#A11yDev: Understanding Contemporary Software Accessibility
Practices from Twitter Conversations

Syed Fatiul Huq
fsyedhuq@uci.edu
University of California, Irvine
Irvine, California, USA

Ziyao He
ziyah5@uci.edu
University of California, Irvine
Irvine, California, USA

ABSTRACT

It is crucial to make software, with its ever-growing influence on
everyday lives, accessible to all, including people with disabili-
ties. Despite promoting software accessibility through government
regulations, development guidelines, tools and frameworks, inves-
tigations reveal a marketplace of inaccessible web and mobile ap-
plications. To better understand the limitations of contemporary
software industry in adopting accessibility practices, it is neces-
sary to construct a holistic view that combines the perspectives of
software practitioners, stakeholders and end users. In this paper,
we collect 637 conversations from Twitter to synthesize and qual-
itatively analyze discussions posted about software accessibility.
Our findings observe an active community that provides feedback
on inaccessible software, shares personal accounts of development
practices and advocates for inclusivity. By perceiving software
accessibility from process, profession and people viewpoints, we
present current conventions, challenges and possible resolutions
with four emergent themes: cost and incentives, awareness and
advocacy, technology and resources, and integration and inclusion.

CCS CONCEPTS

« Human-centered computing — Empirical studies in acces-
sibility; - Software and its engineering — Software usability;
Information systems — Social networks.

KEYWORDS

software accessibility, human factors of software engineering, qual-
itative study

ACM Reference Format:

Syed Fatiul Huq, Abdulaziz Alshayban, Ziyao He, and Sam Malek. 2023.
#A11yDev: Understanding Contemporary Software Accessibility Practices
from Twitter Conversations. In Proceedings of the 2023 CHI Conference on
Human Factors in Computing Systems (CHI °23), April 23-28, 2023, Hamburg,
Germany. ACM, New York, NY, USA, 18 pages. https://doi.org/10.1145/3544
548.3581455

Permission to make digital or hard copies of part or all of this work for personal or
classroom use is granted without fee provided that copies are not made or distributed
for profit or commercial advantage and that copies bear this notice and the full citation
on the first page. Copyrights for third-party components of this work must be honored.
For all other uses, contact the owner/author(s).

CHI ’23, April 23-28, 2023, Hamburg, Germany

© 2023 Copyright held by the owner/author(s).

ACM ISBN 978-1-4503-9421-5/23/04.

https://doi.org/10.1145/3544548.3581455

Abdulaziz Alshayban
aalshayb@uci.edu
University of California, Irvine
Irvine, California, USA

Sam Malek
malek@uci.edu
University of California, Irvine
Irvine, California, USA

1 INTRODUCTION

As more people rely on software to perform their daily activities, it
is essential to provide equal access to those with diverse abilities and
needs, including people with disabilities. Digital accessibility is the
practice of removing barriers that prevent interaction with or access
to websites, mobile applications, and other online technologies.
According to the World Health Organization [70], around 15% of
the world’s population, or an estimated 1 billion people, live with
some form of disability. This number is expected to grow in the
future due to several factors, including population growth and
medical advances, which allow people to live longer. The aging
population is more likely to experience disability due to age-related
conditions such as arthritis, vision loss and hearing loss.

Over the years, various efforts for promoting accessibility have
been undertaken, including government mandates, organization-
driven initiatives and educational programs. Countries impose ac-
cessibility regulations, for instance, the Americans with Disabilities
Act (ADA) [49], which mandates that all electronic information
and technology, including web and mobile apps, must be accessible
to those with disabilities. Assistive Technologies (AT), like screen
readers and braille keyboards for people with blindness and low
vision, external switch keyboards for people with motor disability,
and accessible features, like auto-captioning for people who are
deaf and hard of hearing, and alt tags in images, are being devel-
oped and incorporated into web browsers and mobile platforms.
Organization-driven efforts are also advancing the industry, includ-
ing standards such as the Web Content Accessibility Guidelines
(WCAGQG) [91], the most recognizable standard for digital acces-
sibility, and platform-specific accessibility guidelines from main
players in the technology space such as Apple[27] and Google[48].
To assist software practitioners with accessibility development, se-
mantic labeling [69], accessibility APIs [31, 68], auditing services
and automated testing tools are promoted and distributed.

Despite these efforts in fostering accessibility in software devel-
opment, recent studies [6, 20, 95, 98] have shown that the state of ac-
cessibility is still far from satisfactory. A 2022 report by WebAIM[95]
found that 96.8% of all home pages of the top 1 million most-visited
websites had accessibility issues. Other studies on mobile apps
[6, 20] have also shown that many apps remain inaccessible for
users with various disabilities. It is, therefore, imperative to under-
stand the limitations of contemporary software development in
adopting accessibility practices.

https://doi.org/10.1145/3544548.3581455
https://doi.org/10.1145/3544548.3581455
https://doi.org/10.1145/3544548.3581455

CHI 23, April 23-28, 2023, Hamburg, Germany

Syed Fatiul Huqg, Abdulaziz Alshayban, Ziyao He, and Sam Malek

[@usero] Conversation
‘ Source Tweet
N
% Other Tweet
Reply Tweet 1
[Quser2 |
Reply ‘ Tweet 2 ‘ Reply ‘ Tweet 4 ‘
Reply { Tweet 2.1 }
Reply ‘ Tweet 5 ‘
Reply ‘ Tweet 2.1 ‘
[Qusers |
(Tweet 3 Quote Retweet
Reply

{ Other Tweet }

Figure 1: The structure and elements of a Tweet Conversation, used as the unit of analysis

Studies aimed at understanding accessibility development prac-
tices have surveyed software practitioners [6, 8, 14, 19, 36, 60, 66, 99]
or investigated development environments like GitHub [13] and
StackOverflow [21]. These gleaned insights from developers on
the challenges behind accessibility development: lack of awareness,
prioritization, tool support, affordability and managerial cooper-
ation. Systematic literature studies on this domain [39, 71] have
observed how research works have investigated different aspects
of the software development life cycle, and proposed techniques
or developed resources for practitioners to better implement ac-
cessible practices. These findings are important in locating points
of interest in the development process that require improvement.
However, there remains research gap in understanding how the dif-
ferent points interconnect, creating nuanced effects on accessibility
development, and how factors beyond the development process,
which the literature have not focused on, play a role. Moreover, the
studies limit themselves in their exploration of perspectives, focus-
ing on a specific demographic (e.g., developers in large software
organizations or of a certain region) or a specific platform (e.g.,
web, mobile or Android). Accessibility development, on the other
hand, is multifaceted, combining the viewpoints of different play-
ers — new practitioners, designers, developers, testers, consultants,
leadership, organizations and users — and different operations —
production, business and community.

To augment our overall understanding of accessible software
development practices, it is therefore necessary to incorporate the
insights of different groups and stakeholders, both individually

and in collaboration. By inquiring on the limitations faced by the
various players and operations, and their interrelations, we can
detect further areas for improvement in this domain. We formulate
the research question: “From a holistic perspective, what is the current
state of software accessibility, and its challenges and resolutions?".

To answer this question, we analyzed user conversations from
Twitter [72], a popular social media platform, regarding software
accessibility. Social media enables communication among differ-
ent communities and demographics. Discourse, experiences and
opinions posted by different users can provide a holistic view on
a specific topic. Posts on social media are also candid expressions
compared to interviews, one of the primary data collection meth-
ods used in the literature, which can suffer from biases from both
the interviewers and participants [1, 5, 7, 42]. Prior studies have
utilized Twitter in the software engineering context, to understand
development practices [81, 83], software products [44, 45, 96] and
security [50, 80]. Accessibility has also been studied using tweets, to
investigate how social media is utilized by the disabled community
[17, 41, 51]. Based on these, in this work, we explore Twitter to
conduct a qualitative study on software accessibility at the intersec-
tion of user feedback, development experiences and accessibility
advocacy.

We collected and analyzed conversations from Twitter, which are
a series of tweets originating from a single source tweet and branch-
ing out through subsequent replies. Fig. 1 displays the structure
of conversations and the element within its scope. Our collected
dataset consists of 637 tweet conversations, containing more than

#A11yDev: Understanding Contemporary Software Accessibility Practices from Twitter Conversations

8500 tweets from 1800 unique users. The data introduces a multi-
tude of accessibility issues in web and mobile applications, in the
form of user feedback. It presents personal accounts of practitioners
on their development practices and challenges, from scopes both
individual and institutional. We observe community-wide advocacy
for software accessibility, led by people with disabilities and allies
to the cause, as both end users and practitioners.

We observe the emergence of three viewpoints, through which
we can perceive software accessibility in a more detailed and nu-
anced manner. (1) Process: how accessibility is integrated into the
software development life cycle — planning, design, development
and testing. (2) Profession: how accessibility is treated in an orga-
nization, as a development skill, training material, regulation and
business case. (3) People: how accessibility is learnt and mastered
by practitioners, experienced by end users, and advocated by the
accessibility community. Through the viewpoints, we observe four
different themes: cost and incentive (¢), awareness and advocacy
@), technology and resources (), and integration and inclusion
@. Each theme synthesizes the challenges and existing solutions
observed in the three viewpoints, along with possible measures for
improvement.

Overall, the paper makes the following contributions:

o We identify three viewpoints pertaining to software accessi-
bility by analyzing more than 8500 tweets from users, prac-
titioners and software organizations.

o We detail the current challenges of software accessibility
from a multifaceted perspective of the three viewpoints.

e We discover four cross-sectional themes and list recommen-
dations and future work to improve the corresponding chal-
lenges.

2 RELATED WORK

Our study lies in the intersection between understanding develop-
ment experiences of software accessibility and exploring Twitter
for personal and professional insight. This section describes the
related work in these two fields.

2.1 Software Accessibility Development Studies

Research on accessibility in the context of software engineering has
been conducted from two exclusive perspectives: the users, through
app reviews, and the software developers.

App reviews are considered a valuable source of information
for users and developers, and a key element that contributes to an
app’s success. Several studies [34, 76] looked into how accessibility
is discussed in user reviews posted on popular mobile app stores.
For example, a recent study by Eler et al. [34] investigated accessi-
bility feedback in user reviews posted on Android Play Store, and
found that the number of accessibility reviews is very low (less
than 1.24%), and most of the accessibility reviews are focused on
a small number of apps, suggesting that accessibility feedback is
scarce in app reviews. Another study by Arias et al. [76] suggests
that accessibility-related app reviews can provide valuable feed-
back about user experience, and may also reveal accessibility issues
that are not adequately covered in existing accessibility guidelines.
Other researchers [3, 4, 86] in this area focused on supporting de-
velopers improve their apps by proposing automated techniques for

CHI 23, April 23-28, 2023, Hamburg, Germany

the identification and classification of accessibility-related reviews.
Such techniques can aid in identifying common accessibility issues
and concerns reported by users.

Studies on user reviews not only lists, categorizes and details
existing accessibility issues, but also indicates the need for user
involvement in the software development process for better inte-
gration of various nuanced disability needs. Understanding how
these issues are considered in the development process, however,
requires studying the process itself and the people involved. Sev-
eral researchers [6, 8, 13, 14, 19, 21, 36, 60, 66, 99] have assessed
accessibility awareness among software practitioners, development
practices, and perceptions of guidelines related to accessibility. A
common theme identified by the studies is the lack of awareness
and knowledge among developers regarding software accessibility,
and how it can be implemented or tested. In cases where awareness
was not an issue, other barriers such as lack of time and support
from management hindered the inclusion of accessibility.

In trying to understand the role of accessibility within the context
of software development, these studies explored developer percep-
tion and specific development practices. For instance, Vendome et
al. [21] observed how accessibility guidelines are implemented in
Android app projects. Bi et al. [13] looked into existing projects
to understand the prevalence of accessibility issues, their reasons
and the solutions implemented. Miranda et al. [66] investigated
how projects that adopt an agile development methodology incor-
porate accessibility requirements in their systems. Others observed
practitioner perception regarding multiple aspects: awareness of
accessibility principles and technology [8, 19], relationship between
accessibility, user experience and usability [99], current practices to
adopt accessibility in the development life cycle [6, 14, 60]. Focus,
therefore, had been within the scope of the development process.
However, findings from some of these studies alluded to external
factors, for instance, academic curriculum, organizational resource
allocation or guidance from management. Research exploring these
factors and how they, along with the individual concerns tackled
by literature, relate to each other has not been conducted.

In terms of data source, these studies established their findings
by surveying software developers, through direct communication
or observing online forums. Bi et al. [13] and Vendome et al [21]
mined repositories dedicated to software projects and communi-
cation among developers, GitHub and StackOverflow respectively.
Cao and Loiacono [19] surveyed students with experience of devel-
oping a web application. Others interviewed or conducted surveys
with software developers in the industry. Some targeted certain
platforms (e.g. web [8, 36], mobile [60] or Android [6]), or geograph-
ical area (e.g, the software industry in Brazil [8, 60]) to focus on
a certain group of developers. In a field where developer perspec-
tive had been seldom observed, these studies played an important
role in discovering new avenues for analysis. However, focusing
exclusively on software developers, or certain groups of developers,
also limits the insight from a diverse group of participants. More-
over, most participants had been accumulated through convenience
or snowball sampling. The authors distributed their interview or
survey resources through mailing lists, social media connections,
acquainted practitioners and organizations. These limit the diver-
sity of the participant pool. For instance, Bi et al. [14] interviewed
practitioners from major software companies (Alibaba, Hengtian

CHI 23, April 23-28, 2023, Hamburg, Germany

and Microsoft), which excludes the insight from new practition-
ers and smaller organizations. Lastly, user perspective on industry
practices has been completely absent in these studies. Observing
insights from all groups participating in accessibility development
therefore remains an important avenue for research.

