
Enhancing Web Accessibility: Automated Detection of Issues
with Generative AI
ZIYAO HE, University of California, Irvine, USA
SYED FATIUL HUQ, University of California, Irvine, USA
SAM MALEK, University of California, Irvine, USA

Websites are integral to people’s daily lives, with billions in use today. However, due to limited awareness of
accessibility and its guidelines, developers often releaseweb apps that are inaccessible to peoplewith disabilities,
who make up around 16% of the global population. To ensure a baseline of accessibility, software engineers rely
on automated checkers that assess a webpage’s compliance based on predefined rules. Unfortunately, these
tools typically cover only a small subset of accessibility guidelines and often overlook violations that require a
semantic understanding of the webpage. The advent of generative AI, known for its ability to comprehend
textual and visual content, has created new possibilities for detecting accessibility violations. We began by
studying the most widely used guideline, WCAG, to determine the testable success criteria that generative AI
could address. This led to the development of an automated tool called GenA11y, which extracts elements
from a page related to each success criterion and inputs them into an LLM prompted to detect accessibility
issues on the web. Evaluations of GenA11y showed its effectiveness, with a precision of 94.5% and a recall
of 87.61%. Additionally, when tested on real websites, GenA11y identified an average of eight more types of
accessibility violations than the combination of existing tools.
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1 Introduction
In today’s world, websites play a crucial role in people’s daily lives. There are approximately 1.09
billion websites in existence [Haan 2024], representing a 2,290% increase compared to twenty
years ago [Gupta 2024]. However, one crucial aspect often overlooked by web developers in
the implementation of web apps is their accessibility. A recent WebAIM study analyzing the
top 1,000,000 home pages revealed that the pages contain an average of 56.8 accessibility errors
[WebAIM 2024b]. Such errors hinder people with disabilities, who constitute approximately 16%
of the global population according to WHO [WHO 2024], from using the internet. For instance,
the WebAIM study observed that 81% of the pages have low-contrast text, making it challenging
for people with low vision to read effectively, and 54.5% lack alternative text, leaving blind users
without access to visual content. These accessibility issues are significant, affecting a large number
of web users. In the U.S. alone, 20 million Americans have visual impairments [Institute 2019], and
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globally, 2.2 billion people suffer from vision impairment [WHO 2023]. Therefore, it is imperative
to design web applications that are accessible to all users, regardless of their abilities or disabilities.
Several studies have investigated the prevalence of accessibility issues and concluded that the

primary reasons are a lack of knowledge and awareness of web accessibility guidelines, as well
as the insufficiency of existing analysis tools for effectively addressing these issues [Abu-Doush
et al. 2013; Bi et al. 2022; Doush and Alhami 2022; Huq et al. 2023; Inal et al. 2019; Patel et al.
2020]. While manual accessibility testing remains the most reliable method for evaluating web
app accessibility, it is costly to hire experts to thoroughly assess each page for compliance with
accessibility guidelines, and even human experts can make errors [Huq et al. 2023]. In addition
to hiring accessibility experts, software organizations can engage people with disabilities to test
their products and report any accessibility issues they encounter. However, obtaining feedback
from people with disabilities can be challenging [Bi et al. 2022], particularly for small software
companies with limited resources, as finding users with various types of disabilities is difficult.

This leaves software teams to rely on automated checkers and testing tools that ensure a baseline
level of accessibility. The popularity of these tools stems from their speedy report generation, and
easy integration into the testing process, for instance, through browser extensions. Organizations
also prefer the tools’ prioritization on compliance, in an effort to avoid situations like Domino’s Pizza
[Feingold 2021], where the company lost a lawsuit due to an inaccessible website, compromising
its reputation. However, current automation tools contain a number of flaws, leading to being less
effective in detecting violations compared to manual evaluation [Alsaeedi 2020; Mucha 2018].

Existing tools typically rely on accessibility guidelines like Web Content Accessibility Guidelines
(WCAG) [W3C 2023c] to assess whether a web page is accessible. However, these tools are often
ineffective because they only cover a limited number of WCAG Success Criteria, which consist of
testable rules designed to ensure web accessibility for all users. For instance, WAVE, one of the
most popular accessibility checkers [Alsaeedi 2020], can detect violations of only 13 out of the
86 success criteria without requiring human intervention, according to its documentation [WAI
2024a,b]. Even for the criteria it does cover, WAVE only partially addresses some of them. For
example, success criterion “SC 1.1.1:Non-text Content” requires visual content conveying important
information to not only have a text alternative but also that the text alternative is descriptive and
appropriate. WAVE and other existing tools can address the former requirement but fail to assess
the latter, leading to the oversight of many important accessibility issues.

The existing tools’ inability to detect many issues, such as the descriptiveness of image alt text,
stems from their lack of semantic understanding. However, the emergence of generative AI models,
which excel at understanding the relationships between texts and visual elements [Zhao et al.
2023], offers promising advancements in web accessibility. Several researchers have already begun
applying these models to improve web accessibility. Most efforts so far have focused on fixing
accessibility issues using large language models (LLMs), relying on existing tools like WAVE for
the detection [Huang et al. 2024; Othman et al. 2023]. However, as mentioned earlier, tools like
WAVE cover only a limited number of WCAG Success Criteria, making them insufficient as the
sole input for the subsequent fixes. This leads to the research question our paper aims to answer:
How effective and efficient is LLM in detecting accessibility issues as per WCAG guidelines? While one
previous study explored using GPT models to automate the detection of accessibility criteria that
typically require manual checks, it only covered three criteria [López-Gil and Pereira 2024]. This
paper differs by aiming to cover a broader range of success criteria and by examining the strengths
and limitations of using LLMs compared to existing rule-based checkers.
Building on these insights, we developed an automated accessibility checker named GenA11y.

GenA11y covers 37 WCAG success criteria. It begins by extracting relevant elements from a
webpage for each criterion. The extraction process helps the LLM narrow its focus to the most
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pertinent elements. These extracted elements are then analyzed by the LLM, which is prompted to
identify accessibility violations. Evaluations of GenA11y using two existing datasets from previous
studies, as well as 36 real websites, demonstrated its effectiveness and efficiency. GenA11y achieved
a precision of 94.5%, a recall of 87.61%, and on average detected eight more types of violations than
all existing tools combined per webpage.

Overall, the paper makes the following contributions:
• A study of WCAG success criteria, including a classification of methods for detecting violations
of each criterion.

• The first comprehensive investigation into the application of LLMs for detecting accessibility
issues on the web.

• The development and public release of an automated tool named GenA11y [He et al. 2024],
specifically designed to detect accessibility issues in web apps.

• Evaluations using three data sources, including 36 real websites, and comparisons with five
existing tools, demonstrating the effectiveness and efficiency of GenA11y.
The remainder of this paper is organized as follows. Section 2 presents a motivating example.

Section 3 explores the WCAG success criteria, listing all the criteria addressed by GenA11y and the
corresponding rationales. Section 4 details the implementation of GenA11y. The evaluation results
and comparisons with existing tools are presented in Section 5. The paper concludes with related
work, a discussion of threats to validity, and future directions.

2 Motivating Example
In this section, we aim to motivate our study by illustrating the state of the art in automated
accessibility checking, and the limitations therein.
The example below demonstrates the use of the WAVE accessibility checker to evaluate the

accessibility of the OpenAI homepage [OpenAI 2024c]. The checker identifies one accessibility
error, highlighted by the red box in Figure 1: a Missing form label, where a Form Element on
the page lacks an associated label to describe its purpose. However, the OpenAI homepage has
more than just this one accessibility issue. In the “Research” section, as shown in the right part of
Figure 1, there are four cards, each presenting a new research idea or model from OpenAI. Each
card includes both text and an image. The image in each card has an alt attribute that is identical
to the visible text, such as the first image from the left, which has the alt text, “GPT-4o System
Card.” The problem is that the image is unrelated to the text in its alt attribute and serves merely
as decoration. To prevent confusion for blind users who rely on screen readers — where the same
textual content would be announced twice, once for the image and once for the visible text — the
image should either use an empty alt attribute (alt=“”) or be included as a background image,
which instruct screen readers to ignore the image during navigation.

