
Data-Driven Accessibility Repair Revisited: On the Effectiveness
of Generating Labels for Icons in Android Apps

Forough Mehralian
School of Information and Computer

Sciences
University of California, Irvine, USA

fmehrali@uci.edu

Navid Salehnamadi
School of Information and Computer

Sciences
University of California, Irvine, USA

nsalehna@uci.edu

Sam Malek
School of Information and Computer

Sciences
University of California, Irvine, USA

malek@uci.edu

ABSTRACT

Mobile apps are playing an increasingly important role in our daily
lives, including the lives of approximately 304 million users world-
wide that are either completely blind or suffer from some form of
visual impairment. These users rely on screen readers to interact
with apps. Screen readers, however, cannot describe the image icons
that appear on the screen, unless those icons are accompanied with
developer-provided textual labels. A prior study of over 5,000 An-
droid apps found that in around 50% of the apps, less than 10% of the
icons are labeled. To address this problem, a recent award-winning
approach, called LabelDroid, employed deep-learning techniques to
train a model on a dataset of existing icons with labels to automat-
ically generate labels for visually similar, unlabeled icons. In this
work, we empirically study the nature of icon labels in terms of dis-
tribution and their dependency on different sources of information.
We then assess the effectiveness of LabelDroid in predicting labels
for unlabeled icons. We find that icon images are insufficient in
representing icon labels, while other sources of information from
the icon usage context can enrich images in determining proper
tokens for labels. We propose the first context-aware label gen-
eration approach, called coala, that incorporates several sources
of information from the icon in generating accurate labels. Our
experiments show that although coala significantly outperforms
LabelDroid in both user study and automatic evaluation, further
research is needed. We suggest that future studies should be more
cautious when basing their approach on automatically extracted
labeled data.

CCS CONCEPTS

• Human-centered computing→ Empirical studies in acces-

sibility; • Software and its engineering→ Software usability.

KEYWORDS

Accessibility, Deep Learning, Android, Alternative Text, Screen
Reader

ACM Reference Format:

Forough Mehralian, Navid Salehnamadi, and Sam Malek. 2021. Data-Driven
Accessibility Repair Revisited: On the Effectiveness of Generating Labels
for Icons in Android Apps. In Proceedings of the 29th ACM Joint European

ESEC/FSE ’21, August 23–28, 2021, Athens, Greece
© 2021 Copyright held by the owner/author(s).
ACM ISBN 978-1-4503-8562-6/21/08.
https://doi.org/10.1145/3468264.3468604

Software Engineering Conference and Symposium on the Foundations of Soft-
ware Engineering (ESEC/FSE ’21), August 23–28, 2021, Athens, Greece. ACM,
New York, NY, USA, 12 pages. https://doi.org/10.1145/3468264.3468604

1 INTRODUCTION

There is an increased onus on app developers to make their products
accessible for users with a wide range of disabilities, including the
approximately 304million users worldwide that are blind or visually
impaired [21]. Blind users rely on screen readers to interact with
apps. Built-in screen readers in mobile devices facilitate interactions
with mobile apps by reading the screens out loud for the users.
Similar to Alt-Text for web images [3], the embedded textual labels
for GUI images are essential for enabling usage of these apps by the
blind. These labels are even more critical for functional icons [9],
images that developers utilize to convey the availability of an action,
not to convey information. Without a proper description of the
functionality initiated by icons, screen-reader users are unable to
interact with an app. App accessibility is thus directly affected by
the lack of informative icon labels.

Recently, several projects have studied the extent of accessibility
issues inmobile apps [18, 22, 47], among others demonstratingwide-
spread violation of label-based accessibility guidelines in Android
apps. Missing labels, duplicate labels, and non-informative labels
are different types of label-based accessibility concerns, among
which missing labels is the most prominent one. Missing label oc-
curs when an icon is not accompanied with a textual label (a.k.a.,
content description in Android) describing its functionality. Ross et
al. [47] report that in 50% of their assessed apps, less than 10% of
icons were labeled.

The increasing awareness of this accessibility issue has instigated
some recent efforts towards alleviating it [22, 26, 59]. Notably, Chen
et al. [22] developed a promising method, called LabelDroid, which
employs deep-learning techniques to train a model on a dataset
of existing icons with labels to automatically generate labels for
visually similar, unlabeled icons.1

For data-driven approaches, such as LabelDroid, data exploration
is a prerequisite. Perfect model architectures may deliver mislead-
ing or unexpected results if the dataset is not carefully examined.
Although prior works have empirically studied the severity of the
missing labels [18, 47], none have studied (1) the characteristics of
natural language labels for the labeled icons extracted from thou-
sands of automatically explored apps in terms of their categories,
uniqueness, distribution, and dependency to other icon properties,
which can be relevant to the problem of automatic label generation,
(2) effectiveness of existing repair approaches in predicting differ-
ent categories of labels, and (3) impact of incorporating different
sources of information in generating icon labels.

1LabelDroid received the ACM SIGSOFT Distinguished Paper Award at ICSE 2020 [11].

107

This work is licensed under a Creative Commons Attribution International 4.0 License.

https://doi.org/10.1145/3468264.3468604
https://doi.org/10.1145/3468264.3468604
https://creativecommons.org/licenses/by/4.0/


ESEC/FSE ’21, August 23–28, 2021, Athens, Greece Forough Mehralian, Navid Salehnamadi, and Sam Malek

To fill this gap, we conducted a large empirical study on icons
extracted from 9,658 android apps to understand the characteristics
of icons and labels in Android apps. We then assessed the effective-
ness of learning and generating natural language labels using this
dataset.

Our empirical study reveals that the dataset of automatically
extracted icon labels is highly imbalanced, resulting in a severe
data-driven bias in the LabelDroid model. It is striking that the
introduced bias in LabelDroid is toward predicting predefined labels
that are shipped with icons in the widgets and templates of An-
droid’s Standard Development Kit. Since in practice it is extremely
unlikely for these icons to be unlabeled, generating labels for them
is pointless. We found that excluding these predefined labels drops
the LabelDroid’s accuracy by 34%.

Besides, our empirical study shows the necessity but insuffi-
ciency of images in representing icon labels. We found that incor-
porating different information sources for icons can enrich their
representation by providing their usage context, substantially im-
proving the identification of correct tokens in labels.

These findings subsequently informed the development of coala—
a deep learning (DL) approach to generate context-aware labels for
icons in Android apps. coala automatically extracts high-quality
labels for icons from the raw dataset of app screens and layouts,
from which it learns how to incorporate different sources of infor-
mation and translate the image to a textual label. It then utilizes the
learned model to generate informative labels for unlabeled icons.
Our experiments show that coala outperforms LabelDroid by 24%
in generating labels for unlabeled icons that exactly match the
ground truth.

This paper makes the following contributions:

• An empirical study of the nature of labels and how different
sources of information contribute to predicting a correct
label;

• An analysis of data imbalanceness, and how it invalidates
the results reported in the evaluation of LabelDroid [22];

• coala, the first context-aware label generation approach to
generate textual labels for Android icons and its implemen-
tation which is publicly available [6];

• Experimental results corroborating the superiority of coala
in comparison to LabelDroid in generating high-quality la-
bels for icons.

The remainder of this paper is organized as follows. Section 2
provides the background of this study using an illustrative example.
Section 3 explains the empirical study of natural language labels
and other sources of information of icons. Then, Section 4 describes
coala in detail, which will be evaluated in Section 5 along with the
existing deep learning model, LabelDroid. Section 6 explains the
threats to the validity of the research. The paper concludes with a
discussion of the related research and avenues of future work.

