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ABSTRACT

Accessibility is a critical software quality affecting more than 15%
of the world’s population with some form of disabilities. Modern
mobile platforms, i.e., iOS and Android, provide guidelines and test-
ing tools for developers to assess the accessibility of their apps. The
main focus of the testing tools is on examining a particular screen’s
compliance with some predefined rules derived from accessibility
guidelines. Unfortunately, these tools cannot detect accessibility
issues that manifest themselves in interactions with apps using
assistive services, e.g., screen readers. A few recent studies have
proposed assistive-service driven testing; however, they require
manually constructed inputs from developers to evaluate a specific
screen or presume availability of UI test cases. In this work, we pro-
pose an automated accessibility crawler for mobile apps, Ground-
hog, that explores an app with the purpose of finding accessibility
issues without any manual effort from developers. Groundhog
assesses the functionality of UI elements in an app with and with-
out assistive services and pinpoints accessibility issues with an
intuitive video of how to replicate them. Our experiments show
Groundhog is highly effective in detecting accessibility barriers
that existing techniques cannot discover. Powered by Groundhog,
we conducted an empirical study on a large set of real-world apps
and found new classes of critical accessibility issues that should be
the focus of future work in this area.

CCS CONCEPTS

• Software and its engineering→ Software testing and debug-

ging; •Human-centered computing→ Accessibility design

and evaluation methods.
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1 INTRODUCTION

The ever-growing reliance of people onmobile apps to perform daily
tasks necessitates app accessibility for all, notably for more than
15% of the population who have disabilities [51]. Developers are
obliged by law and expected by ethical principles to build accessible
apps for users regardless of their abilities. However, prior studies
reveal that many popular apps are shipped with some form of
accessibility issues, hindering disabled users ability to interact with
them [4, 21, 42].

To assist developers in enhancing app accessibility, technology
institutes such as World Wide Web Consortium [49] and companies
such as Apple [18] and Google [10] have published accessibility
guidelines and best practices. These guidelines are backed by acces-
sibility analysis tools to automatically analyze app compliance with
guidelines and detect accessibility issues [5, 8, 19, 20]. For instance,
by analyzing User Interface (UI) elements, they can report whether
the contrast between elements and their backgrounds are above a
certain threshold or the area of a button is smaller than a specific
area defined in the guidelines.

Unfortunately, guidelines cannot detect about %50 of the ac-
cessibility issues that users with disabilities may encounter while
interacting with apps [40]. Static assessment of UI specifications
cannot reveal many critical accessibility issues that only manifest
themselves in interacting with an app using assistive services, such
as a screen reader. For example, users with visual impairment rely
on screen readers, i.e., TalkBack in Android, to navigate through UI
elements and perform actions on them. TalkBack users click on a
desired element by double tap gesture. When this gesture entails no
change in the app state, the element is not actionable by TalkBack
and can render the app inaccessible.

The great majority of prior automated accessibility testing tech-
niques do not take assistive services into account in their analysis.
Salehnamadi, et. al [44] incorporate assistive services in evaluating
the feasibility of executing GUI test cases. Their work, however, as-
sumes the availability of GUI tests for validating the functionalities
of the app under test, which are then repurposed for accessibility
analysis. Unfortunately, developers do not usually write GUI tests
for their apps, making their approach applicable to only situations
in which GUI tests are available. Studies show that more than 92% of
Android app developers do not have any GUI test for their apps [33].
Even if GUI tests are available for proprietary apps, the test cases
are rarely available to the public or app store operators that may
want to assess the accessibility of apps for users. Furthermore, GUI
tests may fail to achieve good coverage, making their approach
ineffective at finding accessibility issues in uncovered parts of the
app under test. The work by Alotaibi, et. al [3] also utilizes TalkBack
to find inaccessible elements in navigating sequentially through all
the elements on the screen without GUI tests. This work is limited
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Figure 1: (a) The login activity of Facebook app, (b) The exit dialog appears when users press back button on Facebook app, (c)

a screen in BudgetPlanner app, the highlighted boxes and arrows depicts the directional navigation to the “ADD” button by

TalkBack, (d) a dialog appears after tapping “ADD” button

to analyzing a single screen that developers should provide manu-
ally. Moreover, it cannot detect other types of reachability issues
that may occur while exploring the app with TalkBack by touch
or with other assistive services. Their work also does not consider
the different ways of performing actions with and without assistive
services, potentially resulting in unactionable elements for assistive
services

To address the limitations of existing tools, we have developed a
fully automated approach, called Groundhog, for validating the ac-
cessibility of Android apps that replicates the manner in which dis-
abled users actually interact with apps, i.e., using assistive services.
Groundhog gets the app in a binary form, i.e., APK, and installs it
on a Virtual Machine (VM). It utilizes an app crawler to explore a
diverse set of screens to be assessed. For each screen, Groundhog
extracts all the possible actions and executes the same action with
different interaction models, including different assistive services,
to validate if the app is accessible. Groundhog leverages the VM
to repeatedly reevaluate the app from the same state, performing
the same action using different assistive services to identify the
accessibility issues that may affect users with various forms of dis-
ability.1 In particular, Groundhog checks if UI elements can be
located by users, i.e., locatability, and all actions can be performed,
i.e., actionability, regardless of the way users interact with the
device, e.g., touch-based interaction or assistive-service interaction.
Instead of just reporting violations of accessibility guidelines as in

1The name of our tools is inspired by the popular Hollywood movie “Groundhog Day”
from 1993, where the lead character is stuck in a time loop, forcing him to relive the
same day, which is akin to our repeated reevaluation of an app from the same state.

prior work, Groundhog produces a summary of the accessibility
issues containing a video that describes how a user with disability
cannot perform an action in an app. This type of reporting can help
developers to pinpoint the issue and increase their awareness of
the challenges faced by users with disability.

Our empirical experiments show that Groundhog can detect
293 accessibility issues that could not be detected by existing acces-
sibility testing tools.

This paper makes the following contributions:

• A novel, high-fidelity, and fully automated form of automated ac-
cessibility analysis that evaluates the accessibility of mobile apps
from the perspective of users with various forms of disability.

