
AccessiText: Automated Detection of Text Accessibility Issues in
Android Apps

Abdulaziz Alshayban
School of Information and Computer Sciences

University of California, Irvine , USA
aalshayb@uci.edu

Sam Malek
School of Information and Computer Sciences

University of California, Irvine, USA
malek@uci.edu

ABSTRACT
For 15% of the world population with disabilities, accessibility is
arguably the most critical software quality attribute. The growing
reliance of users with disability on mobile apps to complete their
day-to-day tasks further stresses the need for accessible software.
Mobile operating systems, such as iOS and Android, provide vari-
ous integrated assistive services to help individuals with disabilities
perform tasks that could otherwise be difficult or not possible. How-
ever, for these assistive services to work correctly, developers have
to support them in their app by following a set of best practices
and accessibility guidelines. Text Scaling Assistive Service (TSAS)
is utilized by people with low vision, to increase the text size and
make apps accessible to them. However, the use of TSAS with in-
compatible apps can result in unexpected behavior introducing
accessibility barriers to users. This paper presents AccessiText, an
automated testing technique for text accessibility issues arising
from incompatibility between apps and TSAS. As a first step, we
identify five different types of text accessibility by analyzing more
than 600 candidate issues reported by users in (i) app reviews for
Android and iOS, and (ii) Twitter data collected from public Twitter
accounts. To automatically detect such issues, AccessiText utilizes
the UI screenshots and various metadata information extracted us-
ing dynamic analysis, and then applies various heuristics informed
by the different types of text accessibility issues identified earlier.
Evaluation of AccessiText on 30 real-world Android apps corrob-
orates its effectiveness by achieving 88.27% precision and 95.76%
recall on average in detecting text accessibility issues.

CCS CONCEPTS
• Software and its engineering→ Software testing and debug-
ging; •Human-centered computing→ Accessibility design
and evaluation methods.

KEYWORDS
Accessibility, Automated Testing, Mobile Application

ACM Reference Format:
Abdulaziz Alshayban and Sam Malek . 2022. AccessiText: Automated De-
tection of Text Accessibility Issues in Android Apps. In Proceedings of

Permission to make digital or hard copies of part or all of this work for personal or
classroom use is granted without fee provided that copies are not made or distributed
for profit or commercial advantage and that copies bear this notice and the full citation
on the first page. Copyrights for third-party components of this work must be honored.
For all other uses, contact the owner/author(s).
ESEC/FSE ’22, November 14–18, 2022, Singapore, Singapore
© 2022 Copyright held by the owner/author(s).
ACM ISBN 978-1-4503-9413-0/22/11.
https://doi.org/10.1145/3540250.3549118

the 30th ACM Joint European Software Engineering Conference and Sym-
posium on the Foundations of Software Engineering (ESEC/FSE ’22), November
14–18, 2022, Singapore, Singapore. ACM, New York, NY, USA, 12 pages.
https://doi.org/10.1145/3540250.3549118

1 INTRODUCTION
Mobile technology has progressed beyond the scope of communi-
cation and has enabled areas like education, entertainment, and
finance. For 15% of the world population with disabilities [42], ac-
cessibility is arguably the most critical software quality attribute.
The growing reliance of users with disability on mobile apps to com-
plete their day-to-day tasks further stresses the need for accessible
software.

Popular mobile operating systems, such as iOS and Android,
provide various integrated assistive services, such as TalkBack (a
screen reader for users with visual impairment), SwitchAccess (a
service for navigating an app via switches instead of the touch-
screen), or Voice Access (a service for controlling the device with
spoken commands) to help individuals with various disabilities
(e.g., vision, motor) use their phones and perform tasks that could
otherwise be difficult or not possible. However, for these assistive
services to work correctly, developers have to support such services
in their apps by following a set of best practices and accessibility
guidelines [12, 17]. Disappointingly, several studies [9, 37, 39] have
shown lack of accessibility and compatibility of mobile apps with
assistive services.

App developers can significantly improve the accessibility and
readability of text in their apps by considering factors such as con-
trast ratio, font selection, and text resizing. From an accessibility
standpoint, in addition to satisfying the minimum text size require-
ment and providing larger text where possible, it is also essential to
ensure that text can be adjusted according to users’ specific needs.
Users with a variety of visual impairments make this adjustment to
improve their ability to read small text on a small screen. Once this
setting is adjusted, the platform and any apps that have built-in
support for this feature will resize the displayed text within the
app.

One of the most poplar assistive services among mobile app
users is the Text Scaling Assistive Service (TSAS) [1], which is uti-
lized by people with low vision, to increase the default text size
and make apps accessible to them. The web content accessibility
guidelines (WCAG) [41], the recognized standard for digital acces-
sibility, states the requirement that users must have the ability to
adjust the text size, without losing any content or functionality.
However, similar to other assistive services, the use of TSAS with
incompatible apps, i.e., those implemented without accessibility in

https://doi.org/10.1145/3540250.3549118
https://doi.org/10.1145/3540250.3549118

ESEC/FSE ’22, November 14–18, 2022, Singapore, Singapore Abdulaziz Alshayban and Sam Malek

<TextView
android:id="@+id/textView1"
android:layout_width="wrap_content"
android:layout_height="wrap_content"
android:text="Scaleable Text!"
android:textSize="26sp" />

Listing 1: A TextView that defines its size in terms of SP units.
The text displayed will scale based on the user’s preference.

mind, can result in unforeseen behavior in the app user interface
and layout, introducing various accessibility issues for users.

While several recent studies have investigated accessibility issues
affecting mobile apps [9, 19, 20, 39], none has focused on studying
mobile apps support for low-vision users that use TSAS. This is a
rather surprising gap, since TSAS is one of the most widely used
assistive services [1].

To facilitate a proper understanding of text accessibility issues,
this paper presents a study towards characterizing text accessibility
issues in mobile apps, as reported by users. We identify a set of
text accessibility classes encountered by users by analyzing more
than 600 candidate issues reported by users in (i) app reviews for
Android and iOS, and (ii) discussion and issues reported by users
on Twitter. Then, leveraging the identified set of text accessibility
issues, we devise and propose AccessiText, an automated technique
for accurate detection of text accessibility issues. We evaluate our
tool on a set of 30 real-world apps from various categories. Ad-
ditionally, we discuss how the different types of text accessibility
issues impact users, and discuss the causes and provide suggestions
on how developers can improve their apps to mitigate them.

Our findings highlight several important insights, including the
presence of various types of text accessibility issues in mobile apps.
Most importantly, the impact of text accessibility issues is not just
limited to a reduced user experience due to a distorted and less
appealing UI, but can also completely break some of the app func-
tionalities and make it inaccessible for a disabled user relying on
TSAS. For example, in some apps, the user is unable to navigate
from one screen to another, as the UI view responsible for handling
the user interaction becomes completely unreachable, rendering
the corresponding functions inaccessible.

Overall, the paper makes the following contributions:

• As a first step, we identify five different classes of text accessibility
issues by analyzing more than 600 candidate issues reported by
users in (i) app reviews for Android and iOS, and (ii) discussion
and issues reported by users on Twitter.