In addition to missing certain accessibility issues, the tool also generates 79 alerts, highlighted by
the yellow box in Figure 1, which developers must manually verify to determine if they are indeed
accessibility violations. These alerts include tasks such as verifying whether the alternative text for
images is appropriate, whether it is too long, whether adjacent links lead to the same destination,
and whether video or audio content has alternative formats, such as transcripts.

However, this can be challenging for developers, who, as discussed in Section 1, commonly lack
awareness of web accessibility. Their inexperience with WCAG makes manually verifying the
compliance of these elements both tedious and error-prone.

To avoid making incorrect judgments about the validity of the alerts, developers often choose to
disregard them, trusting the automated checker’s identification of a single error as an indicator
of overall website accessibility. However, as illustrated earlier, the website clearly has additional
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issues that are not being detected and addressed, leading to an inaccessible application for people
with disability.

The example above demonstrates that existing tools often fail to detect accessibility violations
requiring semantic understanding. However, the advent of Large Language Models, which are
adept at complex tasks like processing and understanding both text and visual elements [Zhao et al.
2023], opens new avenues for enhancing web accessibility. This development inspires us to propose
a technique that uses LLMs to automate aspects of accessibility analysis that currently necessitate
manual review. Additionally, we aim to evaluate whether this AI-driven approach can match or
surpass the performance of existing tools in detecting violations of the established success criteria.

Fig. 1. The analysis result from WAVE accessibility checker.

3 Study of WCAG Success Criteria
The Web Content Accessibility Guidelines (WCAG) is the universally recognized guideline for
digital accessibility that informs existing accessibility checkers, as well as GenA11y. Therefore, we
present how WCAG is structured, what content is provided, and to what extent GenA11y utilizes it.

3.1 WCAG Structure
WCAG, established in May 1999, aims to enhance web accessibility by providing guidelines that
help create more inclusive digital environments for people with disabilities. The latest version,
WCAG 2.2, published in October 2023, introduces nine new success criteria compared to version
2.1 and aims to address a broader range of aspects in web accessibility [W3C 2023c]. The guideline
is organized into a hierarchical structure that can be summarized as follows:

• Principles - WCAG is organized around four key principles that ensure all users can access
and interact with web content.
– Perceivable: The content and interface must be presented in ways that users can detect
and perceive.

– Operable: Users must be able to interact with and control the interface.
– Understandable: The information and operation of the interface should be clear and
comprehensible to all users.

– Robust: Content should remain accessible and functional across different technologies
and as those technologies evolve.

• Guidelines - WCAG includes 13 guidelines, each organized under one of the four principles.
These guidelines outline the essential objectives for web developers to create content that
is accessible to people with various disabilities. For instance, the Perceivable principle
encompasses four guidelines: Text Alternatives, Time-based Media, Adaptable, Distinguishable.
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• Success Criteria (SC) - WCAG 2.2 consists of 86 success criteria. Each guideline is supported
by one or more testable success criteria that target specific aspects of accessibility. These
criteria help developers assess whether their web applicationsmeet accessibility standards. For
example, developers can use success criterion “SC 1.1.1 Non-text Content” to ensure that visual
elements conveying important information are accessible to blind users. To assist developers
in prioritizing these criteria, WCAG categorizes them into three levels: Level A (Minimum),
Level AA, and Level AAA. The higher the level, the more stringent the requirements, and
the more likely it is that the website will be accessible to a broader range of users. Typically,
existing tools cover Level A and some Level AA criteria. Each success criterion includes the
following items:
– Description - The description outlines the motivation, purpose, and essential background
for each criterion.

– Sufficient and Advisory Techniques - Sufficient techniques are those that ensure confor-
mance to the criterion. Advisory techniques go beyond basic conformance and can further
enhance the accessibility of the website.

– Common Failures - This part identifies common scenarios where websites fail to meet the
criterion, listing the specific HTML elements involved and explaining why these scenarios
result in non-compliance.

– Test Rules - Test rules guide developers in verifying whether their websites comply with
the criterion. This includes necessary test steps, relevant elements to be considered, and
the expected versus unexpected test outcomes.

Since success criteria are positioned at the bottom of the WCAG hierarchy and are the only
components with testable rules and specific scenarios for verifying web accessibility, they become
the primary unit for issue detection. This focus on success criteria shapes the design of existing
accessibility tools, including GenA11y.

3.2 Classifying WCAG Criteria
In accordance to current practices for detecting accessibility issues, we used WCAG as the primary
reference for building GenA11y. We classified the WCAG 2.2’s success criteria based on how their
violations can be detected. First, we defined two fundamental categories for detecting accessibility
issues: static analysis, which only examines HTML, CSS, and JavaScript code, and dynamic analysis,
which requires interactive application testing. We then methodically mapped each WCAG success
criterion to static or dynamic categories. However, since certain accessibility issues cannot be tested,
as acknowledged byWCAG (e.g., “SC 3.1.5 Reading Level” [W3C 2023b]), we also categorized certain
accessibility issues as “Not Testable”. To validate our work, we then compared our categorization of
the subset of the success criteria that are also covered by prior tools with their documentation [IBM
2024; WebAIM 2024a] and found no inconsistencies. Additional details, along with screenshot
illustrations, are available on our companion website [He et al. 2024].
(1) Static Analysis. These criteria can be addressed through static analysis, such as examining

HTML, CSS, and JavaScript elements without requiring further interaction, like pointer input
or keyboard use. For example, “SC 2.4.2 Page Titled” can be evaluated by determining if a
page title is present and descriptive based on its alignment with portions of the web page text.
Similarly, “SC 1.4.5 Images of Text” can be assessed by analyzing the image itself to determine
whether visible text is present within it; if so, it would constitute a violation of this criterion.
A total of 37 criteria fall under this category.

(2) Dynamic Analysis. These criteria require dynamic analysis to generate accurate results.
While static analysis can be applied to some of these criteria, it is not as precise as dynamic
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analysis. For instance, “SC 2.4.3 Focus Order” can be partially addressed through static analysis
by examining the tabindex attribute to determine the focus order of each element and assess
whether it is appropriate. However, since the tabindex attribute can be dynamically modified
at runtime through JavaScript, the most reliable way to determine the focus order is by using
the keyboard to navigate the entire page and evaluate whether the focus order is correct.
Additionally, some criteria can only be addressed through dynamic analysis, such as “SC
2.1.2 No Keyboard Trap” and “SC 1.2.2 Captions”. A common cause of keyboard traps is the
continuous insertion of elements into a scrollable list [Salehnamadi et al. 2021], a behavior
that can only be detected at runtime. Similarly, the accuracy of captions in a video can only
be assessed during runtime. A total of 45 criteria fall under this category.

(3) Not Testable. The remaining criteria are not testable, either explicitly stated or implied in
their descriptions. For example, in “SC 3.1.5 Reading Level” [W3C 2023b], the WCAGWorking
Group specifically acknowledges that while using the clearest and simplest language is highly
desirable, they were unable to develop a method to test for its achievement. A total of four
criteria fall under this category.

Although in principle violations in both categories 1 and 2 can be detected by an LLM-based
approach, we scope our study to detection of only category 1, i.e., those that can be addressed
through static analysis. This allows us to fairly compare GenA11y with existing tools, as most
current tools rely on static analysis to detect violations. Furthermore, violations from category 2
require completely different dynamic analysis techniques, such as integrating web crawlers with the
ability to create various inputs like mouse or keyboard events. These areas are valuable directions
for exploration in future research.

The list of criteria addressed by GenA11y can be found in Table 1. For the rest of the criteria, it
can be found in our companion website [He et al. 2024].