2 BACKGROUND

An Android app’s user interface (UI) is implemented in terms of
one or more activity components, where each activity represents a
screen. Figure 1 shows an activity for a messenger app along with
snippets of its XML layout and source code. A layout file specifies
the placement and design of UI elements in an activity. UI elements
such as ImageView are objects in the XML tree structure of layout.

package phone.call

class ContactsHandler extends Activity

+ audioCall(Contact)

+ addContact

+ search
…

+ audioCall(phoneNumber)

APK com.app.voip

Contacts_list.xml

<ImageView… 
android:id=“@+id/contactAdd” 
android:contentDescription=“create new contact” 
…/>

<ImageView… 
android:id=“@+id/phoneIcon” 
android:contentDescription=“audio call” 
…/>

<ImageView… 
android:id=“@+id/navigateUp” 
android:contentDescription=“Navigate up” 
…/>

<ImageView… 
android:id=“@+id/dial” 
android:contentDescription=“dial new number” 
…/>

4
3

1

Natasha

Contacts

1

2

3

4

3

12

4

Figure 1: Icons and their content descriptions in amessenger

app

Visually impaired users rely on screen readers, like Google’s
TalkBack service, to interact with apps. Screen readers describe im-
ages for blind users by announcing the developer-provided textual
label in android:contentDescription field of UI elements such
as ImageView and ImageButton. Figure 1 illustrates four icons in a
messenger app, along with their content descriptions in the layout.

Note that the icons comprising Android Standard Development
Kit’s UI widgets and templates, such as action bars, come with pre-
defined labels. The textual description of icon number 2 in Figure 1,
“Navigate up”, is an example of such predefined labels.

Prior studies [47] show that missing label (i.e., content descrip-
tion) is a prevalent accessibility issue in Android apps, rendering
screen readers inoperable. The plus icon in Figure 2 suffers from this
issue. TalkBack screen reader describes this button as “unlabeled
button”, seriously hindering a blind user’s ability to use the app.
To tackle this issue, Chen et al. proposed LabelDroid [22], which
predicts natural language labels for icons given their images us-
ing deep-learning techniques. In their work, the authors extracted
thousands of labeled icons from 7,594 Android apps. They then
trained an image captioning deep-learning model to transform icon
images to natural language labels. However, images cannot fully
represent icon labels. For example, while the plus icon in Figure 1
and Figure 2 are visually similar, a proper label for the former, e.g.,
“create new contact”, is different from the label for the latter, i.e.,
“add a playlist”. The distinction between two labels comes from the
usage context of icons. The former is used in the contacts page of a
messaging app, while the latter is used in a music player app. Our
objective is to understand the nature of natural language labels for
icons, study the effectiveness of the prior work, and propose an
automated label generation model to alleviate the shortcomings of
the prior work and motivate the need for further studies.

3 DATA EXPLORATION

To develop a better understanding of icon labels and whether dif-
ferent sources of information have predictive impact on them, we
conducted an empirical study to answer the following research
questions:

108



Data-Driven Accessibility Repair Revisited: On the Effectiveness of Generating Labels for Icons in Android Apps ESEC/FSE ’21, August 23–28, 2021, Athens, Greece

APK media.music.musicplayer

activity_main.xml

<ViewGroup… 
android:id=“@+id/fab_create_playlist” 
<ImageView… 
android:id=“@+id/myButton” 
android:contentDescription=“null” 
…/> 

…/>

12

Figure 2: Plus icon in a music player app

RQ1. What are the characteristics of labels regarding their unique-
ness and distribution?

RQ2. How similar are the labels of icons with similar images?
RQ3. To what extent different sources of information from icon

context can reveal the label?

3.1 Experimental Setup

We conduct our study on a set of icons extracted from 15,087 An-
droid apps included in the LabelDroid dataset [22]. This dataset was
collected through dynamic GUI exploration of apps. We extracted
visible, clickable Android ImageView and ImageButton icons from
XML layouts and screenshots to form our primary dataset for
this study. Each icon in our dataset corresponds to a triple of
< 𝑖𝑚𝑎𝑔𝑒, 𝑙𝑎𝑏𝑒𝑙,𝑢𝑠𝑎𝑔𝑒_𝑐𝑜𝑛𝑡𝑒𝑥𝑡 >. For image, we crop the screenshot
based on the coordinates of an icon’s boundary box as specified
in the bounds property of the icon considering the orientation of
the device. For label, we use the value of contentDescription
property associated with the icon. For contextual information, we
extract several parameters in three levels, i.e., app-level (app cate-
gory), activity-level (activity name, screen title), icon-level (Android
id, screen region, ancestor id, siblings id/text).

The majority of contextual parameters directly map to a property
in the XML layout, e.g., id and text. To find the parent and siblings
of an icon, we refer to the hierarchical structure of XML layouts.
Icons that share a parent node in the XML tree are considered to be
siblings. For the screen title, we refer to the text property of the
top, leftmost TextView element in the layout. For the screen region,
we refer to the bounds property of an icon to determine in which
of the 9 screen regions, as specified with dashed lines in Figure 1, it
belongs. Activity names and package names are available in GUI
exploration artifacts. We then use package names to extract app
categories from Google Play using BeautifulSoup [46] crawler.

To improve data integrity, we performed text normalization steps
on textual information of icons. Labels and textual parameters
extracted using the above-mentioned techniques are not restricted
to follow a standard or commonly accepted structure. Developers
may use camelCase [5] or snake_case [13] conventions, or even
other types of characters as delimiters. We transformed the textual
information to lower case, replaced all the special characters with

Figure 3: Imbalanced distribution of labels for icons. To the

left are the few dominant classes, and to the right is the long

tail. The cutoff separates the labels with more than 5 sam-

ples.

a space and applied spell correction and lemmatization to their
tokens. We also filtered meaningless labels as introduced in the
prior work [22].

In our dataset, icons with the same label in the same app would
be counted once. Thus, our dataset consists of 21,864 icons extracted
from 17,839 different screens of 9,658 apps.

3.2 RQ1. Characteristics of Labels

For this research question, we first study the distribution of icon
labels. In our dataset, we found 3,061 different labels with high-class
imbalance. By considering each of these 3,061 labels as a class for
icons, we observed a long-tailed dataset as shown in Figure 3, in
which 51.57% of the data comes only from 3 most frequent classes,
while 93.5% of the classes have less than 5 samples in the whole
dataset and 2,484 out of 3,061 occurred only once. The average num-
ber of samples per class is 7.14 and the median is 1. The gap between
mean and median also indicates a left-skewed data distribution.

By further exploration of dominant classes of labels, we found
that some Android icons come with a predefined label. For example,
if a developer uses an up button in the action bar, similar to icon
2 in Figure 1, it comes with “Navigate up” label. We manually
extracted predefined labels for all icons in Android Studio, the most
widely used IDE for Android development. This analysis produced
the following labels: {“navigate up”, “more options”, “next month”,
“previousmonth”, “open navigation drawer”, “close navigation drawer”,
“search”, “clear query”, “interstitial close button” }. If we exclude these
labels, the average number of samples per class drops by 63.79%
and changes to 2.58.

This observation alerts us to the erroneous conclusions we may
draw from the evaluation of a label prediction approach. To facilitate
the explanation of the issue, imagine 90% of the data has label X.
In that case, a model that just predicts X is already 90% accurate
and its effectiveness may not be interpreted realistically. This issue
would be exacerbated if our goal was to label unlabeled icons, but
the model is only good at predicting dominant labels that happen
to be the aforementioned predefined labels.

In addition to dominant classes, it is also important to pay at-
tention to low-frequency labels. The long tail of label distribution
demonstrates the labels for which the dataset may not be repre-
sentative enough. When we exclude predefined labels, 31.47% of

109



ESEC/FSE ’21, August 23–28, 2021, Athens, Greece Forough Mehralian, Navid Salehnamadi, and Sam Malek

the remaining labels have only one sample in the dataset. That
means, a proper label for them cannot be simply retrieved from
the previously seen data, challenging a deep learning model for
prediction of labels.

Observation 1: The data is highly skewed towards a lim-
ited set of labels, threatening the validity of the evaluation
of a label prediction model. Furthermore, low-frequency
and unique labels in the long tail challenge the construc-
tion of an effective learning-based prediction model.

When we studied the distribution of tokens in the whole dataset,
we observed the same long-tailed distribution. That is, the tokens
of predefined labels are the dominant classes. We further studied
the tokens for unique labels to determine to what extent the tokens
of unique labels can be derived from previously seen tokens. We
found that for 53.99% of unique labels, all of the tokens were ob-
served in the previously seen tokens, and for 86.5% of the unique
labels, at least one non-trivial token was previously seen. By trivial
tokens, we mean stop words such as “for”, “the”, “to”, etc. Thus, a
token-based label prediction model may hold promise in correctly
generating low-frequency and unique labels.