• A publicly available implementation of the above-mentioned
approach for Android, called Groundhog [45];

• An empirical evaluation on a large set of real-world Android
apps, showing the effectiveness of Groundhog in detecting
new accessibility issues in popular apps (even with more than 1
billions installs on Google Play), and

• A qualitative study of the different types of accessibility issues
that can be detected by Groundhog, which can aid future re-
searchers with developing automated means of fixing these spe-
cific kinds of issues.

The rest of this paper is organized as follows: Section 2 motivates
this study with an example. Section 3 provides a background on ac-
cessibility testing and Android fundamentals. Section 4 explains the
details of our approach, and Section 5 describes the optimizations
over our technique. The evaluation of Groundhog on real-world
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apps is finally presented in Section 7. The paper concludes with a
discussion of the related research and avenues of future work.

2 MOTIVATING EXAMPLE

In this section, we provide two examples to illustrate the types
of accessibility issues that cannot be detected with conventional
accessibility testing tools and prior studies.

Figure 1(a) shows the login screen of the Facebook app with more
than 1 billion installs on Google Play [28]. This screen provides
the ability for the user to log in, which obviously is crucial to be
accessible, since it is the entry point of the app.

A user with a disability relies on an assistive service to inter-
act with the app. For example, a blind user utilizes TalkBack [13],
the standard screen reader in Android, to perceive the screen con-
tent by listening to what TalkBack announces for each element
on the screen. A TalkBack user can navigate through the elements
sequentially by swipe (Directional Exploration), or focus on a spe-
cific element by touch (Touch Exploration). Using either of these
exploration strategies on the app screen illustrated in Figure 1(a),
TalkBack can only detect the two text boxes, annotated in green in
Figure 1(a), and is incapable of detecting the rest of the elements,
including crucial buttons such as “Log in” or “Create new account”.
However, a regular user can see all the elements on the screen,
provide login credentials, and tap on the buttons to log in and use
the app without any problem. Interestingly, a TalkBack user cannot
even exit the app using the back button as none of the elements on
the exit dialog, in Figure 1(b), are accessible by TalkBack. This is an
example of locatability issue, since a user with a disability cannot
locate (reach) an element on the screen.

Existing accessibility testing approaches are not capable of de-
tecting these issues. Google Accessibility Scanner [5] evaluates the
top screen on a device, checks a few rules for the elements, and
reports their violations as accessibility issues. In running Scanner
on the screen in Figure 1(a) 4 issues are detected for text boxes,
2 of them are warning about their “small touch target size”, and 2
of them are noting the “missing speakable text” for them. Neither
Scanner nor other rule-based accessibility testing tools [12, 15] are
capable of detecting navigational issues in Android apps.

Assistive services also enable users to perform actions on ele-
ments. When there are no locatability issues, Assistive services
such as TalkBack can focus on the desired element. In the case
of TalkBack, double-tap gesture triggers the “Click” action on the
focused element. Unfortunately, actions performed under different
interaction models may have inconsistent behaviors. Figure 1(c)
shows a screen in a popular budget tracker app, with more than 1
million installs, where users can add income or expenses to their
budgets. To add an income to the budget, a user without a disability
simply taps on the “ADD” button and a form appears to input the
amount, as shown in Figure 1(d). For the same action, a TalkBack
user, first locates the “ADD” button, either by touch exploration
(tapping on the location of the button) or directional exploration
(swiping right until the target element is focused, as shown by
arrows in Figure 1(c)). Once the element is located, the user double
taps to perform a click action through TalkBack. However, in this
case, The income addition form in Figure 1(d) will not be shown,
preventing TalkBack users from adding any income and rendering

Figure 2: A part of the excerpted XML representation of UI

structure in the Budget Tracker app shown in Figure 1(c).

the app inaccessible for them as a result. This is an example of
actionability issue, since the action is not supported consistently
under different interaction models.

The insight underlying our work is that the two types of acces-
sibility issues discussed above cannot be revealed accurately unless
the apps are examined in the manner disabled users interact with
apps, i.e., using assistive services.

3 BACKGROUND

We provide a brief overview of User Interface (UI) components and
accessibility support in Android to help the reader understand the
material that is presented later.

3.1 Android UI

Android provides a variety of pre-built UI components such as struc-
tured layouts and widgets that allow developers to build the GUI
of their app. This section provides background on UI components
and GUI testing in Android.

The UI of an Android app is a single-root hierarchical tree where
the leaf nodes are called Views or Widgets that users can see and
interact with, e.g., buttons, text fields, and check boxes. The non-
leaf nodes, on the other hand, are invisible to user. These non-leaf
nodes are called ViewGroups or Layouts and used for arranging or
positioning the widgets.

BothWidgets and Layouts have variety of attributes. For example,
the content-desc attribute is used by accessibility services to provide
description for widgets without textual representation or clickable
attribute shows if the widget is clickable. The UI hierarchy of a
screen in an Android device can be retrieved as an XML file. Figure 2
shows part of the UI structure in the Budget Tracker app. Lines 8-14
represents the first “ADD” button in Figure 1(c) where its attributes
such as clickable or text are represented.

XPath [50] (XML Path Language) is an expression language
that supports various queries in XML documents. In particular,
XPath can be used to identify nodes accurately using the structural
information. For example, the first “ADD” button in Figure 1(a)
can be identified by its absolute path in XPath created by the class
attribute as “/Framelayout/LinearLayout/FrameLayout[2]/Button”
(the “android.widget” part is ommitted from classes). Since the class
of an android widgets cannot be changed at runtime, the absolute
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path in XPath, or in short apath, is a reliable identifier of widgets
in Android.

3.2 Accessibility in Android

Android provides an accessibility API for alternative modes of
interacting with a device. It also offers several assistive services,
including TalkBack, which is the official screen reader in Android
and built on top of the accessibility API. We briefly describe acces-
sibility API in Android and how an assistive service like TalkBack
can leverage this API.

The Android framework provides an abstract service, called
AccessibilityService, to assist users with disabilities. The official as-
sistive tools in Android, such as TalkBack, are also implementations
of this abstract service [7]. AccessibilityService works as a wrapper
around an Android device interacting with it (performing actions
on and receiving feedback from it).

