
A Temporal Permission Analysis and Enforcement Framework for

Android

Alireza Sadeghi
Department of Informatics

University of California, Irvine, USA
alirezs1@uci.edu

Reyhaneh Jabbarvand
Department of Informatics

University of California, Irvine, USA
jabbarvr@uci.edu

Negar Ghorbani
Department of Informatics

University of California, Irvine, USA
negargh@uci.edu

Hamid Bagheri
Department of Computer Science and

Engineering
University of Nebraska, Lincoln, USA

bagheri@unl.edu

Sam Malek
Department of Informatics

University of California, Irvine, USA
malek@uci.edu

ABSTRACT

Permission-induced attacks, i.e., security breaches enabled by per-
mission misuse, are among the most critical and frequent issues
threatening the security of Android devices. By ignoring the tem-
poral aspects of an attack during the analysis and enforcement, the
state-of-the-art approaches aimed at protecting the users against
such attacks are prone to have low-coverage in detection and high-
disruption in prevention of permission-induced attacks. To address
this shortcomings, we present TERMINATOR, a temporal permis-
sion analysis and enforcement framework for Android. Leverag-
ing temporal logic model checking,TERMINATOR’s analyzer identi-
fies permission-induced threats with respect to dynamic permission
states of the apps. At runtime, TERMINATOR’s enforcer selectively
leases (i.e., temporarily grants) permissions to apps when the system
is in a safe state, and revokes the permissions when the system moves
to an unsafe state realizing the identified threats. The results of our
experiments, conducted over thousands of apps, indicate that TER-
MINATOR is able to provide an effective, yet non-disruptive defense
against permission-induced attacks. We also show that our approach,
which does not require modification to the Android framework or
apps’ implementation logic, is highly reliable and widely applicable.

CCS CONCEPTS

• Security and privacy → Mobile platform security; Access con-

trol; • Theory of computation → Modal and temporal logics;

KEYWORDS

Android, Access Control (Permission), Temporal Logic

ACM Reference format:

Alireza Sadeghi, Reyhaneh Jabbarvand, Negar Ghorbani, Hamid Bagheri,
and Sam Malek. 2018. A Temporal Permission Analysis and Enforcement
Framework for Android. In Proceedings of ICSE ’18: 40th International
Conference on Software Engineering , Gothenburg, Sweden, May 27-June 3,
2018 (ICSE ’18), 12 pages.
https://doi.org/10.1145/3180155.3180172

Permission to make digital or hard copies of all or part of this work for personal or
classroom use is granted without fee provided that copies are not made or distributed
for profit or commercial advantage and that copies bear this notice and the full citation
on the first page. Copyrights for components of this work owned by others than ACM
must be honored. Abstracting with credit is permitted. To copy otherwise, or republish,
to post on servers or to redistribute to lists, requires prior specific permission and/or a
fee. Request permissions from permissions@acm.org.
ICSE ’18, May 27-June 3, 2018, Gothenburg, Sweden
© 2018 Association for Computing Machinery.
ACM ISBN 978-1-4503-5638-1/18/05. . . $15.00
https://doi.org/10.1145/3180155.3180172

1 INTRODUCTION

Popular mobile operating systems, such as Android, apply a
permission-based model to patrol resources that each application is
allowed to access. In this model, critical system and application re-
sources are protected by an explicit permission, which then must be
obtained by any application that would like to access the resources.
Yet, in the past few years since the inception of Android, a number
of flaws have been identified in its permission mechanism that can
lead to serious security and privacy breaches [25]. A large body of
research, thus, has been devoted to address detection and prevention
of permission-induced attacks in Android [44, 49].

The state-of-the-art approaches, however, fail to consider the tem-
poral aspects of permission-induced attacks during the analysis and
enforcement, thereby suffer from shortcomings that aggravate their
effectiveness. Detection of several permission-induced attacks, such
as those exploiting the TOCTOU (Time of Check to Time of Use) vul-
nerability in Android [27, 47], requires careful consideration of the
order of events. Hence, existing detection techniques, which ignore
the element of time in their analysis, are prone to miss important
security breaches. Additionally, due to the highly dynamic state of
an Android system, the identified security vulnerabilities may only
be exploitable at specific time intervals, e.g., when some specific
permissions are granted. Hence, the existing conservative prevention
techniques, which regardless of the system state enforce security
rules permanently, tend to produce plenty of false alarms. As a result,
users can be unnecessarily disrupted, even in the absence of material
security threats, and prevented from taking full advantage of the
apps on their device.