Observation 2: Substantial portion of tokens comprising
the unique labels can be found in the existing vocabulary
of tokens, suggesting a token-based prediction model may
be effective in correctly generating low-frequency and
unique labels.

3.3 RQ2. Labels of Visually Similar Icons

In order to study labels of icons with similar images, we trained an
image classifier and annotated the icons with their image class. Liu
et al.[38] identified 99 common image classes shared across apps
through manual open coding of Android icons. They then trained a
Convolutional Neural Network (CNN) to classify icon images. Their
model is 94% accurate on average in predicting class of icon images.
Rico dataset [25] provides the output of this image classifier for
icons existing in their dataset of Android screens. We augmented
our dataset with the class of icons to study the diversity of labels
of visually similar icons.

On average, each class contains 225.4 icons with 20.03 different
labels. For example, among 178 icons in class “add” (the plus icon),
61 different labels exist. In terms of tokens, the average number
of unique tokens for labels in each class of icons is 28.6 with the
median of 16. For instance, there are 61 unique tokens comprising
the labels of icons in class “add”.

Observation 3:While image similarity restricts the set of
probable labels and tokens for icons, there is still substan-
tial level of diversity among labels and tokens for visually
similar icons.

3.4 RQ3. Labels and Icon Information

We study the relationship between tokens of icon labels and other
contextual information from the icon. We extract the contextual
information in three levels: (1) App level that contains the categories

Table 1: Correlation, 𝜌 , and Mutual Information, 𝑀𝐼 , be-

tween icon information, 𝐶, and tokens in labels, 𝑇 .

Information Sources 𝑀𝐼 (𝑇,𝐶) 𝜌 (𝑇,𝐶)
App level Category 0.0908 0.1469

Activity level Screen title 0.3474 0.0953
Activity name 0.3924 0.1808

Icon level

Android id 0.7337 0.4221
Screen region 0.2840 0.3187
Siblings id 0.5673 0.3266
Siblings text 0.4519 0.2814
Parent id 0.5699 0.426

of apps, (2) Activity level including screen title and activity name,
and (3) Icon level that contains the identifier name of the icon itself,
its parents, and its siblings along with the region that the icon is
located and the texts of its siblings.

To measure the dependency between two random variables,
we calculate their Mutual Information (MI) [41]. It quantifies the
amount of information obtained about one random variable through
observing another random variable. In the context of our problem,
MI determines which parameter, 𝐶 , has the highest likelihood of
predicting correct tokens in the label, 𝑇 . 𝑀𝐼 (𝐶,𝑇 ) is defined as
𝐻 (𝑇 )−𝐻 (𝑇 |𝐶), where𝐻 is the entropy, representing the uncertainty
in a random variable. Although MI tells us how important the
parameters are in predicting tokens, it does not tell us whether
the contextual information is a predictor of presence or absence of
tokens in icon labels. For that, we calculate the Pearson correlation
coefficient, 𝜌 (𝑇,𝐶), to see how changes in the icon information
result in predictable changes in the tokens.

Table 1 summarizes the result of this experiment. As shown in
Table 1, we observe different degrees of correlation between the
various sources of information and the tokens. The identifier name
of the icon and its parent have the highest correlation with tokens
in the labels. While app category does not appear to associate with
tokens. Apart from app category, activity-level parameters have
least correlations.

Observation 4: Different information sources exhibit
different degrees of effectiveness in empowering a proba-
bilistic model in predicting tokens for icon labels.

3.5 Summary

Our findings in data exploration motivated us to conduct further
studies on the models and develop coala, the first context-aware
label generation approach.

First, the empirical study showed that the dataset of icons and
labels in Android is highly imbalanced towards predefined labels.
Thus, we will study the impact of learning on such data on the
model fairness.

Second, the empirical study showed that while a significant
subset of labels in the dataset are unique, substantial portion of
tokens comprising these unique labels can be found in the existing
vocabulary of tokens. To overcome the challenge posed by unique
and low-frequency labels for a DL approach, we devise a learning
model to generates labels in terms of their constituent tokens.

Third, the empirical study showed that while there exists a wide
variety of labels for visually similar icons, there are other sources

110



Data-Driven Accessibility Repair Revisited: On the Effectiveness of Generating Labels for Icons in Android Apps ESEC/FSE ’21, August 23–28, 2021, Athens, Greece

of information available for improving the representation power of
a probabilistic model. Our approach, in turn, leverages additional
sources of information of an icon in addition to its graphical rep-
resentation to determine the probable tokens in its label. This is
akin to the intuition that sighted users can easily distinguish the
functionality of similar icons by virtue of their knowledge of each
icon’s usage context.

In the following section, we describe the architecture of coala.
We then study further research questions related to the fairness and
effectiveness of DL models in generating textual labels for icons in
Section 5.

4 COALA

In the following section, we introduce coala—a deep learning (DL)
approach to generate context-aware labels for icons in Android
apps. Figure 4 provides an overview of coala, which consists of
two main modules: Data Pre-Processing and DL Architecture .

Data Pre-Processing module in coala is responsible for extract-
ing a dataset of labeled icons along with their information in their
usage context. After finding icon specifications from thousands of
XML layouts, it filters improper and duplicate icons similar to the
prior work [22] and creates a dataset of icons for the DL module.

The DL Architecture is responsible for encoding the icons to be
later decoded to textual labels. The encoding step has two phases:
Image Encoder and Context Encoder, each of which is tailored to
compute the embedding of a specific type of data. These repre-
sentations are then fused in a Fully Connected Layer to prepare
a vector, from which Label Decoder generates the corresponding
textual label.

In the remainder of this section, we describe the details of each
module in our DL Architecture as illustrated in Figure 4.

4.1 Image Encoder Module

Embedding visual data into low-dimensional space has been exten-
sively studied using the Convolutional Neural Networks (CNN) [35].
This type of network receives input images as a matrix of their pixel
values and extracts a feature vector of the input image through
various convolutional and pooling layers.

coala encodes images in the same fashion. However, instead of
training a CNN model from scratch, it utilizes the transfer learning
technique. Transfer learning allows us to leverage pre-trained CNN
models such as ResNet [31], without the need for dealing with
technical challenges of training a model from scratch on a big

LSTM

G
lo

Ve

LSTM

O
ne

 
ho

t LSTM

G
lo

Ve

to
ke

n 0
to

ke
n n

h 0
h n

h 1

re
g/

ca
t

Image

LabelData

Context Encoder

Re
sN

et

Fe
at

ur
e 

Ve
ct

or

Li
ne

ar

Fu
lly

 C
on

ne
ct

ed
 L

ay
er

LS
TM

LS
TM

LS
TM

Soft 
Max

Soft 
Max

Soft 
Max

w0 w1 <EOS>

<SOS> w0 wn

Label Decoder

Image Encoder
Icon Extractor

[<image, label, context>]

Data Pre-Processing


Filter  
in 
g

Deep Learning Architecture


Figure 4: Overview of coala framework

enough set of training data for sufficient amount of time. That
means, we leverage the knowledge of a pre-trained ResNet model
and re-purpose it for icon image classification, a.k.a., fine-tuning.

To that end, we prepared a dataset of icon images with their anno-
tated classes from Rico dataset [25]. Using a tool in prior work [38],
Rico augmented more than 66,000 screenshots with semantic an-
notations which consist of icon classes. We extracted annotated
icons in Rico dataset and manually checked the consistency of im-
ages with their annotated class. We also downsampled dominant
classes of icon images to have a balanced dataset. We trained and
fine-tuned a pre-trained ResNet18 classifier [31] using this data and
used it in coala for encoding icon images.

4.2 Context Encoder Module

The input of Context Encoder is the sources of information from
usage context of the icon as shown in Table 1. The purpose of
this module is to embed these parameters into a feature vector. In
choosing a proper model for Context Encoder, we should consider
three main characteristics of parameters. First, these parameters
have two different types: categorical and textual. Second, textual
parameters have a variable length. Third, often only a subset of
parameters are available for a given icon.

To support both categorical and textual parameters, Context En-
coder utilizes two different input embedding components, namely:
one hot encoder [28] and a word embedding model, specifically
GloVe [45].