The feedback is delivered to accessibility services through Acces-
sibilityEvent objects. Accessibility services should implement the
method onAccessibilityEvent to receive feedbacks in form of Acces-
sibilityEvent objects. AccessibilityManager is a system-level service
that monitors any changes in device and manage accessibility ser-
vices. When anything important happens on the device, Accessi-
bilityManager creates an AccessibilityEvent object that describes
the changes and passes it to onAccessibilityEvent method of accessi-
bility services. The accessibility services can analyze the delivered
event and may provide feedback to the user. For example, TalkBack
announces the textual description of an element to the user when
it is focused. An AccessibilityEvent object is associated with an Ac-
cessibilityNodeInfo object that contains the element’s attributes. For
instance, when a user clicks on “ADD” button ( Figure 1(c)), the
system creates an AccessibilityEvent of type TYPE_VIEW_CLICKED,
which is associated with the AccessibilityNodeInfo object corre-
sponding to the element shown in lines 8-14 in Figure 2.

Moreover, an AccessibilityService can access all GUI elements
on the screen in the form of an AccessibilityNodeInfo object. An
AccessibilityNodeInfo object not only represents the attributes
of a GUI element on the screen, but also provides the ability to
perform actions on the corresponding element. For example, an
AccessibilityService can perform a click action on an AccessibilityN-
odeInfo by sending ACTION_CLICK event to it.

4 APPROACH

Regardless of different interaction models, the ability to locate
elements on the screen and perform actions consistently are funda-
mental needs in app accessibility. As a result, locatability and ac-
tionability form the basis of our approach. The goal of our approach
is to automatically detect apps that fail to meet these accessibility
requirements at runtime.

To that end, we propose Groundhog, an automated assistive-
service driven testing tool. Figure 3 shows the overview of our
approach. Groundhog utilizes an App Crawler to explore different
states of the app. After each change in the app, App Crawler invokes
the Snapshot Manager to capture a VM snapshot if the current state
(screen) has not already been seen. Snapshot Manager provides the
VM Snapshots to Action Extractor, where all the possible actions on
the given state of the app are subsequently extracted. Groundhog
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Figure 3: An overview of Groundhog

then tries to locate the elements and perform these actions on them
using three different proxies: Touch Proxy, TalkBack Proxy, and
Abstract Proxy. Finally, the new state of the app after performing
the action is provided to the Oracle along with the initial app state.
Oracle assesses if each proxy successfully performs the action and
produces the final report.

In this section, we describe each component of Groundhog in
detail.

4.1 Snapshot Manager

The goal of Snapshot Manager is to allow a diverse set of app states
obtained through crawling to be later analyzed. Snapshot Manager
is a connector between an app crawler and the rest of the system.
Groundhog can be integratedwith any of the existing app crawling
techniques like Monkey [29], Stoat [47], Ape [30], Sapienz [34], etc.
These crawlers employ various techniques in modeling the app to
trigger transitions between app states. For example, Stoat models
app behavior as a Finite State Machine (FSM) whose nodes are UI
elements and attempts to maximize node coverage as well as code
coverage. In Groundhog, even a human agent, e.g., developer or
tester, can be involved to replace or enhance an automated app
crawler to reach any desired state of the app.

For each app state, Snapshot Manager checks whether this state
is a newly discovered state to take a snapshot for further analysis
or not. To that end, Snapshot Manager calculates a hash value of
the hierarchical representation of UI elements on the screen. Screen
hash calculation in Snapshot Manager only incorporates elements
and attributes that impact obtaining a diverse set of app screens.
For example, elements that do not belong to the app under test,
i.e., have a different package name or belong to an advertisement
widget, are not included. Similarly, not all elements’ attributes can
distinguish different screens. For example, if the app crawler taps
on an edit text box or writes a random string in it, its focused and
text attributes change; however, they are not indicators of a new
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screen. The practice of excluding some values in defining GUI states
is also widely adopted in Mobile GUI testing studies [23, 24, 26].

Snapshot Manager provides VM snapshots of diverse app screens
to the rest of Groundhog’s components.

4.2 Action Extractor

The Action Extractor component takes a VM snapshot of an app
state as input and extracts a list of available actions from it. To that
end, Action Extractor loads the snapshot on a VM equipped with an
Accessibility Service such as UIAutomator. This service runs in the
background and enables capturing a hierarchical representation of
UI elements, similar to Figure 2. Action Extractor performs further
analysis on the dumped hierarchy of UI elements. It explores the
tree of elements and searches for those that support action, e.g.,
have clickable=true in their attributes.

An action consists of two parts: the operation, e.g., click, and
an identifier of the element on which the action is performed. The
target element can be identified uniquely by its apath, i.e., the abso-
lute path from the root to the target node in the UI hierarchy tree.
For example, assuming the target element is the first “ADD” button
in Figure 1(c), the corresponding apath is /Framelayout/LinearLay-
out/FrameLayout[2]/Button, as shown in lines 8-14 in Figure 2. Also,
the operation of this action can be determined from the “clickable”
attribute (line 9 in Figure 2). Therefore, this action can be repre-
sented as the following JSON object that is passed to proxies to be
executed in different interaction modes:
{

operation: 'click ',
apath: '/Framelayout/LinearLayout/FrameLayout [2]/ Button '

}

4.3 Proxies

Proxies represent various interaction models with a device. The
goal of each Proxy is to execute a given action on a given app
state and return the app state after performing the action along
with the execution logs. To that end, each Proxy utilizes Android’s
AccessibilityService to support two main functionalities: (1) locating
the element specified in action and (2) performing the intended
action on the element. In this study, we consider three different
models: Touch, TalkBack, and an Abstract assistive service with all
the capabilities of accessibility API. The details of each Proxy are
as follows.

4.3.1 Touch Proxy. This Proxy interacts with the system from the
standpoint of users without disabilities. These users do not use any
assistive service and see the elements that are depicted on the screen
to locate them. Touch Proxy first determines the coordinates of the
bounding box of the element on the screen to locate the element.
It then sends a tap gesture event to the element to simulate the
touch-based interaction model.

To locate an element, Touch Proxy searches for the correspond-
ing node of the target element identified by its apath in the UI
hierarchy. It starts from the root node of the screen and follows
the address specified in the apath in a depth-first traversal order of
the UI tree. If at a level, no branch matches the apath, it means the
node is not locatable.

