by FUSION.

Figure 22a shows the TRS system under the NT scenario, where ADP for both

FUSION and QN1 come within 5%, and often less. As expected, this indicates that both

FUSION and QN1 achieve good level of accuracy under expected execution conditions.

QN1’s level of accuracy was within an average ADP of 2.9% and some spikes of 5-8%.

This is due to the fact that some service demands in TRS are not fully exponentially

distributed as assumed by the model.

Figure 22b shows the TRS system under the VT scenario. This shows that even when

the workload changes frequently, FUSION’s ADP remains within 5% on average. As a

result, a new behavioral pattern sufficient for runtime learning never emerges. On the

contrary, in the case of QN, operating outside of steady state condition combined with the

wrong assumptions about some of the service demands exacerbate the prediction errors.

Figure 22c shows the TRS system under the IF scenario. It shows that when there are

concept drifts in the system, FUSION is capable of learning the new behavior and

99

adjusting its model. FUSION’s ADP increases up to an average of 54% for the first

10observation. This error is attributed to the fact that the model did not anticipate the

impact of database access and associated software contentions when the table scans were

taking place. Software contentions were estimated to be responsible for 35% of

FUSION’s average ADP. This can be seen by comparing the difference in ADP between

QN1 and QN2. Remaining ADP is attributed to transient effects/noise associated with the

database failure. Gradually, FUSION fine-tunes the coefficient of Caching and other

features in the learned functions. As a result, average ADP goes down to less than 5%. In

contrast, the average ADP of QN1 reaches 80%, since the QN model formulation

presumes the existence of a functioning DB indexing system.

Note that it would be difficult to implement active monitoring of changes for service

demands that are associated with DB access. Active monitoring in such cases relies on

probing a dedicated table with a functioning index reserved for measuring service

demand time, which could give misleading readings if the DB indexing systems fails

partially on a selective subset of tables. Consequently, online QN models may give

wrong predictions due to false service demand data.

Figure 22d shows the TRS system under the DoS scenario. The random nature of

network traffic, makes it impossible for FUSION to converge to an induced model that

can consistently predict the behavior of the system within 5% average ADP. As soon as a

new model is induced, the execution conditions change, making the prediction models

inaccurate. As a result, FUSION’s learning cycle is periodically invoked. Even though

FUSION does not reach the same level of accuracy as in the other execution scenarios, it

100

is still capable of masking transient effects and reducing errors significantly. This can be

attributed to the fact that FUSION is benefiting from the continuous tuning, although it

loses accuracy in the absence of a stable pattern.

Figure 23 plots the learning accuracy obtained from the experiments at 3 different

points in time for each of the 4 evaluation scenarios. The figure depicts 95% confidence

interval over 30 runs of the experiments explained above.

Figure 23. Summary of learned functions’ accuracy for different scenarios.

101

9.1.2 [Q1.2] Adaptation in Presence of Concept Drifts

Clearly the quality of adaptation decisions depends on the accuracy of induced model.

However, when the unforeseen behaviors emerge, the model is forced to make some

adaptation decisions under inaccuracy, which are in turn used to fine-tune the induced

models and account for the emerging behavior. FUSION applies domain heuristics to

reduce the learning space significantly, which has turned out to be a critical factor in

speeding up the fine-tuning process. For instance, in the IF scenario, it recovers after 2

round of learning (i.e., 20 adaptation steps). This is mainly attributed to the feature space

reduction heuristics that decrease the learning space significantly. Table 6 demonstrates

reduction in learning space for each of the four evaluation scenarios. Note that under DoS

scenario, FUSION fails to contain the learning space. This confirms our expectation that

due to misleading signals in the environment, learning may establish false correlations

between features and metrics.

Table 6. Impact of feature reduction heuristics.

Exp. NT 1 NT 2 NT 3 VT 1 VT 2 VT 3 IF 1 IF 2 IF 3 DoS 1 DoS 2 DoS 3

FUSION 5 5 5 5 7 7 5 7 8 5 11 11

CS/TO 78

102

However, the important thing is whether the adaptation decisions made during this

period of time (i.e., using an inaccurate model) could further exacerbate the violated

goals or not. Figure 24 shows the normalized impact of enabling F3 on metrics MG1 and

MG3 in the first observation for each of the four scenarios of Figure 22. Recall that the

first observation for VT, IF, and DOS corresponds to a situation where there is a high-

level of inaccuracy. In all cases, FUSION disables F3 with the purpose of increasing MG1

and reducing MG3. While due to the inaccuracy of the induced model FUSION fails to

predict accurately the magnitude of impact on these metrics, it gets the general direction

of impact (i.e., positive vs. negative) correctly. This result is reasonable since a given

feature typically has a similar general direction of impact on metrics. For instance, one

would expect an authentication feature to improve the system’s security, while degrading

its performance. Hence, even in the presence of inaccurate knowledge, FUSION does not

make decisions that worsen the goal violations. Instead FUSION makes decisions that are

Figure 24. Impact of Feature “Per-Request Authentication” on Metrics “Quote Response

Time” and “Quote Quality”

103

good, but not necessarily optimal, until the knowledge base is refined as will be

demonstrated in Section 9.1.3.