• Then, leveraging the identified set of text accessibility issues,
we devise and propose AccessiText, an automated technique for
accurate detection of text accessibility issues. We evaluate our
tool on a set of 30 real-world commercial apps.

• We discuss how the different types of text accessibility issues
impact users, and discuss the causes and provide suggestions on
how developers can improve their apps to mitigate them.

The paper is structured as follows: In Section 2 we provide a brief
background. In Section 3, we present our study on identifying the
different types of text accessibility issues. In Section 4, we describe
how our approach, AccessiText, works. In Section 5, we present
our findings. Section 6 discusses the results and outline relevant

insights. We provide a a brief review of prior research efforts in
Section 8.

2 BACKGROUND
The user interface (UI) for an Android app is made up of a series of
View and ViewGroup elements. Generally, an Android app contain
one or more activities (i.e., screens), with each activity consisting of
multiple instances of View and ViewGroup. The ViewGroup class is
a subclass of the View class, and acts as a base class for layouts and
views containers. The role of a ViewGroup is to provide an invisible
container to hold other views and to define the layout properties
that control how their child views are positioned on the screen.
A View is defined as the user interface element which is used to
create interactive UI views such as TextView, ImageView, etc., and
is responsible for drawing and event handling.

In Android, it is fairly simple to initially enable resizable text
views so that they become sensitive to the user’s selected prefer-
ences. As outlined in the Android documentation, the platform
allows dimensional values to be specified in a variety of ways,
however, when it comes to specifying the text sizes, the use of
scale-independent pixels (SP) is recommended as they can be ad-
justed based on the users’ preference. Listing 1 shows an example
of a scaleable Textview UI view component in Android. By setting
the width and height properties of the view to wrap_content, we
ensure that the width or height can expand as needed to contain
the text within it. In iOS, the process of supporting scalable text
size, while still straightforward, requires additional work and is
not enabled by default. Apple encourages the use of their existing
UIFontTextStyle classes, and then enabling properties such as
adjustsFontForContentSizeCategory for the UI view elements
to have an automatic update based on the user selected text size. In
case of developers using custom fonts, the process requires addi-
tional work by the developer.

At first, it may seem effortless to support app text scaling. De-
velopers can simply follow the outlined steps in the platform doc-
umentation to enable that feature without much work. However,
supporting this feature without considering proper layout design
and running tests with larger text sizes, especially in rich and com-
plex UIs, can result in many accessibility issues for users.

According to the Web Content Accessibility Guidelines (WCAG)
[41], the recognized standard for digital accessibility, web and mo-
bile apps should meet some minimum requirements called success
criteria. The Resizable Text success criteria mandate that the app’s
textual content must be resizable (scaleable) up to double the default
size without losing any of the app content or functionality. This
requirement is also outlined in Apple Human Interface Guidelines
[4] and Google Design Guidelines [12].

3 AN EMPIRICAL STUDY OF TEXT-BASED
ACCESSIBILITY ISSUES IN MOBILE APPS

As a first step to our study, we wanted to develop a deeper under-
standing of the types of accessibility problems that ensue when
an app does not properly handle text scaling. In this section, we
provide an overview of our findings, which set the foundation for
our automated testing technique described later in this paper.

AccessiText: Automated Detection of Text Accessibility Issues in Android Apps ESEC/FSE ’22, November 14–18, 2022, Singapore, Singapore

Figure 1: Examples of (a) unresponsive view issue, and (b) missing view issue

3.1 Design and Data Collection
This section introduces the methodology of our study of users’
feedback regarding the use of TSAS. We detail how we extracted
and processed data. To determine the variety of accessibility issues
that can result from text scaling, wemanually analyzed two different
sources of information described below:

• App reviews. These are posts by users of (i) Android apps on
the Google Play store, and (ii) iOS apps on the App Store. App
reviews have been identified as a prominent source of valuable
feedback inmobile apps [27, 28, 30].They can provide information
such as bugs or issues [35], summary of user experience [24],
request for features and enhancements [18]. Our Android reviews
dataset includes reviews from 867 top apps. The App Store dataset
includes reviews from 1,350 top apps.

• Twitter data. These are tweet messages collected from public
Twitter accounts. It is common for users to utilize Twitter public
platform to provide feedback and report issues to developers,
as the majority of apps have a public presence on the platform.
Additionally, feedback posted on Twitter has been found to some-
times be more relevant and informative to app developers than
other sources [34, 35]. Thus, mining Twitter data provides sig-
nificant valuable insights into the types of accessibility issues
experienced by mobile apps users. We used the Twitter Academic
API [2] to collect the public tweets.

For both the Twitter and app stores datasets, our analysis covered
reviews and tweets in English only. We first collected candidate
tweets and reviews by searching both datasets with keywords rele-
vant to the use of TSAS. For Twitter data, we only consider tweets
with images, which are typically screenshots of the app containing
the issue. Sample queries included keywords such as "accessibility",
"large text", "low vision", and "visually impaired". While some users
mentioned the term "accessibility" when describing a text acces-
sibility issue, others addressed and described such issues without
mentioning the term. As using keywords to select user reviews and

tweets related to accessibility may result in many false positives, in
the first iteration, we manually analysed the content of all selected
accessibility reviews and tweets to exclude those that are not re-
lated to accessibility issues. It is important to note that we did not
consider data items tagged as false positive , i.e., discussions not
related to text-based accessibility in mobile apps, in the count of
the documents manually analyzed. At the end, we collected a set
of 412 app reviews, and 235 tweets. Given the limited number, we
considered all of them in our manual analysis.

The data collected from the two sources listed above was manu-
ally analyzed following a procedure inspired by open coding [33].
Our goal was to identify and classify the type of accessibility issue
reported by the user, by analysing the tweet/app review text and
associated image, and extracts any additional information provided.

We were able to classify the type of text accessibility issue re-
ported by users in 135 data items. The remaining data broadly falls
under two categories: (i) request for an additional feature from the
developer to be able to adjust the font size, from which it was not
clear whether it is because the app does not support TSAS or just
because the user is not aware such an assistive service exists, or
(ii) reported a text accessibility issue with the text scaling assistive
service, but did not provide enough information for us to identify
the type of issue, e.g., a user would describe the app UI to be dis-
torted and the text unreadable without providing much detail or a
specific description.

Finally, the output of this step was a set of text accessibility
issues for mobile apps, described in the following section.

3.2 Results
We list and describe a number of text accessibility issues that are
the result of the manual coding process for Twitter and app stores
data.

Unresponsive Views: Issues in this category describe textual
views with a fixed size, that do not respond to text size adjustments

ESEC/FSE ’22, November 14–18, 2022, Singapore, Singapore Abdulaziz Alshayban and Sam Malek

Figure 2: Examples of (a) overlapping views issue, and (b) cropped view issue

by TSAS, making this assistive service useless to the user. Figure 1(a)
shows an example of an unresponsive textual view (indicated by
the red dashed line) in the login screen for STC app, an account
management app with more than than 10 millions downloads in the
Play Store. Themain reason for this type of issue is the use of density
independent pixels (dp) for text font sizes, which unlike scale-
independent pixels (sp), do not respond to font size preference
specified by the user. Additionally, images of text can also lead
to the same issue as they cannot be scaled up by users. Both of
these options are sometimes used by developers to easily keep a
consistent look and feel for the app across multiple devices and
configuration, and unfortunately as a result, reducing the level of
accessibility and compatibility with assistive services for the app.