The literature has primarily employed interviews and surveys as
its method of data collection. However, these methods have been
observed to contain some limitations. For instance, responses in an
interview are influenced by participant perception of the questions,
societal conventions and what the interviewer would approve or
disapprove of [7]. Similarly, the questions and interpretation of
answers are affected by the interviewers’ own biases, ideology and
theoretical standpoint, their expectations about what interviewees
feel or know about a topic, and their appearances, age, abilities or
backgrounds [1, 5, 42]. Responses regarding accessibility, a topic
that is perceived as a civil rights issue, can therefore be affected,
influencing participants to conform to expectations and norms. In
comparison, data from online forums and social media are candid
communications from a large variety of participants. What the users
post about and how they interact with others are not influenced by
the researcher or an imposed context.

These limitations in the literature necessitate a larger, more
holistic inquiry into the accessibility practices that prevail in con-
temporary software development, from the unbiased perspectives
of all those who build the software, finance it and use it.

2.2 Understanding Software Related Aspects
Via Twitter

Twitter can provide valuable insights for researchers by giving them
access to a vast amount of data about what people are saying on a
given topic. It can also be used to identify experts on a particular
domain, which can facilitate conducting interviews or gathering
information.

In this section, we describe related studies on how Twitter data
is used by researchers in various domains to understand software
related aspects.

Prior research [16] has shown that the software engineering
community makes extensive use of Twitter’s ability to facilitate con-
versation and information sharing of various software engineering-
related topics such as discussions of current development projects,
or finding solutions to implementation issues. Sharma er al. [81]
performed an exploratory study of trending topics in software en-
gineering Twitter space, they found resource sharing, technical
discussion, and software product updates to be the most popular
topics discussed by developers. Singer et al. [83] conducted sur-
veys and interviews with active developers on GitHub, and found
that Twitter helped them keep up with the fast-paced development
landscape. Developers used Twitter to stay informed on industry
changes, for learning, and for building relationships and connec-
tions.

Other studies have looked into the feedback loop between devel-
opers and users on Twitter. Williams et al. [96] have investigated
how Twitter data can be used as a source of software user feed-
back. The result indicates that tweets can contain useful technical
information that can be translated into actionable bug reports and

Syed Fatiul Huqg, Abdulaziz Alshayban, Ziyao He, and Sam Malek

user requirements. Other studies [44, 45] looked into Twitter us-
age while communicating about software applications, and found
that tweets contain relevant information for different stakeholder
groups.

Additionally, Twitter data can be a valuable source for providing
a broad understanding of various software related aspects such as
security, privacy, or usability. Saura et al. [80] investigated con-
cerns regarding security issues of IoT systems. As a result of their
study, they identified 10 security and privacy issues for IoT users.
Choudhury et al. [50] conducted a quantitative analysis of soft-
ware vulnerability information on Twitter and other social media
platforms to understand how vulnerability information is present
on those platforms, and how that information affects the related
software development activities.

3 RESEARCH DESIGN

To utilize the intersectional conversations that social media offers
and fill the gap of a multi-perspective understanding of accessibil-
ity development practices in the software industry, we conduct a
qualitative study on Twitter’s software accessibility community.
While Twitter currently offers a specific Community feature!, we
refer to non-formal communities — groups of users posting tweets
on software accessibility, with relevant hashtags, or replying to and
sharing such tweets. The use of hashtags is important as Twitter
groups together posts with the same hashtag, enabling easy nav-
igation of a certain topic and reaching those who follow it with
a tweet. This community consists of users and developers with
disabilities, advocates and practitioners with accessibility expertise,
and software organizations.

We use ‘conversations’ as our unit of analysis, defined as a se-
quence of tweets, consisting of a source tweet and all its replies. Fig.
1 displays how a conversation branches out from the source tweet,
through replies and quote retweets. Quote retweeting is a Twitter
feature where a user can add their own text when sharing another
tweet, as a way of building onto a conversation. In our analysis, we
include conversations in quote retweets, when they are part of the
target tweet or posted as a reply, as it provides necessary context
to the tweet under analysis. We conduct our data collection and
analysis in two phases: first, collecting general tweets related to
web and mobile accessibility, denoting these as Development Con-
versations (DC), and second, tweets from accessibility advocates or
Advocate Conversations (AC).

For our study, we adopt elements of Straussian Grounded The-
ory [24, 85] in referencing the literature to construct our research
question, form search queries, determine coding methods and com-
plement our primary findings. An overview of our methodology is
demonstrated in Fig. 2.

3.1 DC (Development Conversations):
Collection and Analysis

To collect tweet conversations, we used Twitter Academic API v2

[72], which provides researchers with elevated access to Twitter

content. Researchers can use the API to conduct a variety of tasks,

including searching for tweets, collecting tweets from a particular

user, and extracting metadata about an individual tweet. We have

!Communities on Twitter. https://help.twitter.com/en/using- twitter/communities

https://help.twitter.com/en/using-twitter/communities

#A11yDev: Understanding Contemporary Software Accessibility Practices from Twitter Conversations

Statistical
Sampling

Tweet Search
(keyword-based)

CHI 23, April 23-28, 2023, Hamburg, Germany

Triangulation
with literature

Preliminary
Coding

" Y L

Q

o

o
Rl &
~ D
=]

=~

|
I

I

I

I

Conv(ersation)s: 2649 Convs: 336 Convs: 195 :

Tweets: 4550+ r— Tweets: 2800+ Analysis I

Users: 1075+ Parallel Users: 640+ !

: I

Convs: 224 Coding i

[DC (Development Conversations) J I
I

I

I

I

I

Preliminary :

Advocate Tweet Search Statistical Coding :
Search (serbased) Sampling :

I

|

4

[AC (Advocate Conversations) J

! J |
— Y
Q Convs: 51 codebook
N2
Users: 71 Convs: 1385 Convs: 301

Tweets: 3960+
Users: 800+

Convs: 165
parallel Tweets: 2550+
Convs: 250 ara‘ < Users: 500+
Coding

Figure 2: An overview of the research design

mainly utilized the full-archive search endpoint, which provides
access to all public Tweets from the complete archive dating back
to the first Tweet. This endpoint returns a set of tweets based on a
specified search query, consisting of keywords and operators.

We iteratively constructed our search query for the API First,
we created an initial seed of keywords. We utilized the literature,
specifically [13, 21], who mined StackOverflow and GitHub to mine
accessibility-related discussions. Moreover, one of the authors had
prior research experience mining Twitter for accessibility issue
reviews from users. This initial seed evolved as we observed the
resulting tweets and incorporated new keywords or discarded irrele-
vant ones. For instance, in our iterations, we found that users insert
hashtags, such as “#al 1y"2, “#dev", “¢AllyTwitter", “#Blind Twitter"
and more, to direct their post towards a specific community. We
ended our iterations of keywords once we perceived theoretical sat-
uration — we observed that the addition or reduction of keywords
from the query was generating similar or less relevant tweets. We
defined relevance based on the literature, content that is situated
within the context of web and mobile software accessibility.

2a commonly used abbreviation of ‘accessibility’

Our final query is presented in Fig. 3. The first three sections, as
grouped in the figure, filter a tweet’s topic for accessibility, web and
mobile application, and development concerns respectively. In our
experimental runs, we found that a majority of tweets share external
links, so we exclude such tweets with section 4, allowing URLs
only as replies. Section 5 eliminates cryptocurrency related tweets,
where the term “accessibility” is used in a different context. The
remaining three keywords are used to exclude ads, exclude retweets
(but include quote retweets) and only include tweets written in
English respectively. Our search ranged from January 1, 2020 to
April 30, 2022. Since our search provides a single tweet, from which
we collect the entire conversation it is a part of, other tweets in the
conversations can be posted outside of the specified date range.

This search generated a total of 2,649 conversations, among
which we randomly sampled 336, with 95% confidence level and
5% margin of error for statistical soundness. The sample consisted
of more than 4550 individual tweets and 1075 unique users. Each
conversation had an average of 42 tweets, ranging from just one
tweet to 4418, and an average of 36 unique users. The largest con-
versation (DC190) was a community post from Discord, where users
discussed its features, including accessibility. The second largest

CHI 23, April 23-28, 2023, Hamburg, Germany

(accessibility OR ally OR #BlindTwitter OR #DisabilityTwitter OR #al1ytwitter) 1
AND

Section 1

(app OR application OR mobile OR ios OR android OR “web app") Section 2
AND
(dev OR developer OR
OR develops OR #dev OR #developer OR fix OR fixing OR fixes OR fixed OR
solve OR solution OR test OR testing OR repair)
AND

(-hasilinks OR isireply) -crypto -nft -is:nullcast -isiretweet lang:en

OR develop OR OR

Section 3

Section 4 Section 5

Figure 3: The final search query for Development Conversa-
tion search

(DC249), with 1748 tweets, was an educational video post showcas-
ing how a user with visual impairment navigated on the iPhone.

Fig. 4 shows the distribution of user backgrounds in our data.
For each conversation, we coded the personas of the target tweet’s
author, inferring their role based on their tweet and bio. The data
shows a predominance of software practitioners personally engag-
ing in software accessibility discourse. However, beyond the 12%
end users detected in the target bio, many participated in the con-
versations from organization and practitioner posts, providing our
analysis with multiple perspectives.

3% u practitioner: personal account
practitioner: official account
practitioner: pwd
organization: accessibility

5% ® organization: technology

= end user

u end user: pwd

Figure 4: The inferred backgrounds of tweet writers. “Pwd"
refers to “Person with disabilities"

We conducted inductive coding in two stages, as shown in Fig. 2.
First, one author conducted preliminary coding of 112 conversations
— one third of the sample. All three authors reviewed the preliminary
codes to familiarize with the data and decide on a codebook. The
codes characterized the persona of the tweet author (e.g., “user”,
“developer: personal", “developer: official"); the platform (e.g., “web",
“mobile: i0S", “mobile: Android"), assistive technology (e.g., “screen
reader”, “alt text", “keyboard") or accessibility issue (e.g., “color",
“sound’, “text") the tweet mentions; the type of communication
(“suggestion”, “query", “practice: positive", “practice: negative") and

Syed Fatiul Huq, Abdulaziz Alshayban, Ziyao He, and Sam Malek

wo«

the software accessibility-related concern (e.g., “career”, “method:
testing", “obstruction").

The remaining 224 conversations were distributed among the
three authors such that each conversation was assigned to two
authors. Authors were allowed to add new codes if existing ones did
not satisfy, and communicate the update to others. After completion,
all three authors discussed and resolved any conflicts. Authors had

kept memos during coding that were utilized in the analysis.

3.2 AC (Advocate Conversations): Collection
and Analysis

From analyzing DCs, we observed that some practitioners label
themselves as accessibility advocates, and their discussions contain
topics of interest and substantial community interaction. So we
decided to complement our initial results with conversations from
advocates.

As shown in Fig. 2, for collecting ACs, we first identified advo-
cate users from DCs. We automatically located keywords such as
“accessibility", “ally” and “advocate" in the users’ bios and manually
inspected the results. We collected conversations from their profile
on accessibility, from January 1, 2022 to July 25, 2022, totalling 1385
conversations. While, for DCs, our search ranged 2 year 4 months,
we shortened the range for ACs. Advocates tweet primarily regard-
ing our target topic, yielding significantly larger data compared to
DCs. In order not to skew our analysis on a single perspective, that
of advocates, and since we do not employ a temporal lens on the
data, we do not collect older data for ACs.

Using similar statistical sampling, we randomly sampled 301
conversations, consisting of more than 3960 individual tweets and
800 unique users. The conversations averaged 30 individual tweets,
ranging from one to 978, and 26 unique users. In the largest conver-
sation (AC24), there was a discussion on what Amazon’s internal
worker chat app blocking words like “accessibility" insinuates.

ACs were collected using the user timeline endpoint on the
Twitter API, which allows access to all the tweets posted by a
specific Twitter user. The Twitter username of the user whose
tweets were to be accessed was specified in the API request, and
the results were sent back as a set of tweets.

With the authors familiarized with the data and process, we
conducted a parallel preliminary coding of 51 conversations based
on the previous codebook, discussed the codes and established a
slightly modified codebook with emerging topics. The remaining
250 conversations were similarly distributed, coded and conflicts
resolved.