One hot encoder maps the categorical parameters, i.e., category
and screen region, to a binary vector. Category can take either one of
the 53 categories that exist in Google Play or none if it was removed
from Google Play by the time we checked. Screen region is one of
the 9 zones, as shown in Figure 1, that an icon can belong to. Thus,
the encoded vector should be at least 63 bits in length. However, it
is zero-padded to have the same length as the vector representation
of other parameters.

For textual parameters, similar to [40], Context Encoder first
summarizes all the parameters into one sentence by joining the
textual phrases with a dot, “.”, as a delimiter. For example, for the
plus icon in Figure 2, joining the page title, i.e., “playlist”, and its
cleaned android id, i.e., “create playlist”, results in the summary
of “playlist.create playlist.” for textual parameters of the icon (we
filtered “fab” token since it specifies the icon type, i.e., floating action
button, and is not informative). Then, a pre-trained GloVe model is
responsible for mapping each token in the summarized sentence
to its vector representation. GloVe is an unsupervised pre-trained
model that has proven its ability in capturing syntax and semantic
regularities using vector arithmetic [45]. This is mainly because
(1) it is not needed for the model to learn the exact vocabulary of
these tokens, and (2) using a semantic preserving word embedding
enables the model to better generalize to unseen tokens whose
synonyms exist in the dataset.

Given the vector representation of icon information, Context
Encoder utilizes a Recurrent Neural Network (RNN) [32]. RNNs are
known for their chain-like structure, which makes them capable of
learning from variable-length sequences of data. Specifically, we use
a type of RNNs, Long Short-Term Memory (LSTM) networks, shown
to be superior to the standard RNNs by avoiding the long-term
dependency problem caused by Vanishing Gradients [20].

LSTMs consist of a chain of repeating modules, a.k.a., LSTM cells.
The vector representation of icon information passes through the

111



ESEC/FSE ’21, August 23–28, 2021, Athens, Greece Forough Mehralian, Navid Salehnamadi, and Sam Malek

LSTM cells in which four neural network layers interact in a special
way. Several adjustable weights control the information each cell
remembers, forgets, or passes to the next cell (a.k.a., hidden state).
During training, the model tunes these internal weights towards
decreasing the overall training loss.

The output of the last LSTM cell is fused in a fully connected
layer with the image embedding to provide the input for the Label
Decoder module.

4.3 Label Decoder Module

Given the image and other information of an icon, the Label Decoder
is responsible for generating natural language labels. Icon labels are
variable-length sequences of tokens. Thus, a proper model should
be able to generate accurate tokens of labels sequentially. To that
end, coala employs an LSTM network with an internal loop that
lets it iteratively generate icon labels token by token.

At each time step, the Label Decoder chooses the most probable
token from a vocabulary of tokens. coala builds this vocabulary
based on frequent tokens in the labels of the training set. This
vocabulary also includes sos (Start of Sequence), eos (End of Se-
quence), and unk (Unknown). Then, each label will be represented
by a sequence of ids of its comprising tokens surrounded by sos
and eos tokens. unk stands for tokens of labels that are not in the
vocabulary.

Label Decoder initializes the hidden state of the first LSTM cell
with the encoder output. Similar to the LSTM network of Con-
text Encoder module, four internal neural network layers with
adjustable weights regulate the information flow through the net-
work. Label Decoder also sends an sos token to the first LSTM cell
to signal the start of the label generation process. Next the LSTM
cells get the previously generated token as input and calculate the
score of choosing each token in the vocabulary. A Softmax [14]
layer gets the LSTM cell output to transform the scores to a proba-
bility function. The most probable token is the final output at each
step. Label Decoder terminates this procedure when eos token is
the output of current time step.

To train DL model, Label Decoder calculates cross-entropy loss
function to measure the extent to which the predicted probability
diverges from the actual token. coala trains the whole DL archi-
tecture end-to-end. Thereby, this loss function back propagates
through the whole network, i.e., encoder and decoder, to adjust the
internal weights.

During training, the aforementioned process of passing the last
generated token to the next LSTM cell can be followed. How-
ever, this process results in model instability and slow conver-
gence [27]. To alleviate these issues, coala uses Teacher Forcing
strategy. Teacher forcing is a training-time procedure in which the
model receives the ground truth output 𝑦𝑡 as input at time step
𝑡 + 1 [56]. This means Label Decoder passes the 𝑡th token of the
target label as the input to the 𝑡 + 1th LSTM cell during training.
However, in the testing phase, we pass the previously generated
tokens to the next LSTM cell and we only use the ground truth
labels to calculate the performance of the model.

5 DL MODEL ASSESSMENT

To study the impact of imbalanced training data on the state-of-the-
art model, LabelDroid, and also the effectiveness of our context-
aware approach, we study the following research questions:
RQ4. How effective is LabelDroid in practice?

Table 2: Details of coala dataset

App Activity Icon
Train 7,728 14,230 17,462
Test 965 1,821 2,274
Validation 965 1,788 2,128
Total 9,658 17,839 21,864

RQ5. To what extent is the DL architecture of LabelDroid capable
of coping with imbalanced data?

RQ6. How effective is the context-aware model of coala in label
prediction? To what extent coala outperforms the context-
agnostic model of LabelDroid?

RQ7. To what extent the labels provide an informative explana-
tion of the icon functionality?

RQ8. How long does it take for coala to train and predict labels?

5.1 Experimental Setup

5.1.1 Datasets. We split the dataset of icons introduced in Sec-
tion 3.1 into three separate sets with respect to apps. In this way,
train, validation, and test set are respectively 80%, 10%, and 10% of
apps selected randomly. Table 2 shows the details of our dataset.
Note that we run our experiments 5 times using different random
partitioning of the data to minimize evaluation bias. This means in
a different random partitioning, the number of icons and screens
may be slightly different in each partition since we split based on
apps.

Moreover, as we aim to study the effects of imbalanced data
on LabelDroid, inspired by prior work [23], we created balanced
datasets by downsampling dominant classes of data. A paramet-
ric Sigmoid function on the inverse label frequency manages the
balanceness of the dataset. Sigmoid parameter adjusts the number
of frequent labels included in the sampled data by controlling the
steepness of its curve. We experimented with 5 different parameters
of Sigmoid, resulting in balanced datasets of size {2,557, 3,931, 7,599,
11,601, 15,495}. The smallest dataset is completely balanced with
one instance for each label.

5.1.2 DL Implementation and Configurations. Our DL model is im-
plemented in PyTorch [44], a popular open-source Machine Learn-
ing library for Python. We utilized Adam optimizer [34] to update
the internal weights iteratively based on the cross-entropy loss
function. To prevent the predefined labels from overwhelming the
network during training and producing a biased model, we adapted
weighted cross-entropy [37] to enforce the model learn from the
labels in minority. Each DL model has several configurable parame-
ters, a.k.a., hyperparameters, that can impact the performance of
the model. To tune these hyperparameters of the model, we also
performed a guided grid search strategy to choose the values that
had the best performance on the validation data. The details of our
configurations are available on coala’s website [6].

5.1.3 Evaluation Metrics. We evaluate the effectiveness of DL mod-
els using 4 evaluationmetrics that are commonly used for image cap-
tioning problems, namely: BLEU [42], METEOR [19], ROUGH [36],
CIDEr [52]. We also report exact match, i.e., the percentage of data
for which the generated label is an exact match of the ground truth.
That means, it only awards the model if all the tokens of the ground
truth appear in the generated label with the same order. BLEU score,
however, focuses on n-gram overlaps to measure the quality of the

112



Data-Driven Accessibility Repair Revisited: On the Effectiveness of Generating Labels for Icons in Android Apps ESEC/FSE ’21, August 23–28, 2021, Athens, Greece

Table 3: LabelDroid’s effectiveness in generating predefined/non-predefined labels in their test set.

Exact_match BLEU-1 BLEU-2 BLEU-3 METEOR ROUGE_L CIDEr
Predefined 0.90 0.90 0.90 0.82 0.69 0.91 4.54
Non-predefined 0.17 0.24 0.18 0.18 0.12 0.27 0.89
All 0.51 0.55 0.53 0.41 0.32 0.55 2.58

generated label. It calculates precision for n-grams, denoted by
BLEU-1, BLEU-2, and BLEU-3, for n in {1, 2, 3}.