9.1.3 [Q1.2] Quality of Feature Selection

We evaluate the quality of solution (feature selection) found by FUSION against two

competing techniques. The first technique is Traditional Optimization (TO), which

maximizes the global utility of the system, and includes all of the feature variables and

goals in the optimization problem. That is, it does use feature reduction heuristics that

result from significance testing. The second technique is Constraint Satisfaction (CS),

which finds a feature combination that satisfies all of the goals, regardless of the quality

of the solution. As you may recall from Chapter 7, FUSION adopts a middle ground with

two objectives: (1) find solutions with comparable quality to those provided by TO, but at

a fraction of time it takes to executing TO, and (2) find solutions that are significantly

better in quality than CS (i.e., stable fix), but with a comparable execution time.

Figure 25 plots the global utility obtained from running the optimization at the 3

different points explained earlier for each of the 4 evaluation scenarios discussed earlier.

Each data point represents the global utility value (recall the objective function in

Section 7.2) obtained for each experiment. FUSION produces solutions that are only

slightly less in quality than TO in all of the experiments. The minor difference in quality

is due to impact of features that are deem insignificant. This demonstrates that our feature

space pruning heuristics do not significantly impact the quality of found solutions. Table

6 shows the average number of features that are considered for solving each of the

104

experiments, which is only a small fraction of the entire feature space. Figure 25 also

shows that FUSION find solutions that are significantly better than CS. In turn, this

corroborates our assertion in Section 7.2 that FUSION produces a stable fix to goal

violations by placing the system in a near-optimal configuration. On the other hand, since

CS may find borderline solutions that barely satisfy the goals, due to slight fluctuations in

the system, goals may be violated and thus frequent adaptations of the system ensue.

Finally, we should reiterate that the quality of solutions found by FUSION can be

affected by the accuracy of induced model. However, as we demonstrated in TRS,

FUSION solutions put the system is a better state with respect to global utility.

Figure 25. Global utility for different scenarios.

105

9.2 Hypothesis #2: Dependencies

In this section, we demonstrate the ability of FUSION to maintain architectural

dependencies by enforcing feature model constrains (Section 9.2.1). We also demonstrate

how FUSION leverages its knowledge base to even further enhance selection of

adaptation steps to ensure stable functioning of the system during adaptation

(Section 9.2.2). The following subsections answer 2 research questions:

Q2.1
How can the system be prevented from transitioning to an invalid

state during adaptation?

Q2.2
How can the system be prevented from violating additional goals

during adaptation?

9.2.1 [Q2.1] Prevention vs. Detection of Architectural Inconsistencies

Recall from Section 5.4 that state-of-the-art architecture-based approaches engineers

define a significant number of complex constraints most of which are to detect invalid

configurations and exclude them from the space. Instead, FUSION eliminates invalid

configurations from its decision space completely using experts’ knowledge. This is the

key advantage of preventing selection of inconsistent configurations over detecting them

at runtime, which is state-of-the-art.

One concern would be if engineers make mistakes in the feature model. For instance,

a security engineer may ignore a dependency relationship between one of his/her features

and a feature that is developed by usability engineers. Usually, automated techniques are

used to discover such inter-dependencies due to the natural separation among engineering

106

teams. In this case, several static and dynamic analysis techniques can be used to verify

the correctness of the architecture automatically. For instance, in [99], we presented an

automated approach for ensuring validity of the feature model relationships by checking

for the presence of critical pairs in the underlying UML class, sequence, and state

diagrams (2
F
 state space). Although static and dynamic architectural checking are beyond

the scope of this thesis, we argue that through the use of such approaches, it reasonable to

assume correctness of the feature models produced by the engineers.

9.2.2 [Q2.2] Protecting System Goals During Adaptation

FUSION leverages its knowledge base to find adaptation paths that minimize

violation of system goals in order to achieve higher overall stability during adaptation.

We compare FUSION results against two competing techniques.

The first technique (referred to as FC) uses a path search formulation that enforces

feature model constraints during adaptation but does not leverage the knowledge based to

prune the search space. The second technique (referred to as K+FC) uses a path search

formulation that is identical to FC; however, it leverages the knowledge base (K). As you

may recall from Section 7.3, FUSION, which can be also refered to as K+FC+UL,

exhibits three characterstics: 1) It leverages knowledge base (K) tp prune the search space,

2) It finds a path that satisfies feature constraints (FC), and (3) It picks the path that

minimizes utility loss (UL).

107

Figure 26 shows the utility loss obtained from the path search using the three

formulations in the first 3 evaluation scenarios. Each data point represents the utility loss

value at a given adaptation step. FUSION produces paths that minimize utility loss in all

3 scenarios NT, VT, and IF. To the contrary, FC and K+FC produce paths that worsen

the utility loss and violate additional goals in scenarios VT and IF. This demonstrates that

FUSION can produce paths that minimize utility loss and enforce feature model

constraints.

9.3 Hypothesis #3: Efficiency

In this section, we demonstrate performance benchmarks to demonstrate the

efficiency and suitability of FUSION for online reasoning (i.e., analysis and planning).

We first cover the overhead of the Induce activity in the learning cycle in Section 6.2.

Then, we cover the adaptation cycle to demonstrate the efficiency of the Plan and Effect

Figure 26. Quality of adaptation paths.

108

activities in Sections 9.3.2 and 9.3.3 respectively. The following subsections answer 3

research questions:

Q3.1
How does learning time increase with the number of

observations?

Q3.2
How long does it take to find an optimal configuration of the

system?

Q3.3
How long does it take to find an adaptation path that ensures

stable functioning during adaptation?

