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Abstract—Over the past three decades software engineering

researchers have produced a wide range of techniques and tools
for understanding the architectures of large, complex systems.
However, these have tended to be one-off research projects, and
their idiosyncratic natures have hampered research collaboration,
extension and combination of the tools, and technology transfer.
The area of software architecture is rich with disjoint research
and development infrastructures, and datasets that are either pro-
prietary or captured in proprietary formats. This paper describes
a concerted effort to reverse these trends. We have designed and
implemented a flexible and extensible infrastructure (SAIN) with
the goal of sharing, replicating, and advancing software architec-
ture research. We have demonstrated that SAIN is capable of
incorporating the constituent tools extracted from three indepen-
dently developed, large, long-lived software architecture research
environments. We discuss SAIN’s ambitious goals, the challenges
we have faced in achieving those goals, the key decisions made
in SAIN’s design and implementation, the lessons learned from
our experience to date, and our ongoing and future work.

Index Terms—architecture analysis, maintenance, interoper-
ability, reproducibility, reusability

I. INTRODUCTION

A software system’s architecture comprises the principal
design decisions employed in the system’s construction and
evolution [1]–[3]. Architecture is a key determinant of the
system’s properties. While it is possible, for example, to make
low-level design decisions for a system (e.g., the choice of
a specific data structure), to implement the system carefully,
and to test it thoroughly, none of those activities can mitigate
inadequate architectural choices. Put simply, software systems
“live and die” [4] by their architectures.

Despite this critical importance, the architectures of many
systems are not explicitly documented. Instead, those archi-
tectures are reflected—actually, hidden—in the myriad system
implementation details, posing significant challenges to the
development, maintenance, and evolution of long-lived systems.
In particular, the effort and cost of software maintenance
dominate activities in a software system’s lifecycle [5]–
[8]. Understanding and updating a system’s architecture is
a critical facet of maintenance. The engineers of such a
system must regularly 1 analyze the system to understand
it, its architecture, and the implications of their planned
changes; to do so, the engineers must somehow 2 recover
the architecture from the system’s implementation in order
enable the analysis, and determine how to best 3 represent
the obtained architectural knowledge. Software engineering
practice has shown this to be an exceptionally challenging

problem, and engineers are forced to guess—and they very
often actually ignore—the architectural implications of their
choices and decisions.

To overcome this problem, for over the past two decades,
software architecture research has yielded many different tools
and techniques [9]. However, empirical studies and technology
transfer are impeded by disjoint research and development
environments, lack of a shared infrastructure, high initial costs
associated with developing and/or integrating robust tools, and
a dearth of datasets. The resulting one-off solutions inhibit
further advances in software architecture research, delaying or
preventing systematic synthesis and empirical validation of new
or existing techniques. As a result, researchers and practitioners
in need of cutting-edge tools tend to re-invent, re-implement
research infrastructure, or ignore particular research avenues
altogether. In doing so, they repeat each other’s efforts as well
as mistakes, so that opportunities for potential breakthroughs
are often missed and the field is replete with solutions that do
not work as advertised and/or are not interoperable.

To address these challenges, we propose Software
Architecture INstrument (SAIN), a first-of-its-kind framework
for assembling tools in support of architecture-based software
maintenance. SAIN’s capabilities have been motivated by
directly engaging the software researcher and practitioner
communities, in the form of three workshops as well as a
survey conducted by the authors. SAIN is delivered as a web-
based platform consisting of three principal components: 1 a
catalogued library of cutting-edge tools for reverse engineering
and analyzing software systems’ architectures; these tools
are either provided by their original authors or reproduced
from literature; 2 a plug-and-play instrument for integrating
the tools and techniques to facilitate empirical studies of
software architectures; and 3 reproducibility wizards to set
up experiment templates, produce replication packages, and
release them in easy-to-run and modify formats.

SAIN aims to facilitate empirical studies as well as develop-
ment of new architecture analysis and maintenance solutions.
By providing an extensible repository of architectural artifacts
for non-trivial software systems, a major goal of SAIN is to
enable researchers to establish a shared understanding of the rel-
ative accuracy of different techniques, to identify the gaps and
sources of inaccuracy, and to develop new solutions to continu-
ally improve results. SAIN provides researchers with commonly
needed data structures to represent architectural artifacts and
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algorithms for conducting a wide range of analyses, thereby
enabling our community to build on each others’ work and to
reduce the re-development of commonly needed capabilities.

SAIN also has the potential to impact the practice. Over
time, it will provide practitioners with an authoritative
source where they can obtain and try out various tools,
provide feedback, contribute to the repository of architectural
artifacts, and influence the research in this area. Similarly, the
benchmark results, made available through SAIN’s portal, will
help the practitioners determine which tools are suitable for
obtaining architectural information for their systems.

The key contributions of this paper are as follows:
• We introduce a SAIN, a framework that comprises a library

of cutting-edge tools for architecture recovery and analysis,
a plug-and-play instrument for integrating tools, and repro-
ducibility wizards to support replication of architecture-based
research studies.

• We discuss our experience and our users’ experiences of SAIN
in terms of the three tool suites currently contributed to SAIN;
13 architecture recovery components, 8 components for
computing architectural metrics or analyses, 2 fact extractors,
and 9 utility components from those tool suites; one compact
case study of SAIN run on a game engine project called
Mage and another detailed case study of SAIN run on Hadoop
2.5.0; and the empirical results of the detailed case study,
which analyzes the relationships between architectural smells,
architectural tactics, and error-proneness.

• We discuss experimental results from our detailed case study
that are summarized into 5 major findings that can aid
architects with maintainability by focusing on a small set
of architectural elements that involve error-prone modules,
architectural tactics, and architectural smells.

• We make SAIN publicly available for researchers and
practitioners at [10].
Section II covers SAIN’s foundational concepts. Section III

discusses the requirements elicitation process for SAIN and
the key challenges it aims to overcome. Section IV discusses
SAIN’s key design principles and alternatives considered.
Section V details our experience to date; Section VI summarizes
our lessons learned; and then our paper concludes.