3.3 Triangulation with Literature

Our goal in this step is to complement our data with relevant liter-
ature, providing context and interpretation for our findings within
the existing body of research. To ensure a comprehensive set of
relevant work, we identified literature using a range of strategies.
Primarily, as indicated in Fig. 3, we searched for keywords that
were mentioned in both DCs and ACs, along with alternative key-
words with similar meanings. Additionally, we conducted forward
and backward snowballing on that initial set to retrieve publica-
tions. The papers’ fields spanned software accessibility and general
software engineering concerns — security, collaboration, design —

#A11yDev: Understanding Contemporary Software Accessibility Practices from Twitter Conversations

along with education and business studies. A total of 160 papers
were retrieved, 43 of which were deemed as relevant.

3.4 Threats to validity

Among the three threats to validity posed by qualitative research:
researcher bias, reactivity and respondent bias [62], our work poses
a threat for researcher bias. Since we do not interact with the partic-
ipants (Twitter users) and only collect their candid communication,
reactivity and respondent bias do not apply to our study.

To mitigate researcher bias, we considered multiple procedures:
prolonged involvement, triangulation, peer debriefing, negative
case analysis and keeping an audit trail [78]. The authors are not
active members of the Twitter community the study analyzed, re-
stricting involvement only to data collection and observation, thus
counteracting prolonged involvement. We also decreased researcher
bias with parallel coding among three authors. For triangulation, as
described, we incorporated findings from literature in a variety of
relevant fields. We conducted peer debriefing with researchers out-
side of our author group, to get opinions on data collection, coding,
analysis and presentation. We performed negative case analysis,
whenever we found experiences or opinions that contradicted that
of the majority. In most cases, those views were refuted by others
in the same conversation. We also triangulated with literature to
find the presence of these views, and the reasoning or resolutions
behind them. We kept an audit trail by storing any kind of research
data, from the initial experimental tweet collection, to the different
codes emerged from parallel coding and their final resolved states.
Authors also kept notes during coding, used for understanding
rationale during the analysis phase.

Our selection of keywords for searching tweets could pose a
threat to validity, as no objective measurements have been used for
its formation and stoppage. To mitigate the threat, we conducted
multiple iterations on the keywords. For each iteration, the authors
investigated a sample of the resulting tweets to assess relevance,
review keywords used, detect emerging keywords and evolve the
keyword set accordingly.

Presentation of the findings. From our analysis, we observed,
and present as such, three viewpoints for discussing software acces-
sibility practices: process, profession and people. Each viewpoint
section presents claims, opinions and experiences from the conver-
sations (DCs and ACs), cross-referenced with relevant literature.
We provide our inferences of the findings in Section 7, discussing
the four emergent themes — cost and incentive, awareness and
advocacy, technology and resources, and integration and inclusion.
We also incorporate these themes in the viewpoint sections, with
the topics where they emerge, as their respective symbols: ©, @),

@®, and (.

4 A11Y VIEWPOINT: PROCESS

The software development process spans multiple phases: require-
ments and project planning, system and UI design, coding or de-
velopment, testing, and maintenance. The level of accessibility in
the final software product is dependent on how well accessibility
is integrated in these phases, either through inclusive practices or
with the support of accessibility-oriented technologies. Our data
sheds light on the contemporary practices and technologies that

CHI 23, April 23-28, 2023, Hamburg, Germany

impede accessibility integration, and the changes to convention
necessary for improvement.

4.1 Software Development Life Cycle (SDLC)

We begin by looking into development practices from the broader
view of the whole development life cycle, and how accessibility is
situated in it.

Prioritizing accessibility early and consistently in the
project’s life cycle (D, (©). Practitioners opine that one of the
biggest challenges regarding accessibility development is the lack
of prioritization within the development lifecycle. Generally, acces-
sibility is considered as an afterthought, due to legal concerns or
negative user feedback. This aligns with past findings that compa-
nies still do not perceive accessibility requirements as a priority
[6, 66]. Delaying accessibility for later stages or future updates adds
on to maintenance and refactoring effort, accruing additional cost;
also reported by prior research [89]. Therefore, it is advocated to
“shift accessibility to the left" (DC161, AC7)?, including it during
project planning and requirements analysis. Doing so will ease
accessibility implementation for developers and prevent the cost
behind finding workarounds. It should also be required as a func-
tional requirement instead of a “nice to have" (DC239) specification
(DC27, DC37, DC188, AC65, AC297).

It is also advocated to prioritize accessibility consistently in all
phases of the SDLC. Prior work [71] showed that design and testing
has been the focus for accessibility research, excluding the rest.
On the other hand, some do not consider accessibility as part of
design, rather only a responsibility for the programmers. ‘It’s really
important to bring accessibility to the main stage" (AC28), which
can be accomplished by making accessibility the foundation of
these phases, and continuing to consider it during updates and
maintenance (DC27, DC94, DC114, DC178, DC239, AC21, AC65,
AC140, AC161, AC274, AC283).

Developing an “ally strategy" ((@), (©). We observe the propo-
sition of a tangible technique for accessibility prioritization named
ally strategy. It incorporates the knowledge and principles of in-
clusivity with the constraints of the different stages of development.
It promotes cross-functional collaboration, with product teams and
customer feedback. It prioritizes proactively reviewing designs for
accessibility, as opposed to a reactive testing-centered process. “You
have to train people, embed accessibility using research into design
systems, component documentation, code frameworks, QA ... and fill
in the gaps in WCAG ... then evaluate how effective it is from the
users’ perspectives” (AC161). Practitioners suggest incorporating
ally strategy as an aspect in a team’s existing process model, for
instance Agile methods, or adopt its components like Scrum meet-
ings for daily checkups on accessibility (DC239, DC161, AC9, AC35,
AC9Y4).

4.2 Design

In the design phase, the software’s Ul structure is constructed, in-
fluencing the final product’s accessibility. Conversations in Twitter
discussed the current lack of accessibility consideration in design

3In the three Viewpoint sections, we cite the conversations that refer to the discussed
topic. Conversations are labeled as DC(1-336) and AC(1-301) in our research artifacts.

CHI 23, April 23-28, 2023, Hamburg, Germany

efforts, its role in building accessible software, and the constraints
designers face.

Design is integral for accessibility (D), (©). In most project
teams, practitioners report very little accessibility involvement in
design. Designers often treat accessibility as a separate concern,
beyond their project scope, leaving it for developers and testers.
Designers, who come from “a background in visual arts", are ob-
served believing that “a11y rules are stifling their creativity" (AC20).
Prior work also reports a false perception among designers that
accessibility represents a restriction on creativity [75]. However,
others say that the constraints imposed by accessibility can enable
engaging and fun design efforts. It invokes new challenges in prod-
uct design, instead of being “just the same four patterns over and over
again" (AC29). We also observe that designers with an opposing
outlook can be swayed once they are taught about the impact of
bad design on disabled people (DC27, AC20, AC21, AC29).

Advocates report the necessity of convincing designers of their
impact on accessibility. A recent study [10] reported that as com-
panies became more experienced with accessibility, they tended to
focus more on integrating accessibility earlier at the design phase.
An accessible design is promoted for its comprehensive solutions,
as it involves the visuals (color, shape, structure) as well as what
is heard (alt tags), what is felt (braille keyboard), and how it is
interacted with (click, keyboard navigation etc.). While a design
where accessibility is built directly into the core experience pro-
vides a better design for everyone, a bad design directly affects a
disabled user’s experience: “No-one is disabled until someone designs
something that does not take that person’s needs into consideration”
(DC27). Design is seen as critical in preserving accessibility of the
product from the ground up. It holds the advantage of pre-reviewing
accessibility for the product, as opposed to auditing and benchmark-
ing in the development and testing phases, making it easier for early
system-wide improvements. Practitioners experienced an accessi-
ble design to ease the effort to fix emergent accessibility issues in
later phases, remediate issues that developers cannot effectively fix,
and establish cross-team partnerships (DC27, DC288, AC3, AC26,
AC27).

Challenges integrating accessibility in design (®), @), (©).
Firstly, designers report on a lack of design tools or frameworks
that support accessibility. The few design resources that exist are
either not comprehensive enough to provide a one-stop solution, or
are catered to developers, requiring programming skills to operate.
“T design something and I can’t work on accessibility until I've coded it
in HTML" (DC27). Design requires resources that are exploratory,
experimenting with UI objects, rather than straight-to-production
instruments. Prior work [47] showed how tools to automate and
improve accessibility, contributed by research studies, do not serve
the needs of designers. Designers suggest incorporating accessibil-
ity modules in UI mockup tools, a resource popular for creating
experimental visual and interactive representation of the software.

Secondly, accessibility in academia, albeit in limited scale, is
focused primarily on development practices rather than design.
Accessibility expertise in design has only been possible through
one’s “own (often extraordinary) effort” (DC27) rather than formal
or structured training. Without including accessibility in design
education, practitioners fear design teams will remain unaware of

Syed Fatiul Huqg, Abdulaziz Alshayban, Ziyao He, and Sam Malek

accessible design and projects will resume excluding accessibility
in design (AC27).

Lastly, our data shows that, in the professional setting, accessi-
bility is excluded from a designer’s skill requirement. While there
are job postings for accessibility engineers or accessibility product
managers, none such designation exists for accessibility designers.
“Everywhere that I have worked, accessibility has fallen to the devel-
opers" (DC27). Such practices fail to incentivize designers to pursue
learning accessibility.

4.3 Development

Unlike design, development has seen the emergence of multiple
tools, systems and frameworks that assist developers in incorporat-
ing accessibility. However, there are still limitations in the available
resources and bad practices that pervade development processes,
hindering accessibility in software.

Code level practices: ARIA and Semantic HTML ((®). Two
of the most popular instruments for accessibility in web develop-
ment are ARIA [92] and Semantic HTML [69]. Accessible Rich
Internet Applications (ARIA) is an accessibility-centric scripting
tool that adds roles and attributes to HTML elements to render
them meaning.

For instance, a progress bar can be written as,

<div id="update-progress"></div>
where <div> provides no meaning. Adding ARIA labels to this —

<div id="update-progress" role="progressbar"
aria-valuenow="75 aria-valuemax="100">
</div>

characterizes this <div> as a progress bar, and enables assistive
technologies to interact with it as such. Our data shows multiple
instances of developers using or suggesting ARIA for bolstering
accessibility. ARIA as a formalized practice can also instill consis-
tency in frontend nomenclature, which would prevent different
auditing services using different terms for the same component
(DC312, AC128).

However, ARIA is built as a solution that tries to add mean-
ing to meaningless HTML, whereas HTML already possesses a
mechanism to provide meaning to components: with Semantic
HTML. Instead of populating every HTML component in a page
with <div>s or s, Semantic HTML provides tags such as
<header>, <figure>, <nav> and more to embed semantic mean-
ing to that component. For our previous example, rewriting the
component with <progress> instead of <div> —

<progress id="update-progress"
value="75" max="100">
</progress>

also characterizes it as a progress bar. Practitioners in our results
advise adopting a “Semantic-first" approach when writing HTML
pages, as opposed to an “ARIA-first" one. Misusing ARIA can bring
forth more issues than not using it. It is nevertheless warned by
advocates from focusing solely on Semantic HTML for accessible
software: “saying semantic html will give you accessibility for free
is not the full story” (DC196, DC239, AC1, AC3, AC6).

#A11yDev: Understanding Contemporary Software Accessibility Practices from Twitter Conversations

Accessibility-oriented frameworks and design systems (),
@). Frameworks like React [61], Angular [37] and more have be-
come industry standard as they help developers build their web
applications faster. However, in doing so, they have abstracted away
the HTML underneath, and this separation from the DOM has been
seen as a barrier to accessibility practices. For instance, developers
are not prompted to add Semantic tags, and adding them afterwords
requires unraveling “layers of JS spaghetti” (DC288, AC37, AC53,
AC82). Lack of accessibility support in modern JavaScript frame-
works was also raised in the literature [63]. Furthermore, JS libraries
are criticized for not considering accessibility, and bringing bigger
payloads and slower loading times that disrupt AT use. There have
been initiatives integrating accessibility into libraries, but practi-
tioners found most lack proper documentation, perceiving these
as marketing ploys that lack actual accessibility features (AC74,
AC128, AC215).

Similar issues are brought up for design systems (e.g., Google’s
Material Design [26], Apple Human Interface Guidelines [43]),
which are scalable collections of thematic guidelines and UI com-
ponents for web and mobile applications. Developers adopt the
styles and behavior offered by these design systems into their own
software. Therefore, inaccessible design in these design systems,
developed by people unaware of accessibility or with ableist biases,
is feared to perpetuate systemic bias in industry-wide software
development. It is difficult to fix inaccessible components set by
design systems, without inadvertently breaking other components
or features imported (DC30, DC31, AC37, AC128).

Practitioners prompt frameworks and design systems to provide
AT support and incorporate accessible design for their base Ul
components. This can obviate developers from building accessible
components from scratch and fixing repetitively reported design-
level issues in audit reports. Removing accessibility issues from base
components also ensures accessibility standards are maintained,
even if developers are unaware of them, positively influencing
industry-wide culture (DC40, DC122, DC288, DC313, AC128, AC139,
AC215, AC297).

Accessibility beyond a developer’s control (). While most
discourse regarding accessibility in software place responsibility
on the developers, we observed multiple accounts on how prac-
tices and systems provided by hardware manufacturers, platforms
and operating systems, and web browsers, which are beyond a
developer’s scope, are accountable as well.