9.3.1 [Q3.1] Overhead of Learning (Induce Activity)

FUSION enables adjustment of the system to changing conditions by continuously

incorporating observation records in the learning process. An important concern is the

execution overhead of online learning. One of the principle factors affecting learning

overhead is the number of observations required to make accurate inductions. Table 7

lists the execution time for a given number of observations in the extended TRS system.

Simple linear regression takes an insignificant amount of time with large number of

observations. In our experiments FUSION performed online learning on a maximum of

30 observations, which from Table 7 could be verified to have presented an insignificant

Table 7. Induction execution time in milliseconds

of Observations 50 500 528 822 903 1227 1389

 Simple Regression 20 30 30 50 60 70 80

 M5-Model Trees 60 110 130 130 130 160 230

 SVM Regression 190 2310 3230 7330 8740 18700 29830

109

overhead of less than 20 milliseconds. This efficiency is due to the pruning of the feature

selection space and significance test described in Chapter 6.

9.3.2 [Q3.2] Efficiency of Optimization (Plan Activity)

In Section 9.1.3, we compared the quality of FUSION with two approaches:

Traditional Optimization (TO) and Constraint Satisfaction (CS). In this section we focus

on the efficiency aspects of this experiment. As you may recall from Section 7.2,

FUSION achieves efficient analysis by using the knowledge base to dynamically tailor an

optimization problem to the violated goals in the system. In comparison, TO conducts a

full optimization problem where the complexity of the problem is O(2
F
).

Figure 27 shows the execution time for solving the optimization problem in FUSION,

TO, and CS for the same instances of TRS as those shown in Figure 25. Note that the

execution time of FUSION is comparable to CS and is significantly faster than TO. This

Figure 27. Optimization execution time for different scenarios.

110

in turn along with the results shown in the previous section demonstrates that FUSION is

not only able to find solutions that are comparable in quality to those found by TO, but

also achieves this at the speed that is comparable to CS. Note that since TO runs

exponentially in the number of features, for systems with slightly larger number of

features, TO could take several hours for completion, which would make it inapplicable

for use at runtime.

9.3.3 [Q3.3] Efficiency of Path Search (Effect Activity)

In Section 9.2.2, we compared the quality of FUSION adaptation paths with two

approaches: FC and K+FC. In this section, we focus on the efficiency aspects of this

experiment. As mentioned in Section 7.3, in contrast to FC, FUSION achieves efficient

planning by using the knowledge base to dynamically tailor a search space that is relevant

to the violated goals. FUSION also takes in consideration the objective of minimizing

Figure 28: Path search execution time in milliseconds for different scenarios.

111

utility loss during adaptation, which is totally ignored in the K+FC approach.

Figure 28 shows the execution time for solving the path search problem for all 3

scenarios NT, VT, and IF of Figure 26. Incorporating knowledge into the path search

problem improves the efficiency of the path search process by as much as 10 times in NT

and IF scenarios. In the VT scenario, the path search process becomes more extensive

due to the nature of adaptation decisions taken and the number of features being changed.

Note that execution time of FUSION is overall not far behind K+FC despite the

inclusion of utility loss function as a second objective. Utility loss function adds the

burden of minimizing goal violation throughout the adaptation path. For instance, at

execution point “VT 3”, the system is running at a peak workload in which the search

space has no adjacent nodes that satisfy all goals. As a result, a few additional neighbor

nodes had to be explored. Yet, FUSION execution time remains comparable to K+FC

and clearly superior to FC. This in turn demonstrates that finding paths that minimize

utility loss can be achieved without compromising efficiency.

112

Chapter 10 : Conclusion

In this dissertation, we presented a black-box approach for engineering self-adaptive

systems that brings about two innovations for solving the aforementioned challenges: (1)

a new method of modeling and representing a self-adaptive software systems that builds

on the notions of feature-orientation from the product line literature [11], and (2) a new

method of assessing and reasoning about adaptation decisions through online

learning [3].

We present an empirical evaluation of the approach using a real-world self-adaptive

software system to demonstrate the feasibility of the approach and the quality and

efficiency of learning and adaptation decisions.

10.1 Contributions

The result of this research is a framework, entitled FeatUre-oriented Self-adaptatION

(FUSION), which combines feature-models (i.e., as an explicit representation of domain

experts’ knowledge) with online machine learning. Domain knowledge, represented in

feature-models, adds structure to online learning, which in turn improves the quality of

adaptation decisions. The following key contribution of the FUSION framework as an

approach for building self-adaptive software systems:

113

1. FUSION reduces the complexity of building adaptation logic for software

systems, since it does not require an explicit representation of the managed

system’s internal structure. It only requires a black-box specification of the

system’s adaptation choices (i.e., features) as input.

2. FUSION copes with the changing dynamics of the system, even those that were

unforeseen at design time, through incremental observation and induction (i.e.,

online learning).

3. By encapsulating the engineer’s knowledge of the inter-dependencies among the

system’s constituents as feature-model dependencies, FUSION can ensure stable

functioning and protect system goals during and after adaptation.

4. FUSION uses features and inter-feature relationships to significantly reduce the

configuration space of a sizable system, making runtime analysis and learning

feasible.

10.2 Limitations and Future Work

The following are key limitation areas of FUSION and potential areas of future work:

1. Learning Uncertainty: Currently, FUSION handles uncertainty in the system

and surrounding context in an adhoc fashion. That is, it does not capture/learn the

distribution of uncertainty so that stochastic techniques can be applied to improve

the quality of adaptation decisions.