Finally, the proposed approaches are mostly realized through mod-
ification of either the Android framework [16, 28, 30, 42, 51] or the
implemenation logic of apps [9, 18, 43, 52]. But, such modifications
are not necessarily expected, nor properly tested by the application
developers, resulting in all sorts of undesirable side effects, such
as app crashes and unexpected behaviors. To address this state of
affairs, a pragmatic approach for detection and prevention should
explicitly consider the temporal aspects of attack during analysis and
enforcement. Moreover, the realization of the approach should be
naturally compatible with the implementation practices in Android.

This paper contributes a novel approach and accompanying tool
suite, called TERMINATOR, short for Temporal Permission Analysis
and enforcement framework for Android. Unlike all prior tech-
niques, TERMINATOR incorporates the notion of time as a first class
entity in both detection and prevention of permission-induced at-
tacks. Our approach has the potential to greatly improve our ability

ICSE ’18, May 27-June 3, 2018, Gothenburg, Sweden A. Sadeghi et al.

to thwart permission-induced attacks by introducing the concept of
temporal permissions, i.e., the temporary granting of permissions to
apps. Specifically, constructed atop temporal logic, TERMINATOR

leverages temporal permissions to (1) formulate dynamic aspects of
the system over time and reason about the security properties thereof
as the system transitions from one state to another (risk detection),
and (2) regulate app permissions at runtime based on the current
state of the system (risk prevention).

TERMINATOR provides a safe, reliable, yet non-disruptive ap-
proach to protect mobile users against permission misuses. Upon
receiving a permission request from an app, TERMINATOR evalu-
ates the security posture of the system with respect to the current
state of the granted-permission configuration as well as potential
threats conservatively identified via the state-of-the-art static anal-
ysis tools. If granting the requested permission does not lead to a
real security threat given the current state of the system, TERMINA-
TOR leases (i.e., temporarily grants) that permission to the requester.
The leased permission is then automatically revoked as soon as a
change in the system status is observed that may lead to realization
of an identified security threat. TERMINATOR uses TLA+ model
checker (TLC) [53] as an analysis engine for temporal permissions.
To prevent permission-induced attacks, TERMINATOR relies on the
Android’s dynamic permission mechanism without needing to make
any modification to the Android framework or the implementation
logic of apps.

Our experiments indicate that TERMINATOR is up to 68% more
successful in preventing permission-induced attacks, while issuing
significantly less (56-100%) false alarms. It also causes less disrup-
tion in the availability of permission-protected app functionality due
to restrictive permission configurations.

To summarize, this paper makes the following contributions:

• Theory: To the best of our knowledge, this is the first attempt at
leveraging temporal logic and incorporating the notion of time
in modeling and analyzing the security properties of Android;

• Tool: A fully automated framework, TERMINATOR, that realizes
the idea of temporal permissions for Android, which we have
made publicly available [4];

• Experiments: Empirical evaluation of the approach on real-world
Android apps demonstrating its efficacy.

The remainder of this paper is organized as follows. Section 2
motivates our research through various examples of permission-
induced security attacks. Section 3 formally specifies those attacks
and introduces our approach to effectively thwart them. Section 4
provides details of our approach and its implementation. Section 5
presents the experimental evaluation of the research. The paper
concludes with an outline of the related research and future work.

2 PERMISSION-INDUCED ATTACKS

To motivate the research and demonstrate the need for temporal
permissions, we describe four types of permission-induced security
attacks in Android, identified in prior research [25]. Permission-
induced attacks are security breaches enabled by Android permis-
sions misuse. This section elaborates on the attack scenarios summa-
rized in Figure 1. We will later show how temporal permissions help
thwart these attack scenarios with minimum disruption.

2.1 Privilege Escalation

Privilege escalation occurs when an application with less privilege
is not restricted from accessing components of a more privileged
application [15]. In the case of the particular example shown in

Figure 1(a), Mal App can indirectly reach the permission-protected
interface of the Privileged App, by exploiting the vulnerability of the
Victim App — that is, an unprotected exposed interface, shown to be
quite common in the app markets [19]. The collusion attack [45],
carried out by multiple malicious apps through combining a set of
permissions to perform unauthorized actions, is also categorized
under this group of attacks.