Manufacturer: Different laptops and computers contain their
unique drivers that interact with ATs. So despite a software being
compatible with ATs in most devices, we observe accounts of some
causing it to break, making the software inaccessible. In mobile,
specifically Android phones, how accessibility services are imple-
mented depends, to some extent, on the phone manufacturer (DC49,
DC238).

Platforms and operating systems (OS): Similar to hardware, dif-
ferent platforms and OSes provide different levels of accessibility
support. For instance, Twitter’s alt tag integration with media, al-
though available on web browsers, had not been integrated with
i0S through the native app (AC119). Much has been discussed in
our data on how accessibility is integrated differently in iOS and
Android. The general consensus favors iOS, where accessibility

CHI 23, April 23-28, 2023, Hamburg, Germany

is embedded more strictly, and app developers are forced to fol-
low guidelines and integrate accessibility services. Android, on the
other hand, provides more autonomy to app developers in how they
use accessibility services, creating opportunities for avoidance or
even misuse (DC208, DC238, DC247, DC278, DC288, DC327, AC56,
AC119, AC156).

Browsers: Developers advocate for browsers to programmatically
ensure web app accessibility: from providing APIs for accessibility
services to not hosting inaccessible sites. ‘T want to live in a world
where if your component is not accessible, the browser won’t render
it” (AC128, DC288)

The negative impact of accessibility overlays ((©), @). Acces-
sibility overlays are website add-ons that provide assistive widgets
and/or automatically fix code to transform an inaccessible website
into one that conforms to WCAG. While marketed as an accessibil-
ity solution, these products are strongly opposed by accessibility
advocates*. Our findings list key criticisms against this technology,
spanning technical and business malpractices. The widgets offered
are at best redundant to disabled users who are using ATs and third
party software, and at worst incompatible with the user’s setup,
disrupting their experience. The automated fixes are not reliable
and can cause unwanted behavior. Conformance, as assured by
overlay vendors, are often false promises, as they are unable to fix
all the website’s accessibility issues. However, their marketing ca-
pacity outshines the reported inadequacies, convincing clients, who
cannot afford accessibility in their development processes, to incor-
porate an overlay as a cheap one-click solution. As such, overlays
are deemed as an “anti-accessibility product” (AC84). Their inclusion
on a website can render it unusable by people with disabilities. The
false conformance puts well-meaning clients in risk of violating
regulations. And their predominance in the market discourages
development teams from integrating accessibility practices in their
processes, helping accessibility issues to persist as a culture (AC14,
AC84, AC89, AC174, AC175, AC177, AC183, AC203, AC233, AC232,
AC236, AC248). Similarly, a recent study investigating accessibility
overlays found that while overlays can help improve some aspects
of websites accessibility, they are still too limited and could not
achieve complete compliance with accessibility standards [32].

Better accessibility means better SEO ((©). Search Engine
Optimization (SEO) [30] is widely considered a success criterion
for web applications. It is observed that an accessible website, that
follows best practices like Semantic tags, score better for SEO. Con-
sequently, practitioners say that SEO is used as an incentive for
accessibility, a further indication of how technical standards set
by system-wide platforms can bolster accessibility (DC137, DC292,
AC240, AC284).

4.4 Testing

In current practices, accessibility is most commonly considered
in the testing phase, usually to check for regulatory violations.
Automated testing tools are used to streamline accessibility into
testing. Manual and user testing is advocated for integrating the
lived experiences of people with disabilities.

Automating accessibility checks (®), @). We observe a popu-
larity of automation in the testing phase, conducted in two contexts:

*https://overlayfactsheet.com/

CHI 23, April 23-28, 2023, Hamburg, Germany

audits and developer testing. Auditing involves the use of an ex-
ternal tool or service that reports inaccessible components of a
developed software. It is deemed as a quick mechanism for devel-
opers to detect which area of their code needs fixing, and for users
to understand a product’s accessibility. It can also be a resource for
learning about accessibility (DC98, DC122, DC281, DC330, AC104,
AC105, AC98, AC277, AC283). Depending on the raw audit reports,
however, is noted as an inefficient technique that often demotivates
developers from addressing the accessibility issues. Since audits
generate repeating issues on Ul components used in multiple pages,
it is suggested to conduct a review process for grouping up and
prioritizing the issues before handing them over to the develop-
ers. Component level reports are observed as more intuitive and
manageable, as opposed to page-wise audits, which are reasonable
for very small websites. This practice also leads us back to design
level accessibility; if the Ul is designed to be accessible, audits are
easier to manage, or even redundant at best (DC31, DC40, DC122,
DC169).

While audits are generally dependent on a service or team exter-
nal to the core development team, our data suggests that automated
tools are now being integrated into the development and testing pro-
cesses. Developers utilize tools available on the browser, or create
their custom setup. For instance, Android’s Accessibility Scanner
[84] can be integrated with Espresso[29] or RoboElectric [77] that
provide automated testing features (DC322). Practitioners view au-
tomated tests to significantly reduce the overhead of evaluating
accessibility. In particular, if integrated into the development and
deployment pipeline using Continuous Integration (CI) technology,
such tools can drastically streamline the process of evaluating ac-
cessibility. With automated testers, developers do not need to wait
until the project is deployable and handed to auditing teams; they
themselves can check the accessibility of each new feature intro-
duced in real time (DC54, DC161, DC222, DC281, DC330, DC322,
AC3, AC89, AC90). Nevertheless, current automated practices and
tools are criticized for their limitations. They are often not compre-
hensive enough to detect all existing issues, their performance are
dependent on test coverage, and tend to generate false positives.
Furthermore, practitioners warn that no issues detected does not
necessarily mean an accessible software (DC161, DC281, DC314,
AC252).

Testing accessibility manually (@), ®, (©). With the limita-
tions posed by automated tools, manual testing — navigating one’s
software using an AT to detect accessibility issues — is highly rec-
ommended by experts. Manual testing enables a broader and more
context-specific assessment, as opposed to the WCAG-specific and
generalized implementation of automated tools. Practitioners deem
it as the nearest mechanism to simulate user experience without
a disabled user on board. They also say that simulation was the
biggest motivator for them to learn accessibility (DC49, DC118,
DC161, DC281, AC1, AC3, AC18, AC33, AC43, AC243). Literature
supports these observations, discussing the importance of manual
testing and its ability to provide better coverage and discover the
issues that automatic tools cannot. [46, 58, 90]

We observe that current practices for manual testing are con-
ducted using ATs and alternative interaction methods. For instance,
desktop and mobile screen readers, keyboard navigation with a
blank screen, and with text or view enlarged. Tests are suggested to

Syed Fatiul Huqg, Abdulaziz Alshayban, Ziyao He, and Sam Malek

be conducted with multiple ATs, in different window sizes, on dif-
ferent browsers and devices (DC117, DC149, DC168, DC180, DC202,
DC214,DC229, AC1, AC43, AC243). However, practitioners say that
it is not readily adopted in testing processes as it requires testers to
learn different ATs. For teams with financial limitations, some ATs
may be too expensive. Testers complain that, unlike audit reports,
no formalized documentation template exists for creating accessi-
bility statements from manual testing, and unlike automated tests,
no programmatic mechanism to integrate it into the development
pipeline. And finally, despite best efforts, manual testing cannot
fully replicate a disabled user’s experience (DC27, DC92, DC147,
DC243, AC128, AC250).

User tests cannot be excluded (@), @). Our results suggest
that involving disabled users in the testing process provides the
most insight on the accessibility of a product. User insight covers
more factors and provide more nuanced feedback than accessibility
checkers, which are limited by WCAG-driven heuristics. Develop-
ers and users alike state that testing with ATs is more efficient and
effective by disabled users, who are knowledgeable of different AT
features and workarounds, and more proficient than abled develop-
ers. For instance, screen reader announcements that developers may
regard as too short or very detailed in a manual test, are reported by
a disabled user as properly concise or too cumbersome respectively.
“Center the lived experiences of people with disabilities, not that of
non-disabled testers” (AC250). Therefore, the accessibility commu-
nity advocates for user testing, despite the inclusion of automated
and manual tests. However, despite companies starting to integrate
the practice, we find that strategies for such testing are still not
formalized or mainstream enough for easy adoption. Furthermore,
Aizpurua et al. [2] have reported about potential personal biases in
the process. Software teams must be trained and/or services can be
introduced who will connect teams to professional testers (DC17,
DC94, DC161, DC171, DC239, AC3, AC23, AC39, AC128, AC144,
AC166)[11, 23, 65].

5 A11Y VIEWPOINT: PROFESSION

Focusing on accessibility primarily from a development and tech-
nical perspective overlooks its important consideration in the pro-
fessional setting. From discussions of practitioners’ professional
experience and the business aspects of software accessibility, we
see that a lack of priority and the persistence of bad practices in an
organizational capacity can undermine accessibility despite tech-
nological advancements and individual advocacy.

5.1 Personnel

Accessibility in software companies depends on those who develop
the products. Therefore, how accessibility is treated as a develop-
ment skill for employees and how leaders in an organization regard
it determine how accessible the software product is.

Career opportunities and limitations in software accessi-
bility (@, (©). We observe accessibility being integrated as a career
path, with designations such as accessibility engineer, engineering
manager for accessibility and more. Such jobs are being offered by
large software companies (like the FAANG companies), populariz-
ing the concept. Accessibility is included as a specialist position in
modern software projects, along with conventional specializations

#A11yDev: Understanding Contemporary Software Accessibility Practices from Twitter Conversations

like security, networking etc. Other than specialized positions, we
observed discussions on accessibility in an aspirant developer’s
skillset being prioritized by employers. The data shows that jobs in
software and digital accessibility also encourage inclusivity, where
developers with disabilities are able to contribute with their lived
experience, and disclosure of applicant’s disability is observed as
a non-issue, unlike other fields (DC1, DC260, AC2, AC13, AC211,
AC216, AC285, AC293).

However, we find that accessibility related jobs are not univer-
sally common or prioritized, offered only in select states or countries
where there is a perceived need or a growing culture of inclusivity.
Job postings are also seen reflecting the inconsistent prioritization
of accessibility in the SDLC, focusing on one phase over others.
Accessibility developers are designated as junior engineers and the
salary is perceived as “insultingly low" (DC27), indications of acces-
sibility being undervalued. These bad practices dissuade developers
from learning or specializing in accessibility (DC27, AC2, AC17,
AC34, AC192).

Certifications for accessibility development (@), (). Em-
ployee certifications in the software engineering field provide as-
pirant developers with a proven specialization of skills and em-
ployers a benchmark for screening. Such advantages have seen the
emergence of certifications, among many, for security, data manage-
ment, cloud computing, and recently, accessibility. The two popular
certifications are WAS (Web Accessibility Specialist) and CPACC
(Certified Professional in Accessibility Core Competencies). These
certifications are seen as a formalization of skills necessary for the
development of accessible software, providing a prescribed trajec-
tory for developers to learn accessibility as well. “(Certifications) can
ensure that even experienced practitioners focus clearly on a set of the
best practices and demonstrate retention of that knowledge” (AC86).
Conversely, certifications are criticized for its quality and the field’s
excess dependence on it. Relevant study [35] echoes this complaint,
showing how certification cannot fully predict competence and
performance. However, with an industry of employers still not edu-
cated on accessibility, advocates opine that certifications cannot be
excluded as an important component for practitioners (AC2, AC84,
AC86, AC105) [56].

Influence from leadership (@). Depending on individual pro-
ficiency is not effective without the encouragement and reinforce-
ment from leadership roles. Developers complain that despite best
interests, their advocacy for accessibility is not heard and their
interest in learning it is not given ample opportunity. “This was
never about me, the developer. I don’t decide how much time I spend
on ally, my manager does. You don’t need to convince me that ally
is important, I'm convinced. You need to convince my manager so I'm
given time to learn ally best practices and implement them” (DC161).
Prior work [6] similarly report a lack of support from management
as an accessibility barrier. On the flipside, explicit statement from
leadership about the presence or importance of accessibility has
seen prompt impact on teams (DC27, AC20, AC64, AC298).

5.2 Organization

On the organizational level, accessibility is observed to be assigned
to a singular team, or is propagated among different teams through
onboarding efforts.

CHI 23, April 23-28, 2023, Hamburg, Germany

Dedicated accessibility teams (@), (©)). We observe that a
common practice to integrate accessibility in an organization is as-
signing a dedicated team responsible for ensuring that the software
is accessible. There are different levels of responsibilities for such a
team: from focusing on the legal compliance of the end product to
interacting with different teams to ensure accessibility practices are
being adopted. Comprised of design, development and management
personnel with accessibility expertise, these teams are seen helping
train others or setting the culture of the organization. A recent
study [10] also reported a similar observation, with accessibility
teams including employees in various roles and taking on responsi-
bilities for a wide range of tasks. However, practitioners state that
housing such teams is expensive, which is why smaller companies
rely on external services or teams for ensuring accessibility. We find
that companies without in-house development teams depend on
“marketing and dev shops" that do not prioritize accessibility (AC176).
While employing a dedicated accessibility team is a sound strategy
for those who can afford it, our data recommends developing a
better organizational technique for an indiscriminate integration
(DC161, DC288, DC326, DC239, AC123, AC124, AC176, AC179).