114

2. Proactive Adaptation: FUSION’s Detect activity monitors the running system

and kicks of the adaptation cycle whenever a goal violation is detected. In some

real world systems, waiting until a goal violation happens and then reacting to it

may be very costly. An alternative approach to this is proactive adaptation. For

instance, one approach would be to monitor for certain drop in the utility and

initiate adaptation whenever the system is likely to violate a goal. Such an

approach requires a forecasting mechanism such as advanced time-series analysis

techniques [9].

3. Self-Training: We intend to investigate opportunistic self-training as a way of

detecting emerging behavior in order to keep FUSION KB up-to-date before

adaptation decisions are made on the real system. For instance, one possibility

would be applying self-adaptation decisions on a shadow clone of the running

system or use external analytical models to train FUSION. Hybrid approaches

have proven in the literature to inherit the advantages of combined paradigms.

4. Generalized Multi-criteria Temporal Planning: Effect activity can include

additional parameters in the path search process. For instance, Effect can use AI

planning techniques [58] to address the temporal as well as the consistency

aspects of Effect. For instance, it can use [1] [4] to find: 1) the fastest path of

placing the system in an optimal feature selection and 2) a path that has minimal

disruption on system components. We also believe additional search heuristics

can be developed to enhance the path search process.

115

5. Computer Assisted Feature Model Generation: FUSION relies heavily on the

feature model that is exposed by the engineers. Often this results in limiting the

space of configurations significantly. Despite the efficiency advantage, this often

reduces FUSION’s ability to converge to a solution. In some cases, a goal

violation can be addressed if the search takes place at the architecture level. We

believe that computer assisted feature model generation may be a viable venue to

maximize the chance of incorporating optimal configurations at the architecture

into the feature selections in a pre-computed manner.

116

References

117

References

[1] J. F. Allen, J. A. Koomen. Planning Using a Temporal World Model. 8
th

International Joint Conference on Artificial Intelligence, Karlsruhe, Germany, 1983.

[2] An Architectural Blueprint for Autonomic Computing, IBM white paper, 4th edition,

June 2006. http://www-01.ibm.com/software/tivoli/autonomic/pdfs/

AC_Blueprint_White_Paper_4th.pdf

[3] E, Alpaydın. Introduction to Machine Learning. Adaptive Computation and Machine

Learning, MIT Press, 2004.

[4] N. Arshad, D. Heimbigner, A.L. Wolf. Deployment and dynamic reconfiguration

planning for distributed software systems. Proceedings 15th IEEE International

Conference on Tools with Artificial Intelligence, Sacramento, CA, Nov 2003.

[5] J. Andersson, R. de Lemos, S. Malek, and D. Weyns. Modeling Dimensions of Self-

Adaptive Software Systems. In Software Engineering for Self-Adaptive Systems,

Editors B. H. C. Cheng, R. de Lemos, H. Giese, P. Inverardi, and J. Magee, Lecture

Notes on Computer Science Hot Topics, Springer, 2009.

[6] J. Andersson, R. de Lemos, S. Malek, and D. Weyns. Reflecting on Self-Adaptive

Software Systems. ICSE 2009 workshop on Software Engineering for Adaptive and

Self-Managing Systems, Vancouver, Canada, May 2009.

[7] D. Batory. Feature Models, Grammars, and Propositional Formulas. 9
th
 International

Conference on Software Product Lines, Rennes, France, Sep. 2005.

[8] D. J. Carroll. Statistics Made Simple for School Leaders: Data-Driven Decision

Making. Scarecrow Education, 2002.

[9] C. Chatfield. The analysis of time series, an introduction, sixth edition. Chapman &

Hall/CRC. New York,2004.

[10] B. Cheng, et al. Software Engineering for Self-Adaptive Systems: A Research

Roadmap. Software Engineering for Self-Adaptive Systems, LNCS Hot Topics, 2009,

118

pp. 1-26.

[11] P. Clements, L. Northrop. Software Product Lines: Practices and Patterns. SEI

Series in Software Engineering, 2001.

[12] E.R. Cook. A time series approach to tree-ring standardization, Ph.D. dissertation,

University of Arizona, Tucson,1985.

[13] E. Dashofy, A. van der Hoek, R. N. Taylor. An Infrastructure for the Rapid

Development of XML-based Architecture Description Languages. Proceedings of

the 24th International Conference on Software Engineering, pp. 266 - 276, 2002.

[14] G. Edwards, S. Malek, and N. Medvidovic. Scenario-Driven Dynamic Analysis of

Distributed Architectures. International Conference on Fundamental Approaches to

Software Engineering, Braga, Portugal, March 2007.

[15] A. Elkhodary, S. Malek, N. Esfahani. On the Role of Features in Analyzing the

Architecture of Self-Adaptive Software Systems. 4th International Workshop on

Models at Runtime, Denver, Colorado, October 2009.

[16] N. Esfahani, S. Malek, J. P. Sousa, H. Gomaa, and D. A. Menasce. A Modeling

Language for Activity-Oriented Composition of Service-Oriented Software Systems.

ACM/IEEE 12th International Conference on Model Driven Engineering Languages

and Systems (MODELS 09), Denver, Colorado, October 2009.

[17] J.H. Friedman. Multivariate Adaptive Regression Splines. The Annals of Statistics 19

(1), 1-67. 1991.

[18] G. Garlan et al. Rainbow: Architecture-Based Self-Adaptation with Reusable

Infrastructure. IEEE Computer, 2004, pp. 46-54.