To perform an action on the located element, Proxy calculates a
tap point considering the bounding box of the element. To that end,
it calculates the coordinate of the center of the element using its
bounding box coordinates. For example, the coordinate for the tap
action on the “ADD” button (113, 604) can be calculated from line 8
in Figure 2. Once the coordinate of the target element is determined,
Touch Proxy performs the click operation by sending a tap gesture
event for that coordinate.

4.3.2 TalkBack Proxy. This Proxy utilizes TalkBack to interact with
the device. TalkBack supports two UI exploration modes: Direc-
tional Exploration (by swiping) and Touch Exploration (touching
different screen parts). Similarly, TalkBack Proxy leverage both
exploration modes. When we enable TalkBack, it focuses on the
first node on the screen. Swipe right (left) changes the focus on
the next (previous) element on the screen. The Proxy first employs
directional exploration to locate an element, i.e., iteratively draws
swipe right gestures using the Accessibility API to navigate to the
desired element. The Proxy terminates navigation if it focuses on
the desired node or visits an element twice. The latter case indicates
either there is a navigation loop or all existing elements have been
visited once. When this process fails in locating the element, there
is a locatability issue in using directional exploration. For exam-
ple, a revolving list of elements can cause a navigation loop for
a TalkBack user, preventing the user from reaching the elements
residing afterward. To alleviate this problem, in practice, disabled
users transition to explore by touch mode to focus on a random
element outside of the loop and resume directional exploration
forward or backward from there. This Proxy, similarly, tries to use
touch exploration.

If the element is not found in Directional Exploration, TalkBack
Proxy tries Touch Exploration mode by touching on the coordinates
of the target element. If the element cannot be focused, TalkBack
Proxy reports a violation of Locatable rule for the element. Once
the element is located (focused), TalkBack Proxy uses Accessibility
API to perform the intended operation., e.g., perform a double tap
on the screen to click on the focused element. If the target element
cannot be focused by Directional Exploration or Touch Exploration
modes, a locatability failure is reported using TalkBack.

4.3.3 Abstract Proxy. As mentioned in Section 3, all assistive ser-
vices in Android are built on top of the Accessibility API. To evalu-
ate the app accessibility, given all the capabilities of Accessibility
API, we introduce Abstract Proxy. Accessibility issues revealed for
Absract Proxy exist for all other assistive services (e.g., SwitchAc-
cess [11] for users with motor impairment) since they use Accessi-
bility API to locate elements and perform actions on them.

For locating an element, Abstract Proxy locates the elements by
their apath similar to what was explained for Touch Proxy. Then, it
sends the event corresponding to the action, e.g., ACTION_CLICK
to the located node using Accessibility API.

All the proxies return the next state of the app along with the
execution logs to the Oracle component to be further analyzed. The
execution logs contain all the triggered events, the action specifica-
tion, node information, and failure reports.
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Figure 4: Locating (a) the last “ADD” button, and (b) the “Done”

button with TalkBack Proxy in directional navigation. 18

directional navigation interactions in (b) are redundant since

they have been performed in (a) already.

4.4 Oracle

The Oracle component is responsible for analyzing each app state
and corresponding execution logs to determine if an accessibility
issue exists in executing an action with a proxy.

For locatability issue, Oracle refers to failure reports of proxies
to check if the Proxy was successfully locating the element. For
actionability issue, Oracle first analyzes event logs to check if the
events which are indicating a change in the content of the UI, i.e.,
TYPE_WINDOW_CONTENT_CHANGED, and executing an action,
e.g., TYPE_VIEW_CLICKED, occurred. It also compares the app’s
previous state with the new state to ensure the event occurred. In
comparing app states, Oracle compares their UI hierarchy similar
to Snapshot Manager by comparing their hash values. However,
Oracle does not exclude the same attributes as Snapshot Manager
in calculating the hash value. For example, changes in the text
attribute are not demonstrating a new screen for Snapshot Manager
but can indicate an action execution. In the end, if the UI hierarchy
before and after the action execution is the same, and there is no
corresponding AccessibilityEvent of the executed action, the oracle
reports an actionability issue for a given User Proxy.

Furthermore, the Oracle compares the actionability of each ele-
ment across different proxies to check if there exists at least one
Proxy that can successfully perform the action. This way, we are
assured the element is associated with behavior (it is operative) and
not just a decorative element.

5 OPTIMIZATION

In the previous section, we explained how, given a snapshot of an
app, Groundhog extracts all possible actions for each of them, and

locates and performs the available actions using different proxies.
For example, Figure 4 depicts the process of locating two elements
(a) the last “ADD” button, and (b) the “Done” button. Note that
TalkBack traverses the UI hierarchy with each swipe starting from
the top left element on the screen. As can be seen in Figure 4, the
elements 1 to 19 appear both in (a) and (b). In other words, there is
substantial redundancy between the steps required to locate these
two elements.

We introduce an optimization technique using a memoization
algorithm to minimize the number of interactions in the Directional
Exploration strategywithout losing the accuracy of detecting locata-
bility issues in an app. The basic idea is to memorize the elements
that TalkBack has located directionally in previous action execu-
tions and start the exploration from the closest located element to
the target element. To locate the target element, TalkBack Proxy
first sends a direct AccessibilityEvent, called ACTION_FOCUS to
element 𝑒 which asks TalkBack to focus on it directly. The element
𝑒 is a visited element in the past action executions of TalkBack
Proxy, closest to the target element in the UI hierarchy. This way,
all directional navigation from the start to the element 𝑒 is bypassed,
allowing the exploration to proceed much faster.

6 IMPLEMENTATION

Groundhog is designed as a Client-Server architecture model
where the server is on the host machine and the client resides
on an Android device. The server side, implemented in Python, or-
chestrates the whole analysis from running an app crawler, taking
snapshots, executing actions with proxies, creating reports, and
visualizing the results. The client, implemented in Java, is basically
an accessibility service, i.e., proxies, that controls the device to
execute actions.