Organization-wide accessibility onboarding (@), (D). Our
data indicates that organizations also integrate accessibility by
conducting training and onboarding throughout different teams:
development, design, product, testing etc. This practice is observed
to enable the ubiquitous prioritization of accessibility in the SDLC,
placing it as a responsibility for everyone involved. Onboardings
are commonly conducted by experts in the team or advocates work-
ing as consultants (DC146, DC161, AC92, AC128, AC140, AC277,
DC288).

Experts or advocates who coordinated onboarding processes,
inform about onboarding challenges and suggestions for best prac-
tices. They suggest training teams as early as possible, embedding
accessibility into the organization’s long term culture, which makes
teams more receptive to accessibility practices. When training, it
is recommended to focus on building empathy, through the use
of ATs, rather than technical processes. “T make sure they know
WHY they’re doing this, long before we touch on HOW to make things
better" (DC27). They should be informed on how accessibility is ev-
eryone’s responsibility and the exact roles they play. Lack of time is
noted as a large hurdle for team members being unable to train in or
implement accessibility. In such cases, the learning curve should be
eased down, helping them solve simple problems, and boosting the
confidence and motivation. They can be assigned small batches of
refactoring work, based on audits on their daily output. Gradually
increasing the baseline of accessibility requirements is observed to
be a sustainable and effective way to train busy developers (DC27,
DC239, AC77, AC105, AC128, AC183, AC192, AC277).

5.3 Product

The software product brings with it business considerations, in-
cluding legal and financial aspects, that affect and are affected by
accessibility.

Legal compliance ((©), @). Different countries have put in place
different legal requirements for accessibility in digital products,
which includes websites and mobile applications. We observe that
these regulations, along with the fear of lawsuits they bring, largely

CHI 23, April 23-28, 2023, Hamburg, Germany

incentivize organizations today to develop accessible software. This
mirrors findings from prior research [38, 52] suggesting that the
primary motivation for increased adoption of accessibility practices
was government laws and regulations. In companies and for stake-
holders that resist investments in accessibility, legal compliance can
be utilized for effective advocacy and integration (DC171, DC176,
DC214, DC239, DC281, AC17, AC104, AC161, AC251). Despite it
being a tangible incentive for accessibility, advocates warn of a
worrying trend where the exclusive focus is on legal compliance
rather than actual accessibility. Guidelines and regulations are gen-
eralized and non-comprehensive, enabling software to pass legal
requirements, in spite of accessibility issues being present (DC27,
DC239, DC275, DC281, AC17, AC252, AC287).

Accessibility requirement during procurement ((©), (D). Our
data suggests procurement as medium for incentivizing accessibil-
ity. In the procurement process, buyers can add accessibility as a
requirement, enforcing the client to integrate accessibility in the
software they build. A consistent inclusion, conducted by govern-
ment agencies, non-profits and other non-software entities, can
foster an inclusive culture among small and medium enterprises. A
relevant study [88] discussed how including mandatory accessibil-
ity criteria in the procurement process can have a transformative
positive impact on improving accessibility levels for users. How-
ever, it is recommended that appropriate specifications for what
constitutes as accessible must be in place, so that the software does
not meet requirements without fixing all accessibility concerns
(AC90, AC91, AC222)

Investment and profit concerning accessibility develop-
ment ((©). Our data shows that one of the major challenges of
software accessibility is the investment required and the lack of
motivation thereof. Speculators suspect whether a profit can be
generated from this investment. Especially for smaller companies,
such investments often seem beyond affordability (DC27, DC47,
DC92, DC288, AC82, AC108, AC133, AC232). Conversely, advocates
and users point out reasons to invest in accessibility development.
Firstly, especially for government and non-profit software, acces-
sibility should be viewed as a civil right and not a service. Until
accessibility is integrated as an intrinsic component of the soft-
ware, for profit seeking businesses, it needs to be built as a business
case. “The suits always get the ‘you’re losing money’ talk” (DC43).
The UK popularized the concept of ‘purple pound’ [87], denoting
the spending capabilities for disabled households, indicating prof-
itability of technologies promoted towards them. Not only does an
inaccessible software alienate people with disabilities, but it can
also be unusable by abled users in various situations. We find in our
data, software reported for their accessibility issues and companies
openly undervaluing accessibility or making false promises are
flagged by users and publicly denounced, making users, disabled or
otherwise, switch to alternatives. These points have been reported
to bolster the business case and aid in conversations to convince
stakeholders to invest in accessibility (DC27, DC43, DC161, DC288,
AC82, AC133, AC161, AC284, AC299).

6 A11Y VIEWPOINT: PEOPLE

Beyond the organization and the development practices within a
project’s scope, the individual, whether in the scope of a community

Syed Fatiul Huqg, Abdulaziz Alshayban, Ziyao He, and Sam Malek

or lone initiative, is an important perspective to consider. Based on
our findings, there is a growing accessibility community consisting
of new and old practitioners, advocates, and users and developers
with disabilities, that aid one another in advancing best practices
and spreading awareness.

6.1 Learners

Practitioners in the accessibility community begin as learners, and
the ease of their path towards expertise determines the quality and
priority of accessibility during software development.

Learning accessibility with guidelines and documentations
(@, ®). Accessibility guidelines, like WCAG, are regarded as the
first step towards many developers’ accessibility journey. Since
most organizations refer to WCAG for developing software, learn-
ing via the guidelines is an effective strategy (DC116, DC27, AC105).
However, our data indicates that software applications developed
solely based on WCAG have not been fully accessible, questioning
the effectiveness of guidelines as a complete resource for learning.
Guidelines are also critiqued for being outdated and too technical.
The specifications in the guidelines are noted as being behind the
fast changing web and mobile implementations. WCAG specifi-
cally is regarded as a web-centric document, specifying very little
on native mobile applications. “There’s a huge lack of resources for
learning about native app accessibility compared to web accessibility”
(DC116). Developers have to create their own interpretations of
native app guidelines, which challenges consistency and complete-
ness of accessibility evaluations. Furthermore, learners review that
the guidelines are written in a practical manner, efficient for sea-
soned engineers to consume, but assume a level of familiarity with
technology that makes it difficult for new developers and designers
to interpret (DC116, DC126, DC232).

Although not intended as a learning resource, accessibility doc-
umentations incorporated with frameworks, tools and libraries are
recommended for learners. These not only provide general knowl-
edge on best practices but also better detail nuanced problems and
implementations with regards to that specific platform (DC135,
DC203, DC214, DC288, AC105, AC128, AC215). However, docu-
mentations of development resources are often not well written or
featured in the larger documentation library. Documentations are
prompted to give more care to accessibility not only for practition-
ers to discover and learn from them, but for developers at large to
better assess their capacity (DC288, AC128, AC215).

Community of shared learning (@), ®), @). Our findings
show a variety of sources through which new and practiced devel-
opers learn about accessibility. The most common occurrence is
developers querying for specific development solutions or learn-
ing materials, and others sharing suggestions with their preferred
resources, tools and implementations. “Folks what are some essen-
tial plugins/tools you use to design and test for accessibility that you
can’t live without? #accessibility" (AC279). This community aspect is
extended to discourse on technology-agnostic best practices. Men-
torship, even in the online capacity, is seen as key to spreading
awareness. People with disabilities often share their lived experi-
ence on using web or mobile tools, which are received as impor-
tant sources for understanding software accessibility. We observe
this active community encouraging developers to build their own

#A11yDev: Understanding Contemporary Software Accessibility Practices from Twitter Conversations

accessibility-first frameworks or libraries, create online courses,
forums and newsletters, publish blogs and podcast episodes, and
host practice project development sessions dedicated to software ac-
cessibility. These resources, however, are decentralized, voluntarily
moderated or catered to a specific group of practitioners. Learners
outside the community or new to social media can be isolated from
these resources (DC15, DC39, AC75, AC105 and 50 others).

Another resource often shared are talks from advocates and in-
dustry experts, covering specific or general topics on accessibility
development. There are conferences dedicated to accessibility — Ax-
econ [9] — or comprised of accessibility-focused sessions — Apple’s
WWDC [28] and CSUNACC [22] — that developers find impactful
for disseminating knowledge and raising industry-wide awareness
(DCé63, AC19, AC28 and 15 others).

Educational integration of software accessibility (@), D).
Our data suggests that the challenges from a learning environment
of decentralized and difficult to discover resources can be alleviated
if accessibility is integrated into software education. The accessibil-
ity community has regularly voiced the need for such integration, in
the undergraduate level, or even earlier. And not only in Computer
Science courses that focus on programming solutions, but also in
design curriculum. While there have been instances of curricular
inclusion, resource sharing and bootcamps, in most cases, acces-
sibility is found to be absent or minimally included in academia
(DC27, DC161, DC288, DC332, AC20, AC105, AC192, AC219).

“Education in ally is not just a slide that says ally is important”
(AC43). Our findings and related literature offer multiple best prac-
tices for teaching accessibility to students. The most important step
is to make students empathize with accessibility, either through the
use of ATs on inaccessible applications or through direct commu-
nication with disabled stakeholders. Students need to be provided
with specific and tangible examples of inaccessible features and
receive instructions on how to fix them (AC43) [33, 40, 64, 67, 79].
Accessibility can be integrated as its standalone course, or as a
theme or additional material to existing courses like web develop-
ment, requirements engineering and more. However, a longitudinal
study [100] has found that addition of accessibility in a single course
had not changed the development practices of those students after
two years. Hence, accessibility can be integrated into every relevant
course in the curriculum, so that students are consistently exposed
to the different ways accessibility can be affected and fixed in the
development cycle (DC225, AC192) [12, 18, 82, 93]. To effectively in-
corporate accessibility in the curriculum, the instructors must also
be educated. Studies show that the biggest hurdles for instructors
in teaching accessibility are the lack of specialized materials and
formalized learning objectives. Administrative support is necessary
for including additional materials in an already packed curriculum,
and consistently planning out the integration throughout multiple
courses [33, 57, 73, 82]. Lastly, demand in the industry must be
established, otherwise courses offered regarding accessibility see
poor enrollment [15, 33, 82].

6.2 Practitioners and advocates

Our results provide insight into how practitioners experience acces-
sibility development in the workplace, their community interaction,
and their advocacy efforts.

CHI 23, April 23-28, 2023, Hamburg, Germany

Acquiring expertise through collaboration and empathy
(@). We observe expertise in accessibility not being characterized
by the retention of various guidelines and implementation details,
but in constant knowledge seeking and sharing. Team collaboration
is advocated over depending on a single champion. If everyone in
the team is aware of accessibility practices, it prevents teams from
reverting back to old ways in the absence of this champion. It is
also said to add more experienced eyes to new context-specific
accessibility issues in the software, generating better solutions
faster. It is suggested to collaborate among different teams, because
it provides different perspectives on a concern, and in dealing with
that, practitioners can learn and implement better accessibility
(DC27, DC161, AC18, AC92, AC258, AC284, AC292). The idea of
collaborative learning is well established in educational research,
and has been shown to lead to increased engagement and trust
among team members, and improved learning outcomes. [54, 55, 74]

Another important tool in cultivating accessibility expertise is
empathy. Our results show multiple accounts of practitioners pri-
oritizing accessibility more strongly once they realized the impact
of their inaccessible software. Exposure to the lived experience
of their disabled user base and experiencing accessibility issues
through ATs helped them change their outlook. The need for empa-
thy can be further motivated by observations from prior work on
developers’ accessibility practices [25], which suggest that devel-
opers may find it difficult to relate to some accessibility issues due
to a lack of proper understanding of how people with disabilities
use technology and software. Statistics, like the ratio of disabled
users, is used as a motivator for accessibility development. While a
tested argument to convince profit-seeking leadership, statistics is
criticized as a reductive measure, reducing disability to a number.
Some developers said that such statistics, on a personal level, do not
motivate them. However, developers refusing to give accessibility a
chance without comprehensive external incentives are criticized as
taking a stance originating from ableism and privilege. “Inclusion
and accessibility work is the right thing to do, and it often makes
everyone’s lives better in a wide range of ways! #ally is not zero
sum!” (AC257). The community promotes accessibility as a civil
right rather than a business or charity case, and strives to help
practitioners understand that and nurture empathy (DC13, DC27,
DC194, DC239, DC288, DC314, AC3, AC105, AC158, AC174, AC272,
AC284, AC292).

Activation online and at work (@),). We find accessibility
advocates utilizing both the online sphere and their professional
influence at the workplace for accessibility activation. On Twit-
ter, they promote accessibility integration and best practices. They
encourage developers by sharing experiences with accessibility
development or appropriate resources for easing implementation.
Practitioners who have established themselves as accessibility ad-
vocates are referred by other developers as specialists in relevant
discussions. Developers post about positive experiences learning
about accessibility or coding accessibility updates on their own
application. With a practiced eye for noticing problematic practices,
they report accessibility issues, critique each other’s work and
hold software organizations accountable. Sometimes organizations
themselves promote accessibility, further helping spread awareness.
Advocates and practitioners band together against negative takes
and promotions (DC4, DC7, AC75, AC125 and 45 others).