The state-of-the-art techniques for preventing inter-app security at-
tacks [44] conservatively assume that this vulnerability is exploitable,
as soon as the apps are installed on the device. However, a more
careful look at the timeline of the attack scenario, shown in Fig-
ure 1(a), would reveal that the presented security vulnerability is
only exploitable during the “unsafe” time slot, where the following
two conditions hold at the same time: (1) the malware and victim
apps are both active, i.e., running in foreground or background, and
(2) permission P is granted to Victim App. If those applications are
installed but not active, the vulnerability cannot be exploited. On
the other hand, if permission P is not granted to the victim app, the
permission-protected interface of the other app is not accessible.

2.2 Unsafe PendingIntent

In Android, PendingIntent is a wrapper around Intent that enables
performing the Intent’s action in future, even if the original app
that sent the Intent is not active anymore. For this purpose, Android
transfers the permission and identity (UID) of the sender app to the
target app that receives the PendingIntent. As such, careless use of
PendingIntent can lead to severe security consequences. Examples
include the privilege leakage vulnerability in the Android Settings
application (CVE-2014-8609) [1].

For this reason, Android’s developer guidelines strongly discour-
age using blank base PendingIntents: “the base Intent you sup-
ply should have the component name explicitly set to one of your
own components, to ensure it is ultimately sent there and nowhere
else [3].” Despite that, many app developers fail to follow such
security principle in action.

Figure 1(b) shows an example of using unsafe PendingIntent, ex-
ploited by Mal App to illegally access permission-protected interface
provided by Privileged App. This example is similar to the privilege
escalation attack, illustrated in Figure 1(a), except that the conditions
for exploitability are more relaxed in two ways: first, the Victim App
does not need to be necessarily active, and second, its permission P
may be revoked prior to malware executing the wrapped Intent.

2.3 Identical Custom Permission

Besides the predefined built-in permissions, such as SMS, LOCATION,
etc., Android apps can define their own custom permissions and
request those permissions from other apps. However, the custom per-
mission model suffers from a security vulnerability rooted in a design
flaw: “If two apps define the same custom permission, whichever
app is installed first is the one whose definition is used” [10].

A malicious app can exploit the custom permission vulnerability
to illegally access the interface of another app, protected by that
custom permission. A sample attack scenario is shown in Figure 1(c).
In this example, Victim and Mal apps have both defined the same
custom permission, i.e., the names of permissions P and P′, defined
by the <permission> element in the manifest are identical. Since
the malicious app is installed prior to the victim app, permission P′,
defined in the manifest of the Mal App at the Normal level, is the
one recognized by the Android framework. Consequently, Mal App
can access the interface defined by the victim app, which is intended

A Temporal Permission Analysis and Enforcement Framework for Android ICSE ’18, May 27-June 3, 2018, Gothenburg, Sweden

prevent the attacks exploiting the identical custom permission
vulnerability (Recall Section 2.3).

Sa f etyRuleICP |=

∀appvic,appmal ∈ Apps, p ∈ Permissions :

VulICP (appvic,appmal , p)∧ Installed (appmal) ⇒

�¬(Granted (appmal , p)∧ Installed (appvic))

(3)

The precondition of rule 3 checks for the unsafe identical custom
permission vulnerability (VulICP), which is formulated as follows:

VulICP (app1,app2, perm) :=

Declared (app1, perm)∧Declared (app2, perm)

Recall from Section 2.3 that the order of installation matters in the
case of identical custom permission. To formulate this chronological
order, henceforth temporal operator (�) is used. According to rule 3,
if (a potentially malicious) application with a declared custom per-
mission p has been already installed on the device, no other app
declaring the same permission is allowed to be installed, as long as
that permission is granted to the first app.

Passive Data Leak: The last formula, Sa f etyRulePDL specifies
the conditions needed to hold in order to prevent the leakage of sensi-
tive data stored in an unprotected app database (Recall Section 2.4).

Sa f etyRulePDL |=

∀ appvic,appmal ∈ Apps, p1, p2 ∈ Permissions :

VulPDL (appvic,appmal , p1, p2)∧Granted (appvic, p1) ⇒

¬♦Granted (appmal , p2)

(4)

Passive data leak vulnerability, formally defined below (VulPDL),
occurs when a sensitive (i.e. permission-protected) data is sent out
of the device by another app, via a (typically) permission-protected
channel:

VulPDL (appsrc,appsnk, psrc, psnk) := ∃ data ∈ PhoneData :

Requested (appsrc, psrc) ∧Retrieve(appsrc, psrc,data)

∧StoreUnprotected (appsrc,data)

∧Requested (appsnk, psnk)∧Send (appsnk, psnk,data)

According to rule 4, the system is safe against the passive data
leak, if either there is not such a vulnerability or the vulnerable
app has never been granted the permission to access sensitive data.
Otherwise, the system is unsafe as soon as the malicious app is
granted the permission, allowing the app to send data out of the
device.