Groundhog utilizes Android Debug Bridge (ADB) [9] to manage
communications between the server and client. Groundhog also
modifies Stoat app crawler [47] and employs it to explore different
states of the app. As discussed in Section 4, any app crawler can be
used in Groundhog. The rationale behind choosing Stoat is that it
is completely open-source and conveniently works with the latest
Android versions. It also has been widely used in previous studies.
Lastly, Pillow [25] Python imaging library and Flask [39], python
web framework, assist in visualizing the detected accessibility is-
sues.

In our experiments, for actionability evaluation of GUI elements,
we only focused on click actions that are most commonly associ-
ated with app behaviors. However, Groundhog can be similarly
configured for any other type of action, e.g., long-click.

7 EVALUATION

We conduct several research experiments to evaluate Groundhog
and answer the following research questions:

RQ1. How effective is Groundhog in detecting accessibility is-
sues?
RQ2. How does Groundhog compare to Google Accessibility
Scanner (the official accessibility testing tool in Android)?
RQ3. What are the characteristics of the detected accessibility
issues? How do they impact app usage for users with disabilities?
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RQ4.What is the performance of Groundhog? To what extent
optimization improves its performance?

7.1 Experimental Setup

We evaluate Groundhog on three different sets of real-world apps.
First, a set of 20 random apps with more than 10 million installs in
Google Play Store [14] (labeled as P). Second, 20 randomly selected
apps from AndroZoo [1], a collection of Android apps collected
from several sources including Google Play (labeled as A). All of
these 40 apps are published in Google Play in 2021 and 2022. We
also included 17 apps from the 20 apps that were evaluated by
Latte [44] (labeled as L).2 Latte is a related prior tool, discussed in
Section 1, to which we compare against. Out of the 17 apps from the
Latte dataset included in our study, 11 have confirmed accessibility
issues.

In total, our dataset consists of 57 apps that have been published
in 21 different categories in Play Store. The complete list of datasets
can be found on our companion website [45]. We ran Groundhog
on each app until at least 10 states (screens) were captured (in total
570 different states).

To answer the research questions, we carefully examined the
results to check if the reported issue is correct (true positive) or
wrong (false positive). Therefore, we create a smaller set of results
by selecting 5 UI states from 10 apps in each dataset (P, A, and L).
In total, a set of 150 different UI states with 1,133 actions is created
which can be seen in Table 1 (sorted based on installs).

All experiments were conducted on a typical computer setup
for development (MacBook Pro, 2.8 GHz Core i7 CPU, 16 GB mem-
ory). We used the most recent distributed Android OS (SDK30),
and the latest versions of assistive services, i.e., TalkBack 12.1 and
SwitchAccess 12.1.

7.2 RQ1. Effectiveness of Groundhog

Table 1 summarizes the accessibility issues detected by Ground-
hog. The Actions column represents the total number of extracted
actions from all different states of the app and the number of actions
that Groundhog found to be operative, i.e., leading to a modifi-
cation in the GUI state. As shown in the Table, on average, each
snapshot has 7.5 actions to be evaluated by proxies. The columns
entitled TalkBack Unlocatable, TalkBack Unactionable., and Abstract
Unactionable represent locatability and actionability issues by Talk-
Back Proxy, and actionability issues by Abstract Proxy, respectively.
For each type of issue, we show the total number of detected issues
and the number of issues manually verified by authors or True
Positives (TP).

To verify if an issue is detected correctly by Groundhog, we
load the corresponding snapshot on an emulator and interact with
the app manually. For TalkBack locatability issues, we explored the
app using TalkBack’s two exploration modes, i.e., Directional and
Touch Exploration strategy and check if the target element cannot
be located in either way. Note that since Abstract Proxy directly
interacts with the corresponding AccessibilityNodeInfo objects, it
has no locatability issue.

For the actionability issues, first, we perform the action with
touch (by tapping on the element) and observe the changes in the
2We had to exclude 3 outdated apps that do not work anymore.

app state, e.g., by tapping on a checked box, its state changes, or
by clicking a button, a new page may appear. Once we confirmed
the target element is associated with an action by touch, we reload
the snapshot to the same state two other times. The first time, we
use TalkBack to click on the element (double tap), and the second
time we send ACTION_CLICK to the target element using ADB and
Groundhog. Then we monitored all changes to see if anything
happened. We follow a conservative strategy and assume that any
changes after clicking (even if it is not the same as the change after
tapping the element) show the element is actionable.

With the number of verified issues (TPs), we evaluated the ef-
fectiveness of Groundhog in terms of Precision as the ratio of the
number of TPs to the number of all detected issues. We also report
Action Coverage and Recall of Groundhog as follows.

7.2.1 Precision. The number of locatability and actionability issues
that are confirmed manually are shown in Table 1. In total,Ground-
hog could detect 293 true accessibility issues with a precision of
86%. Two-thirds of the apps in our test set have locatability issues.
Note that, when an element is not locatable by TalkBack, it cannot
be verified if it is actionable. Therefore, the number of TalkBack
Proxy actionability issues is expected to be less than Abstract Proxy
actionability issues. A9 and A11 are the only two exceptions in
our test set. Our further investigations of these apps reveal that
TalkBack dispatches touch events to the screen when performing
ACTION_CLICK fails. TalkBack utilizes this workaround to over-
come some accessibility issues in apps.

Our analysis of Groundhog’s failures showed that 39 out of 48
false positives could be fixed by rerunning Groundhog on the app
for the second time. The reason for these failures in the first attempt
is the improper timing between performing an action and retrieving
the results from the device, e.g., some of AccessibilityEvents are
not captured, which is a common challenge in dynamic analysis
techniques due to concurrency issues.

In a few of the false positives, although the assistive services
did not make any changes to the app’s state, the changes by touch
interaction do not contribute to any functionality of the app. For
example, Figure 5 (a) shows the login page of MicrosoftTeams app
(P7). Clicking on the email text box on the login page results in
different behaviors based on the way it is performed. When a user
with an assistive service clicks on the text box, nothing happens;
however, if a user touches the text box, the decorative figure dis-
appears, as shown in Figure 5 (b). Groundhog reports this as an
actionability issue. However, since this change does not impact
assistive-service users, we mark it as a false positive.