An example of a user feedback on MyVerizon app for this type
of issue: “The app itself seems fine but does not honor the larger text
size accessibility option. This has been reported to them numerous
times.”

Missing Views: When the text size increases, it is typical for
views to be rearranged on the screen as other textual views occupy
more space, and as a result, it is not uncommon for some views to
disappear from the visible part of the screen, and become completely
inaccessible by users. Figure 1(b) shows an example of a missing
view in the main dashboard for Health Tracker app where the
number of remaining days in the current challenge (delineated using
the dashed red line on the top right) disappears when adjusting the
text size. The impact of these issues is not just limited to distorting
the UI and making it less appealing, but can also break some of the
app functions and make it inaccessible for a disabled user relying
on TSAS.

An example of a user feedback on Messenger app for this type
of issue: “Really disappointed that the app I use the most has been
ruined in accessible large font. Pictures next to names gone, [...] ”

Overlapping Views: Overlapping happens when two views
on the same screen are rendered fully or partially over each other,

Figure 3: Number of text accessibility issues grouped by plat-
form

resulting in one of the views covering the content of the other.
Figure 2 (a) shows an example of two overlapping textual views in
the STC app. We can observe how the product title is covering the
price text, making it hardly readable. The common reason behind
this category of issues is the limited space and poorly defined
constraints behind these views.

An example of a user feedback on Discord app, for this type of
issue: “I have very poor eye sight due to a genetic condition. I rely on
the accessibility options available on the iPhone and I’m very sad to
see that the app doesn’t play well with large text. All the text is over
lapping making it hard to use the app.”

Cropped Views: This type of issue happens when the displayed
text grows beyond the constrained height of the containing view,
causing part of the text to be invisible. Figure 2 (b) shows an example
of a cropped view in the Todo List app. The impact of this issue can

AccessiText: Automated Detection of Text Accessibility Issues in Android Apps ESEC/FSE ’22, November 14–18, 2022, Singapore, Singapore

range from aesthetically unpleasant text to a completely unreadable
and inaccessible one, depending on the severity of the cropping.
Typically these kinds of issues are related to hard coding layout
limits. This allows the content to scale to different lengths and sizes.

Figure 4: A cropped view accessibility issue for AnovaCulinary
app as reported by a user.

An example of a user feedback on AnovaCulinary app, as part
of which the user also provided a screenshot of the app, shown in
Figure 4, that clearly demonstrated the issue: “It’s not easy to set
the timer in your android app when it looks like this. I suspect this is
caused by large settings of Accessibility.”

Truncated Views: Text truncation, i.e., shortening, typically
happens when the text grows beyond the constrained width of
the containing view. Truncated parts of a text are replaced by an
ellipsis (...). Figure 5 shows an example of a truncated view
in the Insight Timer app. While text truncation is an effective
way to hide additional details and keep the UI design consistent,
it can negatively impact the UI accessibility by hiding important
information from the user.

An example of a user feedback on ANZ bank app, for this type of
issue: “Can you please test your Android app when a phone is using
largest font [...] As when paying another person the bank account
number gets trimmed & can’t see all the numbers. You need to test
applications with large font sizes & accessibility features enabled.”

Figure 3 shows the number of text accessibility issues grouped by
Android and iOS, the two mobile platforms considered in our study.
The lack of support for text scaling by apps is disappointing, given
that both platforms provide facilities for aiding developers to avoid
these issues. The identified five types of text accessibility issues
are present in both platforms. Unresponsive views, overlapping
views, and cropped views are the most common issues reported by
users. The high number of unresponsive views in iOS is consistent
with the results of a recent survey by Diamond [6], a technology
consulting company. By default, Android development supports
text resize, while iOS requires developers to use built-in fonts and
enable a specific flag in the system, or modify their custom fonts to
accommodate resizing. This difference between the two platforms
may explain the significant increase in unresponsive issues in iOS
compared to Android.

Figure 5: Example of a truncated view

4 APPROACH
Given the insights from our empirical study, we set out to develop an
automated tool for testing and detecting text accessibility issues in
Android. Although iOS can also benefit from such a tool, our current
implementation only supports Android. Extending our work to iOS
will be an area of our future work. Figure 6 shows an overview of our
approach, called AccessiText, consisting of two main components:

(I) Test Runner component that executes a given GUI test script
for an app under two settings, first, with the default text size, and
then, with larger text by activating TSAS. During the test execution,
AccessiText captures a series of screenshots, and collects various
metadata related to the UI view components present on each screen
that was explored during the test execution.

(II) Result Analyzer component that utilizes the information from
the previous component, and applies various checks, i.e., predefined
rules, to detect any text accessibility issues encountered. Finally,
Result Analyzer generates an accessibility report that provides a de-
tailed description of all the accessibility issues and their contextual
information.

We implemented AccessiText using Python programming lan-
guage and utilized Appium testing Framework [16]. In the remain-
der of this section, we describe AccessiText’s two components in
detail.

4.1 Test Runner
Test Runner takes a GUI test script as input and executes it twice,
first with device default text size, and then with the larger text size.
AccessiText uses Android Debug Bridge (adb) tool to control the
text size and activate/deactivate TSAS at each run. A GUI test case
represents an actual use-case provided by the app, and consists of
basically a sequence of steps, where each step typically identifies a
particular UI view, i.e., Button, and specifies an action, e.g., click
or scroll, that is performed on that view.

While executing each step in the test, AccessiText takes a screen-
shot, and extract an XML dump for the currently displayed screen.
XML dump file is parsed to get hierarchical views and properties

ESEC/FSE ’22, November 14–18, 2022, Singapore, Singapore Abdulaziz Alshayban and Sam Malek

Figure 6: Overview of AccessiText

details of each UI view in the current screen. Properties details in-
clude information such app-name, view-class, bounds, and text.
Listing 2 shows an example of the list of properties parsed from the
XML dump for a UI view in the hierarchy. View metadata informa-
tion will later be used by Result Analyzer component to compare
the different UI views and identify various text accessibility issues.

AccessiText presumes the test cases are (1) written for each app
using the default text size, and (2) actions in the test cases identify
the UI views through either resource-id or text containment (i.e.,
static attributes). These types of tests are also expected to work
with TSAS activated. AccessiText does not support tests cases in
which UI views are identified using absolute coordinates on the
screen. If a test uses absolute coordinates, it may not work when
TSAS is activated, because the positions of views change due to
the increase in text size. These assumptions are reasonable and
widely applicable. Indeed, developers almost always write tests for
their apps with the default text size. Developers typically do not
write tests with absolute coordinates, because regardless of TSAS,
tests using absolute coordinates cannot be executed on devices with
different screen resolutions.

During the test execution, Test Runner component performs
additional exploration steps that are not defined in the provided test.
For example, when executing a test case with TSAS activated, after
each step, AccessiText will try to identify whether the currently
displayed screen is scrollable either horizontally or vertically. If
so, it will perform a scrolling action, and collect the additional UI
views displayed after scrolling. This step is critical to identifying
additional views that were originally part of the screen under the
original settings (default text size) but have been pushed down (due
to increased text size) and became hidden. This list of additional
views (after scrolling) will enable us to perform an accurate and
complete comparison for all the views rendered with and without
TSAS activated.