4 Approach
Based on the study results from Section 3, we devised a tool calledGenA11y that detects violations of
37 success criteria from WCAG. Figure 2 provides an overview of GenA11y, which operates in two
main phases. In the first phase, a web scraper extracts relevant elements from the Document Object
Model (DOM) after receiving the URL of a website. These elements are then fed into individual
accessibility analyzers (LLMs), each corresponding to a specific WCAG success criterion, to identify
any violations. Each analyzer is equipped with prompts that direct its focus on a specific criterion.
After all analyzers have completed their tasks, an accessibility report is generated, detailing the
violated elements, issue descriptions, and recommendations for developers.

Fig. 2. The overview of GenA11y.
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Table 1. The list of WCAG success criteria addressed by GenA11y.

Principle Guideline Success Criterion

Perceivable

Text Alternatives 1.1.1 Non-text Content

Adaptable

1.3.1 Info and Relationships
1.3.2 Meaningful Sequence
1.3.3 Sensory Characteristics
1.3.4 Orientation
1.3.5 Identify Input Purpose

Distinguishable

1.4.1 Use of Color
1.4.2 Audio Control
1.4.3 Contrast (Minimum)
1.4.4 Resize Text
1.4.5 Images of Text
1.4.6 Contrast (Enhanced)
1.4.8 Visual Presentation
1.4.9 Images of Text (No Exception)
1.4.10 Reflow
1.4.11 Non-text Contrast
1.4.12 Text Spacing

Operable

Enough Time 2.2.1 Timing Adjustable
2.2.2 Pause, Stop, Hide

Navigable

2.4.1 Bypass Blocks
2.4.2 Page Titled
2.4.4 Link Purpose (In Context)
2.4.5 Multiple Ways
2.4.6 Headings and Labels
2.4.8 Location
2.4.9 Link Purpose (Link Only)
2.4.10 Section Headings

Input Modalities
2.5.3 Label in Name
2.5.5 Target Size (Enhanced)
2.5.8 Target Size (Minimum)

Understandable

Readable
3.1.1 Language of Page
3.1.2 Language of Parts
3.1.4 Abbreviations

Predictable 3.2.2 On Input
3.2.5 Change on Request

Input Assistance 3.3.2 Labels or Instructions
Robust Compatible 4.1.2 Name, Role, Value

4.1 Element Extraction
During our preliminary investigation with five university home pages, we identified several techni-
cal challenges when feeding the LLM directly with the HTML page source, where the details of our
preliminary study can be found in our companion website [He et al. 2024]. First, the page source
often contains millions of tokens, leading to significant overhead and requiring the creation of
multiple chunks to fit within the token limit of current LLMs. Second, critical attributes such as
background image URLs, font sizes, and colors may not be present in the HTML page source if they
are defined in external CSS files or through JavaScript, preventing the LLM from accurately assess-
ing related violations. Additionally, certain elements, like image URLs, must be directly provided
for the LLM to evaluate the descriptiveness of alt texts; without access to the actual image content,
this assessment is incomplete. Third, we observed frequent hallucinations—a known issue in LLMs
[Perković et al. 2024]—where the model reported many non-violated elements. These hallucinations
likely occurred because the LLM lacked access to the full context needed to accurately determine
violations, especially when critical visual and structural elements were missing from the input data.
Lastly, the LLM’s reported violations disproportionately focused on specific success criteria, such
as “SC 1.3.1 Info and Relationships” and “SC 4.1.2 Name, Role, Value”, possibly because these criteria
have numerous defined test rules and failure conditions that direct the LLM’s attention toward
them.

These technical challenges highlighted the need for a more efficient approach. Previous studies
have shown that breaking complex tasks into smaller, more manageable components can signifi-
cantly enhance LLM performance [Khot et al. 2022]. In our study, analyzing WCAG success criteria
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violations can similarly benefit from evaluating each success criterion individually. Since not all el-
ements on a web page are relevant to every criterion, extracting only the pertinent elements for the
LLM allows it to focus on the most critical aspects and reduce unnecessary overhead. Additionally,
the extraction component directly addresses the technical challenges we encountered, ensuring that
the LLM has access to the necessary context and data. These dual motivations—technical challenges
and the performance gains from task decomposition—form the basis for the development of our
Element Extraction component.

To identify the related elements for each success criterion, we reviewed the sufficient and advisory
techniques, common failures, and test rules discussed in Section 3. For example, the test rule “object
element rendering non-text content has non-empty accessible name” indicates that the <object> tag is
a related element that must be extracted. In cases where the description of elements to be extracted
is more abstract, such as in the technique “ARIA15: Using aria-describedby to provide descriptions of
images”, where images can be represented in various ways on a web page, we consulted additional
resources like the HTML Living Standard [WHATWG 2024], CSS specifications [W3C 2023a],
and HTML accessibility API mappings [W3C 2024]. Images might be represented through the
<img> tag, <picture> tag for providing multiple images that vary the image content, the CSS
background-image attribute, or any elements with an ARIA role of image or img. Consulting these
three resources helped us compile a comprehensive list of related elements, even when the WCAG
criterion descriptions were abstract.
Some criteria not only require attributes that are defined inline, such as the alt attribute, but

also those defined elsewhere. For example, to evaluate “SC 1.4.3 Contrast (Minimum)”, it is necessary
to obtain the foreground color, background color and font size, as large text and normal text have
different contrast ratio requirements. These attributes can be defined through inline styles, internal
CSS sheets, external CSS sheets, or JavaScript. Therefore, the method for extracting these elements
should not be constrained by how those attributes are defined. We utilized the DOM structure
along with the built-in Javascript API window.getComputedStyle() [MDN 2024] to retrieve these
attributes, regardless of their definition location.
Some other criteria also require visual evidence, such as screenshots. For instance, to assess

whether text becomes clipped or truncated after zooming to 200%, as required by “SC 1.4.4 Resize
Text”, full-page screenshots are needed both before and after zooming. Web scrapers offer built-in
APIs for capturing static screenshots, and with their scrolling capabilities, full-page captures can
be obtained. This visual evidence assists in the subsequent analysis.

Given the related elements of each success criterion, we utilize a web scraper to extract them after
receiving the website URL. The extraction process begins after the page has fully loaded, indicated
by events such as document.readyState and window.performance.timing.loadEventEnd. For
each criterion, the scraper extracts the related elements, inline attributes, attributes defined else-
where, and visual evidence screenshots. After the extraction process is completed for all criteria,
the related components are sent to the Accessibility Analyzer.

4.2 Accessibility Analyzer
Given that GenA11y focuses on 37 success criteria, there are 37 corresponding accessibility analyz-
ers, each designed to target a specific WCAG criterion. The overall prompting process for GenA11y
can be illustrated by focusing on the four main components of prompting in LLMs [Zhao et al.
2023]: Instruction, Contextual Information, Input, and Output. Another important component of
prompting in LLMs is demonstration. However, we chose not to utilize it in our approach because
each criterion can be violated in multiple ways, and checking WCAG violations on websites is
a specification-heavy task, where a previous study showed that demonstrations often fall short
[Peng et al. 2023]. Our preliminary study [He et al. 2024] on five university websites reaffirmed
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prior findings. We evaluated two demonstration-based prompting strategies: single failure example
per criterion and comprehensive failure sets. Results indicated that comprehensive examples im-
proved context but increased token usage, distracted from task goals, and reduced accuracy. Single
examples were more efficient but led to narrow analyses focused on similar failures.

4.2.1 Instruction. An instruction typically summarizes the task that an LLM should perform. We
utilized expert prompting [Zhao et al. 2023], assigning GenA11y the role of an accessibility expert
to draw out more specialized and in-depth knowledge. The prompt text for GenA11y is as follows:

You are an Accessibility Expert (WCAG Specialist) responsible for detecting WCAG 2.2 violations on
websites. Your expertise is crucial in making the web more accessible for everyone. Please analyze the
provided, related HTML, CSS, Javascript and additional visual cue elements for compliance with the
specified WCAG success criterion. Be confident in your expertise. Do not limit your findings to the
violations mentioned in common failures or test rules; explore beyond these areas for potential issues.
Do not omit any issue. After analyzing all elements, do not provide individual element-by-element
analysis first. Instead, summarize the overall result.