Some false positives happen because of changes in the app state
during exploration. For example, Groundhog reports a button in a
slider list of the To-Do-List app (A5) as locatabilty issue, as shown
in Figure 5 (c). However, the reason behind this is that the element is
the last item on the list and when TalkBack focuses on it, the sliding
widget fetches new elements and moves the elements to the front.
This changes the GUI hierarchy layout and Groundhog does not
realize the current first element is the same as the last element on
the list seen previously. Moreover, Groundhog detects a TalkBack
actionability issue for the SchoolPlanner app (L8), as shown in
Figure 5 (d), since performing a click on the focused element does
not change the UI state (since the tab is already active). However,
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Table 1: The evaluation subject apps with the details of detected accessibility issues by Groundhog

Id App Category #Installs #Actions TalkBack
Unlocatable

Talkback
Unactionable

Abstract
Unactionable #All Issues Scanner

Total Operative Total TP Total TP Total TP SA Total TP
P1 Instagram Social >1B 31 17 0 0 0 0 0 0 0 0 0 9
P2 FacebookLite Social >1B 20 18 14 14 0 0 7 6 6 21 20 33
P4 Zoom Business >500M 26 25 1 0 0 0 0 0 0 1 0 13
P7 MicrosoftTeams Business >100M 23 19 0 0 2 0 2 0 0 2 0 6
P11 MovetoiOS Tools >100M 12 10 2 2 0 0 0 0 0 2 2 11
P12 Bible Books >50M 44 39 6 6 0 0 0 0 0 6 6 20
P13 ToonMe Photography >50M 48 41 18 17 1 0 0 0 0 19 17 43
P19 Venmo Finance >10M 24 17 0 0 0 0 0 0 0 0 0 6
P21 Lyft Navigation >10M 21 18 2 0 0 0 0 0 0 2 0 2
P22 Expedia Travel >10M 40 34 9 6 0 0 0 0 0 9 6 71
A1 YONO Finance >100M 92 59 54 41 9 9 1 1 1 64 51 39
A2 NortonVPN Tools >10M 21 16 9 8 1 0 0 0 0 10 8 8
A3 DigitalClock Tools >10M 57 42 7 7 0 0 1 0 0 8 7 21
A5 To-Do-List Productivity >5M 45 32 2 1 0 0 0 0 0 2 1 19
A6 Estapar Vehicles >1M 41 31 23 21 2 0 0 0 0 25 21 11
A9 MyCentsys House >10K 34 19 0 0 0 0 9 9 9 9 9 14
A10 HManager Productivity >10K 17 17 2 2 0 0 0 0 0 2 2 5
A11 Greysheet Lifestyle >10K 44 24 1 0 0 0 19 18 18 20 18 10
A13 MGFlasher Vehicles <10K 54 37 5 5 2 2 6 6 6 11 11 19
A18 AuditManager Productivity <10K 15 10 0 0 5 5 5 5 5 5 5 6
L3 Yelp Food >50M 62 56 10 9 0 0 0 0 0 10 9 9
L4 GeekShopping Shopping >10M 29 28 5 3 0 0 0 0 0 5 3 13
L5 Dictionary Books >10M 42 38 3 1 0 0 2 1 0 5 2 16
L6 FatSecret Health >10M 37 37 11 9 1 1 0 0 0 12 10 14
L8 SchoolPlanner Education >10M 52 48 8 8 0 0 1 0 0 9 8 52
L9 Checkout51 Shopping >10M 29 22 6 6 0 0 0 0 0 6 6 4
L11 TripIt Tavel >5M 52 39 9 8 0 0 0 0 0 9 8 6
L12 ZipRecruiter Business >5M 31 27 1 0 0 0 0 0 0 1 0 5
L13 Feedly News >5M 63 34 34 34 14 12 24 23 23 58 57 1
L15 BudgetPlanner Finance >1M 27 25 2 0 6 6 6 6 6 8 6 26

Total 1133 879 244 209 43 34 83 75 74 341 293 512
Precision 0.85 0.79 0.90 0.86

by touching on the tab, we are in fact touching on the overlay,
resulting in the disappearance of the overlay element.

7.2.2 Action Coverage. To understand the effectiveness of
Groundhog in extracting all possible actions from the screen, we
manually examined all 150 UI states by touch interactions to extract
the set of all elements that are associated with an action. In total,
we found 1,149 actions, where Groundhog could extract 1,133 of
them (98% action coverage). In cases that Groundhog missed an
action, there was a custom-implemented UI widget without proper
specifications for accessibility services. For example, two missing
actions, back and search buttons from apps Greysheet and Feedly
apps (A11 and L13), depicted in Figure 5(e), and (f), are layouts with
attribute clickable set to False. Thus, Groundhog cannot identify
them as actionable elements.

7.2.3 Recall. To calculate the recall of Groundhog in detecting
real accessibility issues, we used the set of confirmed accessibility
issues by Latte [44] as the ground truth. In total, Latte found 12

accessibility issues, where 10 of them could be detected by Ground-
hog (83% recall in detecting existing issues). One false negative
happens for the Feedly app where Groundhog did not extract the
search button, depicted in Figure 5 (e), as an action. The other false
negative happens in the Dictionary app, where the accessibility
issue can be revealed after performing three consecutive actions on
the app. Since Groundhog analyzes an app only with one action,
this issue could not be detected. We also found 87 new accessibility
issues in the dataset of apps from Latte that were not detected by
Latte.

In comparison with Latte, we can see Groundhog is able to
detect a much larger number of accessibility issues. This is mainly
because Latte assumes the availability of manually written GUI tests
and does not achieve the same level of coverage as Groundhog
that uses a crawling technique. At the same time, in a few cases,
Groundhog is missing certain accessibility issues that are detected
by Latte because manually written tests can exercise non-native
UI elements that do not have a proper specification for accessibil-
ity services (i.e., attributes of AccessibilityNodeInfo object are not
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Figure 5: (a-d) are examples of false positives, and (e-f) are

examples of missing actions in Groundhog

properly set), while Groundhog cannot properly analyze such
elements.