In some cases, Test Runner may not be able to execute certain
steps with the TSAS activated. This is likely to happen when a view

index="0"
text="Get started"
resource -id="com.google.android.apps.authenticator2:id/

howitworks_button_get_started"
class="android.widget.Button"
package="com.google.android.apps.authenticator2"
content -desc=""
checkable="false"
checked="false"
clickable="true"
enabled="true" focusable="true"
focused="false"
scrollable="false"
long -clickable="false"
password="false"
selected="false"
bounds="[231 ,1176][488 ,1272]"

Listing 2: UI view properties parsed from the XML dump for
a Button with the text: Get Started

handling the action is missing or inaccessible (e.g., clicking on a
missing TextView). In this case, the accessibility issue is flagged as
a functionality failure. When this occurs, Test Runner component
deactivates TSAS, falls back to the original setting (i.e., the default
text size), executes the step, and then activates TSAS and contin-
ues with executing the remaining steps in the test case. This way
AccessiText is able to identify all text accessibility issues in the use
case exercised by the test.

4.2 Result Analyzer
The Result Analyzer utilizes the information collected by Test Run-
ner, e.g., the list of UI views and their metadata along with the UI
screenshot for each step, and performs a set of checks to detect the
text accessibility issues described in Section 3.

Unresponsive Textual Views: This check identifies textual
views that do not respond to text size changes by TSAS, mak-
ing this assistive service useless to the user. To detect this issue,
first, AccessiText filters textual views, i.e., views of type Button,

AccessiText: Automated Detection of Text Accessibility Issues in Android Apps ESEC/FSE ’22, November 14–18, 2022, Singapore, Singapore

EditText, and TextView based on class property from the meta-
data in the parsed XML. For each view that satisfies this selection
criteria, AccessiText then obtains an image for the view by cropping
the corresponding step screenshot based on bounds property from
the XML. Finally, AccessiText utilizes Tesseract, an open-source
OCR engine, to identify the bounding box for the text inside the
selected view, and calculates the text height.

For the setting S with default text size, and setting S' with TSAS
activated, we can conclude that a textual view is unresponsive if
the view vi under setting S, and vi' under setting S' have the same
text height.

Missing Views: When the text size increases, it is typical for
views to be rearranged on the screen as other textual views occupy
more space. As a result, it is not uncommon for some views to
disappear and become completely inaccessible by users.

To detect such issues, AccessiText ensures that each view vi un-
der setting S, is also present on the same screen under setting S'. It
is worth noting that a view vi' is likely to have different coordinates
than vi and in some cases even not visible on the currently dis-
played part of the screen. However, it can still be found when a user
scrolls down. AccessiText takes into consideration this scenario,
and checks for vi' in the additional views after scrolling as provided
by Test Runner component.

Overlapping Views: Overlapping happens when two views
on the same screen are rendered fully or partially over each other,
resulting in one of the views covering the content of the other.

AccessiText obtains (x, y) coordinates of the upper left corner
and the lower right corner of each view vi from bounds property
from the XML. Overlapping issue happens if two views, vi' and vj'
in the same screen overlap each other under setting S' but not under
S. Intentional overlapping elements such as Floating Action Button
(FAB), or overlapping views that are part of the original design are
ignored and not flagged as issues. The assumption here is that any
unintended overlap between two elements under settings S’ but
not under S, is undesirable and likely to cause accessibility issues.

Cropped Views: This type of issue occurs when the text grows
beyond the constrained height of the containing view, causing
part of the text to be invisible. The impact of this issue can range
from aesthetically unpleasant text to a completely unreadable and
inaccessible one, depending on the severity of the cropping.

To detect this issue, first, AccessiText filters textual views, i.e.,
views of type Button, EditText, and TextView, based on class
property from the metadata in the parsed XML. It then obtains an
image for the view by cropping the corresponding step screenshot
based on bounds property from the XML. Finally, AccessiText uti-
lizes Tesseract to identify the bounding box for the text inside the
view, and calculates the text height. Given the text height under
setting S, we can easily calculate the expected text height under
setting S' by multiplying default text height by the scale factor
provided to TSAS.

For the same view vi under setting S, and vi' under setting S',
if the text height difference between vi multiplied by the scale
factor (expected height) and actual height of vi' is above a specific
threshold, the text within view vi' is determined to be cropped. The
above-mentioned threshold is configurable, allowing the user of
AccessiText to select a threshold that best fits the desired trade-off

between the number of false positives and true negatives reported
by the tool.

Truncated Views: Text truncation, i.e, shortening, typically
occurs when the text grows beyond the constrained width of the
containing view. Truncated parts of a text are represented by an
ellipsis (...). At a minimum, AccessiText ensures that there is
at least one word of non-truncated content in a truncated text.
While this is the default setting, the minimum required number
of non-truncated words is configurable, and would affect the rate
of false positives and true negatives. AccessiText utilizes Tesseract
to extract the text from view’s image, and compares it with text
property from the XML. If the first word is truncated, then that
view is considered to have a truncated text issue.

Finally, AccessiText generates an accessibility report that pro-
vides a description of all the accessibility issues and their contextual
information. Moreover, the report provides additional information
such as the level of overlap between the UI elements for issues of
type Overlapping Views, and the extent of cropping for issues of
type Cropped Views, which developers may utilize to prioritize and
sort the provided accessibility issues based on their severity and
impact.

5 EVALUATION
We have evaluated AccessiText on real-world apps to answer the
following research questions:

• RQ1. How effective is AccessiText for detection of text accessibil-
ity issues? What are the precision and recall for our approach?

• RQ2. How efficient is AccessiText in terms of its running time
for detection of text accessibility issues?

5.1 Experimental Setup
We evaluated our proposed technique using 30 apps. 15 of these
were selected from the set of apps reported by users to have text
accessibility issues, identified in the empirical study in Section 3.We
complemented our data set with another 15 apps randomly selected
from different categories on Google Play (e.g., travel, productivity,
communication).

We created one test case per app using Appium [16], which is an
open-source testing framework. Each test case reflects a sample of
an app’s main use cases (e.g., register an account, add a task, view
a product), as provided in its description. Our experiments were
conducted on a laptop with Intel Core i7-8550U, 1.80GHz CPU, and
16GB of RAM. We used an Android device (Galaxy S8) configured
with API level 28 and 1440 × 2960 pixel display resolution. The
text scaling factor was set to two, allowing TSAS to resize the text
to double default text size. Although TSAS can be set higher, we
believe doubling the text size is an appropriate choice as it follows
the requirements specified by the accessibility guidelines outlined
in WCAG [41], which requires that an app’s textual content be
resizable up to double the default size without losing content or
functionality.