4.2.2 Contextual Information. Contextual information provides essential background for the LLM
to accurately frame the task and produce precise results. GenA11y is given four types of contextual
information:

• A short description of the received related elements, outlining the elements that need to be
assessed and how they are formatted.

• A brief explanation of the focused criterion, helping the LLM recall relevant information
from its memory.

• Common failures associated with the criterion, as discussed in Section 3.
• Test rules for identifying violations of the criterion, as discussed in Section 3.

Below is an example of contextual information for “SC 2.4.4 Link Purpose (In Context)”, where
this criterion requires providing descriptive names or context for all links. A link element is an
anchor <a> with an href attribute or any element with the ARIA-Role specified as “link.” Since
this criterion allows using context to understand a link’s purpose, we include ancestor and sibling
elements where present. In this case (not shown in the example below), we traverse the DOM
to identify meaningful contextual ancestors, following WCAG’s techniques such as enclosing
sentences (G53) [Initiative 2025], up to a depth of 5.

• Short description of the received, related elements:

You will be provided with link elements, along with their ancestors and siblings (if any), from a
webpage to assess for any violations of WCAG SC 2.4.4. Each link element will be presented on
a new line, starting with ‘————-’.

• Short description of the focused criterion:

Unlike SC 2.4.9 Link Purpose (Link Only), this criterion allows relying on contextual information
(ancestors and siblings) to determine if a link is descriptive. A link should clearly indicate its
purpose without requiring the user to click on it.

• Common Failures:

F63: Failure of Success Criterion 2.4.4 due to providing link context only in content that is not
related to the link...

• Test Rules:

1. The link must have a non-empty accessible name ...
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4.2.3 Input. Input provides LLMs with the essential data needed to complete a task. In our study,
the inputs consist of HTML tags, relevant CSS attributes, and corresponding JavaScript functions.
In certain cases, a screenshot of an element or a webpage is also required to accurately analyze
potential violations of success criteria.

Below is an example of the input provided for “SC 2.4.4 Link Purpose (In Context)” :

The information you need to assess starts after the dashed line below. Pay attention to all the elements
listed.
————–
Link Element 1:
<a href=“https://en.wikipedia.org/wiki/Polar_bear”>Read more</a>
————–
.....

4.2.4 Output. This component outlines how LLMs should structure their output. For GenA11y,
the output is specified in the following JSON format:

Your output should be structured as a JSON object with the following format:
{

"overall_violation": "Yes or No",
"violated_elements_and_reasons": [

{
"element": "outerHTML of the element",
"reason": "Explanation of why it violates the criterion",
"recommendation": "Recommendation to fix the

violation for this specific element"
}

]
}
If there are no violations, the response should be:
{

"overall_violation": "No",
"violated_elements_and_reasons": []

}

4.2.5 GPT. For this work, we selected GPT-4o as our LLM. We chose this model because it is
the latest release from OpenAI and has demonstrated superior performance in text evaluation
and vision understanding, outperforming existing models on established benchmarks [OpenAI
2024a]. Additionally, it supports an input token limit of up to 128K, which is essential for analyzing
numerous elements on a web page for accessibility evaluation. In the following section 5.7, we
demonstrate that analyzing a real website with GenA11y requires an average of 1.912 million
tokens. Given that there are 37 analyzers, this amounts to an average of 51,675 tokens per analyzer.
The use of GPT-4o is sufficient for this purpose. Another notable feature of GPT-4o is its ability to
produce structured output, allowing the model to generate results in the required format with 100%
accuracy [OpenAI 2024d]. We also set the temperature parameter to 0 to enhance its determinism.
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5 Evaluation
Our overarching objective is to understand how effective and efficient LLMs are in detecting
accessibility issues per WCAG guidelines. To that end, we investigate six research questions:

RQ1. Recall: What is the likelihood of GenA11y detecting accessibility issues that are latent in
a web page?

RQ2. Coverage: How many of the accessibility violation types derived from WCAG can be
detected by GenA11y?

RQ3. Precision: What is the likelihood of a detected issue being a real issue?
RQ4. Variability: How consistent are GenA11y’s detection results across multiple runs?
RQ5. Ablation Study: How does each component of GenA11y contribute to its effectiveness?
RQ6. Performance and Cost: What is the average time and cost required to run GenA11y on

real websites?

5.1 Experiment Setup
We used two existing datasets to evaluate GenA11y. The first dataset is called Accessibility Tool
Audit (𝐷𝑎) [Duran 2017], where an accessibility team affiliated with the UK government manually
constructed 142 web pages with associated accessibility issues. The second dataset is collected from
Ma11y (𝐷𝑚) [Tafreshipour et al. 2024], where accessibility issues were programmatically injected
into real web pages.
Since the scope of our study are the 37 WCAG success criteria that can be detected statically,

we mapped each test case in the two datasets to the corresponding success criterion, aiming to
thoroughly evaluate the tool’s ability to detect violations across all criteria. Collectively, the two
datasets covered 29 out of the 37 criteria. During this process, we found that some subject websites
in 𝐷𝑎 did not align with any WCAG criteria, and some were outdated—such as those related
to “SC 4.1.1 Parsing”, which was removed in WCAG 2.2. Consequently, 21 subject websites were
eliminated, leaving 121 valid ones. Since eight criteria lacked web pages with the corresponding
issues for GenA11y to evaluate, we followed the original methodology from 𝐷𝑎 , using the sufficient
techniques, failures, and test rules specified in WCAG to construct new subject websites. These
constructed subject websites were then added to 𝐷𝑎 , resulting in a total of 144.
Since both 𝐷𝑎 and 𝐷𝑚 contain manually constructed or injected accessibility issues, these are

ideal for calculating the recall of GenA11y, and were used for answering RQ1 and RQ5. However,
we did not rely on these datasets to measure GenA11y’s precision. Additional issues, not specified
by the datasets but detected by our tool, does not necessarily indicate false positives. These could
be accessibility issues unintentionally introduced by the creators of 𝐷𝑎 or existing issues in the
original state of 𝐷𝑚 , before any issues were injected.
To calculate precision (RQ3), we constructed a third dataset (𝐷𝑟 ) with real webpages. We used

the 30 websites from a prior study [Tafreshipour 2023; Tafreshipour et al. 2024], all in their original
state, before any accessibility issues were injected. These 30 websites are the most popular websites
in the world according to Semrush [Semrush 2024] and come from 28 different categories (e.g.,
banking, e-commerce, fashion). We also used 𝐷𝑟 to gather performance and cost data in RQ6.

To compareGenA11ywith existing tools in terms of precision and recall, we selected five out of six
accessibility checkers, identified as the most popular tools according to a prior study [Tafreshipour
et al. 2024]: IBM [IBM 2024], QualWeb [QualWeb 2024], Axe-Core [Systems 2024], A11yWatch
[A11yWatch 2024], and WAVE [WebAIM 2024a]. We could not include Access Continuum [Access
2024] as we were unable to obtain the required API key from the support team.
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For this experiment, we used Python Selenium [Muthukadan 2024] as the web scraper to extract
related elements. To improve efficiency, we implemented multi-processing to run multiple accessi-
bility checkers concurrently and assess different success criteria. Multi-threading was also used to
prevent idle time while awaiting OpenAI API responses.
All experiments were run on an Asus ROG with an AMD Ryzen 7 processor and 32 GB of

memory.

5.2 RQ1 - Recall

Table 2. Recall of GenA11y and existing tools.