7.3 RQ2. Comparison with Scanner

Google Accessibility Scanner [5], or Scanner for short, is the most
widely used accessibility analyzer for Android. Scanner leverages
Accessibility Testing Framework (ATF) [6] to evaluate screen ac-
cessibility. To compare Groundhog with Scanner, we analyzed all
the examined app states in Table 1 with Scanner and checked what
it reports. The last column of Table 1 displays the number of issues
detected by Scanner. By comparing the accessibility issues reported
by Groundhog against what Scanner reports, we found that there
is no intersection between the type of issues each of them detects.
Scanner evaluates a screen against predefined accessibility rules
and reports issues such as low contrast, small touch target size,
and missing speakable text for unlabeled icons. It cannot detect
issues related to interactions with an app using assistive services.
However, the accessibility issues reported by Scanner are also im-
portant to be addressed to have an accessible app. We believe that
Groundhog complements Scanner and other ATF-based testing
techniques [4, 27, 31] in evaluating app accessibility.

7.4 RQ3. Qualitative Study

We manually examined all the detected accessibility issues to un-
derstand how the issues affect users with a disability and what are
their root causes. We found four different categories of issues as
follows.

7.4.1 Unlocatable elements with TalkBack. Groundhog evaluates
locatability of elements by TalkBack in using both directional and

touch exploration strategies. In severe cases, neither of these strate-
gies can locate an element. For example, Figure 6 (a) shows a screen
in the Expedia app where none of its elements, even the back but-
ton, can be detected by TalkBack. We found that the root cause
of this issue is having the important-for-accessibility attribute set
to false, meaning that TalkBack should treat them as decorative
elements and skip them in exploring the app. Developers should set
this attribute properly. We found this issue in Facebook, Expedia,
Checkout51, ToonMe, SchoolPlanner, and Yelp apps.

In some cases, the element can be located by directional ex-
ploration, but not by touch exploration. For example, Figure 6 (b)
depicts the entry screen of YONO (a banking app), where the high-
lighted button can be located by directional exploration, yet, the
element does not get accessibility focus when touched. This issue
happens when there is an overlap among the active elements on
a screen, similar to Figure 6 (b), where the highlighted button is
placed under the top layout. Such elements confuse users about
the screen’s content and may also have security implications when
a malicious functionality is hidden by malware authors in such
elements. The security implications of this accessibility issue are
further studied in [36]. This type of issue can be found in YONO,
Feedly, Dictionary, Estapar, TripIt, NortonVPN, Facebook, Digital-
Clock, ToonMe, AuditManager, and SchoolPlanner apps.

The remaining cases of locatability issues occur in elements
that TalkBack skips in directional exploration but can be focused
on by touch. For example, Figure 6 (c) shows a part of the Bible
app, when the user uses TalkBack in Directional exploration and
reaches the end of the text, the highlighted bottommenu disappears.
For a sighted user who sees all the changes on the screen, the
disappearance of the menu can aid in reading the rest of the text
more conveniently; however, it confuses blind users who may not
even know the menu exists in the first place. The FatSecret, Geek,
ToonMe, TripIt, Bible, MoveToiOS, and HManager apps have this
type of issue.

7.4.2 Actionability. This issue manifests itself when an assistive
service cannot be used to perform an action.Groundhog could find
this type of issue in Facebook, Dictionary, Feedly, BudgetPlanner,
MyCentsys, Greysheet, MGFlasher, AuditManager, FatSecret apps.
For example, Figure 6 (d) shows a button in Feedly app that can
only be clicked by touch.

Generally speaking, Abstract Proxy has more capabilities than
TalkBack in performing actions as it uses Accessibility API to di-
rectly click on AccessibilityNodeInfo object. However, this was not
the case in MyCentsys and Greysheet apps. Our further investiga-
tion and study on TalkBack source code [16] revealed that TalkBack
utilizes a workaround to mitigate accessibility issues in apps. Talk-
back first uses Accessibility API to perform and check if the action
is sent successfully; otherwise, it sends a touch event to the center
of the focused element. Although this workaround may address
inaccessibility in some situations, it may confuse users even more in
some other situations. For example, Figure 6 (e) highlights a button
under the Register button with the text “Help”. However, when a
TalkBack user double taps, the Register button is clicked instead.

A common theme of apps with actionability issues is that they
are developed using hybrid frameworks or utilize WebViews [17].
Hybrid frameworks enable a developer to implement mobile apps in
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Figure 6: Qualitative study of Groundhog’s report on subject apps

one codebase with one language, like C# in Xamarin[38]. Similarly,
WebView renders web elements that are developed in HTML, CSS,
and JavaScript code in mobile apps. One of the advantages of hybrid
apps and Webviews is reusing the same code on different platforms,
like iOS, Android, and even the Web. We could find YONO, ToonMe,
Estapar, and Greysheet apps in Apple Store with similar accessibility
issues detected by Groundhog, manifested by Voiceover (the iOS’
official screen reader). We believe further studies are required to
assess the accessibility issues resulting from hybrid frameworks.

7.4.3 Counterintuitive Navigation. One type of information pro-
duced by Groundhog as part of its reporting is short videos in GIF
format showing how Talkback navigates directionally to reach an
element. Checking these videos revealed a new type of accessibil-
ity issue where developers set an unexpected traversal order for
elements. For example, Figure 6 (f) shows the visiting order of a
calendar’s elements in SchoolPlanner. As seen, there is no pattern
in visiting the elements. In another example, Yelp’s home page has
counterintuitive navigation where the search button (which is at
the top of the page) will be reached when all other elements have
been visited.

7.4.4 Inoperative Actions. We examined the inoperative actions
reported by Groundhog to see how they impact users with dis-
abilities. Such clickable elements without any impact on the app
content increase the number of interactions for TalkBack users to
reach an element. For example, it takes 25 directional navigation to
reach the farthest element in a state of DigitalClock; however, if the
inoperative actions are removed by developers it can be reduced to
20 interactions, saving 20% of time spent by users with disabilities.

However, in some instances, there is a usability bug in inopera-
tive actions which concerns regular users. For example, Figure 6 (g)

shows a profile page of a user in Yelp where Groundhog detects
the Follow button is not operative. Here, the other buttons in the
same row (Compliment and Message) are associated with an action
(the login page appears). It seems, there is a bug that makes the
Follow button inoperative.