II. BACKGROUND AND FOUNDATION

To set the stage for subsequent discussion, we introduce key
concepts framing software architecture, recovery, and analysis.
A. Architectural Decay

As software evolves, a major challenge impeding its suc-
cessful maintenance is architectural decay [2], [11], where
changes made to a system in the course of maintenance and
evolution actually violate the system’s intended architecture.
The effects of decay include increased time and effort required
to perform maintenance tasks and introduction of architectural
defects (e.g., a system unable to interface with outside agents
due to conflicting assumptions about network protocols).

As an example of architectural decay, consider Bash [12],
a widely used Unix shell. Bash’s conceptual architecture [13]
is depicted in Figure 1a. Its as-implemented architecture [14],
shown in Figure 1b, shows noticeable decay: not only do the
components differ, but there are many dependencies that are
unaccounted for in the conceptual architecture.

Decay has been reported in the architectures of a number of
widely-used software systems [14], [15]. Recent studies have
increasingly showcased the urgent need to address architectural

decay. A study surveying over 1,800 software engineers and
architects found architectural decay to be the greatest source
of technical debt [16], and to be highly correlated with bugs
and additional maintenance effort [17], [18].
B. Software Architecture Recovery

Reverse-engineering an architecture from implementation
artifacts is referred to as architecture recovery [19]–[21].
Multiple architectural views [2], [22] of a system may be
desirable, depending on the objective of recovery. For instance,
a runtime view may be appropriate for reasoning about a
system’s security, performance, and availability [23], [24],
while different structural and/or behavioral views, obtained
either automatically [20], [21], [21], [21], [25]–[33], [33], [34],
[34], [34]–[36] or with the aid of analysis tools [37]–[48], may
allow reasoning about the implications of a range of system
changes. Thus, different recovery techniques may be needed for
different architectural analyses [49]–[51]. Having ready access
to multiple recovery techniques directly motivated SAIN.

For illustration, consider the four architectural views of
Bash in Figure 2. Figure 2a is the as-implemented architecture
from Figure 1b, redrawn in a circular layout. The other three
views were each obtained from a different automated recovery
technique. Figure 2b uses information retrieval to create a
semantic architectural view, while Figures 2c and 2d depict
different structural views. Each of the four views may be useful
for different maintenance tasks. For example, a structural view
may be more effective when considering system reconfiguration;
a semantic view may be better suited for understanding the
system concerns. Prior work has suggested a way of integrating
multiple architectural views [52].
C. Architectural Analyses

Once an architecture is recovered from code-level artifacts,
a variety of analyses and subsequent activities are made
possible: identifying or predicting instances of architectural
decay; repairing the architecture to eliminate decay; optimizing
it to achieve desired quality attributes; and so on. We highlight
a body of analyses that has inspired SAIN most directly.

A prominent activity for tracking architectural decay in
software systems is architectural smell detection [53], [54]. An
architectural “smell” is a design decision that negatively impacts
a system’s maintenance and evolution. Potential adoption of
existing techniques for detecting [17], [55]–[57] and, subse-
quently, repairing [58]–[62] architectural smells is hampered
by the lack of 1 readily reusable recovery techniques and
2 architectural benchmarks (e.g., architectural models that

can serve as “ground truths”) on which their efficacy can be
evaluated and subsequent improvements measured.

Recently, evolutionary architectural analyses have been
performed across multiple versions of existing software systems.
These studies include assessing the nature and extent of
architectural change [63] and decay [64], identifying the
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Fig. 1: Architectures of Bash. The architectures are depicted at
this magnification only as a way of visually comparing them;
the reader is not expected to understand their details.
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(a) As-implemented architecture. (b) Semantic view. (c) Structural view. (d) Another structural view.

Fig. 2: Architectural views of Bash from different recovery techniques. The architectural views are depicted at this magnification
only for visual comparison; the reader is not expected to study their details.

correlation between co-occurring changes across architectural
modules and implementation defects [65], and attempting
to predict architectural decay [66]. However, as before, the
lack of available architectural benchmarks and “out of the
box” recovery techniques restricts the scope and architectural
phenomena studied, and renders each study one-of-a-kind.

III. SAIN’S REQUIREMENTS AND CHALLENGES

SAIN is motivated by challenges that are faced by the
software engineering research community, and frequently
discussed at conferences, workshops, and in the research
literature. More specifically, the requirements for SAIN were
directly elicited from the software architecture and software
engineering research communities.

To elicit requirements for SAIN, we utilized two comple-
mentary techniques: requirements elicitation at brainstorm-
ing workshops, and an online survey. We organized three
invitation-only, focused workshops that involved around 50
researchers and practitioners from the software architecture and
empirical software engineering areas. The workshop attendees
were guided through discussions of opportunities, challenges,
and community needs for the area of software architecture.
Furthermore, the participants brainstormed features and use
cases of SAIN as well as ways to address the challenges and
community needs. Through these workshops, we solicited and
specified 17 requirements for SAIN.

We further asked the community to help us prioritize these
requirements through an online survey—which was filled out
by 60 members of the research community. These requirements
involved creating a repository of benchmarks and datasets (e.g.,
machine-readable architectural models) and tools (e.g., tools
that extract implementation-level information or architectural
metrics), and the kinds of user interfaces and utilities SAIN
would provide to the research community (e.g., reusable
experiment templates or visualization capabilities). Ultimately,
these various requirements involved re-occurring and time-
consuming research prototyping challenges that can be poten-
tially automated or outsourced as engineering tasks. Satisfying
these requirements would facilitate and speed up research
breakthroughs and productivity for many research groups
working in the areas of software architecture, maintenance,
and empirical software engineering.

The resulting requirements obtained from these workshops
and the survey fall under five key challenges faced by the
software engineering community, when conducting architecture-
oriented research centered on software maintenance and evolu-
tion. In this paper, we focus on the three challenges that we
have prioritized for the current version of SAIN.

C1 – Research Tool Accessibility and Reusability. Im-

plementations of research techniques are often unavailable,
defective, not easily accessible, or no longer supported by their
original creators. For tools that do work, it is common for
them to not operate as advertised, requiring major effort to
adapt these tools for further research.