WCAG Criteria Total Issues Detected

𝐷𝑎 𝐷𝑚 GenA11y IBM QualWeb Axe-Core A11yWatch WAVE

𝐷𝑎 𝐷𝑚 𝐷𝑎 𝐷𝑚 𝐷𝑎 𝐷𝑚 𝐷𝑎 𝐷𝑚 𝐷𝑎 𝐷𝑚 𝐷𝑎 𝐷𝑚

SC 1.1.1 Non-text Content 14 62 14 62 5 34 5 13 4 16 4 11 3 16
SC 1.2.1 Audio-only and Video-only 2 - 0 - 0 - 0 - 0 - 0 - 0 -
SC 1.3.1 Info and Relationships 31 52 31 47 15 24 8 0 5 0 10 0 1 10
SC 1.3.2 Meaningful Sequence 1 29 1 29 0 15 0 0 0 0 0 0 0 0
SC 1.3.3 Sensory Characteristics 2 - 2 - 0 - 0 - 0 - 0 - 0 -
SC 1.3.4 Orientation 2 - 2 - 1 - 1 - 0 - 0 - 0 -
SC 1.3.5 Identify Input Purpose 2 - 2 - 2 - 2 - 0 - 0 - 0 -
SC 1.4.1 Use of Color 2 17 2 17 0 0 0 0 0 2 0 0 0 0
SC 1.4.2 Audio Control 2 - 2 - 0 - 2 - 0 - 0 - 0 -
SC 1.4.3 Contrast (Minimum) 3 23 3 23 3 11 3 11 3 0 1 0 3 16
SC 1.4.4 Resize Text 2 27 2 27 0 0 0 5 0 0 0 0 0 0
SC 1.4.5 Images of Text 5 - 5 - 0 - 0 - 0 - 0 - 0 -
SC 1.4.6 Contrast (Enhanced) 2 23 2 23 2 11 2 11 2 0 0 0 2 16
SC 1.4.8 Visual Presentation 2 - 2 - 0 - 0 - 0 - 0 - 0 -
SC 1.4.9 Images of Text (No Exception) 5 - 5 - 0 - 0 - 0 - 0 - 0 -
SC 1.4.10 Reflow 1 - 1 - 0 - 0 - 0 - 0 - 0 -
SC 1.4.11 Non-text Contrast - 25 - 24 - 20 - 0 - 0 - 0 - 0
SC 1.4.12 Text Spacing 2 - 2 - 0 - 0 - 0 - 0 - 0 -
SC 2.1.1 Keyboard 8 5 0 0 0 0 0 0 0 0 0 2 0 0
SC 2.1.2 No Keyboard Trap 1 - 0 - 0 - 0 - 0 - 0 - 0 -
SC 2.2.1 Timing Adjustable 2 - 2 - 2 - 2 - 0 - 0 - 2 -
SC 2.2.2 Pause, Stop, Hide 2 30 2 30 2 0 1 0 2 0 1 0 2 0
SC 2.2.3 No Timing 1 - 1 - 0 - 0 - 0 - 0 - 0 -
SC 2.4.1 Bypass Blocks 1 - 1 - 0 - 0 - 0 - 0 - 0 -
SC 2.4.2 Page Titled 3 29 3 29 2 0 2 0 2 0 2 0 2 0
SC 2.4.3 Focus Order 4 20 0 0 0 0 0 0 0 0 0 0 0 0
SC 2.4.4 Link Purpose (In Context) 2 13 2 13 0 11 1 10 1 12 1 9 1 0
SC 2.4.5 Multiple Ways 2 - 2 - 0 - 0 - 0 - 0 - 0 -
SC 2.4.6 Headings and Labels 1 - 1 - 1 - 0 - 0 - 1 - 1 -
SC 2.4.7 Focus Visible 2 24 0 0 0 11 0 8 0 0 0 0 0 0
SC 2.4.8 Location 2 - 2 - 0 - 0 - 0 - 0 - 0 -
SC 2.4.9 Link Purpose (Link Only) 4 13 4 13 0 11 0 10 0 12 0 9 0 0
SC 2.4.10 Section Headings 2 - 2 - 0 - 0 - 0 - 0 - 0 -
SC 2.5.3 Label in Name - 6 - 5 - 2 - 1 - 0 - 1 - 0
SC 2.5.5 Target Size (Enhanced) 1 - 1 - 0 - 0 - 0 - 0 - 0 -
SC 2.5.8 Target Size (Minimum) 1 - 1 - 0 - 0 - 0 - 0 - 0 -
SC 3.1.1 Language of Page 4 - 4 - 3 - 3 - 3 - 2 - 3 -
SC 3.1.2 Language of Parts 5 - 5 - 1 - 1 - 1 - 0 - 1 -
SC 3.1.4 Abbreviations 1 - 1 - 0 - 1 - 0 - 0 - 0 -
SC 3.2.2 On Input 1 10 1 10 0 4 0 0 0 0 0 0 0 0
SC 3.2.5 Change on Request 1 35 1 35 1 19 0 20 0 0 0 0 0 23
SC 3.3.2 Labels or Instructions 1 - 1 - 1 - 0 - 1 - 1 - 1 -
SC 4.1.2 Name, Role, Value 12 2 12 2 9 2 7 2 7 2 6 2 7 1
Total 144 445 127 389 50 175 41 91 31 44 29 34 29 82

Recall 87.61% 38.20% 22.41% 12.74% 10.70% 18.85%

This research question seeks to answer how many of the injected accessibility issues can be
detected by GenA11y and other existing tools. An issue is considered successfully reported by
GenA11y if in the LLM output discussed in Section 4.2.4 the overall_violation is marked as Yes
and the violated elements and their reasons match the known accessibility issues in the dataset.
Table 2 presents the results across two datasets, with the highest value for each criterion in each
dataset highlighted in bold and shaded.
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GenA11y detected 516 out of 589 accessibility issues, achieving an impressive 87.61% recall,
and more than twice the number of issues detected by the next best solution. Among the five
existing tools, IBM detected the highest number of errors, accounting for 38.20% of the total with
225 violations, followed by QualWeb and WAVE. Axe-Core and A11yWatch detected the fewest.

Most of the issues detected by existing tools are based on the analysis of the HTML syntax. This
accounts for all the issues reported in𝐷𝑎 and 80% of those in𝐷𝑚 . Issues that require only syntactical
understanding align perfectly with how existing tools are designed, as they are rule-based and
each criterion is checked against a set of predefined rules. For example, a common failure under
“SC 1.3.1 Info and Relationships” is that the DT or DD elements, which represent definition term and
definition description, are not placed within a DL (description list) element - a failure that can be
easily verified by these tools. Similarly, violations of “SC 4.1.2 Name, Role, Value” can be detected by
checking if an ARIA role name is valid, as ARIA roles consist of a fixed set of values. If the defined
value on the webpage does not match one of these predefined ARIA role values, it is a violation.

GenA11y identified 127 out of 144 issues in 𝐷𝑎 , and 389 out of 445 issues in 𝐷𝑚 . Since the tool
does not support issues that require dynamic analysis, it missed 17 and 49 issues from 𝐷𝑎 and 𝐷𝑚 ,
respectively. Additionally, GenA11y missed seven issues from 𝐷𝑚 as part of a recurring pattern of
false negatives. A common violation of “SC 1.3.1 Info and Relationships” involves using styling to
make text appear as headings rather than using actual heading elements. GenA11y is prompted to
analyze screenshots, identify potential headings, and compare them to the actual headings on the
page. Any mismatch constitutes a violation. However, when styling is used to mimic lower-level
headings, such as H5 or H6, which can look similar to bolded normal text, GenA11y struggles to
recognize them as headings and thus misses these violations. This accounted for five instances of
false negatives.