[19] J, Gehrke. Classification and Regression Trees (C&RT). Encyclopedia of data

warehousing and mining, 2008.

[20] J. C. Georgas, and R. N. Taylor. Towards a knowledge-based approach to

architectural adaptation management. Workshop on Self-healing Systems, Newport

Beach, CA, October 2004.

[21] I. Georgiadis, J. Magee, and J. Kramer. Self-organising software architectures for

distributed systems. Workshop on Self-healing Systems, Charleston, SC, November

119

2002.

[22] H. Gomaa. Designing Software Product Lines with UML: From Use Cases to

Pattern-Based Software Architectures. Addison-Wesley Professional, 2004.

[23] H. Gomaa, M. Hussein. Software Reconfiguration Patterns for Dynamic Evolution

of Software Architectures. Working IEEE/IFIP Conference on Software

Architecture. 2004.

[24] H. Gomaa, K. Hashimoto, M. Kim, S. Malek, D. A. Menasce. Software Adaptation

Patterns for Service-Oriented Architectures. 25th ACM Symposium on Applied

Computing (SAC 2010), Dependable and Adaptive Distributed Systems track, Sierre,

Switzerland, March 2010.

[25] G. Gross, and C. M. Harris. Fundamentals of queuing theory (2nd ed.). John Wiley

& Sons, 1985.

[26] S. Hallsteinsen, M. Hinchey, S. Park, K. Schmid. Dynamic Software Product Lines.

IEEE Computer. 2008.

[27] P.K. Jayaraman, J. Whittle, A. Elkhodary, H. Gomaa. Model Composition in Product

Lines and Feature Interaction Detection Using Critical Pair Analysis. MoDELS 2007.

151-165.

[28] K. Kang, S. Cohen, et al. Feature-Oriented Domain Analysis (FODA) Feasibility

Study. Technical Report CMU/SEI-90-TR-21, Software Engineering Institute,

Pittsburgh A, November 1990.

[29] M. Kantardzic. Data Mining: Concepts, Models, Methods, and Algorithms. John

Wiley & Sons. 2003.

[30] J. O. Kephart, and D. M. Chess. The Vision of Autonomic Computing. IEEE

Computer, vol. 36, 2003, pp. 41-50.

[31] D. Kim, and S. Park. Reinforcement Learning-Based Dynamic Adaptation Planning

Method for Architecture-Based Self-Managed Software. International Workshop on

Software Engineering For Adaptive and Self-Managing Systems, Vancouver,

Canada, May 2009.

120

[32] A. Kleppe, J. Warmer, and W. Bast. MDA Explained: The Model Driven

Architecture: Practice and Promise. Addison-Wesley Professional, 2003.

[33] J. Kramer, and J. Magee. Self-Managed Systems: an Architectural Challenge.

International Conference on Software engineering, Vancouver, Canada, May 2007.

[34] D. Kriesel. A Brief Introduction to Neural Networks. University of Bonn, Epsilon,

Germany, 2005.

[35] K. Lee, et al. Combining Feature-Oriented Analysis and Aspect-Oriented

Programming for Product Line Asset Development. International Conference on

Software Product Line, Baltimore, MD, August 2006.

[36] J. Lee and K. Kang. A feature-oriented approach to developing dynamically

reconfigurable products in Product-Line engineering. Software Product Lines

Conference. Aug. 2006.

[37] J. Magee, et al. Behavior Analysis of Software Architectures. Proceedings of the

TC2. First Working IFIP Conference on Software Architecture (WICSA1), pp. 35 -

50, 1999.

[38] S. Malek, C. Seo, S. Ravula, B. Petrus, and N. Medvidovic. Reconceptualizing a

Family of Heterogeneous Embedded Systems via Explicit Architectural Support.

International Conference on Software Engineering (ICSE 2007), Minneapolis,

Minnesota, May 2007.

[39] S. Malek, G Edwards, Y. Brun, H. Tajalli, J. Garcia, I. Krka, N. Medvidovic, M.

Mikic-Rakic, and G. Sukhatme. An Architecture-Driven Software Mobility

Framework. Journal of Systems and Software, special issue on Software Architecture

and Mobility, December 2009.

[40] S. Malek, M. Mikic-Rakic, and N. Medvidovic. A Style-Aware Architectural

Middleware for Resource-Constrained, Distributed Systems. IEEE Transaction on

Software Engingeering, 31(5), 2005, pp. 256-272.

[41] S. Malek, R. Roshandel, D. Kilgore, and I. Elhag. Improving the Reliability of

Mobile Software Systems through Continuous Analysis and Proactive

Reconfiguration. International Conference on Software Engineering (ICSE 2009),

New Ideas and Emerging Results Track, Vancouver, Canada, May 2009.

121

[42] S. Malek, N. Esfahani, D. A. Menasce, J. Sousa, and H. Gomaa. Self-Architecting

Software Systems (SASSY) from QoS-Annotated Activity Models. ICSE 2009

workshop on Principles of Engineering Service Oriented Systems (PESOS 2009),

Vancouver, Canada, May 2009.

[43] S. Malek, N. Beckman, M. Mikic-Rakic, and N. Medvidovic. A Framework for

Ensuring and Improving Dependability in Highly Distributed Systems. In R. de

Lemos, C. Gacek, and A. Romanowski, eds., Architecting Dependable Systems III,

Springer Verlag, October 2005.