C2 – Interoperability of Tools. Software architecture
research and technology transfer is hampered by dispersed
research environments and stove-piped solutions emerging
from different research groups. This, in turn, inhibits research
advances, makes it difficult to synthesize techniques and
tools in novel ways, and complicates comparisons of research
solutions. Researchers and practitioners in need of cutting-edge
architectural analyses must often recreate tools or their major
elements, including basic code analysis, reverse-engineering
functions, and frameworks. Furthermore, different assumptions
that these tools make (e.g., about the execution environments,
formats used, implementation languages, etc.) prevent their
combined use, further inhibiting breakthroughs.

C3 – Reproducibility of Experiments and Analyses. Due
to inaccessible, non-reusable, or defective tools, datasets, and
case studies, and incompatible underlying tool assumptions, it
is difficult to reproduce the results of many previous software
architecture-oriented research studies [67], [68]. For software
architecture-oriented research, it is often necessary to construct
previous tools and datasets entirely from scratch to that end
[14], [15], [49]–[51], [69]. Several repositories for collecting
and sharing research artifacts have been established within the
software engineering community, including PROMISE [70],
Eclipse Bug Data [71], Bug Prediction Dataset [72], SIR [73],
and TraceLab [74]. These repositories have played a major
role in fostering research in various sub-fields of software
engineering, such as software testing and analysis, requirements
traceability, and software maintenance. However, none of
these repositories are aimed at providing and sharing artifacts
related to software architecture research, nor can they be easily
modified and adapted to host such artifacts.

IV. DESIGN AND FEATURES OF SAIN
In addressing the three major challenges the current version

of SAIN targets, we describe the design principles, major design
decisions, and the key features of SAIN.

A. SAIN’s Design Principles
Various design principles were considered and architectural

alternatives analyzed to identify a design that could adequately
address the needs and challenges identified through SAIN’s
requirements elicitation effort. SAIN’s core design principle
is based on a plug-and-play architecture to enable tool
accessibility and reusability (C1), interoperability of tools

3



(C2), and reproducibility of experimental templates (C3).
Specifically, components added to SAIN that respect a standard
interface can easily interoperate with other SAIN components
for novel experiments; entire experiment workflows can be
saved, modified, and shared; and SAIN allows for search and
navigation of tools of interest for researchers who wish to
reuse or access tools or their constituent components.

To facilitate ease of composing a new experimental pipeline
using existing SAIN tools or their constituent components
(C3), SAIN incorporates a plug-and-play solution based on
components that respect a standard interface expected by SAIN
and provision of wrappers or converters to address disparate
languages or data formats. This solution allows users to upload
an executable format of an existing tool or its constituent
components into SAIN and have it ready for integration
with other tools or components which, in turn, addresses C2.
Upon importing a tool or component, an SAIN user needs
to use SAIN to specify the tool’s or component’s interface,
parameters, and specific execution commands. By adhering
to such a standard, SAIN can execute the tool or component.
This integration solution relies on interface compatibility,
however, since each tool or component may be developed by
different researchers using different languages and formats,
especially for novel research prototypes, SAIN allows users
to upload and incorporate components that act as wrappers or
converters, enabling integration of novel tools and components
with existing SAIN components (i.e., C2).

SAIN experimental pipelines utilize a pipe-and-filter
architectural style that helps combine components in
some experiments that involve sequential processing of the
information. Furthermore, SAIN uses a blackboard architectural
style in cases where a sequential order cannot be defined.
This architectural style allows components to communicate
through a shared data model. The use of these two styles
enable flexible experiment workflows to be designed, saved,
reused, and shared—which aids in addressing C3.

SAIN’s design also enables a drag-and-drop mechanism that
users can leverage to easily compose new experiment pipelines
by dragging a component from SAIN’s component catalog and
dropping it onto the integration environment’s canvas. This
simplicity of use and access directly supports overcoming C1.
The SAIN UI relies on a graphical programming language that
allows creation of workflows which can be used by SAIN to
compose components and generate a fully executable pipeline
in the back end, which helps to address C3. This graphical
programming language-based UI is depicted in Figure 3.

B. Prototyped SAIN Design Alternatives

To evaluate various alternatives brainstormed by the team
during joint application design sessions, we implemented a
prototype of the architecture to examine five design alternatives
early on and assess the risks. The first two solutions we
assessed but did not adopt are based on Google’s Blockly [75],
a library that represents coding concepts as interlocking blocks
and generates syntactically correct code in the programming
language, and a publish subscribe-based architectural style. The
three remaining solutions are ones we collectively adopted for
SAIN: a custom visual programming language which allows
a user to run the tools from the browser without needing to
write a single line of code; a microservice-based design; and a
hybrid pipe-and-filter and blackboard architectural style-based

solution. In the following paragraphs, we discuss these five
design alternatives in more detail.

While Blockly was effective at forming a program using
low-level coding elements, this design alternative was less
practical and more complex for integration of disparate tools
compared to the alternatives. Needing to specify low-level
programming elements increases complexity of experiment
template or workflow creation without a worthwhile increase
in experiment expressibility.

For the visual programming language-based solution, each
tool contributed to SAIN is represented as a graphical block
or node in SAIN’s front end. On the back end, each tool is
represented as a Node.js API service. The prototype of this
solution was successful at addressing requirements related to
all three major challenges C1, C2, and C3. The visual aspect
of the approach, which is similar to end-user programming
solutions, simplified quick experimentation with ease of tool
reuse and access (C1), while still allowing complex component
integration (i.e., C2) and sophisticated experiments (i.e., C3).
Therefore, this design alternative was chosen and SAIN is
delivered as a web-based platform that can be used for quick
experimentation by even novice users and new researchers.

The prototype of the microservice-based design included
using typical microservice solutions, i.e., containers and
exposure of tool interfaces using HTTP. This solution enables
standalone reuse of tools and their constituent components,
allowing researchers to easily run each tool or component
within a Docker container on their local machines. To enable
integration of contributed tools in SAIN as microservices, our
visual programming language is used to allow users to compose
experiments without dealing with technical difficulties.