GenA11y detects significantly more issues than existing accessibility checkers. It does so due to
LLM’s ability to reason about violations both semantically and syntactically. For instance, detecting
a violation of “SC 1.4.5 Images of Text” requires a semantic understanding of images to determine
if they convey information through visible text. If they do, it is considered a violation. Similarly,
assessing whether a link is descriptive under “SC 2.4.4 Link Purpose (In Context)” involves first
checking if there is text within the <a> tag (a syntactic check), and then determining whether the
text accurately conveys the link’s purpose or is misleading (a semantic check). The LLM’s ability to
comprehend both textual and visual content enables GenA11y to detect accessibility violations
that other tools might miss.
Existing tools can detect two criteria, “SC 2.1.1 Keyboard” and “SC 2.4.7 Focus Visible”, that

GenA11y cannot identify. While these criteria can be partially detected statically, dynamic analysis
is necessary for accurate results. For example, as shown in Table 2, under "SC 2.4.7", QualWeb
detected eight violations out of 24. “SC 2.4.7” mandates that each item receiving focus must have a
visible indicator. These partial detections are enabled by the CSS attribute focus-visible, which
applies styles when an element is focused, along with outline-color, which defines the outline
color. However, other attributes like border-color and box-shadow also influence the appearance
of focus indicators. When multiple attributes are defined, the one that takes effect depends on
runtime conditions, user interactions, and browser rendering. Additionally, these attributes can
be dynamically modified through JavaScript, and the focus indicator can be removed entirely via
JavaScript. Therefore, the most reliable way to detect these violations is by manually navigating
through each focusable element using the keyboard and checking whether a visible focus indicator
appears when the element is focused.
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Table 3. Magnitude of detected issues by GenA11y and existing tools on 30 real websites

Website Detected Violation Types By Existing Tools Additional Violation Types

Total By GenA11y

Adp 11 11 7
Agoda 6 6 9
Caliente 6 6 11
Capital One 7 7 4
Craigslist 8 8 11
Cricbuzz 9 7 6
Discord.com 4 4 9
Doordash.com 4 3 7
Doubleclick 6 5 7
Ebay.com 9 8 6
Fragrantica 7 7 7
Genius 9 8 11
Google 4 3 9
Live.com 5 4 9
Makemytrip 5 5 10
NIH 7 5 7
OpenAI 6 4 9
Progressive 5 5 7
Qualtrics 4 4 7
Samsung 8 6 6
ScienceDirect 4 4 6
Shein 11 9 7
Stackoverflow 10 10 9
Steam 10 9 11
USPS 9 8 7
Walmart 6 6 5
Yahoo 10 10 7
Youtube 9 9 9
Zerodha 10 10 9
Zoro 7 7 8
Total 216 198 237

5.3 RQ2 - Coverage
We ran GenA11y alongside five existing tools on 𝐷𝑟 dataset to determine if GenA11y could achieve
similar coverage in detecting violation types as existing tools and identify any additional violation
types it could detect. A violation type refers to a success criterion with a violation. To identify
these, we first performed a union of all success criteria where violations were detected by existing
tools. We then conducted a validation process to include only valid violation types. A success
criterion was deemed valid if at least one reported issue was accurate; otherwise, it was excluded
from the union set. During this validation process, we observed a common pattern in the invalid
violations detected by existing tools. Specifically, when tools attempted to detect violations that are
most effectively detected through a dynamic analysis—such as “SC 2.1.1 Keyboard”, where the tool
reported that certain features could only be accessed via pointer input (like a mouse) instead of a
keyboard, or “SC 2.4.7 Focus Visible”, where the focus indicator was flagged as not visible—runtime
evaluation by us showed these violations were invalid, highlighting the need for dynamic analysis.
We applied the same validation process to GenA11y to determine how many violation types it

could detect. Table 3 demonstrates the coverage of all six tools across 30 websites.
GenA11y successfully detected 198 out of 216 violation types reported by existing tools, achieving

a similarity ratio of 91.67%. In addition, GenA11y was able to detect 237 additional violation types
beyond those found by the combination of all existing tools, averaging eight new violation types
per website. Detection of these additional violation types required either semantic understanding
or a combination of syntactic and semantic analysis, as previously illustrated in section 5.2.
We identified a few areas where GenA11y was less effective compared to the existing tools,

particularly in detecting violations related to “SC 1.3.1 Info and Relationships” and “SC 1.4.3 Color
Contrast”. These accounted for 15 missed cases by GenA11y. For instance, one missed violation
involved the for attribute in a <label> element not pointing to a valid id in an <input> element.
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Existing tools can easily scan the page and verify whether the assigned id exists, whereas GenA11y
struggled to detect this issue. Additionally, in cases of insufficient color contrast, existing tools use
a predefined formula to flag violations. However, GenA11y tended to overlook these violations
when a large number of elements were involved and only a few elements had insufficient contrast.

5.4 RQ3 - Precision

Table 4. Precision of GenA11y on 12 websites.

Published Before Published After

Criterion Total Correct Precision Total Correct Precision

1.1.1 Non-text Content 73 63 86.30% 72 67 93.1%
1.3.1 Info and Relationships 58 52 89.66% 81 75 92.6%
1.3.5 Identify Input Purpose - - - 6 4 66.7%
1.4.1 Use of Color 406 389 95.81% 121 114 94.2%
1.4.3 Contrast (Minimum) 260 242 93.08% 213 201 94.4%
1.4.4 Resize Text 5 5 100% 11 9 81.8%
1.4.5 Images of Text - - - 15 11 73.3%
1.4.6 Contrast (Enhanced) 369 347 94.04% 293 277 94.5%
1.4.8 Visual Presentation 14 7 50.00% 3 2 66.7%
1.4.9 Images of Text (No Exception) - - - 15 11 73.3%
1.4.10 Reflow 5 5 100% 7 5 71.4%
1.4.11 Non-text Contrast - - - 40 34 85.0%
1.4.12 Text Spacing 57 57 100% 9 9 100.0%
2.2.2 Pause, Stop, Hide 3 3 100% 8 7 87.5%
2.4.1 Bypass Blocks 89 89 100% 50 47 94.0%
2.4.2 Page Titled 3 0 0% 2 1 50.0%
2.4.4 Link Purpose (In Context) 12 11 91.67% 15 13 86.7%
2.4.5 Multiple Ways - - - 7 7 100.0%
2.4.6 Headings and Labels 14 8 57.14% 20 14 70.0%
2.4.8 Location 5 5 100% 4 4 100.0%
2.4.9 Link Purpose (Link Only) 20 19 95.00% 33 33 100.0%
2.4.10 Section Headings 9 8 88.89% 4 3 75.0%
2.5.3 Label in Name 79 76 96.20% 79 78 98.7%
2.5.5 Target Size 489 489 100% 137 137 100.0%
2.5.8 Target Size (Minimum) 1 1 100% 12 12 100.0%
3.1.1 Language of Page 1 1 100% 1 1 100.0%
3.1.4 Abbreviations 4 4 100% 4 4 100.0%
3.2.5 Change on Request 1 0 0% - - -
3.3.2 Labels or Instructions 12 12 100% 18 17 94.4%
4.1.2 Name, Role, Value 18 18 100% 15 14 93.3%
Overall 2007 1911 95.2% 1295 1211 93.5%

Table 5. The overall precision of the tools on 12 websites.