5.2 Effectiveness of AccessiText
To answer this question, we carefully checked each accessibility
issue found by AccessiText to ensure their correctness. Table 1

ESEC/FSE ’22, November 14–18, 2022, Singapore, Singapore Abdulaziz Alshayban and Sam Malek

Table 1: The number of detected accessibility issues and running time for each app

Unresponsive
View

Missing View Overlapping
View

Cropped View Truncated View Total
Issues

Running Time
(seconds)

NZCovid Tracer * - 2 1 - - 3 58
Al-chan * 1 1 16 - - 18 46
Accor All * - - - 3 1 4 32
Instagram * 6 - - 4 1 11 68

Uber * - 1 - 3 - 4 47
AnovaCulinary * 9 - 2 11 - 22 90

ABC news * 2 1 4 - - 7 51
CNET * - - 10 1 - 11 37
Chase * 1 1 1 1 - 4 49
MyQ * 1 - 3 - - 4 71
Delta * - - 1 2 - 3 39

Allegiant * 8 - 4 - - 12 50
Rush * 1 1 4 - - 6 64

Pocket Casts * - - 4 4 2 10 36
Medium * - - 1 1 - 2 45
Zoom - - 1 10 1 12 47

StepTracker - 1 3 2 - 6 60
Goal Tracker - - 6 1 - 7 48
GetUpside - 1 5 2 - 8 56

STC 24 - 6 - - 30 83
Insight Timer 1 - - 3 2 6 31
To Do List - - - 2 - 2 53
Vocabulary - 12 8 2 - 22 92
Google Auth 1 - 2 2 - 5 59

Lose it - 3 18 1 - 22 51
AllTrails - 3 - - - 3 63
Roadie - 1 6 4 - 11 95
Fedex 3 - - 5 - 8 49

RecipeKeeper - 1 4 - - 5 80
Investment Portfolio - 2 12 3 4 21 168

Table 2: Precision and recall of AccessiText

of Detected Issues Precision Recall
Unresponsive Views 58 98% 100%
Missing Views 31 80.64% 100%
Overlapping Views 122 89.34% 100%
Cropped Views 67 73.13% 94.23%
Truncated Views 11 100% 84.61%
Total 289 88.27% 95.76%

shows, for each issue type, the number of accessibility issues de-
tected. Apps with a star (*) after the app name are from the set of
apps reported by users to have text accessibility issues, identified
in the empirical study in Section 3. Table 2 demonstrates the effec-
tiveness of AccessiText in terms of correctly detecting accessibility
issues discussed earlier. These results demonstrate that on average,
AccessiText has an overall 88.27% precision and 95.76% recall for
the different types of issues. Thereby, AccessiText is substantially
effective at detecting accessibility issues.

The relatively lower precision score for issues of type Cropped
Views is mainly caused by inaccurate results returned by the OCR
tool. Recall that AccessiText utilizes the tool to measure and com-
pare the text height based the bounding boxes returned by the tool.
Text that has low contrast with its background can be difficult to lo-
calize accurately. This also applies to the results of Truncated Views.
A false positive Missing View can occur when the Test Runner
component is unable to automatically scroll either horizontal or

vertically to reach the view, due to a limitation in the Accessiblity
API utilized by Appium framework for interacting with the app.

Overall, the results in this table show that AccessiText was able
to find accessibility issues in all of the apps in our dataset. The
number of issues detected in each app range from 2 to 30 with an
average of 9.5 issues per app. We can also observe that all the apps,
except two, suffer from two or more types of accessibility issues.

We can see that Overlapping View, Cropped View, and Missing
View are the most common types of accessibility issues, and are
present in 23, 21, and 13 apps, respectively, of the 30 apps in our
dataset. Overlapping views has the highest average number of
occurrences in each app.

Table 1 indicates that a few applications have accessibility issues
of Truncated View. The low number of issues could be attributed
to the conservative approach that AccessiText uses when checking
for issues of type Truncated View, where the presence of only one
word of the original text for the view is sufficient to not be flagged.
Additionally, this issue can only occur in UI views that have their
ellipsize property set to true by the developer (in the layout XML
file), which is not the default option.

5.3 Performance of AccessiText
The last column of Table 1 shows, for each application, the total
running time that AccessiText needed to execute the test case and
produce its analysis results. The running time ranges from 31 sec-
onds to 168 seconds (with an average of 1 minute and median of 51
seconds). Overall, the results for RQ2 show that AccessiText was
able to detect accessibility issues within a short time, as the average

AccessiText: Automated Detection of Text Accessibility Issues in Android Apps ESEC/FSE ’22, November 14–18, 2022, Singapore, Singapore

running time for our approach is around 1 minute. The running
time shown includes running the test case and interacting with
the app, obtaining screenshots and xml dump data for the different
screens, performing the various heuristics to check accessibility
issues, and generating the final report with the list of accessibility
issues.

Several factors affect the running time of our approach, including
the number of screens and the complexity (i.e., number of UI views)
of the UI layout. As the number of screens and the complexity
of those screens grow, AccessiText needs to examine and validate
more UI views for potential accessibility issues.

Another factor is the network delay due to the communication
between AccessiText running on the laptop and Appium running
on the mobile device. To improve the execution time, AccessiText
minimizes the requests sent to the Appium server by fetching the
UI screenshots and their XML layouts in one call, storing them
locally on the laptop, and subsequently processing that information
locally to determine the properties of UI views comprising each
screen. This architecture allows for a faster analysis compared to
sending separate requests to Appium for information about each UI
view. Although not the setup we used in our experiment, running
the test cases in parallel on two devices for the two settings (default
and enlarged text) would further cut the running time by half.

6 DISCUSSION

Here, we elaborate further on findings and observations drawn
from both our empirical study of text accessibility issues and our
experiments with AccessiText:

• The impact of text accessibility issues goes beyond aesthetics. The
impact of text accessibility issues is not just limited to a reduced
user experience due to a distorted and less appealing UI, but
can also completely break some of the app’s functionalities and
make it inaccessible for a disabled user relying on TSAS. For
example, in AllTrails app (recall Figure 1), the user is unable
to navigate to the other tabs on the main on-boarding screen, as
the UI view responsible for handling the swiping event is pushed
off the screen and becomes completely unreachable, rendering
this function inaccessible. Similarly, in cases when the screen has
overlapping UI views, the impact can be very serious, especially
if both UI views are interactive (clickable) with each view per-
forming a different functionality, resulting in one of them to be
inaccessible.

• Various factors influence the severity of text accessibility issues. For
each type of text accessibility issue, there are factors that can
influence its severity. For issues of type Overlapping Views, the
level of overlap between the views is the main factor: the more
area of overlap there is, the higher the chances that one or both
UI views become unreadable or inaccessible. For issues of type
Cropped Views and Truncated Views, the extent of cropping (or
shortening) determines how they affect users. In cases where
the cropping is high, the words can be completely unreadable,
making the view containing the text inaccessible. For issues of
typeMissing Views, the type of view and its content, in addition to
whether it is an interactive UI view or not, determine its impact.
When a view goes missing, it is mainly due to the fact that it

was pushed beyond the bounds of the current screen. Missing
views can be a major issue, as the user is not even aware that
an element on the screen is missing. It is even more significant
when the missing view is an interactive view, i.e., a button or
a clickable text that performs some functionality in the app, as
explained earlier.