CHI 23, April 23-28, 2023, Hamburg, Germany

In the workplace, advocates talk about facing constant pushback
on accessibility-related suggestions. They have to stay defensive,
receiving backlash on their strictness and conviction. Some often
feel their voice for advocacy is not being heard, resorting to solitary
efforts within their teams. In environments where accessibility is
being prioritized, however, advocates are provided space and impor-
tance. They lead onboarding efforts, run accessibility workshops
and hold mentorship programs. Prior work [10] reports on their
cross-team interaction to educate everyone about disability and
accessibility. “The most rewarding part of my job is when a team goes
from not understanding the impact of their work on the accessibil-
ity of their app. To adding automated accessibility testing into their
dev process and creating accessible content” (DC146). Their role is
necessitated because of the current state of resource availability
and awareness (DC27, DC65, DC116, DC146, DC161, AC78, AC79,
AC182, AC205, AC291).

6.3 Users

The group affected most directly by software accessibility are the
users with disabilities. In our survey of tweets, we found that the
disabled community plays an active role in spreading awareness to
developers and organizations, and contributing in the inception of
accessible software by sharing accounts of their lived experience.
Feedback on products and practices (@), @), (©). Users utilize
social media as a direct communication channel with developers
and software corporations to provide their feedback on a product’s
accessibility. Twitter is proven as an effective feedback channel be-
cause of its extended reach [94] and shifting the balance of power
between users and corporations [97]. They report on accessibility
issues, sometimes detailing the use case that caused the issue, and
promote for better accessibility testing. T have stayed for two hours
on chat room but when I went to speak, I couldn’t use the button
to acess [sic] the moderator invitation cause was not acessible [sic]
. The VoiceOver (screen reader from iOs) can’t identify the notifi-
cation on the top of the screen” (DC178). They also acknowledge
positive updates and subsequently promote the product for its good
faith efforts. “I’'m soooo tardy on an update after the awesome devs
with Todoist rolled out some #ally fixes... which are fantastic fyi"
(DC167). Developers also acknowledge the user feedback and the
help that insight provided. Such feedback results in fixing acces-
sibility bugs, removing inaccessible services or, at the very least,
notifying relevant teams about the issue. Developers themselves
provide feedback on frameworks and tools, and appreciate improve-
ments with regards to accessibility. On the contrary, sometimes
user feedback is received poorly, characterizing it as slander or mob
behaviour, disregarding it as a non-issue or simply ignoring the
feedback. In cases where developers had promised for accessibility
updates, users hold them accountable on later dates and report any
false promises (DC16, DC34, DC124, AC44, AC59 and 40 others).
Beyond feedback on specific products or features, we observe
that users are vocal about software accessibility practices at large.
For instance, users have voiced their concerns regarding the af-
fordability of new technologies. While popular ATs built into web
and mobile platforms may be free, third party or specialized ATs,
especially those that require external devices, need to be purchased.
Moreover, since accessibility is implemented differently in various

Syed Fatiul Huqg, Abdulaziz Alshayban, Ziyao He, and Sam Malek

desktop and mobile devices, people with disabilities cannot afford
high-end ones with the latest updates. “..disabled people are more
likely to fall into poverty and socio-economic injustices make the poor-
est, more likely to become disabled.” “Socio-economic accessibility is a
lens that all too often gets ignored” (AC272). Related work [59] has
also found that financial cost is a major barrier for disabled people
who need to use assistive technology. Often, these individuals are
forced to use less accessible technologies because they are more
affordable.

Contribution towards accessible software development (@),
®,). On Twitter, we find that a common phenomenon for pro-
viding active feedback is voluntary testing. Disabled users conduct
testing on software products in a variety of contexts, for instance:
when a new update to an existing software is released, as an explo-
ration of an inaccessible site, to check whether they want to use an
app, to understand how ATs interact with the application, to find
accessibility bugs and help developers fixing them, for testing the ac-
cessibility features for Beta apps, or without specified reason (DC48,
AC89 and 18 others). Some users record or stream themselves using
a product with their ATs as a way to spread awareness on how
people with disabilities interact with applications, which also helps
developers understand the state of their apps’ accessibility (DC24,
DC168, DC251, DC317).

However, freely assisting large corporations for accessibility is
not favored by the community as a prolonged practice. It is deemed
as a sign that the development organizations do not care about ac-
cessibility. “I'm tired of giving them free labor by escalating issues a
robust #ally testing program should be catching” (DC79). Incorporat-
ing the insight and feedback of disabled users, from the beginning
of the project instead of after deployment, is necessary and de-
mands compensation. We observe users trusting and promoting
products, that incorporate the insight from disabled consultants in
their design, as accessible (DC47, DC278, DC289, AC83).

7 DISCUSSION

The three viewpoints demonstrate a multitude of challenges present
in the industry, the current countermeasures, and recommenda-
tions to mitigate the limitations. In analyzing these aspects with
the combined understanding of the three viewpoints, we find four
themes: 1. cost and incentive ((©), 2. awareness and advocacy (@),
3. technology and resources ((t)), and 4. integration and inclusion
(). These themes emerge as cross-sectional concerns, showing
how the viewpoints interrelate with each other. Understanding the
interrelations provide a broader picture of the individual issues,
their possible causes beyond the immediate context, and the ex-
ternal aspects that must be considered in trying to alleviate their
impact. Furthermore, in describing the themes, we provide avenues
for future work.

7.1 Cost and Incentives (©

Literature has observed that the key factors behind the deprioriti-
zation of software accessibility is its cost of time, money and effort
[60]. Bi et al. [14] indicated how these costs affect smaller organiza-
tions more, limited by their lack of expertise, management support
and schedule flexibility. We expand on these findings, observing

#A11yDev: Understanding Contemporary Software Accessibility Practices from Twitter Conversations

cost factors ranging from maintenance efforts and expensive test-
ing tools in the process viewpoint, to hiring specialized engineers,
housing dedicated accessibility teams and conducting onboarding
in the profession viewpoint.

While incentives like SEO improvement and legal regulations
exist, these are deemed insufficient compared to the cost. They have
also resulted in practices opposed by the accessibility community,
for instance, accessibility overlays. This practice is indicative of
two larger implications. One, it shows that reducing accessibility
to only a regulatory conformance issue motivates companies to opt
for the cheapest solution, even if it does not guarantee an acces-
sible product. And two, it predicts a market saturated by similar
solutions that aim to fix inaccessible software by technical means.
While we cannot predict the technical effectiveness of these solu-
tions, dependence on them prevents accessibility integration in the
core development process and decreases the need for accessibility
awareness for practitioners.

Yesilada et al. [99] found legislation and business cases to be
the conventional motivators. Based on our findings, we propose
focusing on three types of incentives:

(1) ethical: presenting accessibility as a civil rights concern
rather than a technical or financial one, especially for leader-
ship and organizations whose primary goal is not profitabil-
ity; educating the reluctant on ableist privileges,

(2) financial: for businesses whose primary goal is profit,

preparing business cases that focus on the loss of user base

due to inaccessible products, by including statistics like the

“purple pound" and demonstrating the negative reputation

garnered online due to accessibility issues; presenting the

advantages of early prioritization in its mitigation of main-
tenance cost,

institutional: including accessibility as a skill requirement

or certification during hiring, to motivate practitioners learn-

ing accessibility; labeling accessibility as a “must have" re-
quirement during procurement, prompting companies to
prioritize accessibility.

G

~

7.2 Awareness and Advocacy @

Lack of awareness about accessibility has been repeatedly reported
as a cause for inaccessible software, both in our findings and in
the literature [6, 14, 19, 21, 52, 53, 60]. Our findings look into mul-
tiple factors hindering awareness. Accessibility is not commonly
included in computer science, software engineering and design cur-
ricula. Practitioners are therefore dependent on scattered resources
for learning accessibility, resulting in incomplete knowledge. Those
who do not voluntarily learn remain unaware, and this lack of skill
perpetuates their resistance to integrate accessibility later in their
work. In the workplace, teams are dependent on experts or lone
advocates for accessibility. While designations for accessibility spe-
cialists exist, it is not a required skill for design or development
candidates. Perpetrated by the employers’ own lack of awareness,
this also, in turn, demotivates candidates from putting effort into
learning accessibility and the academia from allocating accessibility-
focused courses.

The chain can be broken institutionally, through the collabora-
tion between academia and industry. The industry can prioritize

CHI 23, April 23-28, 2023, Hamburg, Germany

accessibility in the development practice and promote it as a re-
quirement for employment. Academia can produce practitioners
with the required capabilities, convincing the industry of the worth
of a developer learned in accessibility. Both can contribute to set
standards on what constitutes a baseline of accessibility skills and
compile comprehensive resources for teaching and learning.

To better increase practitioner awareness, Yesilada et al. [99]
suggest WCAG training, while Leite et al. [60] mention social con-
science. We suggest the inclusion of the following three components
for effective accessibility learning:

(1) empathy: through simulation or interaction with people
with disability, growing empathy in learners and practition-
ers is the tool for long-term personal inspiration and cultural
shift in organizations.

(2) collaboration: cooperating with different teams and people
provides insight into how accessibility affects each other’s
work, unearthing new insights and strengthening ones grasp
on the matter.

(3) gradual assimilation: to prevent professionals from being
intimidated by its steep learning curve, accessibility can be
taught and trained as a progression of small manageable
steps accompanied by regular audits.

Institutional changes of this nature require time, and until then,
advocacy of accessibility in online communities — through resource
creation and sharing, and observing user feedback — and in the
workplace — through tutelage, cooperation and endorsing its con-
sideration in every team and process — are valuable initiatives for
raising awareness.

7.3 Technology and Resources ()

Accessibility requires an array of technical, literary and institutional
resources to be properly and efficiently integrated into software de-
velopment. The literature pointed towards developers’ dependence
on existing tools [21], quality of accessibility evaluation tools [60]
and outdated standards [14] as impediments for accessibility devel-
opment. Our findings introduce multiple shortcomings of existing
resources and instances where no resource exists.

(1) Discoverability is a key issue for technical resources, where
the lack of documentation or the difficulty to locate available
resources, like accessible Ul component libraries, hinders
their implementation by developers. It is also an issue for
learning resources, which are vital for voluntary learning.

(2) Quality of literary resources like guidelines are also put in
question, either because of their inability to update the text
according to the evolving technology, or the writing style.
These should be written both technically for easy translation
to programming code and intuitively to be consumed by a
broad non-technical audience.

(3) Ease of integration into the development process is posed
as an issue for technological resources. Automated testing
tools are good examples of tools satisfying that requirement,
incorporating its results into a project’s CI pipeline. Similar
tools for other processes, like designing UI mock ups and
manual testing, can be developed.

(4) On an institutional level, human resources like accessi-
bility specialists (for onboarding), auditors (for assessing

CHI 23, April 23-28, 2023, Hamburg, Germany

individual work) and people with disabilities (for their in-
sight) should be accommodated.

Focus should not solely be on the individuals or organization
developing a software. Some technologies, that are beyond the
purview of developers and which many are dependent on for devel-
oping their own software, can immensely improve software accessi-
bility. Frameworks that construct web features, design systems that
dictate the design principles of UI components, web browsers that
host web pages, platforms that provide accessibility APIs, operating
systems and devices that control how ATs function exemplify such
technologies and their responsibility on accessibility.

7.4 Integration and Inclusion (@)

The most common theme present in our findings is the need for
integrating accessibility practices into conventional software de-
velopment, from individual practitioner and team tasks to orga-
nizations and the industry at large. The previous three themes
included instances that can be utilized for integration, focusing
on technical (e.g., automated tests connected to the CI pipeline)
and logistical (e.g., certifications and dedicated teams) solutions.
More importantly, however, integration should be complemented
with inclusion; people with disabilities, for whom accessibility is
most impactful, ought to be involved in these processes. Literature
suggests user-centered design and user testing to better incorporate
the diverse needs of different disabilities [6, 13, 21, 99]. Based on our
findings, the three avenues their involvement can be established
through are:

(1) community: utilizing the active community formed in on-
line spaces to understand their challenges with general soft-
ware techniques (e.g., navigation, color, labeling), feedback
on accessibility issues in specific applications, and insight
into logistical concerns (e.g., affordability of ATs),

(2) organization: incorporating them directly in the team, as
stakeholders during procurement, professionals for user test-
ing, and tutors during onboarding efforts,

(3) consultancy: consolidating their insight for specific prac-
tices, for instance, when constructing a curriculum and exe-
cuting the lessons, planning an ally strategy for a project,
or designing UI components and features.

A thorough and effective integration of accessibility in software
is essential to discard its perception as an extra consideration, in-
stead forming a culture that establishes and normalizes the prac-
tices.

8 CONCLUSION

In order to understand accessibility in software products and the
limitations behind its normalization, it is imperative to investigate
how software is developed with accessibility in mind, from multi-
ple relevant perspectives. Our work explores tweets from software
practitioners, along with users and organizations, to bridge the gap
of a holistic view of software accessibility development. We quali-
tatively analyze 637 tweet conversations, consisting of more than
8500 unique tweets from 1800 users, to discover three viewpoints:
process, profession and people. These viewpoints group relevant
practices, enabling a nuanced understanding of the existing conven-
tions and challenges faced. Four themes emerged from the findings

Syed Fatiul Huqg, Abdulaziz Alshayban, Ziyao He, and Sam Malek

— cost and incentive, awareness and advocacy, technology and re-
sources, and integration and inclusion — providing points to focus
on for understanding software accessibility and better integrating
it into contemporary development practices.