Tool Total Correct Precision

Axe-Core 33 33 100%
WAVE 603 592 98.2%
IBM 807 787 97.5%
A11yWatch 311 298 95.8%
GenA11y 3302 3122 94.5%
Qualweb 68 49 72.1%

Due to the large volume of accessibility issues detected by GenA11y and other tools, manually
validating every reported issue was infeasible. Therefore, we focused on a subset of websites for
precision analysis. We began by sorting the 30 subject websites in 𝐷𝑟 based on two factors: the
number of violated success criteria and the total number of violations. Both factors were max-
normalized, each contributing 50% to the overall score for each website. From this ranking, we
randomly selected two websites from each tercile: Steam and Ebay from the top 10, Craigslist and
Qualtrics from the middle 10, and OpenAI and Google from the bottom 10. These six websites,
referred to as Published Before, are well-known and have likely been included in the training data
of existing LLMs. Therefore, we additionally selected six websites published after the release date
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of our model, gpt-4o-2024-08-06 [OpenAI 2024b]. Three of these were sourced from Web Designer
Depot [Depot 2024a,b], and three from the newly registered domain name community list [Shreshta
2025]. We verified their publication dates using the WayBack Machine [Archive 2025], confirming
that the earliest archived date for each was after the model’s release. These six websites, referred
to as Published After, are listed on our companion website [He et al. 2024]. For these 12 websites,
two authors independently reviewed each detected violation. An issue was considered successfully
reported by GenA11y if, in the LLM output discussed in Section 4.2.4, the overall_violation
field was marked as Yes, the violated elements and their reasons matched the corresponding WCAG
success criterion, and the elements were visible on the screen. Any disagreements between the
authors were resolved through discussion.
The precision of GenA11y on these twelve websites is shown in Table 4. GenA11y reported a

total of 3,302 accessibility violations, of which 3,122 were found to be valid, resulting in a precision
of 94.5%. We observed no significant difference in precision between websites published before
and after the model’s release date. GenA11y detected one violation of a criterion that was only
found in the Published Before dataset and five violations of criteria that were only found in the
Published After dataset. There were six success criteria that had no false positives across either
datasets, such as “2.5.5 & 2.5.8 Target Size”, “2.4.8 Location”, “3.1.4 Abbreviation”. We also identified
recurring patterns of false positives in GenA11y’s reports, particularly in criteria “1.1.1 Non-text
Content”, “1.4.1 Use of Color”, “1.4.3 & 1.4.6 Contrast”, “1.4.8 Visual Presentation”, “2.4.2 Page Titled”,
and “2.4.6 Headings and Labels”. For instance, a common issue with GenA11y is its tendency to be
overly strict when assessing the appropriateness of page titles, alt texts, or headings. On OpenAI,
GenA11y considered the page title “OpenAI” insufficiently descriptive and suggested changing it
to something like “Learn About OpenAI: Research, Products, and Opportunities.”

Another pattern of false positives occurs with “1.4.1 Use of Color”. A common failure is marking
links when they are only visually distinguishable by color, such as using blue without underlining
or other indicators. In this case, GenA11y emphasizes text-based methods like underlining, bolding,
or italicizing, while overlooking shape-based cues. On Ebay, for example, links lack underlining
but use visual markers like borders or arrows alongside the anchor element (<a>), yet GenA11y
flagged them as violations for not using text-based indicators. This may be because WCAG provides
numerous examples of how to use text-based techniques to meet this criterion, leading GPT models
to prioritize these methods after training. Refined prompts may help reduce these false positives.
Regarding existing tools, as shown in Table 5, Axe-Core is the most precise checker, achieving

a perfect precision of 100%, though it detected the fewest issues. Wave follows, identifying 592
correct issues out of 603, with a precision of 98.2%. IBM and A11yWatch also perform well, while
Qualweb has the lowest precision at 72.1%, detecting the second fewest accessibility violations.

5.5 RQ4- Variability
As discussed in Section 4.2.5, we set the temperature parameter of GenA11y to 0 to increase its
determinism. However, prior research has shown that even with the temperature parameter set
to 0, determinism is not always guaranteed [Ouyang et al. 2023]. To evaluate the consistency of
GenA11y’s detection results — the recall and precision values obtained in RQ1 and RQ3, we ran
GenA11y five times, following the same approach as in the literature [Huq et al. 2024].

5.5.1 How variable is recall across multiple runs? We ran GenA11y on the Accessibility Tool Audit
(𝐷𝑎) and Ma11y (𝐷𝑚) datasets five times. Table 6 summarizes the number of issues detected in each
run for both datasets.

The second and fifth runs detected the same number of issues as when GenA11y was run once
in Section 5.2 for RQ1. In these runs, the tool missed 17 issues from 𝐷𝑎 and 49 issues from 𝐷𝑚
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due to its current inability to support issues requiring dynamic analysis. Additionally, GenA11y
consistently missed seven issues from 𝐷𝑚 , including a recurring pattern of false negatives related
to violations of “SC 1.3.1 Info and Relationships”. Specifically, these violations involved using styling
to make text appear as headings instead of using proper heading elements.
In the first and fourth runs, GenA11y detected the same number of issues in 𝐷𝑎 but missed

two additional issues in the first run and one additional issue in the fourth run for 𝐷𝑚 . These
missed issues were also related to “SC 1.3.1 Info and Relationships”, consistent with the recurring
pattern described earlier. In the third run, GenA11y missed one issue in 𝐷𝑎 , which was related
to determining whether an element had sufficient color contrast. Overall, the results in Table 6
demonstrate that GenA11y exhibits uniformity in recall across multiple runs.

Table 6. Variability of GenA11y on Recall.

Run 𝐷𝑎 𝐷𝑚

Detected Missing Detected Missing

1 131 17 387 51
2 131 17 389 49
3 130 18 389 49
4 131 17 388 50
5 131 17 389 49

5.5.2 How variable is precision across multiple runs? We ran GenA11y on the Published After

dataset five times to evaluate its precision variability. Similar to the process in Section 5.4, two
authors independently verified each detected violation, and any disagreements were resolved
through discussion. Table 7 summarizes the precision results across each run.
The precision difference between runs was minimal, ranging from 92.9% in the second run to

93.7% in the third run. This demonstrates that GenA11y exhibits uniformity in precision.
We also identified common issues across all five runs by comparing the outerHTML of the violated

elements generated byGenA11y. The outerHTML, which includes attributes and textual descriptions,
served as a way to determine whether a reported issue was the same across runs. A common issue
in this context refers to a violation detected in all five runs. As shown in Table 7, the majority of
issues were consistently detected across all runs, while a small fraction were either unique to a
single run or appeared in some but not all runs. This demonstrates that GenA11y is stable in terms
of the number of issues detected per run.

Table 7. Variability of GenA11y on Precision.

Run Common Total Correct Precision

1 1142 1295 1211 93.5%
2 1142 1249 1160 92.9%
3 1142 1241 1163 93.7%
4 1142 1277 1191 93.3%
5 1142 1268 1187 93.6%

5.6 RQ5- Ablation Experiment
We conducted an ablation experiment on 𝐷𝑎 dataset with four alternative models with the objective
of evaluating the contributions of our design choices in the development of GenA11y:

• Base Model utilizes the latest version of GPT-4o and is given the HTML of a website to detect
accessibility violations.

• Extraction-Only Model adds the extraction component introduced in Section 4. The ex-
tracted elements are then fed to the GPT-4o model with only basic prompting that instructs
it to detect accessibility violations for these elements.
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• Prompting-Only Model adds detailed prompting as discussed in Section 4, but the input is
merely the HTML of a website.

• GenA11y. This model combines both element extraction and detailed prompting.
The results of the ablation experiment are presented in Table 8. The base model detected 57

issues. By incorporating either the extraction or prompting methodology, the model identified
23 additional issues compared to the base model alone. For instance, consider the missing title
attribute in an Iframe element. When our extraction methodology is added, it enables the LLM to
narrow its focus specifically on the Iframe. Alternatively, when the prompting methodology is
introduced, it provides contextual information that includes checking whether the Iframe element
has a title attribute. This approach also guides the LLM to pay particular attention to the Iframe.

The extraction methodology provides the LLM with the necessary information that is otherwise
unavailable in the HTML. For example, one subject website has text with a contrast ratio of less than
4.5:1, which violates “SC 1.4.3 Contrast (Minimum)”. We need the extraction component to retrieve
the background and foreground colors so the LLM can calculate the contrast ratio. Additionally, we
also need the font size because small and large text have different contrast ratio requirements. The
addition of the extraction component identifies 13 more unique issues compared to the base model.
The prompting methodology guides the LLM in assessing the page for violations. For instance,

“SC 2.4.5 Multiple Ways” requires that a website to provide at least two ways to access the same
content. The prompt sets this threshold and clarifies what counts as different options. Our prompting
methodology enables the model to identify 24 additional unique issues than the base model.
In some cases, detecting violations requires both the extraction and prompting methodologies,

accounting for 10 issues that cannot be detected by either the extraction or prompting model alone.
For instance, to assess whether an image’s alt text is appropriate, the image URL must first be
extracted and then formatted according to the LLM’s requirements to ensure that it can properly
access and evaluate the image. Additionally, accessibility guidelines need to be provided as part of
the prompt to help LLM determine what constitutes an inappropriate alt text for an image.