The final alternative we considered was a hybrid pipe-and-
filter and blackboard architectural style compared to a simpler
publish-subscribe style. Although the publish-subscribe style
would enable a highly flexible architecture for experiment
templates, the highly general interfaces of such a style were
unsuitable for the more specific and controlled interfaces needed
to contribute tools to SAIN. Additionally, a pipe-and-filter style
more naturally modeled the kinds of pipeline-like workflows
used in empirical software engineering-oriented experiments.
On the other hand, the blackboard style enabled a user to have
flexible integration of partial solutions to form an experiment in
which components could communicate or independently act by
reading and writing data in a global shared store. This design
is particularly suitable for SAIN as complex experiments may
not necessarily have a deterministic pipeline and might be com-
posed of various experimental fragments. The hybrid pipe-and-
filter and blackboard style is well-suited for enabling various
forms of interactions needed to create complex experiments in
which tool integration can be process-centric or data-centric.

C. SAIN’s Library of Architecture Recovery and Analysis Tools

Through the three workshops and online survey discussed in
Section III, SAIN’s requirements focused on four different types
of tools it must support to enable tool reuse and accessibility
(C1) and tool interoperability (C2): tools for architecture
recovery; architectural analysis and metrics; fact extractors;
and utilities. These types of tool are selectable in the SAIN
visual programming language-based UI depicted in Figure 3.
Specifically, the pane on the left side of Figure 3 shows four
groups of tools selectable by a user that can be dragged-and-
dropped onto the canvas of the window to produce experiment
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Fig. 3: An experiment integrating three tools to study error-prone modules, architectural tactics, and architectural smells. The left
pane has components that can be drag-and-dropped onto the canvas in the middle, where they can be integrated. Intermediate
data for each component is accessible from the right pane.

workflows. We discuss each of these tools and their importance
further in the following paragraphs.

Architecture recovery tools obtain architectural abstractions
of a system based on implementation-level entities. Given that
such tools aim to directly determine an architecture to overcome
the pervasive problem of architectural decay, having such tools
were critical for SAIN in addressing C1.

Tools for computing metrics related to architecture recovery
and analysis were deemed highly important and discussed
extensively in SAIN workshops and the online survey. Partici-
pants of the workshops and survey pointed to the need to use
standard metrics and easily reuse tools to measure architectures
(e.g., compute metrics about architectural smells) and compare
architectures of implemented systems from various domains
(e.g., metrics for comparing a recovered architecture against a
ground-truth architecture [28]).

Fact extractors are used to obtain raw facts about a software
system. Examples of such raw facts include dependencies
between software modules, system and package dependency
graphs, change requests from issue-tracking repositories, ar-
chitectural metrics, etc. There was extensive discussion in
workshops about how simply having fact extractors that are
accessible and reusable would facilitate and speed up empirical
research in software architecture on its own—especially since
many fact extractors often need to be re-implemented to serve
as raw materials for creating novel experiments.

Utilities are tools that provide “helper” functionality, such as
data-format conversion and statistical analysis that may not be
architectural in nature on their own but are critical for interop-
erability of tools, i.e., C2. For example, different architecture
recovery techniques can sometimes use different data formats
as input for representing raw facts. In SAIN, an example utility
is a tool for uploading projects from different sources (e.g., a
GitHub repo or a program directory) or a generic data-mining

tool like Mallet [76] that might be reused in some studies.
D. SAIN features: Reproducibility Wizards

To address the key challenge of realizing reproducible
experiments and analysis (C3), three key reproducibility
wizard features have been implemented in SAIN: experimental
workflow composition, reusable experimental templates, and
easy assembly of replication packages.

To enable novel and reproducible experiment templates in
SAIN, we provided features for construction of workflows
involving SAIN artifacts and datasets. Combining artifacts into
workflows facilitates running new experiments or reproducing
previous ones. For example, Figure 3 shows the workflow of the
seven components from three tool suites Titan, Archie, and AR-
CADE: Sdsm, Hdsm, Bug Space, Tactic Detection,
ACDCWithSmellDetection, Tactic RootCover, and
Smell RootCover. This new experiment template enables
the integration of architectural roots of error-proneness, archi-
tectural tactic implementation, and architectural smell analysis,
leading to new and valuable findings which otherwise are not
available. This template intuitively illustrates the workflow of
using the seven components to identify the architectural roots of
error-proneness and their association with architectural tactics
in a software project. The experiment rationale and details will
be introduced in Section V. The point here is that, following
the flow in this template, an analyst can easily reproduce this
experiment, by first executing Sdsm, TacticDetection,
and ACDCWithSmellDetection. The intermediate output
of Sdsm, Bug Space, Hdsm, and Tactic Detection
are used as input to Tactic RootCover; and the interme-
diate output of ACDCWithSmellDetection and Tactic
RootCover are used as input to Smell RootCover.

Beside the ability to specify new experiment workflows, we
have included a number of predefined, commonly employed
workflows to serve as templates. Users can easily reuse and
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revise these experimental pipelines. Currently, we have released
six templates focusing on reverse engineering different archi-
tectural views, detecting architectural smells, and investigating
the relationships between smells and software quality issues.

One of the key features of the instrument is to allow
researchers to easily assemble their experiment setup using
SAIN and a save menu, export it as a self-contained replication
package (available on the top-left File menu in Figure 3).
Storage of experiment templates or workflows using this feature
allows for sharing the exact experiment structure used by
a researcher—enabling researchers to easily understand and
modify existing experiments to produce novel experiments to
achieve new breakthroughs in software architecture research.

V. EXPERIENCE WITH SAIN
To convey our experience of constructing SAIN, we discuss

the tool suites and components it currently contains, the
experience of the initial users of SAIN, and some SAIN
experiments conducted so far. We further present a compact
case study of architectural smell detection using SAIN on
the game engine project, Mage [77], and a detailed case
study of SAIN on Hadoop 2.5.0 [78], a large and widely used
framework for distributed processing of large datasets across
cluster computers. The latter case study combines various
components from three different tool suites incorporated into
SAIN, the benefits and challenges provided by SAIN in that
context, and novel empirical results obtained from it.

A. Current SAIN Tool Suites

SAIN has been populated with components from three
separate tool suites that support architecture recovery and
analysis, have been used in a variety of empirical studies,
and are publicly available: Titan, a tool suite that extracts
representations called Design Rule Spaces (DRSpaces) that
bridges the gap between architecture and defect prediction
[52], [57], [79], [80]; Archie, a tool suite that automates the
creation and maintenance of architecturally-relevant trace links
between code, architectural decisions, architectural tactics, and
related requirements [23], [81]–[84]; and Architecture Recovery,
Change, And Decay Evaluator (ARCADE), a tool suite that
employs a collection of architecture-recovery techniques and a
set of metrics for measuring different aspects of architectural
change [28], [55], [63], [85].