Our holistic investigation unearthed multiple facets of software
accessibility, on which further research can be conducted, exploring
individual aspects in more depth. A limitation of our study has been
that we analyzed the tweets alone, leaving room for communicat-
ing with those who tweeted, or those active in the accessibility
community, for a more thorough understanding of their concerns.
A temporal analysis of the tweets, collected over a span of multiple
years, can be conducted to understand how accessibility concerns
and focus have evolved. New tools and resources for accessibility
design, development, testing and learning can be developed, or old
ones updated, as per our insights on integration, discoverability
and ease of use. New perspectives emerged from our findings that
have yet to be represented in the literature: accessibility advocates,
certification organizations, management or hiring personnel, con-
sultants and trainers. Future studies can delve into their insights
and functions.

ACKNOWLEDGMENTS

This work has been supported, in part, by award numbers 2211790,
1823262, and 2106306 from the National Science Foundation. We are
grateful for the detailed feedback from the anonymous reviewers
of this paper, which helped improve this work.

REFERENCES

[1] Essa Adhabi and Christina Blash Anozie. 2017. Literature review for the type of
interview in qualitative research. International Journal of Education 9, 3 (2017),
86-97.

[2] Amaia Aizpurua, Myriam Arrue, Simon Harper, and Markel Vigo. 2014. Are
users the gold standard for accessibility evaluation?. In Proceedings of the 11th
Web for All Conference. 1-4.

[3] Wajdi Aljedaani, Mohamed Wiem Mkaouer, Stephanie Ludi, and Yasir Javed.
2022. Automatic Classification of Accessibility User Reviews in Android Apps.
In 2022 7th International Conference on Data Science and Machine Learning
Applications (CDMA). IEEE, 133-138.

[4] Eman Abdullah AlOmar, Wajdi Aljedaani, Murtaza Tamjeed, Mohamed Wiem
Mkaouer, and Yasmine N El-Glaly. 2021. Finding the needle in a haystack: On
the automatic identification of accessibility user reviews. In Proceedings of the
2021 CHI conference on human factors in computing systems. 1-15.

[5] Ali Alsaawi. 2014. A critical review of qualitative interviews. European Journal
of Business and Social Sciences 3, 4 (2014).

[6] Abdulaziz Alshayban, Iftekhar Ahmed, and Sam Malek. 2020. Accessibility
issues in Android apps: state of affairs, sentiments, and ways forward. In 2020
IEEE/ACM 42nd International Conference on Software Engineering. ICSE, Virtual,
1323-1334.

[7] Hamza Alshengeeti. 2014. Interviewing as a data collection method: A critical
review. English linguistics research 3, 1 (2014), 39-45.

[8] Humberto Lidio Antonelli, Sandra Souza Rodrigues, Willian Massami Watanabe,
and Renata Pontin de Mattos Fortes. 2018. A survey on accessibility awareness
of Brazilian web developers. In Proceedings of the 8th International Conference on
Software Development and Technologies for Enhancing Accessibility and Fighting
Info-exclusion. 71-79.

[9] axe-con Digital Accessibility Conference. 2022. https://www.deque.com/axe-

con/.

Shiri Azenkot, Margot] Hanley, and Catherine M Baker. 2021. How Accessibility

Practitioners Promote the Creation of Accessible Products in Large Companies.

Proceedings of the ACM on Human-Computer Interaction 5, CSCW1 (2021), 1-27.

Ibtehal S Baazeem and Hend S Al-Khalifa. 2015. Advancements in web accessibil-

ity evaluation methods: how far are we?. In Proceedings of the 17th International

Conference on Information Integration and Web-based Applications & Services.

1-5.

Catherine M Baker, Yasmine N El-Glaly, and Kristen Shinohara. 2020. A system-

atic analysis of accessibility in computing education research. In Proceedings of

the 51st ACM Technical Symposium on Computer Science Education. 107-113.

[10

[11

[12

https://www.deque.com/axe-con/
https://www.deque.com/axe-con/

#A11yDev: Understanding Contemporary Software Accessibility Practices from Twitter Conversations

(13]

[14]

[15

=
&

(17

(18

(19]

™
fla?

@
&,

[33

[34

@
2

Tingting Bi, Xin Xia, David Lo, and Aldeida Aleti. 2021. A First Look at Accessi-
bility Issues in Popular GitHub Projects. In 2021 IEEE International Conference
on Software Maintenance and Evolution (ICSME). IEEE, 390-401.

Tingting Bi, Xin Xia, David Lo, John Grundy, Thomas Zimmermann, and Denae
Ford. 2022. Accessibility in software practice: A practitioner’s perspective. ACM
Transactions on Software Engineering and Methodology (TOSEM) 31, 4 (2022),
1-26.

Paul R Bohman. 2012. Teaching accessibility and design-for-all in the information
and communication technology curriculum: Three case studies of universities in
the United States, England, and Austria. Utah State University.

Gargi Bougie, Jamie Starke, Margaret-Anne Storey, and Daniel M German.
2011. Towards understanding twitter use in software engineering: preliminary
findings, ongoing challenges and future questions. In Proceedings of the 2nd
international workshop on Web 2.0 for software engineering. 31-36.

Erin L Brady, Yu Zhong, Meredith Ringel Morris, and Jeffrey P Bigham. 2013.
Investigating the appropriateness of social network question asking as a resource
for blind users. In Proceedings of the 2013 conference on Computer supported
cooperative work. 1225-1236.

Julian Brinkley. 2020. Participation at What Cost? Teaching Accessibility Using
Participatory Design: An Experience Report. In Proceedings of the 51st ACM
Technical Symposium on Computer Science Education. 114-120.

Shiya Cao and Eleanor Loiacono. 2019. The state of the awareness of web
accessibility guidelines of student website and app developers. In International
Conference on Human-Computer Interaction. Springer, 32-42.

Sen Chen, Chunyang Chen, Lingling Fan, Mingming Fan, Xian Zhan, and Yang
Liu. 2021. Accessible or Not An Empirical Investigation of Android App Acces-
sibility. IEEE Transactions on Software Engineering (2021).

Santiago Lifian Christopher Vendome, Diana Solano and Mario Linares-Vasquez.
2019. Can everyone use my app? An Empirical Study on Accessibility in An-
droid Apps. In 2019 IEEE International Conference on Software Maintenance and
Evolution (ICSME). IEEE.

CSUN Conference. 2022. https://www.csun.edu/cod/conference/sessions/.
Joshue O Connor. 2008. User testing: How to involve users in technical web
development cycles as a natural evolution in the creation of inclusive tech-
nologies and accessible content. In International Conference on Computers for
Handicapped Persons. Springer, 258—-263.

Juliet Corbin and Anselm Strauss. 2014. Basics of qualitative research: Techniques
and procedures for developing grounded theory. Sage publications.

Michael Crabb, Michael Heron, Rhianne Jones, Mike Armstrong, Hayley Reid,
and Amy Wilson. 2019. Developing accessible services: Understanding current
knowledge and areas for future support. In Proceedings of the 2019 CHI Conference
on Human Factors in Computing Systems. 1-12.

Material Design. 2022. https://material.io/.

Accessibility Foundations Human Interface Guidelines Design Apple Developer.
2022. https://developer.apple.com/design/human-interface- guidelines/foundat
ions/accessibility/.

WWDC22 Apple Developer. 2022. https://developer.apple.com/wwdc22/.
Espresso | Android Developers. 2022. https://developer.android.com/training/t
esting/espresso.

SEO Starter Guide: The Basics | Google Search Central | Documentation | Google
Developers. 2022. https://developers.google.com/search/docs/beginner/seo-
starter-guide. (Accessed on 09/07/2022).

UlAccessibility | Apple Developer Documentation. 2022. https://developer.appl
e.com/documentation/objectivec/nsobject/uiaccessibility.

Niklas Egger, Gottfried Zimmermann, and Christophe Strobbe. 2022. Overlay
tools as a support for accessible websites—possibilities and limitations. In Inter-
national Conference on Computers Helping People with Special Needs. Springer,
6-17.

Yasmine N El-Glaly. 2020. Teaching Accessibility to Software Engineering
Students. In Proceedings of the 51st ACM Technical Symposium on Computer
Science Education. 121-127.

Marcelo Medeiros Eler, Leandro Orlandin, and Alberto Dumont Alves Oliveira.
2019. Do Android app users care about accessibility? an analysis of user reviews
on the Google play store. In Proceedings of the 18th Brazilian Symposium on
Human Factors in Computing Systems. 1-11.

Ali Dehghanpour Farashah, Janice Thomas, and Tomas Blomquist. 2019. Explor-
ing the value of project management certification in selection and recruiting.
International Journal of Project Management 37, 1 (2019), 14-26.

Glen Farrelly. 2011. Practitioner barriers to diffusion and implementation of
web accessibility. Technology and disability 23, 4 (2011), 223-232.

Angular Framework. 2022. https://angular.io/.

Jonathan Frank. 2008. Web accessibility for the blind: Corporate social re-
sponsibility or litigation avoidance?. In Proceedings of the 41st Annual Hawaii
International Conference on System Sciences (HICSS 2008). IEEE, 284-284.
Andre Pimenta Freire, Rudinei Goularte, and Renata Pontin de Mattos Fortes.
2007. Techniques for developing more accessible web applications: a survey
towards a process classification. In Proceedings of the 25th Annual ACM interna-
tional Conference on Design of Communication. 162—169.

[40]

[41]

[42

[43

[44

[45

[46

[47

[48

[49
[50

[51

[52

[53

[54

[55

[56]

[57

[58
[59

[60

[61

[62
[63

[64

[65

CHI 23, April 23-28, 2023, Hamburg, Germany

Greg Gay. 2021. Teaching accessibility awareness with games. In Proceedings of
the 18th International Web for All Conference. 1-3.

Cole Gleason, Stephanie Valencia, Lynn Kirabo, Jason Wu, Anhong Guo, Eliz-
abeth Jeanne Carter, Jeffrey Bigham, Cynthia Bennett, and Amy Pavel. 2020.
Disability and the COVID-19 pandemic: Using Twitter to understand accessibil-
ity during rapid societal transition. In The 22nd International ACM SIGACCESS
Conference on Computers and Accessibility. 1-14.

Thorsten Gruber, Isabelle Szmigin, Alexander E Reppel, and Roediger Voss. 2008.
Designing and conducting online interviews to investigate interesting consumer
phenomena. Qualitative Market Research: An International Journal (2008).
Human Interface Guidelines. 2022. https://developer.apple.com/design/human-
interface-guidelines/guidelines/overview/.

Emitza Guzman, Rana Alkadhi, and Norbert Seyff. 2016. A needle in a haystack:
What do twitter users say about software?. In 2016 IEEE 24th International
Requirements Engineering Conference (RE). IEEE, 96-105.

Emitza Guzman, Rana Alkadhi, and Norbert Seyff. 2017. An exploratory study
of twitter messages about software applications. Requirements Engineering 22,
3(2017), 387-412.

Roman Haas, Daniel Elsner, Elmar Juergens, Alexander Pretschner, and Sven
Apel. 2021. How can manual testing processes be optimized? developer survey,
optimization guidelines, and case studies. In Proceedings of the 29th ACM Joint
Meeting on European Software Engineering Conference and Symposium on the
Foundations of Software Engineering. 1281-1291.

Samine Hadadi. 2021. Adee: Bringing Accessibility Right Inside Design Tools.
In The 23rd International ACM SIGACCESS Conference on Computers and Acces-
sibility. 1-4.

Google Accessibility Help. 2022. https://support.google.com/accessibility/?hl=e
n#topic=9071908. (Accessed on 08/24/2022).

ADA.gov homepage. 2022. https://www.ada.gov/.

Sameera Horawalavithana, Abhishek Bhattacharjee, Renhao Liu, Nazim Choud-
hury, Lawrence O. Hall, and Adriana Iamnitchi. 2019. Mentions of security
vulnerabilities on reddit, twitter and github. In IEEE/WIC/ACM International
Conference on Web Intelligence. 200-207.

Shuichi Ichioka, Estelle Pouget, Takao Mimura, Jun Nakajima, and Toshihiro
Yamauchi. 2020. Accessibility Service Utilization Rates in Android Applica-
tions Shared on Twitter. In International Conference on Information Security
Applications. Springer, 101-111.

Yavuz Inal, Frode Guribye, Dorina Rajanen, Mikko Rajanen, and Mattias Rost.
2020. Perspectives and practices of digital accessibility: A survey of user ex-
perience professionals in nordic countries. In Proceedings of the 11th Nordic
Conference on Human-Computer Interaction: Shaping Experiences, Shaping Soci-
ety. 1-11.

Yavuz Inal, Kerem Rizvanoglu, and Yeliz Yesilada. 2019. Web accessibility in
Turkey: awareness, understanding and practices of user experience professionals.
Universal Access in the Information Society 18, 2 (2019), 387-398.