BLEU score has some drawbacks, for example in not considering
sentence structure or word meanings, which has led to the advent
of other evaluation metrics. METEOR (Metric for Evaluation of
Translation with Explicit ORdering) is based on the harmonic mean
of unigram precision and recall [19]. ROUGH is a set of recall-
oriented measures, from which we use ROUGH_L that is based on
the Longest Common Subsequence in the ground truth and the
generated label [36]. CIDEr (Consensus-based Image Description
Evaluation) leverages term frequency-inverse document frequency
(tf-idf) to measure the similarity of the ground truth and the gener-
ated label [52].

The implementation of these metrics is available in a Python
library, called NLGEval library [51], which we have used to evaluate
coala.

5.2 RQ4. LabelDroid’s Effectiveness

Our empirical study (Section 3) revealed a severely imbalanced
label distribution for icons. We conducted an experiment to study
whether overlooking this data-driven bias leads tomisinterpretation
of prior work’s effectiveness. For that purpose, we trained Label-
Droid [22] on their dataset using their default configurations and
evaluated the model on generating (1) predefined labels, which as
introduced in Section 3.2 correspond to the default catalog of icons
in widgets that come with Android Studio, and (2) non-predefined la-
bels, i.e., all the icons in the test set except the ones with predefined
labels. Among 1,876 icons in their test set, 866 of them have pre-
defined labels and the remaining 1,010 icons have non-predefined
labels. Note that for this research question, we use the original
dataset of LabelDroid to only study the impact of data balance-
ness and keep their approach as close as possible to their original
version. For next questions, we use the dataset introduced in Sec-
tion 5.1.1, which is the extended version of LabelDroid’s dataset
since the dataset they used in their work lacks additional sources
of information from icons.

Table 3 summarizes the results of this experiment. As shown
in Table 3, the effectiveness of LabelDroid, in all metrics, is sig-
nificantly higher in generating predefined labels than the non-
predefined labels. The unfortunate outcome is that this variation
impacts the overall result: resulting in an incorrect interpretation of
the model’s effectiveness in predicting proper labels for unlabeled
icons.

For a better illustration of the impact of imbalanced data on the
overall effectiveness of LabelDroid, consider the stacked bar chart
of Figure 5. Here, each bar indicates the ratio of correctly predicted
labels according to a different metric. Within each bar, the solid
blue fill indicates the ratio of correctly predicted non-predefined
labels, while the dashed fill indicates the ratio of correctly predicted
predefined labels. Figure 5 clearly shows the overall evaluation is
highly impacted by the model’s effectiveness on predefined labels.

This observation indicates that the imbalanced data produced
a biased model for predicting predefined labels. But the issue is
substantially more severe than it may appear at first blush, since
there is no point in predicting icons with predefined labels. After
all, these are the labels of icons that are shipped with the popular
Android Studio. In practice, it is a rare occurrence for Android
Studio icons to appear in apps with no labels. This would only
occur if the developer intentionally removes the label automatically
associated with the icon by the IDE. The ultimate goal of label
prediction is to generate labels for unlabeled icons, which often
have non-predefined labels.

0

0.1

0.2

0.3

0.4

0.5

0.6

BLEU_1 BLEU_2 ROUGE_L 0.1CIDEr Exact_match

Non-predefined Labels Predefined Labels

Figure 5: Biased effectiveness of LabelDroid towards prede-

fined labels

5.3 RQ5. Impact of Balanced Data on

LabelDroid’s Effectiveness

To further evaluate LabelDroid, we also studied its performance if
it were to be trained on balanced data in predicting non-predefined
labels. To that end, we performed balance sampling with regard to
distinct labels of the training data to downsample dominant labels.
Then, we trained a new model on the newly sampled training set
and evaluated the model on the test set.

Figure 6 depicts the results of training LabelDroid on balanced
data using CIDEr metric. The orange dashed line corresponds to
the effectiveness of the model trained on balanced data. We should
note that in balanced sampling, as well as changing the data distri-
bution, we are reducing the amount of training data, which affects
the model’s ability to learn. To monitor this variable, we also per-
formed random downsampling on the training data to make the
dataset have the same number of training data as in our balanced
datasets. In figure 6, the blue solid line depicts the performance
of the model trained on randomly sampled data. Figure 6 shows
that having balanced training data does not improve LabelDroid’s
effectiveness. The general trend in the blue solid line shows that
reducing the training data slightly degrades the model’s effective-
ness. However, increasing the data balanceness drastically drops

113



ESEC/FSE ’21, August 23–28, 2021, Athens, Greece Forough Mehralian, Navid Salehnamadi, and Sam Malek

Table 4: Comparison of coala and LabelDroid effectiveness in generating non-predefined labels

model Exact_match BLEU-1 BLEU-2 BLEU-3 METEOR ROUGH_L CIDEr
coala 0.38 0.4 0.2 0.15 0.21 0.489 1.34
LabelDroid 0.14 0.21 0.125 0.09 0.12 0.24 0.7

the model’s effectiveness. The same behavior was observed in the
model’s effectiveness in generating non-predefined labels and when
we used other evaluation metrics. However, to comply with the
page limits, those results are available on coala’s website [6].

This concludes that learning from balanced data did not provide
any remarkable improvement in the effectiveness of LabelDroid in
generating non-predefined labels.

5.4 RQ6. Effectiveness of coala

The ultimate goal of coala is to generate labels for unlabeled icons.
Thus, our main objective is to evaluate coala’s effectiveness in
generating non-predefined labels and compare it with the prior
work [22].

Table 4 summarizes the effectiveness of coala and LabelDroid
in generating non-predefined labels and shows the superiority of
coala over LabelDroid in all metrics. Figure 7 illustrates two icons
in a painting app in our test set for which coalawas able to generate
correct labels, but LabelDroid failed.

In this app, there are different icons for different painting tools
such as a marker in a vertical, left toolbar, as well as other essential
icons in the horizontal, top toolbar. It is clear that without con-
sidering the context of these icons, generating the correct label
may be impossible. For example, the Marker icon in the vertical
toolbar has been widely used to denote the “Edit” icon. However,
by considering the adjacent icons, coala was able to detect the
icon as a painting tool. For the Undo icon, in addition to commonly
co-occurred icons, existing hints in their textual information, such
as Android id, enabled the model to generate accurate labels. More
examples of LabelDroid’s failures, for which coala was able to
generate correct labels are available on our website [6].

We also examined common failure scenarios for coala. As shown
in Figure 8, coala has generated incorrect labels, particularly for
icons 1 and 2. Due to the black-box nature of DL models, pinpoint-
ing the exact reason for these failures is not possible. However,
examining the icons gives us an overview of probable culprits. In
the first snapshot, the contextual information for minus icon is not

Figure 6: Overall evaluation of LabelDroid model trained on

re-sampled data

LabelDroid previous

COALA undo

Ground truth undo

1

LabelDroid edit

COALA marker

Ground truth marker

Figure 7: Examples of inability of the context-agnostic

model, LabelDroid, in generating correct labels.

informative. Thereby, coala was unable to recognize its functional-
ity. Furthermore, the existence of the token “wheel” in the identifier
name of its sibling may have confused the model to generate a
wrong label. There are also some failures in generating labels for
infrequent icons, e.g., icon 2. Not having sufficient training data to
help the model learn the icon is a probable cause of this failure.

Besides these model failures, there are certain cases that are not
mistakes, yet penalize the effectiveness of our model in the manner
evaluated here. Case in point, consider icon 3 in Figure 8, where
coala has generated more valid tokens, possibly conveying more
useful information to a blind user than the ground truth. Addition-
ally, the generated labels may be semantically valid alternatives,
as in icons 4 and 5 in Figure 8. There are also some cases, such as
icon 6, in which the ground truth is invalid, not the generated label.
These examples indicate that in practice coala is more effective
than the NLP metrics suggest, since they are simply comparing the
generated labels against the ground truth. These metrics do not ac-
count for situations in which coala either generates a semantically
equivalent label as the ground truth label, or the ground truth itself
is wrong. This observation motivated us to conduct a user study to
better evaluate coala.