Archie: Tactic Detection. Archie [23], [86] is a reverse
engineering method that detects architectural tactics. It detects
security tactics, such as audit, authenticate, HMAC, Secure
Session Management, and RBAC; reliability tactics, such as
heartbeat and CheckPoint; and performance tactics, such as
Resource Pooling, Resource Scheduling, and Asynchronous
Invocation [84]. Archie leverages machine learning and struc-
tural analysis techniques to identify tactics and map them to
code snippets, classes, or source files.

Titan is a tool suite for bridging the gap between software
architecture and maintenance quality [79], built upon the design
rule theory proposed by Baldwin and Clark [87]. It captures
the architecture of a software system as multiple, overlapping
design spaces, called Design Rule Spaces (DRSpaces). Each
DRSpace is composed of a leading file, which is the design rule
of the space, and a set of member files that structurally depend
on the leading file, directly or indirectly. In addition, Titan
also models the history coupling between source files—how
frequently they change together in revision commits—as an

additional layer of architectural connections. Titan can identify
and rank the DRSpaces in a project which aggregate the error-
prone files—thus these DRSpaces are called the Architectural
Roots (ArchRoots), which deserve attention from practitioners
interested in addressing the long-term maintenance quality of
a project.

ARCADE: Smell Detection. ARCADE’s smell-detection
component can identify architectural smells that contribute
to maintenance difficulties in a project [55], [64], [88]. The
definition of a subset of those architectural smells, which are
focused on later in this section, and their potential negative
impacts are described below: 1) Dependency Cycle occurs
when a set of components (e.g. classes or source files) whose
links form a circular chain, causing changes to propagate
from one component to another on the chain. Such high
coupling between components violates design principles for
modularity. 2) Link Overload manifests when a component
has interfaces involved in an excessive number of links (e.g.
procedure-call dependencies), affecting the system’s separation
of concerns and isolation of change. 3) Concern Overload
occurs when a component implements an excessive number
of concerns, violating the principle of separation of concerns,
potentially increasing the size of a component and reducing
its maintainability.

B. Current SAIN Components

SAIN’s components are divided into the four types described
in Section IV-C: architecture recovery, architectural analysis
and metrics, fact extractors, and utilities. These components
may be part of the web-based integration capability or
reproducibility wizards of SAIN, available in the form of
microservices, or as their original source or binaries. As of
the writing of this paper, SAIN contains 13 components for
architecture recovery, 5 components for architectural analysis
and metrics, 2 fact extraction components, and 4 utility
components available as part of SAIN’s web-based integration
environment—from three different tool suites. 6 architecture
recovery techniques, 8 architectural analyses and metrics, 2
fact extractors, and 9 utility components are available as
microservices. These components allow for recovery of other
components, architectural tactics, and DRSpaces; architectural
analysis and measurement of architectural tactics, architectural
smells, defects, change-proneness, etc.; fact extractors for
structural dependencies, natural language processing-based
information, issue repository extraction, etc.; and utilities for
data-format manipulation, visualization, etc.

SAIN includes extensive documentation describing the pur-
pose of each individual component from a tool suite, its inputs,
outputs, and links to publications describing the tool suite
further. Our users have so far found the documents ease
the burden of understanding each individual component, as
opposed to the tool suite as a whole, or even standalone tools
of each tool suite. SAIN’s design that forces tool authors
to utilize a standardized form of documentation requiring
descriptions of inputs and outputs eased user understanding of
SAIN components.

The variety of components available in the form of vi-
sual integration mechanisms, microservices, or individually
downloadable component source or binaries has also allowed
multiple students to use tools from outside their research group
with greater ease and a shorter learning curve. More specifically,
several research groups have re-used SAIN components that
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originate outside of their own research group for novel
experiments. We elaborate on two of these experiments in
Sections V-C and V-D.

C. An Experiment to Identify Architectural Smells

To conduct research to identify architectural smells in open-
source projects that use or implement AI/ML, we leveraged
the tool integration module of SAIN. Figure 4 shows the SAIN
experiment template for this study. We leveraged components
that were already deployed in SAIN to design an experiment
which takes a project jar file as input and produces a CSV file
that lists architectural smells in each module of the project.
First, we used the Dependency Builder component that is part
of ARCADE to extract the dependencies in a given project.
Then, we used ACDC [29], a widely used architecture recovery
technique available in SAIN, to discover clusters that follow
patterns commonly observed in decompositions of software
systems and recover module views of a software system’s
architecture. We included the Smell Detection component of
ARCADE, which takes the outputs of the Dependency Builder
and ACDC as input and generates an XML file that lists
the identified architectural smells. Finally, the Smell Analyzer
component is used to deserialize the output of the smell detector
and generate a CSV file that lists class- and component-
level smells. These aforementioned four components were
connected using the simple and user-friendly drag-and-drop
tool integration interface of SAIN and the designed experiment
was saved as a JSON file for later use.

The tool integration module of SAIN allows users to export
and import JSON files created for experiments. The smell
detection experiment was imported to identify the architectural
smells in Mage [77], a game engine project. Mage was
downloaded as a zip file and provided as input to the first
component in the experiment. It took us around two minutes to
extract various types of component- and class-level architectural
smells in the Mage project. The output of the components at
each step of the experiment was visualized in the component
panel and generated log files were accessible through a
back-end terminal output window to trace and debug any
issues throughout the experiment process—which is accessible
through the >_ UI element in the upper-right region of Figures
3 and 4. Using the import and export features of SAIN, it was
possible to (1) repeat a previous experiment with the same
input or re-run it for additional projects and (2) share the
experiment JSON file with other members of the research team
to reproduce our experiment results at any time. The rich and
user-friendly experimentation environment of SAIN helps make
the results of scientific experiments reproducible and supports
research transparency.

D. Integrating SAIN Components

To further showcase our experience with SAIN, we elaborate
on a preliminary case study accomplished by integrating SAIN
components, which were originally produced by different
research teams. This case study shows how SAIN can help
researchers achieve a result whose sum is greater than its parts
in software architecture analysis with flexible and versatile
functions while obtaining interesting, novel research findings.