• Improperly designed layouts lead to text accessibility issues. An im-
portant consideration when creating large and complex layouts
is to use UI view components that are flexible and responsive,
such that they can gracefully adapt to larger text size, and ensure
that all the UI views are arranged according to the relationships
between sibling views and the parent layout. Missing properly
formulated constraints between neighboring UI views may cause
various text accessibility issues when scaling an app’s text. Ac-
cording to Android documentation, responsive layouts can be
achieved through a number of best practices. These include (1)
avoiding hard-coding specific value for any UI view components
and alternatively using wrap_content or match_parent, which
allow a view to set its size to whatever is necessary to fit the
content within that view or expand as much as possible within
the parent view, respectively, and (2) using ConstraintLayout
to specify the position and size for each view according to spatial
relationships with other views on the screen. This way, all the
views can move and stretch together as the screen size changes.

• Accessibility testing is a challenge for developers. Previous studies
[5, 9, 21] indicate a lack of awareness among developers about
basic access principles. Further exacerbating this general lack
of knowledge about accessibility, testing of software for acces-
sibility is a difficult problem, challenged by the availability of
numerous assistive services (e.g., screen reader, switch access,
TSAS, etc.) and device models (e.g., devices with different screen
sizes). Without proper tools and automated techniques, develop-
ers are simply overwhelmed with the number of settings under
which they have to test accessibility properties of their apps.

• Consistent design vs accessible design. Many instances of text
accessibility issues found in our study are caused by hard-coded
UI view dimensions and font sizes. To ensure that the app looks
and feels consistent, developers are tempted to use specific values
for the width and height attributes when defining the UI views.
These practices may result in apps that are not accessible or
compatible with assistive services, including TSAS.

• Certain lack of empathy. Although it was not a goal of our study
to report how developers respond to user feedback, we noticed
that app developers responded differently to user feedback re-
lated to text accessibility issues. In numerous cases the developer
response to the issue was to recommend that users go back to
the default text size to solve the issue, considering this to be an
unreasonable user expectation, instead of acknowledging this as
an accessibility issue that needs to be fixed. For example, the fol-
lowing is an example response from a developer of PulsePoint,
an app for requesting emergency assistance, to a user feedback:
“If you’re using a very large default font, the ’agree’ button may be
pushed off of the page. Reduce your font size and try again.”

• Shifting accessibility to earlier stages of software development. Ac-
cessibility can be better supported when it is deliberately con-
sidered in the early phases of the development life-cycle. User
experience design teams should consider assistive-service users

ESEC/FSE ’22, November 14–18, 2022, Singapore, Singapore Abdulaziz Alshayban and Sam Malek

when drafting early artifacts, such as app UI mock-ups. This
would allow developers to determine how the app UI layout
should adjust and behave to variable text size preferences from
the early stages of development.

7 THREATS TO VALIDITY
Our work is prone to several threats to validity:

• Threats to internal validity concern factors internal to our set-
tings that could have influenced our results. This is, in particular,
related to possible errors in the manual process of tagging the
set of text accessibility issues from the various data sources. To
reduce the threat, we followed the widely-adopted open coding
approach [37] and validated all results for consistency. Addition-
ally, to minimize the risk of bias due to implementation errors in
our tool, we have extensively tested our implementation, verify-
ing the results manually to confirm the accuracy of our approach
at finding the accessibility issues.

• Threats to external validity concern the generalizability of our
findings. Tomaximize the generalizability of the categories of text
accessibility issues, we have considered two different data sources
(app reviews and Twitter data), across two mobile platforms (iOS
and Android). However, it is still possible that we could have
missed some accessibility issue types available in sources we did
not consider. Additionally, For experimental setup, we used apps
that have been reported to have confirmed text accessibility issues
by users. We also complemented our data set with additional apps
from different categories like finance, communication, travel and
shopping.

8 RELATEDWORK
8.1 Accessibility Testing
Accessibility analysis can be difficult and time-consuming, as it
requires human expertise and judgement to determinewhat barriers
may exist for people with disabilities. Researchers have investigated
various ways of automating the accessibility analysis process [13,
20, 25, 36], which can be broadly categorized into two categories:
static and dynamic accessibility analysis.

Lint [14] is an Android analysis tool for potential issues in var-
ious categories such as security, performance, and accessibility.
However, it can only identify a limited set of accessibility issues
including missing content descriptions and missing accessibility
labels declared directly in the XML layout files. Moreover, as a static
analysis tool, Lint requires access to app source code to find such
issues.

In the context of accessibility, dynamic analysis has hadmore suc-
cess in identifying and detecting issues [20]. Accessibility Scanner
[11], the recommended tool from Google to test apps for acces-
sibility, is based on the Accessibility Testing Framework [23], an
open-source library of various automated checks for accessibility,
and it can detect a wide set of accessibility issues. Alshayban et
al. [9] proposed an automated accessibility testing technique by
implementing a random crawler to simplify the process of accessi-
bility testing. MATE [20] is another tool focused on improved and
more efficient exploration process for accessibility testing. How-
ever, both of theses tools are limited to the same set of accessibility

issues as scanner, as they are based on the same accessibility testing
framework.

Latte [39] is an approach aimed at reusing existing tests written
to evaluate an app’s functional correctness to assess its accessibility
as well. It executes the test cases with the help of two types of assis-
tive services, screen readers and switches, to identify accessibility
failures. Alotaibi et al. [8] proposed a new approach for identify-
ing navigation issues in Android apps using TalkBack, by creating
graph-based models to capture user behavior for both TalkBack and
traditional touchscreen users, helping developers detect TalkBack
accessibility issues. A recent work [19] by Chiou et al. utilized a
combination of static and dynamic analyses to detect keyboard
accessibility traps in web apps when using a keyboard interface.

Overall, none of the above-mentioned solutions investigate text
accessibility issues, nor evaluate how the use of TSAS affect the
app UI and introduce accessibility barriers for users.

8.2 GUI Testing
Our approach is also related to the area of GUI testing. Generally,
GUI testing is a form of dynamic analysis to verify the UI function-
ality of the application under test. This type of testing aims to check
whether the UI behaves correctly by executing various test inputs
(e.g., clicking a button, typing in a text field). However, since manual
GUI testing is costly and time-consuming, numerous automated
GUI testing techniques and tools have been proposed to assist de-
velopers in automatically testing app UIs for potential issues and
crashes. While the majority [38] of these tools [10, 15, 26, 31] focus
on the functional aspect of the app by revealing crashes through
testing the app UI with various inputs, some focus on specific issues
that impact the non-functional aspects of the app.

Swearngin et al [40] proposed a deep learning based technique
for uncovering potential usability issues in UI elements tappability.
Seenomaly [44] is an automated technique for detecting GUI anima-
tions effects, such as card movement, menu slide in/out, snackbar
display GUI animation, that degrade the app usability and violate
the platform’s UI design guidelines. Draw [22] helps developers
optimize the UI rendering performance of their mobile apps perfor-
mance by identifying the UI rendering delay problems. TAPIR [29]
is a static analysis tool for identifying inefficient image displaying
(IID), which can impact the app performance and user experience.
UIS-Hunter [43] focuses on detecting UI design smells that violate
Google Material Design Guidelines, for example, illegible buttons
due to lack of contrast, or confirmation dialogs with only a single
action that cannot be dismissed. Additionally, various studies [7, 32]
focused on web apps, specifically, the the detection and repair of
presentation issues that are the result of internationalization or
cross-browser failures.