Table 8. Ablation experiment results: recall achieved by different models.

Model Accessibility Issues Detected

Base model 57
Extraction model 93
Prompting model 104

GenA11y (Extraction + Prompting) 127

5.7 RQ6 - Performance and Cost
The performance of GenA11y was evaluated by running it on 30 real websites. The average
time GenA11y took to evaluate a website was 240 seconds. GenA11y operates in two phases.
The first phase, described in Section 4.1, involves extracting related elements. This phase is not
significantly affected by the website size, ranging from a minimum of 25 seconds on Google.com to
a maximum of 65 seconds on Shein.com. The second phase, discussed in Section 4.2, analyzes these
elements for accessibility violations. This phase is more sensitive to website size, taking as little as
67 seconds to evaluate Google.com and up to 402 seconds for Shein.com, where a larger number
of elements increases the analysis time. Even on content-heavy websites like Shein.com, which
contain numerous text and image elements, GenA11y’s performance remains reasonable. Given the
parallel-processing choices made in the implementation of GenA11y, we expect its performance to
improve if it were to be deployed on a server with many processors.
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The average cost of running GenA11y is 4.78 USD per website, with around 1.912 million tokens
consumed. This cost is directly linked to the size of the website, as larger sites contain more elements
and therefore use more tokens.

6 Related Work
The Web Content Accessibility Guidelines (WCAG) have inspired the development of most existing
accessibility checkers [A11yWatch 2024; Agency 2021; Benavidez 2015; Broccia et al. 2020; Gay and
Li 2010; IBM 2024; QualWeb 2024; Systems 2024; WebAIM 2024a]. However, due to their rule-based
nature and reliance on static analysis, these tools primarily understand the syntax of web pages
and cover only a limited portion of WCAG success criteria. As a result, they often fail to adequately
detect accessibility violations on the web.

Several studies have explored detecting accessibility violations through dynamic analysis during
interactions with web pages [Durgam et al. 2023; Takagi et al. 2003], and inferring and assigning
correct accessibility attributes, like valid ARIA labels to visual elements that were previously
missing them [Bajammal and Mesbah 2021; Duarte et al. 2018]. Additionally, dynamic changes,
such as pop-up windows introduced by JavaScript during runtime, can create accessibility issues for
individuals with disabilities. As a result, some studies have focused on detecting these inaccessible
dynamic changes [Fernandes et al. 2012a,b; Sensiate et al. 2020; Watanabe et al. 2017].

Researchers have discovered that certain accessibility violations can only be detected when using
assistive technologies, which might otherwise be overlooked. This has led to the incorporation of
assistive technology like screen readers during the evaluation to identify issues such as keyboard
navigation problems [Chiou et al. 2023a,b, 2021]. A common characteristic of studies employing
dynamic analysis techniques is that they typically focus on one or two specific WCAG criteria,
making them less comprehensive than static analyzers.
The rise of generative AI in recent years presents new opportunities for web accessibility

evaluation. To date, most efforts have centered around automatically fixing issues detected by
existing tools [Huang et al. 2024; Othman et al. 2023]. Given that current checkers predominantly
identify syntactic errors, an important next step is to develop more advanced tools capable of
both syntactic and semantic understanding of web pages. A recent study explored the use of
generative AI for detecting accessibility violations but only addressed 3 WCAG criteria and was not
fully automated [López-Gil and Pereira 2024]. Additionally, the study focused exclusively on the
aspects of these three criteria that require semantic understanding, while overlooking the ability of
generative AI to detect syntactic errors. Moreover, the HTML was provided directly to the model. In
contrast, GenA11y is fully automated, covers 37 success criteria, extracts information not available
in the HTML source, and was evaluated across three datasets, including 36 real websites.

Accessibility has also been studied outside the domain of web. For instance, several prior works
have proposed rule-based mobile accessibility analysis tools that leverage guidelines from Apple
and Google [Android 2023, 2024a,b; Chen et al. 2021; da Silva et al. 2022; Eler et al. 2018; Hao
et al. 2014; KIF 2023; Li et al. 2023]. Several accessibility issues have been determined to be only
detectable through interactions that involve assistive technologies, and led to studies incorporating
such technology in the analysis process [Alotaibi et al. 2022; Alshayban and Malek 2022; Mehralian
et al. 2022; Salehnamadi et al. 2021, 2023, 2022; Taeb et al. 2023]. To date, no study has combined
platform guidelines with generative AI for broader accessibility detection.

7 Threats to Validity
External Validity. GenA11y leverages GPT-4o in its implementation. However, we believe our
approach is generalizable to other commercial LLMs, such as Google Gemini [Google 2025], which
also process text and images, and can understand web pages.
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To evaluate GenA11y’s precision and performance, we conducted an assessment using websites
from 28 distinct categories. We selected these sites based on their popularity rankings within their
respective categories according to Semrush [Semrush 2024]. By including websites of varying sizes
and complexities, we have strived to strengthen the generalizability of our results.
To address potential bias from LLMs being trained on websites in our evaluation dataset, we

tested GenA11y on 6 additional websites published after the LLM’s release date. As a result, we
found no significant differences in precision when running GenA11y on the two datasets.
To ensure reliable precision analysis across the six tools, two authors independently reviewed

each detected violation. The review of 5,124 issues yielded 122 disagreements, with a kappa value
of 0.745, indicating substantial inter-rater agreement. Evaluating GenA11y’s precision variability
over 1,643 issues from five runs revealed 57 disagreements, with a kappa of 0.721.
To provide a comprehensive comparison, we evaluated the precision and recall of GenA11y

against existing tools. For fairness, we selected five popular accessibility checkers from a previous
study [Tafreshipour et al. 2024], including WAVE, one of the most widely used tools in industry.
To address concerns about the non-deterministic nature of LLMs, we conducted five separate

runs of GenA11y for both recall and precision measurements. The analysis showed no significant
differences across runs, demonstrating that the evaluation results from Section 5.2 (Recall) and
Section 5.4 (Precision), obtained from a single run, align closely with the results from multiple runs.
Internal Validity.GenA11y integrates several libraries, including Selenium andOpenAI API, which
introduces potential risks of defects. Additionally, there may be defects in our tool’s implementation.
To mitigate these risks, we used up-to-date third-party tools, conducted thorough GitHub code
reviews, and tested the tool on websites outside the final evaluation.

8 Conclusion
Existing accessibility tools detect only a limited number of accessibility violations due to their
lack of semantic understanding of web content. However, with the advent of generative AI, new
possibilities have emerged, as these models excel at comprehending both textual and visual elements.
In this work, we introduced GenA11y, an automated accessibility checker that leverages generative
AI. GenA11y first extracts relevant elements from the web page, which are then processed by
LLM-based accessibility analyzers. These analyzers are provided with customized prompted to
identify potential accessibility violations. Our evaluation of GenA11y on two existing datasets and
popular websites demonstrated its efficiency and effectiveness. GenA11y detected 291 more issues
in two existing datasets, achieving a recall of 87.61%, which is 49.41% higher than the best existing
tool. Additionally, when applied on real-world websites, on average GenA11y identified eight more
violations types per page than all the existing tools combined, with a precision of 94.5%.

Future directions for this work include employing generative AI to detect accessibility violations
that require dynamic analysis. Additionally, during our experiments, we observed that GenA11y
not only detects violations but also provides clear descriptions and actionable suggestions. This is
especially beneficial for software developers who may not be familiar with accessibility guidelines.
An interesting direction for future research is to conduct a developer study to evaluate GenA11y’s
effectiveness in helping developers understand and resolve accessibility violations, as well as to
compare developers’ preferences for GenA11y’s results with those of existing tools.
Our research artifacts are publicly available [He et al. 2024].
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