David Johnson, Roger Johnson, and Karl Smith. 2007. The State of Cooperative
Learning in Postsecondary And Professional Settings. Educational Psychology
Review 19 (03 2007), 15-29. https://doi.org/10.1007/s10648-006-9038-8

David W Johnson and Roger T Johnson. 2008. Social interdependence theory and
cooperative learning: The teacher’s role. In The teacher’s role in implementing
cooperative learning in the classroom. Springer, 9-37.

Susan Schott Karr. 2001. IT certification pays off.(Education). Financial executive
17, 9 (2001), 60-62.

Saba Kawas, Laura Vonessen, and Amy J Ko. 2019. Teaching accessibility: A
design exploration of faculty professional development at scale. In Proceedings
of the 50th ACM Technical Symposium on Computer Science Education. 983-989.
Karin Klooster. 2016. Applying a Security Testing Methodology: a Case Study.
Ravi Kuber, Ama Hastings, Matthew Tretter, and Donal Fitzpatrick. 2012. De-
termining the Accessibility of Mobile Screen Readers for Blind Users. (06 2012).
https://doi.org/10.2316/P.2012.772-003

Manoel Victor Rodrigues Leite, Lilian Passos Scatalon, André Pimenta Freire,
and Marcelo Medeiros Eler. 2021. Accessibility in the mobile development
industry in Brazil: Awareness, knowledge, adoption, motivations and barriers.
Journal of Systems and Software 177 (July 2021), 110942. https://doi.org/10.101
6/.j55.2021.110942

React - A JavaScript library for building user interfaces. 2022. https://reactjs.org/.
(Accessed on 08/29/2022).

Yvonna S Lincoln and Egon G Guba. 1985. Naturalistic inquiry. sage.

Michael Longley and Yasmine N Elglaly. 2021. Accessibility Support in Web
Frameworks. In The 23rd International ACM SIGACCESS Conference on Computers
and Accessibility. 1-4.

Stephanie Ludi. 2007. Introducing accessibility requirements through external
stakeholder utilization in an undergraduate requirements engineering course. In
29th International Conference on Software Engineering (ICSE’07). IEEE, 736-743.
Sergio Lujan-Mora and Firas Masri. 2012. Integration of web accessibility into
agile methods. In Proceedings of the 14th International Conference on Enterprise
Information Systems (ICEIS 2012). 123-127.

https://www.csun.edu/cod/conference/sessions/
https://material.io/
https://developer.apple.com/design/human-interface-guidelines/foundations/accessibility/
https://developer.apple.com/design/human-interface-guidelines/foundations/accessibility/
https://developer.apple.com/wwdc22/
https://developer.android.com/training/testing/espresso
https://developer.android.com/training/testing/espresso
https://developers.google.com/search/docs/beginner/seo-starter-guide
https://developers.google.com/search/docs/beginner/seo-starter-guide
https://developer.apple.com/documentation/objectivec/nsobject/uiaccessibility
https://developer.apple.com/documentation/objectivec/nsobject/uiaccessibility
https://angular.io/
https://developer.apple.com/design/human-interface-guidelines/guidelines/overview/
https://developer.apple.com/design/human-interface-guidelines/guidelines/overview/
https://support.google.com/accessibility/?hl=en#topic=9071908
https://support.google.com/accessibility/?hl=en#topic=9071908
https://www.ada.gov/
https://doi.org/10.1007/s10648-006-9038-8
https://doi.org/10.2316/P.2012.772-003
https://doi.org/10.1016/j.jss.2021.110942
https://doi.org/10.1016/j.jss.2021.110942
https://reactjs.org/

CHI 23, April 23-28, 2023, Hamburg, Germany

[66]

[67]

[68]

(72

[73

[74

=)
=

(82

Darliane Miranda and Jodo Araujo. 2022. Studying industry practices of accessi-
bility requirements in agile development. In Proceedings of the 37th ACM/SIGAPP
Symposium on Applied Computing. 1309-1317.

& Research Nielsen Norman Group: UX Training, Consulting. 2022. https:
//www.nngroup.com/.

Use of the AccessibilityService API. 2022. https://support.google.com/googlepla
y/android-developer/answer/10964491?hl=en.

Semantics MDN Web Docs Glossary: Definitions of Web-related terms | MDN.
2022. https://developer.mozilla.org/en-US/docs/Glossary/Semantics.

World Health Organization. 2019. World Report on Disability. https://www.
who.int/teams/noncommunicable-diseases/sensory-functions-disability-and-
rehabilitation/world-report-on-disability. (Accessed on 08/24/2022).

Débora Maria Barroso Paiva, André Pimenta Freire, and Renata Pontin de Mat-
tos Fortes. 2021. Accessibility and software engineering processes: A systematic
literature review. Journal of Systems and Software 171 (2021), 110819.

Twitter API Documentation | Docs | Twitter Developer Platform. 2022. https:
//developer.twitter.com/en/docs/twitter-api. (Accessed on 09/07/2022).
Cynthia Putnam, Maria Dahman, Emma Rose, Jinghui Cheng, and Glenn Brad-
ford. 2016. Best practices for teaching accessibility in university classrooms:
cultivating awareness, understanding, and appreciation for diverse users. ACM
Transactions on Accessible Computing (TACCESS) 8, 4 (2016), 1-26.

Sharifah Nadiyah Razali, Helmi Noor, Mohd Ahmad, and Faaizah Shahbodin.
2017. Enhanced student soft skills through integrated online project based
collaborative learning. International Journal of ADVANCED AND APPLIED
SCIENCES 4 (03 2017), 59-67. https://doi.org/10.21833/ijaas.2017.03.010

Bob Regan. 2004. Accessibility and design: A failure of the imagination. In Pro-
ceedings of the 2004 international cross-disciplinary workshop on Web accessibility
(WH4A). 29-37.

Jose E Reyes Arias, Kale Kurtzhall, Di Pham, Mohamed Wiem Mkaouer, and
Yasmine N Elglaly. 2022. Accessibility Feedback in Mobile Application Reviews:
A Dataset of Reviews and Accessibility Guidelines. In CHI Conference on Human
Factors in Computing Systems Extended Abstracts. 1-7.

Robolectric. 2022. http://robolectric.org/.

Colin Robson. 2002. Real world research: A resource for social scientists and
practitioner-researchers. Wiley-Blackwell.

Brian J Rosmaita. 2006. Accessibility first! A new approach to web design.
In Proceedings of the 37th SIGCSE technical symposium on Computer science
education. 270-274.

Jose Ramon Saura, Daniel Palacios-Marqués, and Domingo Ribeiro-Soriano.
2021. Using data mining techniques to explore security issues in smart living
environments in Twitter. Computer Communications 179 (2021), 285-295.
Abhishek Sharma, Yuan Tian, and David Lo. 2015. What’s hot in software
engineering Twitter space?. In 2015 IEEE International Conference on Software
Maintenance and Evolution (ICSME). IEEE, 541-545.

Kristen Shinohara, Saba Kawas, Amy J Ko, and Richard E Ladner. 2018. Who
teaches accessibility? A survey of US computing faculty. In Proceedings of the
49th ACM Technical Symposium on Computer Science Education. 197-202.

[83]

[84

[85

[86

[87

[88

[89

[90

[o1]

[92

[93

[94]

[95

[96

[97

[98

[99

[100

Syed Fatiul Huqg, Abdulaziz Alshayban, Ziyao He, and Sam Malek

Leif Singer, Fernando Figueira Filho, and Margaret-Anne Storey. 2014. Software
engineering at the speed of light: how developers stay current using twitter. In
Proceedings of the 36th International Conference on Software Engineering. 211-
221.

Get started with Accessibility Scanner. 2022. p. https://support.google.com/acc
essibility/android/answer/6376570?hl=en.

Anselm L Strauss and Juliet Corbin. 1994. Grounded Theory Methodology-An
Overview. Handbook of Qualitative Research. NK Denzin and YS Lincoln.
Murtaza Tamjeed. 2020. Accessibility in User Reviews for Mobile Apps: An Auto-
mated Detection Approach. Rochester Institute of Technology.

Understanding the Purple Pound Market. 2022. https://wearepurple.org.uk/und
erstanding- the-purple-pound-market/.

William J Tibben and Gunela Astbrink. 2012. Accessible communications:
Tapping the potential in public ICT procurement policy. (2012).

Shari Trewin, Brian Cragun, Cal Swart, Jonathan Brezin, and John Richards. 2010.
Accessibility challenges and tool features: an IBM Web developer perspective.
In Proceedings of the 2010 international cross disciplinary conference on web
accessibility (W4A). 1-10.

Aleksi Vuorjoki et al. 2021. A developer-friendly automated web GUI test
strategy. (2021).

WCAG 2 Overview | Web Accessibility Initiative (WAI) | W3C. 2019. https:
/[www.w3.0rg/WAI/standards-guidelines/wcag/. (Accessed on 08/29/2022).
WAI-ARIA Overview | Web Accessibility Initiative (WAI) | W3C. 2022. https:
//www.w3.0org/WAl/standards-guidelines/aria/.

Annalu Waller, Vicki L Hanson, and David Sloan. 2009. Including accessibility
within and beyond undergraduate computing courses. In Proceedings of the
11th international ACM SIGACCESS conference on Computers and accessibility.
155-162.

James C Ward and Amy L Ostrom. 2006. Complaining to the masses: The role of
protest framing in customer-created complaint web sites. Journal of consumer

Research 33, 2 (2006), 220-230.
WebAIM. 2022. WebAIM: The WebAIM Million - The 2022 report on the acces-

sibility of the top 1,000,000 home pages. https://webaim.org/projects/million/.
(Accessed on 08/24/2022).

Grant Williams and Anas Mahmoud. 2017. Mining twitter feeds for software
user requirements. In 2017 IEEE 25th International Requirements Engineering
Conference (RE). IEEE, 1-10.

Lan Xia. 2013. Effects of companies’ responses to consumer criticism in social
media. International Journal of Electronic Commerce 17, 4 (2013), 73-100.
Shunguo Yan and PG Ramachandran. 2019. The current status of accessibility
in mobile apps. ACM Transactions on Accessible Computing (TACCESS) 12, 1
(2019), 1-31.

Yeliz Yesilada, Giorgio Brajnik, Markel Vigo, and Simon Harper. 2015. Exploring
perceptions of web accessibility: a survey approach. Behaviour & Information
Technology 34, 2 (2015), 119-134.

Qiwen Zhao, Vaishnavi Mande, Paula Conn, Sedeeq Al-khazraji, Kristen Shino-
hara, Stephanie Ludi, and Matt Huenerfauth. 2020. Comparison of methods for
teaching accessibility in university computing courses. In The 22nd International
ACM SIGACCESS Conference on Computers and Accessibility. 1-12.

https://www.nngroup.com/
https://www.nngroup.com/
https://support.google.com/googleplay/android-developer/answer/10964491?hl=en
https://support.google.com/googleplay/android-developer/answer/10964491?hl=en
https://developer.mozilla.org/en-US/docs/Glossary/Semantics
https://www.who.int/teams/noncommunicable-diseases/sensory-functions-disability-and-rehabilitation/world-report-on-disability
https://www.who.int/teams/noncommunicable-diseases/sensory-functions-disability-and-rehabilitation/world-report-on-disability
https://www.who.int/teams/noncommunicable-diseases/sensory-functions-disability-and-rehabilitation/world-report-on-disability
https://developer.twitter.com/en/docs/twitter-api
https://developer.twitter.com/en/docs/twitter-api
https://doi.org/10.21833/ijaas.2017.03.010
http://robolectric.org/
https://support.google.com/accessibility/android/answer/6376570?hl=en
https://support.google.com/accessibility/android/answer/6376570?hl=en
https://wearepurple.org.uk/understanding-the-purple-pound-market/
https://wearepurple.org.uk/understanding-the-purple-pound-market/
https://www.w3.org/WAI/standards-guidelines/wcag/
https://www.w3.org/WAI/standards-guidelines/wcag/
https://www.w3.org/WAI/standards-guidelines/aria/
https://www.w3.org/WAI/standards-guidelines/aria/
https://webaim.org/projects/million/

	Abstract
	1 Introduction
	2 Related Work
	2.1 Software Accessibility Development Studies
	2.2 Understanding Software Related Aspects Via Twitter

	3 Research Design
	3.1 DC (Development Conversations): Collection and Analysis
	3.2 AC (Advocate Conversations): Collection and Analysis
	3.3 Triangulation with Literature
	3.4 Threats to validity

	4 A11y Viewpoint: Process
	4.1 Software Development Life Cycle (SDLC)
	4.2 Design
	4.3 Development
	4.4 Testing

	5 A11y Viewpoint: Profession
	5.1 Personnel
	5.2 Organization
	5.3 Product

	6 A11y Viewpoint: People
	6.1 Learners
	6.2 Practitioners and advocates
	6.3 Users

	7 Discussion
	7.1 Cost and Incentives ⓒ
	7.2 Awareness and Advocacy ⓐ
	7.3 Technology and Resources ⓣ
	7.4 Integration and Inclusion ⓘ

	8 Conclusion
	Acknowledgments
	References