[44] S. Malek, C. Seo, S. Ravula, B. Petrus, and N. Medvidovic. Providing Middleware-

Level Facilities to Support Architecture-Based Development of Software Systems in

Pervasive Environments. International Workshop on Middleware for Pervasive and

Ad-Hoc Computing (MPAC 2006), Melbourne, Australia, November 2006.

[45] S. Malek. A User-Centric Approach for Improving a Distributed Software System’s

Deployment Architecture. PhD Dissertation, University of Southern California,

August 2007.

[46] N. Medvidovic, R. N. Taylor. A Classification and Comparison Framework for

Software Architecture Description Languages. IEEE Transaction on Software

Engineering, vol. 26, no. 1, January 2000.

[47] D. Menasce, M. Bennani, H. Ruan. On the Use of Online Analytic Performance

Models in Self-Managing and Self-Organizing Computer Systems. Self-Star

Properties in Complex Information Systems. Vol. 3460, Springer Verlag, 2005.

[48] D. Menasce, J. M. Ewing, H. Gomaa, S. Malek, and J. P. Sousa. A Framework for

Utility-Based Service Oriented Design in SASSY. Joint WOSP/SIPEW International

Conference on Performance Engineering, San Jose, California, January 2010.

[49] B. Morin, O. Barais, G. Nain, and J-M. Jzquel. Taming Dynamically Adaptive

Systems with Models and Aspects. 31st International Conference on Software

Engineering, Vancouver, Canada, May 2009.

[50] B. Morin, F. Fleurey, N. Bencomo, J-M. Jzquel. Solberg, A. Dehlen, V. and Blair, G.

An aspect-oriented and model-driven approach for managing dynamic variability.

ACM/IEEE 11th International Conference on Model Driven Engineering Languages

and Systems, Toulouse, France. October 2008.

[51] ODM, http://www.oracle.com/technology/products/bi/odm

122

[52] P. Oreizy, N. Medvidovic, and R. N. Taylor. Architecture-based runtime software

evolution. International Conference on Software Engineering, Kyoto, Japan, April

1998.

[53] D. Perry and A.L. Wolf. Foundations for the Study of Software Architecture, ACM

SIGSOFT Software Engineering Notes, vol. 17, no. 4, pp. 40-52, Oct. 1992.

[54] V. Poladian, J. P. Sousa, D. Garlan, and M. Shaw. Dynamic Configuration of

Resource-Aware Services. International Conference on Software Engineering,

Edinburgh, Scotland, May 2004.

[55] Princeton Review. http://www.princetonreview.com/home.asp

[56] L. R. Rabiner. A Tutorial on Hidden Markov Models, in proceedings of the IEEE,

vol. 77, pp. 257-286, 1989.

[57] K. Rieck, P. Laskov. Language Models for Detection of Unknown Attacks in

Network Traffic. Journal in Computer Virology. December, 2006.

[58] S. Russell and P. Norvig, Artificial Intelligence: A Modern Approach, Prentice Hall,

Englewood Cliffs, NJ, 1995.

[59] T. Ryutov, L. Zhou, C. Neuman, T. Leithead, K. Seamons. Adaptive Trust

Negotiation and Access Control. ACM Symposium on Access Control Models and

Technologies, pps. 139-146, 2005.

[60] M. Sabhnani, G. Serpen. Application of Machine Learning Algorithms to KDD

Intrusion Detection Dataset within Misuse Detection Context. Proceedings of

International Conference on Machine Learning: Models, Technologies and

Applications, pp. 209-215.

[61] A. J. Smola and B. Schölkopf. A tutorial on support vector regression. Statistics and

Computing, vol. 14, 2004.

[62] GMU Software Engineering Seminar Series.

http://cs.gmu.edu/~smalek/seminar.html

[63] J. P. Sousa, V. Poladian, D. Garlan, B. Schmerl, and M. Shaw. Task-based

adaptation for ubiquitous computing. IEEE Transactions on Systems, Man, and

Cybernetics, Part C: Applications and Reviews, vol. 36, no. 3, 328-340, May 2006.

123

[64] J. P. Sousa, R. K. Balan, V. Poladian, D. Garlan, and M. Satyanarayanan. User

Guidance of Resource-Adaptive Systems. International Conference on Software and

Data Technologies, Porto, Portugal, July 2008.

[65] D. Sykes, et al. From goals to components: a combined approach to self-

management. International Workshop on Software Engineering For Adaptive and

Self-Managing Systems, Leipzig, Germany, May 2008.

[66] R. N. Taylor, N. Medvidovic, and E. Dashofy. Software Architecture: Foundations,

Theory, and Practice, John Wiley & Sons, 2008.

[67] G. Tesauro, N. K. Jong, R. Das, and M. N. Bennani, M.N. A Hybrid Reinforcement

Learning Approach to Autonomic Resource Allocation. International Conference on

Autonomic Computing, Washington, DC, June 2006.

[68] G. Tesauro. Reinforcement Learning in Autonomic Computing: A Manifesto and

Case Studies. IEEE Internet Computing, vol. 11, no 1, pages 22-30, 2007.

[69] P. Trinidad, A. Ruiz-Cortes, J.P. Na. Mapping feature models onto component

models to build dynamic software product lines. International Workshop on

Dynamic Software Product Line. 2007.

[70] S. Trujillo, D. Batory, O. Diaz. Feature Oriented Model Driven Development: A

Case Study for Portlets. Proceedings of the 29th international conference on

Software Engineering, Minneapolis, MN, 2007.