Overall, none of the above-mentioned solutions investigate the
use of TSAS in mobile apps, and how it can introduce accessibility
barriers for users.

9 CONCLUSION
This paper presents an automated testing technique, called
AccessiText, for text accessibility issues when using text scaling
assistive services. The design and implementation of our approach
is informed by a large analysis of reported issues by users on mobile

AccessiText: Automated Detection of Text Accessibility Issues in Android Apps ESEC/FSE ’22, November 14–18, 2022, Singapore, Singapore

app stores and Twitter. Evaluation of AccessiText on real-world
Android apps corroborates its effectiveness. Apart from the ac-
cessibility issue detection, we investigated and discussed possible
causes of these issues, and how developers can improve their apps
to mitigate such issues.

In our future work, in addition to extending our current imple-
mentation to support the detection of text accessibility issues in
iOS, we will devise automated program repair techniques for text
accessibility issues. We believe it is possible to leverage an approach
similar to AccessiText to evaluate alternative, potentially automat-
ically generated, UI designs that contain fixes to a variety of text
accessibility issues. The challenge lies in ensuring such automati-
cally generated designs conform to the original look and feel of the
app. We also plan to integrate our approach into the development
environments used by developers to support just-in-time analysis
and detection of text accessibility issues and layout violations, al-
lowing developers to immediately see the impact of their decisions
and how they may render the app inaccessible for assistive-service
users.

The research artifacts for this study are available publicly at the
companion website [3].

ACKNOWLEDGMENT
This work was supported in part by award numbers 2211790,
1823262, and 2106306 from the National Science Foundation. We
would like to thank the anonymous reviewers of this paper for their
detailed feedback, which helped us improve the work.

REFERENCES
[1] 2021. Accessibility Research Mobile Apps. https://accessibility.q42.nl/
[2] 2021. Twitter API for academic research | products | twitter developer platform.

https://developer.twitter.com/en/products/twitter-api/academic-research
[3] 2022. Accessitext. https://sites.google.com/view/accessitext/home
[4] 2022. human interface guidelines. https://developer.apple.com/design/human-

interface-guidelines/accessibility/overview/text-size-and-weight/
[5] Hayfa Y Abuaddous, Mohd Zalisham Jali, and Nurlida Basir. 2016. Web ac-

cessibility challenges. International Journal of Advanced Computer Science and
Applications (IJACSA) (2016).

[6] Diamond Accessibility. 2021. 2021 state of Accessibility report: Where do we
stand Today? https://blog.diamond.la/the-state-of-accessibility-report-where-
do-we-stand-today

[7] Abdulmajeed Alameer, Paul T Chiou, and William GJ Halfond. 2019. Efficiently
repairing internationalization presentation failures by solving layout constraints.
In 2019 12th IEEE Conference on Software Testing, Validation and Verification (ICST).
IEEE, 172–182.

[8] Ali S Alotaibi, Paul T Chiou, and William GJ Halfond. 2022. Automated Detection
of TalkBack Interactive Accessibility Failures in Android Applications. In 2022
IEEE Conference on Software Testing, Verification and Validation (ICST). IEEE,
232–243.

[9] Abdulaziz Alshayban, Iftekhar Ahmed, and Sam Malek. 2020. Accessibility issues
in Android apps: state of affairs, sentiments, and ways forward. In 2020 IEEE/ACM
42nd International Conference on Software Engineering. ICSE, Virtual, 1323–1334.

[10] Domenico Amalfitano, Anna Rita Fasolino, Porfirio Tramontana, Salvatore
De Carmine, and Atif M Memon. 2012. Using GUI ripping for automated testing
of Android applications. In 2012 Proceedings of the 27th IEEE/ACM International
Conference on Automated Software Engineering. IEEE, 258–261.

[11] Android. 2020. Accessibility Scanner - Apps on Google Play. https:
//play.google.com/store/apps/details?id=com.google.android.apps.accessibility.
auditor&hl=en_US.

[12] Android. 2020. Build more accessible apps. Retrieved August 20, 2020 from
https://developer.android.com/guide/topics/ui/accessibility

[13] Android. 2020. Espresso : Android Developers. Google. Retrieved August 20, 2020
from https://developer.android.com/training/testing/espresso

[14] Android. 2020. Improve your code with lint checks. Google. Retrieved August 20,
2020 from https://developer.android.com/studio/write/lint?hl=en

[15] androidmonkey. 2019. Application Exerciser Monkey:Android Developers. https:
//developer.android.com/studio/test/monkey.html

[16] Appium. 2020. Mobile App Automation Made Awesome. http://appium.io/.
[17] Apple. 2020. Accessibility on iOS. Retrieved August 20, 2020 from https://

developer.apple.com/accessibility/ios/
[18] Laura V Galvis Carreno and Kristina Winbladh. 2013. Analysis of user comments:

an approach for software requirements evolution. In 2013 35th international
conference on software engineering (ICSE). IEEE, 582–591.

[19] Paul T Chiou, Ali S Alotaibi, and William GJ Halfond. 2021. Detecting and
localizing keyboard accessibility failures in web applications. In Proceedings of
the 29th ACM Joint Meeting on European Software Engineering Conference and
Symposium on the Foundations of Software Engineering. 855–867.

[20] Marcelo Medeiros Eler, José Miguel Rojas, Yan Ge, and Gordon Fraser. 2018.
Automated accessibility testing of mobile apps. In 2018 IEEE 11th International
Conference on Software Testing, Verification and Validation. ICST, Västerås, Sweden,
116–126.

[21] Andre P Freire, Cibele M Russo, and Renata PM Fortes. 2008. A survey on
the accessibility awareness of people involved in web development projects in
Brazil. In Proceedings of the 2008 international cross-disciplinary conference on
Web accessibility (W4A). 87–96.

[22] Yi Gao, Yang Luo, Daqing Chen, Haocheng Huang, Wei Dong, Mingyuan Xia, Xue
Liu, and Jiajun Bu. 2017. Every pixel counts: Fine-grained UI rendering analysis
for mobile applications. In IEEE INFOCOM 2017-IEEE Conference on Computer
Communications. IEEE, 1–9.

[23] Google. 2018. google/Accessibility-Test-Framework-for-Android. https://github.
com/google/Accessibility-Test-Framework-for-Android

[24] Emitza Guzman and Walid Maalej. 2014. How do users like this feature? a
fine grained sentiment analysis of app reviews. In 2014 IEEE 22nd international
requirements engineering conference (RE). Ieee, 153–162.

[25] Shuai Hao, Bin Liu, Suman Nath, William GJ Halfond, and Ramesh Govindan.
2014. PUMA: programmable UI-automation for large-scale dynamic analysis of
mobile apps. In Proceedings of the 12th annual international conference on Mobile
systems, applications, and services. 204–217.

[26] Cuixiong Hu and Iulian Neamtiu. 2011. Automating GUI testing for Android
applications. In Proceedings of the 6th International Workshop on Automation of
Software Test. 77–83.