Our case study subject is an open-source project, Hadoop,
which is actively and widely used and maintained. We analyze
Hadoop by integrating the insights from the three different tool
suites, (i.e. ARCADE, Archie, and Titan) currently available in

SAIN. We investigate Hadoop version 2.5.0, since it is a major
release, and has been previously analyzed by all three tool
suites. Figure 3 depicts this experiment as realized in SAIN.

1) Integrating ArchRoots and Architectural Tactics: We
began our experiment by integrating Titan’s architectural root
detection and Archie’s architectural tactic detection (TacticDe-
tection in Figure 3) to enable more advance analyses.

Integration Motivation and Rationale: We aim to integrate
the insights of ArchRoots and architectural tactics. To this
end, we can achieve a multi-perspective view of ArchRoots
from their architecture design structure, error-proneness, and
involvement in tactic implementation. This view helps us
answer questions such as the following: How much are the
architectural tactics associated with error-proneness? How are
tactic files and error-prone files architecturally connected to
each other?

To answer these questions, we aim to identify DRSpaces that
are led by tactic files using the ArchRoots detection component.
This component exhaustively searches for all the DRSpaces
that are led by each and every source file in a system as the
leading file. This tends to identify large spaces that have the
largest coverage on error-prone files. However, these spaces do
not necessarily have a focus on tactics. While in this integration
case study, Titan only searches for the DRSpaces that are led
by tactic files. Therefore, the key aim of our study guides
us as to how and to what extent the architectural tactics are
associated with error-proneness by focusing on source files that
are impacted by the tactic files as their “design rules”. We refer
to the ArchRoots associated with tactics from the integration
study as Tactic-ArchRoots, extracted by the Tactic RootCover
component in Figure 3.

Our study’s results are illustrated in Figure 5. The x-axis
shows the ranking of the top x ArchRoots detected by Titan.
The y-axis shows the coverage of the top x ArchRoots to the
Error5 space (i.e. the set of error-prone files with at least
5 bug fixes in the revision history for Hadoop-2.5.0). The
rectangular data points represent the original ArchRoots; while
the diamond-shaped data points represent the Tactic-ArchRoots.
We make the following observations from this result:

Finding 1: The tactic implementation is non-trivially
associated with the error-proneness in Hadoop-2.5.0—38%
of the error-prone files are aggregated in design spaces
that are led by the tactic files. Therefore, it is important
for practitioners to investigate the error-proneness of a
project from the perspective of tactic implementation.

The top five ArchRoots, considering DRSpaces led by any
source file, can cover 80% of files in Error5. The implication
is that error-prone files are significantly linked to each other
through their architectural connections. This is consistent with
previous findings [57]. While the maximal coverage of the
Error5 by the Tactic-ArchRoots reaches up to 38% with a
total of 30 Tactic-ArchRoots. This large coverage of error-
prone files by Tactic-ArchRoots indicates that error-proneness
of Hadoop-2.5.0 is non-trivially associated with the tactic files.
Practitioners should examine this association through Tactic-
ArchRoots when trying to improve the maintenance quality of
the 38% of files in Error5.

The top five Tactic-ArchRoots already cover 31% (out of the
maximal 38%) of all Tactic-ArchRoots. Therefore, we suggest
that developers prioritize the top five Tactic-ArchRoots when
examining the relationship between error-proneness and tactic
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Fig. 4: An experiment designed to identify architectural smells from architectures recovered by ACDC. The first three components
have finished executing, while Smell Analyzer is currently running.

Fig. 5: Original ArchRoots vs. Tactic ArchRoots

implementation. In Table I, we list the characteristics of the top
five Tactic-ArchRoots. The first column shows the tactic leading
files of the identified Tactic-ArchRoots. The second and the
third columns show the frequency and ranking of each tactic
leading file for fixing bugs. The last two columns describe the
characteristics of the Tactic-ArchRoots, in terms of BSC and
DSB measurements. BSC is the percentage of files in Error5
that are covered in a root; DSB is the percentage of files in a
root that are from Error5. Table I shows that the top five tactic
leading files could be very error-prone: UserGroupInformation,
CommonConfigurationKeysPublic, and FileContext are highly
ranked for their bug fixing frequency. These Tactic-ArchRoots
have a high concentration of error-prone files in Hadoop-2.5.0.
For example, the DSB of the ArchRoot led by FileContext
reaches up to 54%, indicating every one in two files in this
root contain more than five bug fixes. Such insights would not
be available without the integrated analysis of Titan and Archie.

Leading Tactic File Info Root Info
Tactic File B. Freq. B. Rank BSC DSB

UserGroupInformation 31 3 15% 33%
CommonConfigurationKeysPublic 14 12 11% 45%
MiniDFSCluster 3 128 7% 19%
FileContext 13 15 6% 54%
Token 2 206 8% 35%

TABLE I: Top Five Tactic ArchRoots

Finding 2: The top five Tactic-ArchRoots deserves special
attention from the developers, since they strongly relate
to the error-prone files—i.e., 19% to 54% of files in
each Tactic-ArchRoot is error-prone as measured using
DSB. The top five Tactic-ArchRoots can provide a useful
perspective for examining the association between tactic
implementation and error-proneness in a project.

2) Integrating Tactic-ArchRoots and ARCADE Smell De-
tection: For the next step of our case study, we integrated
ARCADE’s architectural smell detection with Tactic-ArchRoots.
In other words, we aim to investigate whether and to what
extent the most error-prone Tactic-ArchRoots from the above
integration also suffer from architectural smells. This integra-
tion of architectural smells and Tactic-ArchRoots is realized
by Smell RootCover, which takes ACDCWithSmellDetection,
the smell detector of ARCADE based on ACDC, and Tactic
RootCover as input—all of which are depicted in Figure 3. In
Hadoop-2.5.0, we identified three types of smells: Dependency
Cycle (1 instance), Link Overload (5 instances), and Concern
Overload (1 instance). The architectural smells detected by
ARCADE can have negative impacts on the maintainability
and software quality, which in turn can increase the error-rate
of the components involved in the smells. For instance, if one
of the components involved in a Dependency Cycle contains
an error, a change fixing the error can propagate changes to
other components in the smell.