[71] L. A. Wolsey, Integer Programming, John Wiley & Sons, New York, NY, 1998.

[72] Y. Yuan, M.J. Shaw. Induction of fuzzy decision trees. Fuzzy Sets and Systems,

Elsevier North-Holland, vol. 69, no 2, 1995.

[73] Malek, S. A User-Centric Framework for Improving a Distributed Software System's

Deployment Architecture. In proceedings of the doctoral track at the 14th ACM

SIGSOFT Symposium on Foundation of Software Engineering. Portland, Oregon,

2006.

[74] Malek, S. Mikic-Rakic, M. and Medvidovic, N. A Decentralized Redeployment

Algorithm for Improving the Availability of Distributed Systems. In proceedings of

the 3rd International Working Conference on Component Deployment (CD 2005),

Grenoble, France, Nov. 2005.

124

[75] Oreizy, P. Gorlick, M. M. Taylor, R. N. Heimbingner, D. Johnson, G. Medvidovid,

N. Quilici, A. Rosenblum, D. S. and Wolf, A. L. An architecture-based approach to

self-adaptive software. IEEE Intelligent Systems, 14(3): 54–62, May 1999.

[76] Dashofy, E. M. Van der Hoek, A. and Taylor, R. N. Towards architecture-based self-

healing systems. In Proceedings of the First Workshop on Self-Healing Systems,

2002.

[77] Fleurey, F. and Solberg, A. A DSML supporting Specification, Simulation and

Execution of Dynamic Adaptive Systems. Proceedings of the ACM/IEEE 12th

International Conference on Model Driven Engineering Languages and Systems.

Denver, Colorado. 2009.

[78] Matevska-Meyer, J., Hasselbring, W., Reussner, R.: Software Architecture

Description supporting Component Deployment and System Runtime

Reconfiguration. Workshop on Component-Oriented Programming (WCOP 2004).

Oslo, Norway (2004).

[79] Caporuscio, M., Marco, A.D., Inverardi, P.: Model-based system reconfiguration for

dynamic performance management. Journal of Systems and Software. 80, 455-473

(2007).

[80] Whittle, J., Sawyer, P., et al.: RELAX: a language to address uncertainty in self-

adaptive systems requirement. Requirements Engineering. (2010).

[81] Garlan, D., Schmerl, B.: Model-based adaptation for self-healing systems. Workshop

on Self-healing systems. pp. 27-32, Charleston, South Carolina (2002).

[82] Bencomo, N., Blair, G.: Using Architecture Models to Support the Generation and

Operation of Component-Based Adaptive Systems. Software Engineering for Self-

Adaptive Systems. pp. 183-200Springer-Verlag (2009).

[83] Whittle, J., Jayaraman, P. Elkhodary, A. et al.: MATA: A Unified Approach for

Composing UML Aspect Models Based on Graph Transformation. Transactions on

Aspect-Oriented Software Development VI. pp. 191-237 (2009).

[84] Becker, B., Giese, H.: Modeling of correct self-adaptive systems: a graph

transformation system based approach. International Conference on Soft Computing

as Transdisciplinary Science and Technology. pp. 508-516ACM, Cergy-Pontoise,

France (2008).

125

[85] Giese, H., Wagner, R.: Incremental Model Synchronization with Triple Graph

Grammars. International Conference on Model Driven Engineering Languages and

Systems (MoDELS 2006). pp. 543--557 (2006).

[86] Vogel, T., Neumann, S., et al.: Model-driven architectural monitoring and adaptation

for autonomic systems. International Conference on Autonomic Computing. pp. 67-

68ACM, Barcelona, Spain (2009).

[87] Vogel, T., Neumann, S., et al.: Incremental Model Synchronization for Efficient

Run-Time Monitoring. Workshop on Models@run.time. , Denver, Colorado, USA

(2009).

[88] K. Kang, S. Cohen, J. Hess, W. Nowak, and S. Peterson, Feature-Oriented Domain

Analysis (FODA) Feasibility Study. 1990.

[89] Tajalli, H. Garcia, J. Edwards, G. and Medvidovic, N. “PLASMA: a plan-based

layered architecture for software model-driven adaptation,” in Proceedings of the

IEEE/ACM international conference on Automated software engineering, 2010, pp.

467–476.

[90] Ghanbari, S. Soundararajan, G. Chen, J. and Amza, C. “Adaptive Learning of Metric

Correlations for Temperature-Aware Database Provisioning,” in Int’l Conf. on

Autonomic Computing, Jacksonville, Florida, 2007, p. 26.

[91] WEKA.” [Online]. Available: http://www.cs.waikato.ac.nz/ml/weka/. [Accessed: 04-

Mar-2010].

[92] M. I. Jordan and R. A. Jacobs, “Hierarchical mixtures of experts and the EM

algorithm,” Neural Comput., vol. 6, no. 2, pp. 181-214, 1994.

[93] Cheng, B. Sawyer, P. Bencomo, N. Whittle, J. A Goal-Based Modeling Approach to

Develop Requirements of an Adaptive System with Environmental Uncertainty.

Proceedings of the ACM/IEEE 12th International Conference on Model Driven

Engineering Languages and Systems. Denver, Colorado. 2009.

[94] Bennani, M. Menasce, D. Resource Allocation for Autonomic Data Centers using

Analytic Performance Models. Proceeding of the International Conference on

autonomic Computing (ICAC), Seattle, Washington, 2005.