5.5 RQ7. Informative Explanation for Users

In addition to the automated evaluation of models using metrics
described in Section 5.1.3, we conducted a user study to understand
the quality of automatically generated labels by LabelDroid and
coala. Since manual investigation of all icons in our test set was
not practical, we randomly selected a sample from the test data

114



Data-Driven Accessibility Repair Revisited: On the Effectiveness of Generating Labels for Icons in Android Apps ESEC/FSE ’21, August 23–28, 2021, Athens, Greece

- +

4 5 6

LabelDroid Open Navigate up Pause

COALA Open menu Hide sidebar Pause

Ground truth Open navigation 
drawer Collapse Congratulations

1 2 3

LabelDroid Remove <UNK> Refresh

COALA Go <UNK> menu Refresh result

Ground truth Decrease Value Filter call Refresh

1

Figure 8: Examples of failures in label generation using

coala and LabelDroid

based on the image classes of icons. This ensures having a repre-
sentative and balanced dataset of icons with different images (e.g.,
plus, backward-arrow, etc.). We used our icon image classifier intro-
duced in Section 4.1 to get image classes and randomly selected up
to 10 icons from each class, resulting in 198 icons from 61 distinct
image classes. Next, we highlighted the icon under investigation
on the screenshot of the app as shown in Figure 9. For each icon,
we show four types of labels (1) ground truth, which is the content
description extracted from the XML layout, (2) the generated label
by LabelDroid, (3) the generated label by coala, and (4) a random
label, different from the ground truth, selected from all labels in
the dataset. We then used Google form to display the icons on the
screenshots, as well as four different labels to the users and get
their responses. We shared the survey on social media and asked
volunteers to rate the quality of the labels from 1 to 5 after reading
an instruction (the instruction is available at [6]). To avoid bias, we
collected and aggregated responses of at least three different users
for each icon, resulting in 730 answers in total.

Prior to analysis, we filtered out the unreliable data as follows:
- Incomprehensible icons. The highlighted area on a screenshot
may not specify a proper icon due to capturing the screenshot of
an app at a transition point during app exploration. Alternatively,
the user may not be able to determine the functionality of a
designated icon from the screenshot. We remove such images
from our analysis by asking users if the icon on the screenshot is
valid and understandable.

- Inconsistent scores.We expect users to assign the same score
to the same labels of an icon; otherwise, there is inconsistency in
scores. For example, the ground truth and coala’s candidates for
an icon can both be “collapse”, and users should assign the same
score to both of them. We remove all scores of users who have
inconsistent scores since such users are not reliable.

- Insufficient rating. We have a threshold of three responses for
each icon. Thus, if applying the prior filtering steps drops the
number of responses for an icon below three, we remove the icon
entirely.
Our filtering criteria removed 216 responses, resulting in 514

responses for 156 icons. We then aggregated the users’ responses

Table 5: Statistical analysis of scores. Given the significance

level of 0.05, the scores of coala’s labels are significantly

better than the scores of LabelDroid’s labels. 𝜇𝐷𝑖𝑓 𝑓 is the av-

erage of difference between score lists.

H0 (Null Hypothesis) 𝜇𝐷𝑖𝑓 𝑓 p-value
Ground truth - coala = 0 0.76 5.14e-6
Ground truth - LabelDroid = 0 1.08 8.68e-10
coala- LabelDroid = 0 0.33 1.7e-2
Ground truth - Random = 0 2.78 2.94e-25
coala- Random = 0 2.02 7.49e-20
LabelDroid - Random = 0 1.67 6.43e-16

by calculating the average of all the scores for each icon. Therefore,
for each type of labels in {ground truth, coala, LabelDroid, and
Random} there is a list of 156 scores corresponding to each icon,
which we call score list. The average of all score lists of ground
truth, coala, LabelDroid, and Random are 3.91, 3.15, 2.83, and 1.13,
respectively.

To determine if the differences observed between the means of
score lists are statistically significant, we performed hypothesis
testing. Since the scores failed the Shapiro-Wilk normality test [48],
we performed non-parametric testing using Wilcoxon signed-rank
test [55] with significance level of 0.05. Table 5 shows the result of
this analysis. As seen on the upper half of the table, the quality of
ground truth labels is better than the quality of labels generated by
coala and LabelDroid, since the mean of ground truth’s score list
is significantly better than the mean of coala’s and LabelDroid’s
score list (p-value equal to 5.14e-6 and 8.68e-10 respectively). Sim-
ilarly, it shows that the quality of labels generated by coala is
significantly higher than the quality of labels generated by Label-
Droid (p-value=1.7e-2). Moreover, the lower half of the table shows
that labels of ground truth, coala, and LabelDroid have higher
quality than random labels.

An outcome of this analysis is that although coala significantly
improves the state-of-the-art technique in generating natural lan-
guage labels for icons, it is still not as good as the labels provided
by actual developers. This observation suggests that there is still
room for improvement and further research in this area.

5.6 RQ8. Performance

To answer this research question, we evaluated the time required
to train a new model and used the resulting model to generate a
label for an icon. We ran the experiments on a Ubuntu computing
cluster using an NVIDIA GP102 GPU and 128G memory. It took 241
minutes on average for coala to train a new model on our dataset.
This time includes evaluating the model at each time step on the
validation set for model selection purposes. However, it took only
17 milliseconds on average for the trained model to generate the
label of an icon given its specification. This indicates that coala is
efficient for use in a variety of settings, including automated repair
of inaccessible apps, and inclusion in screen readers to dynamically
resolve unlabeled icons.

6 THREATS TO VALIDITY

Sampling bias: The selection of Android apps in this study may in-
troduce bias. We mitigated this threat by exploring another dataset,
RICO [25]. We obtained similar results as that reported here. The
results of our study on RICO dataset are available online [6]. More-
over, both LabelDroid and RICO datasets consist of more than 20

115



ESEC/FSE ’21, August 23–28, 2021, Athens, Greece Forough Mehralian, Navid Salehnamadi, and Sam Malek

Figure 9: A sample question from the user study.

thousands apps selected from various categories of Google Play
store.

Learner bias: For the empirical study on DL models, we use
two architectures, coala and LabelDroid. One possible threat to the
validity of our results is the choice of the neural-network modules
and hyper parameters of our models. For coala, our focus was
studying the impact of incorporating different sources of informa-
tion using a well-known architecture. Also, for training LabelDroid,
we used their original implementation and hyper-parameters.

Evaluation bias: We evaluated LabelDroid and coala under
the same evaluation metrics used in LabelDroid’s publication and
consistent with natural language processing literature. We report
the effectiveness of models on a test set, left out from the whole
dataset of labeled icons. However, the generalizability of models
on unlabeled icons needs to be studied further. This signifies the
need for creating high quality benchmarks of icons in Android apps
in future. We further reduce the evaluation bias by running our
experiments 5 times and averaging the results.

7 RELATEDWORK

Accessibility issues have been extensively studied for websites [29,
33] and more recently for mobile apps either in specific categories
such as e-government [50], smart cities [39], and health [54] or in
general [18, 24, 43, 47, 49, 53, 57]. The increased awareness of the
prominence of accessibility issues has motivated the development
of several accessibility guidelines, and accessibility assessment and
repair tools.

Accessibility guidelines: The World Wide Web Consortium
(W3C) [17] is the main organization in determining protocols and
standards for websites whose primary initiative is to develop ac-
cessibility standards. They have provided detailed tutorials for con-
structing inclusive web pages [16]. For mobile apps, Google and
Apple, the primary organizations facilitating the app marketplace,
have published accessibility guidelines for Android and iOS devel-
opers [4, 7]. Despite the existence of these guidelines, according

to [18], developers are still not aware of the issues or find it costly
to address them.

Android accessibility evaluation and repair tools: Acces-
sibility evaluation tools leverage static analysis and/or dynamic
analysis techniques to report various accessibility issues. Lint [10]
is a static tool that checks project files and warns the developers
about missing labels. Espresso [8], Robolectric[12] and Accessi-
bility Scanner [1] are based on Accessibility Testing Framework
of Android [2], with the capability to dynamically scan the app
for accessibility issues [15]. PUMA [30], MATE [26], and IBM Mo-
bile Accessibility Checker (MAC) [57] are other dynamic testing
frameworks that check accessibility issues at runtime.