7.5 RQ4. Performance

We measured the time that Groundhog takes to create reports
to understand how Groundhog can be integrated into the devel-
opment lifecycle. For an app on average, Groundhog takes 3,541
seconds to explore an app, execute all actions using different prox-
ies, and produce an accessibility report with visualized information.
Since Groundhog does not require any manual input from devel-
opers, analyzing an app in less than an hour is completely practical,
and can be done on a nightly basis.

The breakdown of the execution time is as follows. The app
crawler (Stoat) takes 420 seconds on average to explore different
states of the app. The action extraction part virtually takes no time
(less than a second). The heavy part of Groundhog is executing
each action via proxies. Groundhog executes each action in 21,
24, and 40 seconds for Abstract, Touch, and TalkBack Proxy, re-
spectively. There are some common time-consuming parts for all
proxies: reloading snapshot takes 4.1 seconds, reconnecting ADB
takes between 2 to 12 seconds, and Groundhogwaits for 5 seconds
after each action is executed to ensure all changes in the app state
are finalized. TalkBack Proxy takes more time to execute because
the communication between Groundhog and TalkBack is a slow
process since Groundhog actually performs touch gestures and
waits for TalkBack to change its internal state.

Groundhog’s performance can be improved significantly by
parallelizing the snapshot analysis thanks to its Client-Server model.
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Each VM snapshot is less than 1GB of data and can be easily trans-
ferred in less than 10 seconds.

Locating an element using TalkBack Proxy takes 9.71 seconds on
average per action. Without our optimization technique, it would
take 26 seconds on average. In other words, the optimization im-
proves the performance of this aspect of Groundhog by more than
2.5 times per action, which reduces the app analysis time by 10
minutes on average.

8 THREATS TO VALIDITY

External validity. A key threat to validity is preserving the state
of the app under test since three different proxies should perform
the same action on the same element. We mitigate this threat by
capturing a VM snapshot of the device used for all proxies. The
virtualization technique may not preserve the state of apps that
update their content dynamically or retrieve information from the
server. For example, in a shopping app, if one proxy adds an item
to an empty shopping cart that is synchronized with an external
database, the same VM snapshot may be in a different state when
it is loaded for another proxy. We have not observed this situation
occurring in our experiments; however, to prevent reporting false
positives/negatives in similar cases, we check the UI hierarchy of
the apps after loading the VM snapshots. If they are not exactly
similar, we report a flag indicating that the VM snapshot is different
and the result may not be reliable. It would be interesting for future
work to examine elegant solutions for handling dynamic and online
content.

Another threat resides in the variety of actions supported by
Groundhog. Our current implementation supports clicking ac-
tion. Other touch gestures are not implemented. Although clicking
is one of the most essential touch gestures for interacting with
GUI elements, our claimed benefits of Groundhog can be more
confidently generalized by providing and evaluating support for
other types of actions. However, it is worth noting that most other
complex touch gestures, like pinching in/out or double-tap, are
not supported by assistive services in the first place. For example,
pinching can be used for zooming in on an image, but it does not
have an equivalent in TalkBack since blind users may not see visual
images.
Internal validity. We implemented Groundhog using several
libraries and tools, includingADB,Android Virtual Device, Stoat [30],
and AccessibilityService in Android, which may introduce defects in
the crawling and analysis steps of our implementation. Furthermore,
our prototype may contain bugs in its implementation. We have
tried to minimize this threat by upgrading all libraries to the latest
available versions, writing automated unit tests, and conducting
code reviews. In addition, we tested the prototype extensively on
numerous popular Android apps.

9 RELATEDWORK

Empirical studies on mobile accessibility [4, 21, 43, 48] have re-
vealed the prevalence of various accessibility issues in mobile apps,
preventing disabled users from utilizing their services. These find-
ings have motivated the research community to develop techniques
to automatically detect accessibility issues [4, 15, 22, 27], and to
repair the detected issues [2, 21, 37, 52].

In general, automated accessibility testing techniques evaluate
app compliance with accessibility guidelines [49] using static or
dynamic analysis approaches [46]. Static analysis approaches such
as Lint [15] identify accessibility violations in the source code upon
compilation. Thus, they are not able to detect issues that can be
detected at runtime. To mitigate their limitations, dynamic anal-
ysis techniques are proposed to analyze the runtime attributes of
rendered UI components on the screen. Google accessibility Scan-
ner [5] and other tools that are built on top of Accessibility Testing
Framework [27, 31, 32] take a single app screen from the developers
to run their tests and report issues such as small touch target size
or duplicate name issues. The capabilities of these tools are limited
to a small number of issues that were supported by accessibility
guidelines that are found to only cover around 50% of the issues [40].
Thereby, they are not able to detect issues that manifest themselves
in interactions with apps. This limitation, similarly, exists for en-
hanced dynamic techniques that evaluate the same accessibility
rules but replace the developers’ effort in exploring an app with
a crawler [4, 27] or provide the ability to write app exploration
scenarios in form of GUI tests [12, 41].

A related prior work is Latte [44], which was already discussed
in Section 1 and empirically compared against in Section 7. Alotaibi,
et al. [3] have proposed a method of detecting certain accessibility
failures that may occur when using TalkBack. However, in contrast
to Groundhog, their approach requires the developer to manually
navigate through the app, i.e., the input to their tool is a screen of
an app, rather than the app under test. Furthermore, their approach
cannot detect unactionable elements. Such manual exploration is
expensive, time-consuming, and may not result in good coverage.

Unlike prior testing techniques,Groundhog is a fully automated
accessibility testing technique that only requires app in binary
form and detects accessibility issues in interactions with the app
using several interaction models. Groundhog can be generalized
to any assistive service in the context of Android and with different
exploration modes to evaluate all GUI elements at each state.

10 CONCLUSION

Prior accessibility testing tools can only point out a small portion
of the problems that people with disabilities encounter while inter-
acting with an app [35]. In this work, we proposed Groundhog,
a fully automated assistive-service driven accessibility crawler to
detect accessibility issues that only manifest themselves through
interactions with the app. Groundhog explores apps and assesses
the locatability and actionability of each element on the screen
using different interaction modes provided by assistive services.
Our future work involves evaluating the extent to which the ideas
presented here can be applied to other computing domains (e.g., iOS,
Web), and expanding Groundhog’s support to additional assistive
services and more complex gestures.
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