[95] Bennani, M. Menasce, D. Assessing the Robustness of Self-Managing Computer

systems under Highly Variable Workloads. Proceeding of the International

126

Conference on autonomic Computing (ICAC), New York, 2004.

[96] Tsymbal, A. The problem of concept drift: definitions and related work. Technical

Report. Department of Computer Science. Trinity College Dublin, Ireland, 2004.

[97] Widmer, G. Kubat, M. Learning in the presence of concept drift and hidden contexts.

Journal of Machine Learning 23, 1996, pp. 69-101.

[98] Kolter, J.Z. and Maloof, M.A. Dynamic Weighted Majority: An ensemble method

for drifting concepts. Journal of Machine Learning Research 8:2755--2790, 2007.

[99] Jayaraman, P. Whittle, J. Elkhodary, A. Gomaa, H.: Model Composition in Product

Lines and Feature Interaction Detection Using Critical Pair Analysis. Proceeding of

the MoDELS International Conference, pp. 151-165. 2007.

[100] B. Urgaonkar, G. Pacifici, P. Shenoy, M. Spreitzer, and A. Tantawi. Analytic

modeling of multitier internet applications. ACM Transactions on the Web, 1(1):2–

37, 2007.

[101] Ardagna, D. Ghezzi, C. and Mirandola, R. Rethinking the use of models in software

architecture. Proceeding of International Conference Series on the Quality of

Software Architectures, pages 1–27, 2008.

[102] Wang, G. Shan, S. Review of metamodeling techniques in support of engineering

design optimization. Mechanical Design, 129(4):370–380, 2007.

[103] Menacse, D. Simple analytic modeling of software contention. ACM SIGMETRICS

Performance Evaluation Review. Volume 29 Issue 4, New York, USA. 2002.

[104] Gambi, A. Toffetti, G. Pezze, M. Protecting SLAs with surrogate models.

Proceedings of the 2nd International Workshop on Principles of Engineering

Service-Oriented Systems. New York. 2010.

[105] Solomatine, D., Data-driven modelling: paradigm, methods, experiences. Proceeding

of the 5th International Conference on Hydroinformatics, UK. 2002.

[106] Ware, M. Frank, E. Holmes, G. Hall, M. Witten, I.H. Interactive machine learning -

letting users build classifiers. International Journal on Human-Computer Studies.

2000.

127

[107] Kramer, J. Magee, J. The Evolving Philosophers Problem: Dynamic Change

Management. IEEE Transaction on Software Engineering 16, 11. 1990.

[108] Sacks, J., Welch, W. J., Mitchell, T. J. and Wynn, H. P. Design and Analysis of

Computer Experiments. Statistical Science, 4(4), pp. 409-435. 1989.

[109] Perdu, D. Levis, A. Adaptation as a Morphing Process: A Methodology for the

Design and Evaluation of Adaptive Organization Structures. Computational and

Mathematical Organization Theory, Vol. 4, No. 1, Spring 1998, pp. 5-41.

[110] Damaël, J. Levis, A. On Generating Variable Structure Architectures for Decision

Making Systems. Information and Decision Technologies, pp. 233-255. 1994.

[111] Lu, Z. & Levis, A. Coordination in Distributed Decision Making, Proceedings of

IEEE International Conference on Systems, Man, and Cybernetics, pp. 891 - 897.

Chicago. 1992.

[112] Sutton, R. Barto, A. Reinforcement Learning: An Introduction. Chapter 6 – Actor-

Critic Methods. MIT Press, Cambridge, MA, 1998.

[113] Si, J. Barto, A. Powell, W. Wunsch, D. Handbook of Learning and Approximate

Dynamic Programming, pages 359-380. Wiley-IEEE Press. 2004.

[114] Ng, A. Harada, D. Russell, S.. Policy invariance under reward transformations:

theory and application to reward shaping. In the Proceedings of the Sixteenth

International Conference on Machine Learning, June 27-30, pp.278-287. 1999.

[115] Zhao, D. Hu, Z. Supervised adaptive dynamic programming based adaptive cruise

control. IEEE Symposium on Adaptive Dynamic Programming And Reinforcement

Learning (ADPRL), Paris. 2011.

[116] Lu, H. Plataniotis, K. Venetsanopoulos, A. MPCA: Multilinear principal component

analysis of tensor objects. IEEE Transation on Neural Networks, vol. 19, no. 1, pp.

18–39. 2008.

[117] Object Management Group. "Meta Object Facility (MOF) 2.0

Query/View/Transformation (QVT) 1.1". 2011.

[118] Esfahani, N, Malek, S. On the Role of Architectural Styles in Improving the

Adaptation Support of Middleware Platforms. The 4th European Conference on

Software Architecture (ECSA 2010), Copenhagen, Denmark, August 2010.

128

[119] Elkhodary, A. Esfahani, N. Malek, S. FUSION: A Framework For Engineering

Self-Tuning Self-Adaptive Software Systems. Proceedings of ACM/IEEE

International Conferernce on Foundations of Software Engineering (FSE), Santa Fe,

2010.

129

Curriculum Vitae

Ahmed Elkhodary is a software engineering academic and practitioner with over 8 years

of technical experience in academic research, R&D, enterprise architecture, systems

engineering, software design and development.

Ahmed has earned a BS degree in Computer Science (King Abdul Aziz University), an

MS degree in Software Engineering (George Mason University), and a PhD in

Information Technology from George Mason University.

Ahmed is an independent Enterprise Architect with government consulting experience at

the Department of The Treasury (Washington DC).