Integration Motivation and Rationale: Practitioners can
gain valuable insights by viewing Tactic-ArchRoots and the
architectural smells in combination. In particular, for our case
study, we are interested in answering the following question:
How are the source files in the top five Tactic-ArchRoots
involved in the architectural smells? This can potentially help
developers to reveal the underlying architectural design flaws
that lead to high error-proneness of Tactic-ArchRoots.

The integration rationale is that, for Tactic-ArchRoots,
we investigate how each instance of an architectural smell,
detected by ARCADE, is contained in the roots. Note that an
architectural smell instance is usually composed of a group of
source files. For example, we identified a Dependency Cycle
formed by 78 source files in Hadoop-2.5.0. A Tactic-Root alone
may not contain all the files of a smell. Thus, we calculate the
percentage of files in each architectural smell instance that are
also contained in a Tactic-ArchRoots. In addition, we calculate
the percentage of files in each architectural smell instance that
are contained and aggregated in the top x Tactic-ArchRoots.

Table II presents the overview of the integration analysis of
combining Tactic-ArchRoots and architectural smells.

Finding 3: Overall, among a total of seven instances
of architectural smells in Hadoop-2.5.0, five instances
are involved in the Tactic-ArchRoots. This indicates that
reviewing the Tactic-ArchRoots is important to investigate
most (5/7) architectural smells in Hadoop-2.5.0.

The detailed analysis of each involved architectural instance
is shown as a column in Table II. When considering all the
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Top Five Tactic-ArchRoots ARCADE Smell Instance (# Files)

Tactic Leading File Dp. Cycle 1 (# 78) Link OL. 1 (# 33) Link OL. 2 (# 3) Link OL. 3 (# 18) Link OL. 4 (# 1)
Single Accu Single Accu Single Accu Single Accu Single Accu

UserGroupInformation 29% 29% 3% 3% 100% 100% 11% 11% 0% 0%
CommonConfigurationKeysPublic 3% 31% 3% 6% 0% 100% 0% 11% 100% 100%
MiniDFSCluster 0% 31% 0% 6% 0% 100% 0% 11% 0% 100%
FileContext 1% 32% 0% 6% 0% 100% 6% 17% 0% 100%
Token 32% 38% 0% 6% 100% 100% 6% 17% 0% 100%
All Tactic-ArchRoots 38% 6% 100% 17% 100%

TABLE II: Smells Identified by ARCADE in Tactic-ArchRoots

identified Tactic-ArchRoots (a total of 30 roots as shown in
Figure 5), they contain 6% to 100% of the files in different
architectural smell instances, as shown in the last row. This
indicates that different architectural smells have different level
of associations with Tactic-ArchRoots. In addition, if we focus
on the top five Tactic-ArchRoots, we notice that the maximal
percentage (6% to 100%) of files have already been covered
for each smell instance.

Finding 4: These results indicate that developers only
need to focus on the top five Tactic-ArchRoots for
understanding how the architectural smells overlap with
the tactic implementation and their error-proneness.

To illustrate in greater depth the interesting results that can
be obtained by using SAIN to integrate various architectural
tools, we present a qualitative example and visualization to
show how combining Tactic-ArchRoots and smell analysis helps
developers understand the root causes of error-proneness of
the top ranked Tactic-ArchRoots. Figure 6 is a part of the
Design Structure Matrix (DSM) visualization of the top ranked
Tactic-ArchRoot led by tactic file UserGroupInformation. Due
to space limitations, we only illustrated part of the space that
focuses on the tactic implementation for Authenticate, which
ensures that a user or a remote system is who it claims to be.

A DSM is an n × n square matrix, which represents the
relationship among source files in a system. As shown in
Figure 6, the rows and the columns represent the source files
from the Tactic-ArchRoot led by UserGroupInformation (this
leading file is listed in row 1). The relationship among files
is captured in the n × n square matrix—found in the outer
rectangular box on the right of Figure 6. Titan captures two
types of relationship between files in the DSM: (1) structural
dependencies, including “ext” and “dp”—where “ext” indicates
that the file on the row extends the file on the column, while
“dp” represents all other general types of reference relationships,
such as method call and variable declarations; (2) the historical
coupling, captured as a numeric value, indicating the number
of times the file on the row changes together with the file
on the column in the same commits. For example, cell[3,2]
says “dp,36”, indicating the file on row 3 ipc.Cline depends
on the file on row 2 ipc.Server, and they change together 36
times in the same commits. This indicates strong coupling
between ipc.Server and ipc.Client. To make reading Figure 6
more intuitive, we color-coded the cells based on the weight
of the historical coupling between files, where darker shades
of red indicate a larger number of co-occurring commits. The
DSM visualization helps us to gain insights regarding both the
structural and historical coupling among files in a system.

Using the basic DSM, we integrated three additional aspects
of information for each involved source file in the space: (1)
the involved tactic(s) (labelled as column “Tactic”); (2) the
involved smell(s) (labelled as column “Smell”); and finally,
(3) the error change frequency (labelled as column “E-Freq”),

which is color-coded in a heat-map based on the value—darker
shades of red indicate a higher error change frequency. This
additional information helps us to investigate how different
tactic files are coupled with each other both structurally and
historically, and how they are involved in architectural smells
which, in turn, provide insights regarding the root cause of the
error-proneness of Tactic-ArchRoots.

For example, through this integrated DSM visualization in
Figure 6, we have the following overall finding:

Finding 5: The complicated structural and historical
coupling among the tactic files tend contribute to the
error-proneness of Tactic-ArchRoot-1 in Hadoop 2.5.0.
There appears to be little-to-no relationship between error-
proneness and architectural smells for Tactic-ArchRoot-1
in Hadoop 2.5.0.

VI. DISCUSSION AND LESSONS LEARNED

To realize the current version of SAIN, our team of several
developers and research groups faced major development chal-
lenges. More specifically, we have a geographically distributed
team across three different continents and 13 different time
zones. We found that agile methods with two-weeks sprints,
joint application design (JAD) session [89], and exploratory
prototyping of design alternatives worked effectively to develop
SAIN under these circumstances.