[27] Claudia Iacob and Rachel Harrison. 2013. Retrieving and analyzing mobile apps
feature requests from online reviews. In 2013 10th working conference on mining
software repositories (MSR). IEEE, 41–44.

[28] Hammad Khalid, Emad Shihab, Meiyappan Nagappan, and Ahmed E Hassan.
2014. What do mobile app users complain about? IEEE software 32, 3 (2014),
70–77.

[29] Wenjie Li, Yanyan Jiang, Chang Xu, Yepang Liu, Xiaoxing Ma, and Jian Lü. 2019.
Characterizing and Detecting Inefficient Image Displaying Issues in Android
Apps. In 2019 IEEE 26th International Conference on Software Analysis, Evolu-
tion and Reengineering (SANER). 355–365. https://doi.org/10.1109/SANER.2019.
8668030

[30] Mario Linares-Vasquez, Christopher Vendome, Qi Luo, and Denys Poshyvanyk.
2015. How developers detect and fix performance bottlenecks in android apps. In
2015 IEEE international conference on software maintenance and evolution (ICSME).
IEEE, 352–361.

[31] Aravind Machiry, Rohan Tahiliani, and Mayur Naik. 2013. Dynodroid: An input
generation system for android apps. In Proceedings of the 2013 9th Joint Meeting
on Foundations of Software Engineering. 224–234.

[32] Sonal Mahajan, Abdulmajeed Alameer, Phil McMinn, and William GJ Halfond.
2017. Automated repair of layout cross browser issues using search-based tech-
niques. In Proceedings of the 26th ACM SIGSOFT International Symposium on
Software Testing and Analysis. 249–260.

[33] Matthew B Miles, A Michael Huberman, and Johnny Saldaña. 2018. Qualitative
data analysis: A methods sourcebook. Sage publications.

[34] Maleknaz Nayebi, Henry Cho, and Guenther Ruhe. 2018. App store mining is
not enough for app improvement. Empirical Software Engineering 23, 5 (2018),
2764–2794.

[35] Dennis Pagano and Walid Maalej. 2013. User feedback in the appstore: An
empirical study. In 2013 21st IEEE international requirements engineering conference
(RE). IEEE, 125–134.

[36] Neha Patil, Dhananjay Bhole, and Prasanna Shete. 2016. Enhanced UI Automator
Viewer with improved Android accessibility evaluation features. In 2016 Inter-
national Conference on Automatic Control and Dynamic Optimization Techniques
(ICACDOT). IEEE, 977–983.

[37] Anne Spencer Ross, Xiaoyi Zhang, James Fogarty, and Jacob O Wobbrock. 2017.
Epidemiology as a framework for large-scale mobile application accessibility
assessment. In Proceedings of the 19th international ACM SIGACCESS conference
on computers and accessibility. ASSETS, Baltimore, MD, USA, 2–11.

[38] Kabir S Said, Liming Nie, Adekunle A Ajibode, and Xueyi Zhou. 2020. GUI
testing for mobile applications: objectives, approaches and challenges. In 12th
Asia-Pacific Symposium on Internetware. 51–60.

[39] Navid Salehnamadi, Abdulaziz Alshayban, Jun-Wei Lin, Iftekhar Ahmed, Stacy
Branham, and Sam Malek. 2021. Latte: Use-case and assistive-service driven

https://accessibility.q42.nl/
https://developer.twitter.com/en/products/twitter-api/academic-research
https://sites.google.com/view/accessitext/home
https://developer.apple.com/design/human-interface-guidelines/accessibility/overview/text-size-and-weight/
https://developer.apple.com/design/human-interface-guidelines/accessibility/overview/text-size-and-weight/
https://blog.diamond.la/the-state-of-accessibility-report-where-do-we-stand-today
https://blog.diamond.la/the-state-of-accessibility-report-where-do-we-stand-today
https://play.google.com/store/apps/details?id=com.google.android.apps.accessibility.auditor&hl=en_US
https://play.google.com/store/apps/details?id=com.google.android.apps.accessibility.auditor&hl=en_US
https://play.google.com/store/apps/details?id=com.google.android.apps.accessibility.auditor&hl=en_US
https://developer.android.com/guide/topics/ui/accessibility
https://developer.android.com/training/testing/espresso
https://developer.android.com/studio/write/lint?hl=en
https://developer.android.com/studio/test/monkey.html
https://developer.android.com/studio/test/monkey.html
http://appium.io/
https://developer.apple.com/accessibility/ios/
https://developer.apple.com/accessibility/ios/
https://github.com/google/Accessibility-Test-Framework-for-Android
https://github.com/google/Accessibility-Test-Framework-for-Android
https://doi.org/10.1109/SANER.2019.8668030
https://doi.org/10.1109/SANER.2019.8668030

ESEC/FSE ’22, November 14–18, 2022, Singapore, Singapore Abdulaziz Alshayban and Sam Malek

automated accessibility testing framework for android. In Proceedings of the 2021
CHI Conference on Human Factors in Computing Systems. 1–11.

[40] Amanda Swearngin and Yang Li. 2021. Modeling mobile interface tappability
using crowdsourcing and deep learning. In Artificial Intelligence for Human
Computer Interaction: A Modern Approach. Springer, 73–96.

[41] W3. 2020. Web Content Accessibility Guidelines (WCAG) Overview. World Wide
Web Consortium. Retrieved August 20, 2020 from https://www.w3.org/WAI/
standards-guidelines/wcag/

[42] WHO. 2011. World report on disability. Retrieved August 20, 2020 from
https://www.who.int/disabilities/world_report/2011/report/en/

[43] Bo Yang, Zhenchang Xing, Xin Xia, Chunyang Chen, Deheng Ye, and Shanping Li.
2021. Don’t Do That! HuntingDownVisual Design Smells in Complex UIs Against
Design Guidelines. In 2021 IEEE/ACM 43rd International Conference on Software
Engineering (ICSE). 761–772. https://doi.org/10.1109/ICSE43902.2021.00075

[44] Dehai Zhao, Zhenchang Xing, Chunyang Chen, Xiwei Xu, Liming Zhu, Guoqiang
Li, and Jinshui Wang. 2020. Seenomaly: Vision-based linting of gui animation
effects against design-don’t guidelines. In 2020 IEEE/ACM 42nd International
Conference on Software Engineering (ICSE). IEEE, 1286–1297.

https://www.w3.org/WAI/standards-guidelines/wcag/
https://www.w3.org/WAI/standards-guidelines/wcag/
https://www.who.int/disabilities/world_report/2011/report/en/
https://doi.org/10.1109/ICSE43902.2021.00075

	Abstract
	1 Introduction
	2 Background
	3 An empirical study of text-based accessibility issues in mobile apps
	3.1 Design and Data Collection
	3.2 Results

	4 Approach
	4.1 Test Runner
	4.2 Result Analyzer

	5 Evaluation
	5.1 Experimental Setup
	5.2 Effectiveness of AccessiText
	5.3 Performance of AccessiText

	6 Discussion
	7 Threats to validity
	8 Related Work
	8.1 Accessibility Testing
	8.2 GUI Testing

	9 Conclusion
	References