Despite several tools for accessibility assessment, only a few
repair tools are available to fix accessibility issues for blind users. To
enable runtime accessibility repair and enhancement for Android,
Zhang et al. [58] proposed interaction proxies to layer on top of
the original implementation of app. In their subsequent work [59],
they utilize this platform for social annotation of GUI elements
for missing labels. Different from their work, coala is capable
of automatically generating labels for icons by learning from the
previously labeled ones.

Furthermore, Liu et al. [38] utilize a deep learning classifier to
semantically annotate icon images based on around 100 categories
they defined for the icons. Although their initiative was not fixing
accessibility issues, screen readers can take advantage of their pro-
posed textual annotations for unlabeled icons. Unlike their work,
coala generates textual labels not only from icon images but also
from their usage context. In this work, we leverage from their an-
notated icons to fine-tune an image classifier which is capable of
embedding icon images.

The most relevant work to our study is LabelDroid [22], which
is a context-agnostic model for generating labels for icons. As dis-
cussed heavily throughout the paper, LabelDroid’s insufficient rep-
resentation of Android icons only by their images, as well as its
biased model negatively affect its effectiveness.

116



Data-Driven Accessibility Repair Revisited: On the Effectiveness of Generating Labels for Icons in Android Apps ESEC/FSE ’21, August 23–28, 2021, Athens, Greece

8 CONCLUSION AND FUTUREWORK

Missing labels seriously hinder blind users’ ability to interact with
mobile apps. In this work, we studied the characteristics of icon
labels and demonstrated how overlooking the imbalanced nature
of labels result in a biased deep-learning model. We also presented
coala, a context-aware label generation approach for icons in
Android. Our experimental results show that by incorporating ad-
ditional sources of information, coala could outperform the prior
work [22] in automatically generating labels for unlabeled icons.

In future, we will explore incorporating additional sources of
information from source code to enrich icon representation and
improve the accuracy of our model by studying different DL models.
We also aim to integrate our model with (1) IDE analysis tools, such
as Lint, to not only detect missing labels, but to also recommend
fixes, and (2) screen readers to facilitate blind users’ interactions
with apps.

Our research artifacts are available to the public [6].

ACKNOWLEDGMENTS

This work was supported in part by award number 1823262 from
the National Science Foundation and an Exploration award from the
School of Information and Computer Sciences at the University of
California, Irvine. We are grateful to the authors of LabelDroid [22]
for graciously sharing their research artifacts with us.Wewould like
to thank the anonymous reviewers of this paper for their detailed
feedback, which helped us improve the work.

REFERENCES

[1] 2021. Accessibility Scanner. https://play.google.com/store/apps/details?id=com.
google.android.apps.accessibility.auditor

[2] 2021. Accessibility Testing Framework for Android. https://github.com/google/
Accessibility-Test-Framework-for-Android

[3] 2021. Alternative Text. https://webaim.org/techniques/alttext/
[4] 2021. Build more accessible apps. https://developer.android.com/guide/topics/

ui/accessibility
[5] 2021. Camel case. https://en.wikipedia.org/wiki/Camel_case
[6] 2021. COALA. https://github.com/fmehralian/COALA
[7] 2021. Content. https://developer.apple.com/design/human-interface-guidelines/

accessibility/overview/content/
[8] 2021. Espresso : Android Developers. https://developer.android.com/training/

testing/espresso
[9] 2021. Functional Images. https://www.w3.org/WAI/tutorials/images/functional/
[10] 2021. Improve your code with lint checks. https://developer.android.com/studio/

write/lint
[11] 2021. LabelDroid - ICSE Best Paper Award. https://tinyurl.com/yxndyovk
[12] 2021. robolectric/robolectric. https://github.com/robolectric/robolectric
[13] 2021. Snake case. https://en.wikipedia.org/wiki/Snake_case
[14] 2021. Softmax. https://pytorch.org/docs/stable/generated/torch.nn.Softmax.html
[15] 2021. Test your app’s accessibility. https://developer.android.com/guide/topics/

ui/accessibility/testing
[16] 2021. Web Accessibility Tutorials: Images Concepts. https://www.w3.org/WAI/

tutorials/images/
[17] 2021. Web Content Accessibility Guidelines (WCAG). https://www.w3.org/WAI/

standards-guidelines/#wcag
[18] Abdulaziz Alshayban, Iftekhar Ahmed, and Sam Malek. 2020. Accessibility

Issues in Android Apps: State of Affairs, Sentiments, and Ways Forward. In 2020
IEEE/ACM 42nd International Conference on Software Engineering. IEEE.

[19] Satanjeev Banerjee and Alon Lavie. 2005. METEOR: An automatic metric for
MT evaluation with improved correlation with human judgments. In Proceedings
of the acl workshop on intrinsic and extrinsic evaluation measures for machine
translation and/or summarization.

[20] Yoshua Bengio, Patrice Simard, Paolo Frasconi, et al. 1994. Learning long-term
dependencies with gradient descent is difficult. IEEE transactions on neural
networks (1994).

[21] Rupert Bourne, Jaimie Adelson, Seth Flaxman, Paul Briant, Michele Bottone,
Theo Vos, Kovin Naidoo, Tasanee Braithwaite, Maria Cicinelli, Jost Jonas, Hans
Limburg, Serge Resnikoff, Alex Silvester, Vinay Nangia, and Hugh Taylor. 2020.
Global Prevalence of Blindness and Distance and Near Visual Impairment in 2020:
progress towards the Vision 2020 targets and what the future holds. Investigative
Ophthalmology and Visual Science (2020).

[22] Jieshan Chen, Chunyang Chen, Zhenchang Xing, Xiwei Xu, Liming Zhu, and
Guoqiang Li. 2020. Unblind Your Apps: Predicting Natural-Language Labels for

Mobile GUI Components by Deep Learning. In 2020 IEEE/ACM 42nd International
Conference on Software Engineering. IEEE.

[23] Yin Cui, Menglin Jia, Tsung-Yi Lin, Yang Song, and Serge Belongie. 2019. Class-
balanced loss based on effective number of samples. In Proceedings of the IEEE
Conference on Computer Vision and Pattern Recognition.

[24] Rafael Jeferson Pezzuto Damaceno, Juliana Cristina Braga, and Jesús Pascual
Mena-Chalco. 2018. Mobile device accessibility for the visually impaired: prob-
lems mapping and recommendations. Universal Access in the Information Society
(2018).

[25] Biplab Deka, Zifeng Huang, Chad Franzen, Joshua Hibschman, Daniel Afergan,
Yang Li, Jeffrey Nichols, and Ranjitha Kumar. 2017. Rico: A Mobile App Dataset
for Building Data-Driven Design Applications. In Proceedings of the 30th Annual
Symposium on User Interface Software and Technology.

[26] Marcelo Medeiros Eler, José Miguel Rojas, Yan Ge, and Gordon Fraser. 2018.
Automated accessibility testing of mobile apps. In 2018 IEEE 11th International
Conference on Software Testing, Verification and Validation. IEEE.

[27] Ian Goodfellow, Yoshua Bengio, and Aaron Courville. 2016. Deep Learning. MIT
Press. http://www.deeplearningbook.org.

[28] John T Hancock and Taghi M Khoshgoftaar. 2020. Survey on categorical data for
neural networks. Journal of Big Data (2020).

[29] Vicki L Hanson and John T Richards. 2013. Progress on website accessibility?
ACM Transactions on the Web (2013).

[30] Shuai Hao, Bin Liu, Suman Nath, William GJ Halfond, and Ramesh Govindan.
2014. PUMA: programmable UI-automation for large-scale dynamic analysis of
mobile apps. In Proceedings of the 12th annual international conference on Mobile
systems, applications, and services.

[31] Kaiming He, Xiangyu Zhang, Shaoqing Ren, and Jian Sun. 2016. Deep residual
learning for image recognition. In Proceedings of the IEEE conference on computer
vision and pattern recognition.

[32] Sepp Hochreiter and Jürgen Schmidhuber. 1997. Long short-termmemory. Neural
computation (1997).

[33] Shaun K Kane, Jessie A Shulman, Timothy J Shockley, and Richard E Ladner.
2007. A web accessibility report card for top international university web sites.
In Proceedings of the 2007 international cross-disciplinary conference on Web acces-
sibility.

[34] Diederik P Kingma and Jimmy Ba. 2014. Adam: A method for stochastic opti-
mization. arXiv preprint arXiv:1412.6980 (2014).