For many tools or components in SAIN, a variety of data
types are used, from general types such as XML and JSON to
specific types for sub-domains of architecture research, such as
the Rigi Standard Format [29], [88], [90]–[92] for clustering-
based architecture recovery. The long-standing problem of data
conversion has required the construction of new utility compo-
nents that act as adaptors or wrappers. Nevertheless, we have
found that building these conversion tools has not been a major
pain point for researchers using SAIN compared to the high
variability of formats. Once these utility components or con-
nectors are built, they can be easily contributed back to SAIN.

As a result, we aim to include support mechanisms to aid
documentation of datasets, benchmarks, and their metadata—in
a similar manner as we have done for tools and their
components—which itself has already eased the burden of
interoperability. We believe that this challenge further empha-
sizes the need for architecture researchers to address problems
of disparate data types, possibly through flexible languages that
can describe current architectural phenomena with mechanisms
allowing for incorporation of future phenomena. To that end,
extensible architectural languages such as ACME [93], [94]
or xADL [95], [96] may be a promising starting point.

Each SAIN component can take a wide variety of input
options or complex configuration files. Incorporating these
components into our plug-and-play integration tool or creating
microservices out of them aided in determining the best default
options or the key options for components of a tool suite.
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ID File Name Tactic Smell E-Freq 1 2 3 4 5 6 7 8 9 10 11

1 UserGroupInformation Authenticate, RBAC 31 (1) ,13 ,9 dp,11 dp dp

2 ipc.Server Authenticate, RBAC 51 dp, 13 (2) ,36 dp,11 dp, dp dp dp, 14 ,11

3 ipc.Client Authenticate, RBAC 40 dp, 9 dp,36 (3) ,6 dp,7 dp, 6 dp, 12

4 FSNamesystem Authenticate, RBAC 3 dp dp (4) ,7 dp dp

5 JspHelper Authenticate, RBAC 0 dp dp, 7 (5) dp,

6 ServiceAuthorizationManager Authenticate, RBAC 3 dp ,11 ,6 (6) dp,6

7 security.SecurityUtil Authenticate cycle 6 dp, 11 ,7 ,6 (7)

8 security.token.TokenIdentifier Authenticate cycle 0 dp (8)

9 security.token.SecretManager Authenticate 0 ext, dp (9)

10 security.SaslRpcServer Authenticate 12 dp dp,14 ,6 ext, dp dp (10) ,6

11 security.SaslRpcClient Authenticate 14 dp dp,11 ,12 dp, dp dp, 6 (11)

Fig. 6: Tactic-ArchRoot-1 led by UserGroupInformation with Smells. Numbers along the diagonal refer to the ID of each file.

The visual nature of our plug-and-play integration mechanism
made it easy to identify the key input options that users must
supply (e.g., a zipped directory), without even having to look
extensively at existing documentation, which could be ample for
some of the tool suites. As a result, our experience encourages
wider use of visual or block-based paradigms for creating novel
experiments, re-using them, or sharing them.

Moreover, we found that students, developers, and re-
searchers could easily try out and combine various components
from tool suites they never tried before. Although this did not
completely eliminate integration challenges (e.g., the need to
create new data conversion components or modify existing
components), SAIN made it easier to identify these issues for
novel experiments that users wished to run.

The plug-and-play integration panel provided by SAIN allows
a novice researcher to quickly become familiar with the
workflow of different tool suites. For example, the integration
experiment was driven by a third year Ph.D. student who had
no prior experience with Archie or ARCADE, and only had
very limited experience with Titan components. He was able
to accomplish the integration case study in a time frame of
two weeks. He finally ended up contributing two new analysis
components, built upon existing components. This would not
be possible without the support of SAIN.

Due to the experience described above with our plug-and-
play mechanisms, composition of experiments was significantly
eased. Other challenges remained, however. For instance,
debugging an error in experiment can be more challenging due
to a SAIN user being unable to set breakpoints and step through
a program to diagnose or fix a bug. Running on a remote
machine (e.g., SAIN server), as opposed to a local machine can
create unexpected delays or slowdowns. Nevertheless, SAIN
developers have managed to overcome many of these initial
issues by providing research prototype interoperability mech-
anisms, allowing various users across several research groups
to more easily and quickly learn and use architecture-oriented
tools and components from outside their respective groups.

The SAIN platform provided a comprehensive view of
different architectural instruments that are available. It allows
the researchers to think out-of-the-box about the potential
connections and integration opportunities among different
components that were initially developed by independent teams.
These connections and opportunities only became explicit
and available when different architectural instruments were
organized and reviewed together.

VII. CONCLUSION

Over three decades of software engineering research aimed
at tackling the problem of architectural decay has resulted
in a plethora of techniques and tools to address the problem.

Researchers attempting to address this long-standing archi-
tecture problem face enormous challenges behind tool reuse
and accessibility, tool interoperability, and reproducibility of
experiments and analyses using these tools. To address these
three major challenges, we have constructed SAIN, a first-of-
its-kind framework for assembling tools to support architecture-
based software maintenance. SAIN comprises a library of
cutting-edge tools for architecture recovery and analysis, a plug-
and-play instrument for integrating tools, and reproducibility
wizards to support replication of architecture-based research
studies. We make SAIN publicly available for researchers and
practitioners at [10].

We have discussed our experience of SAIN and our users’
experiences of SAIN in terms of the three tool suites; 13
architecture recovery components, 8 components for computing
architectural metrics or analyses, 2 fact extractors, and 9 utility
components; one compact case study and a detailed case study
of our users running novel experiments using SAIN and how it
eased the process for them; and the results of the detailed case
study, which analyzes the relationships between architectural
smells, architectural tactics, and error-proneness. This detailed
case study resulted in 5 major findings that can aid architects
interested in improving maintainability of their systems by
simply focusing on a small set of Tactic-ArchRoots.

It is an open challenge to determine how to provide
mechanisms that (1) ease dataset and benchmark inclusion and
integration into an experiment and (2) microservice creation
for research prototypes or their components. We, therefore, aim
to study mechanisms for specifying and integrating datasets
and benchmarks into our plug-and-play mechanisms and repro-
ducibility wizard. Although full automation of microservice
or containerization is desirable, a highly valuable first step is
to design interfaces and supporting software mechanisms that
reduces the manual labor needed to create a container for a
research prototype or one of its components. We aim for our
future work to overcome this challenge.
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