[35] Alex Krizhevsky, Ilya Sutskever, and Geoffrey E Hinton. 2012. Imagenet classifica-
tion with deep convolutional neural networks. In Advances in neural information
processing systems.

[36] Chin-Yew Lin and Eduard Hovy. 2003. Automatic evaluation of summaries
using n-gram co-occurrence statistics. In Proceedings of the 2003 Human Lan-
guage Technology Conference of the North American Chapter of the Association for
Computational Linguistics.

[37] Tsung-Yi Lin, Priya Goyal, Ross Girshick, Kaiming He, and Piotr Dollár. 2017.
Focal loss for dense object detection. In Proceedings of the IEEE international
conference on computer vision.

[38] Thomas F Liu, Mark Craft, Jason Situ, Ersin Yumer, Radomir Mech, and Ranjitha
Kumar. 2018. Learning design semantics for mobile apps. In Proceedings of the
31st Annual ACM Symposium on User Interface Software and Technology.

[39] Higinio Mora, Virgilio Gilart-Iglesias, Raquel Pérez-del Hoyo, and María Do-
lores Andújar-Montoya. 2017. A comprehensive system for monitoring urban
accessibility in smart cities. Sensors (2017).

[40] Son Nguyen, Hung Phan, Trinh Le, and Tien N Nguyen. 2020. Suggesting
Natural Method Names to Check Name Consistencies. In 2020 IEEE/ACM 42nd
International Conference on Software Engineering. IEEE.

[41] Liam Paninski. 2003. Estimation of entropy and mutual information. Neural
computation (2003).

[42] Kishore Papineni, Salim Roukos, Todd Ward, and Wei-Jing Zhu. 2002. BLEU: a
method for automatic evaluation of machine translation. In Proceedings of the
40th annual meeting of the Association for Computational Linguistics.

[43] Kyudong Park, Taedong Goh, and Hyo-Jeong So. 2014. Toward accessible mobile
application design: developing mobile application accessibility guidelines for
people with visual impairment. HCI Korea (2014).

[44] Adam Paszke, Sam Gross, Soumith Chintala, Gregory Chanan, Edward Yang,
Zachary DeVito, Zeming Lin, Alban Desmaison, Luca Antiga, and Adam Lerer.
2017. Automatic differentiation in PyTorch. (2017).

[45] Jeffrey Pennington, Richard Socher, and Christopher D. Manning. 2014. GloVe:
Global Vectors for Word Representation. In Empirical Methods in Natural Lan-
guage Processing. http://www.aclweb.org/anthology/D14-1162

[46] Leonard Richardson. 2007. Beautiful soup documentation. April (2007).
[47] Anne Spencer Ross, Xiaoyi Zhang, James Fogarty, and Jacob O Wobbrock. 2018.

Examining image-based button labeling for accessibility in Android apps through
large-scale analysis. In Proceedings of the 20th International ACM SIGACCESS
Conference on Computers and Accessibility.

[48] Patrick Royston. 1992. Approximating the Shapiro-WilkW-test for non-normality.
Statistics and computing (1992).

[49] Navid Salehnamadi, Abdulaziz Alshayban, Jun-Wei Lin, Iftekhar Ahmed, Stacy
Branham, and Sam Malek. 2021. Latte: Use-Case and Assistive-Service Driven
Automated Accessibility Testing Framework for Android. In Proceedings of the
2021 CHI Conference on Human Factors in Computing Systems. 1–11.

117

https://play.google.com/store/apps/details?id=com.google.android.apps.accessibility.auditor
https://play.google.com/store/apps/details?id=com.google.android.apps.accessibility.auditor
https://github.com/google/Accessibility-Test-Framework-for-Android
https://github.com/google/Accessibility-Test-Framework-for-Android
https://webaim.org/techniques/alttext/
https://developer.android.com/guide/topics/ui/accessibility
https://developer.android.com/guide/topics/ui/accessibility
https://en.wikipedia.org/wiki/Camel_case
https://github.com/fmehralian/COALA
https://developer.apple.com/design/human-interface-guidelines/accessibility/overview/content/
https://developer.apple.com/design/human-interface-guidelines/accessibility/overview/content/
https://developer.android.com/training/testing/espresso
https://developer.android.com/training/testing/espresso
https://www.w3.org/WAI/tutorials/images/functional/
https://developer.android.com/studio/write/lint
https://developer.android.com/studio/write/lint
https://tinyurl.com/yxndyovk
https://github.com/robolectric/robolectric
https://en.wikipedia.org/wiki/Snake_case
https://pytorch.org/docs/stable/generated/torch.nn.Softmax.html
https://developer.android.com/guide/topics/ui/accessibility/testing
https://developer.android.com/guide/topics/ui/accessibility/testing
https://www.w3.org/WAI/tutorials/images/
https://www.w3.org/WAI/tutorials/images/
https://www.w3.org/WAI/standards-guidelines/#wcag
https://www.w3.org/WAI/standards-guidelines/#wcag
http://www.deeplearningbook.org
http://www.aclweb.org/anthology/D14-1162


ESEC/FSE ’21, August 23–28, 2021, Athens, Greece Forough Mehralian, Navid Salehnamadi, and Sam Malek

[50] Leandro Coelho Serra, Lucas Pedroso Carvalho, Lucas Pereira Ferreira, Jorge
Belimar Silva Vaz, and André Pimenta Freire. 2015. Accessibility evaluation of
e-government mobile applications in Brazil. Procedia Computer Science (2015).

[51] Shikhar Sharma, Layla El Asri, Hannes Schulz, and Jeremie Zumer. 2017. Rele-
vance of Unsupervised Metrics in Task-Oriented Dialogue for Evaluating Natural
Language Generation. (2017).

[52] Ramakrishna Vedantam, C Lawrence Zitnick, and Devi Parikh. 2015. Cider:
Consensus-based image description evaluation. In Proceedings of the IEEE confer-
ence on computer vision and pattern recognition.

[53] Christopher Vendome, Diana Solano, Santiago Liñán, and Mario Linares-Vásquez.
2019. Can everyone use my app? An Empirical Study on Accessibility in Android
Apps. In 2019 IEEE International Conference on SoftwareMaintenance and Evolution.
IEEE.

[54] Fahui Wang. 2012. Measurement, optimization, and impact of health care accessi-
bility: a methodological review. Annals of the Association of American Geographers

(2012).
[55] Frank Wilcoxon. 1992. Individual comparisons by ranking methods. In Break-

throughs in statistics. Springer, 196–202.
[56] Ronald J Williams and David Zipser. 1989. A learning algorithm for continually

running fully recurrent neural networks. Neural computation (1989).
[57] Shunguo Yan and PG Ramachandran. 2019. The current status of accessibility in

mobile apps. ACM Transactions on Accessible Computing (2019).
[58] Xiaoyi Zhang, Anne Spencer Ross, Anat Caspi, James Fogarty, and Jacob O

Wobbrock. 2017. Interaction proxies for runtime repair and enhancement of
mobile application accessibility. In Proceedings of the 2017 CHI conference on
human factors in computing systems.

[59] Xiaoyi Zhang, Anne Spencer Ross, and James Fogarty. 2018. Robust Annotation
of Mobile Application Interfaces in Methods for Accessibility Repair and En-
hancement. In Proceedings of the 31st Annual ACM Symposium on User Interface
Software and Technology.

118


	Abstract
	1 Introduction
	2 Background
	3 Data Exploration
	3.1 Experimental Setup
	3.2 RQ1. Characteristics of Labels
	3.3 RQ2. Labels of Visually Similar Icons
	3.4 RQ3. Labels and Icon Information
	3.5 Summary

	4 coala
	4.1 Image Encoder Module
	4.2 Context Encoder Module
	4.3 Label Decoder Module

	5 DL Model Assessment
	5.1 Experimental Setup
	5.2 RQ4. LabelDroid's Effectiveness
	5.3 RQ5. Impact of Balanced Data on LabelDroid's Effectiveness
	5.4 RQ6. Effectiveness of coala
	5.5 RQ7. Informative Explanation for Users
	5.6 RQ8. Performance

	6 Threats to Validity
	7 Related Work
	8 Conclusion and Future Work
	Acknowledgments
	References