3.3 Leasing Temporal Permissions

To keep the Android device safe against the attack scenarios de-
scribed in Section 2, one should guarantee that the corresponding
safety rules hold at all times. A careful revisit of the safety rules
(Rules 1–4) reveals that the ¬Granted(app, permission) proposition
is incorporated in all formulas.5 Therefore, permanently revoking
specific permissions can guarantee the safety of the system. This
approach, however, is too conservative as it revokes app permis-
sion even when the other criteria needed for exploitation of security
vulnerability is not satisfied. In other words, since ¬Granted propo-
sition is qualified in terms of time, it is not necessary to satisfy it
over all system states. Instead, the app permission should only be
revoked during specific unsafe states, and can be granted in the rest
of system states.

5In the safety rule 2, VulUPI ()∧Granted () ⇒¬♦Active() is logically equivalent to
¬VulUPI ()∨¬Granted ()∨¬♦Active().

Based on this intuition, we propose a defense mechanism against
permission-induced attacks, called TERMINATOR. Upon receiving
a permission request from an app, TERMINATOR leases (i.e., tem-
porarily grants) that permission to the requester, only if granting the
requested permission does not violate any safety rule. The leased per-
mission is automatically revoked as soon as a change in the system
status could lead to the violation of the safety rules.

To appreciate the advantage of temporal permissions, consider
the Victim App in Figure 1(a) that requires the permission P to
accomplish its main functionality (e.g., Location permission in a
navigator app). Permanently revoking of the permission P by the
existing approaches makes this app practically useless. However,
a careful investigation of the attack scenario makes it clear that
the permission P should only be revoked during the “unsafe” time
slot. In other words, leasing permission P during the “safe” time
slots cannot pose a security risk, yet enables the user to take the
full advantage of this app. As a result, an analysis and enforcement
approach based on temporal permissions, provides less disruption

in the normal execution flow of apps.
Another significant advantage of TERMINATOR, attributed to its

permission-based approach, is the high coverage of permission-
induced attacks that it can thwart. The existing enforcement tech-
niques only consider certain types of breaches, thereby fail to protect
those attacks carried out differently. For instance, according to a
recent study [44], the majority of Android security research ap-
proaches only consider Intent-based communications to identify
inter-component security vulnerabilities, while there are other poten-
tially vulnerable communication methods, such as data-sharing or
remote procedure call, which could be exploited by malicious apps.
Through meticulous regulation of the common element in all such
permission-induced attacks, i.e, permissions, TERMINATOR is able
to effectively thwart all of them, regardless of the specific channels
exploited by the attackers.

The third distinguishing characteristic of TERMINATOR is its re-

liability. By leveraging the dynamic permissions in Android, our
approach avoids any unintended side effects, as it is naturally compat-
ible with the development constraints imposed by the latest versions
of Android. Specifically, with the introduction of dynamic permis-
sion mechanisms in the latest versions of Android, an app should
continue to work properly even if the user does not grant some of
the permissions requested by the app [5]. The app in such a case, of
course, performs in a downgraded mode, i.e., with some functionali-
ties disabled. Here, we leverage the same feature to revoke an unsafe
permission without risking app failure.

4 TERMINATOR

In the previous section, we introduced the idea of using temporal
permissions to provide an effective, yet non-disruptive, defense
against permission-induced attacks. This section describes how we
realized this idea using Android’s dynamic permission mechanism.

4.1 Approach Overview

Figure 4 depicts a high-level overview of TERMINATOR, comprised
of two phases: Analysis, and Enforcement. The analysis phase runs
once for a set of apps and identifies the potential security risks
threatening the Android System (risk detection). The enforcement
phase runs continuously and prevents the security threats to occur
at run-time (risk prevention). The enforcement components are de-
ployed as an Android app embedded in the device, while the analysis
components are deployed externally.

A Temporal Permission Analysis and Enforcement Framework for Android ICSE ’18, May 27-June 3, 2018, Gothenburg, Sweden

In this formula, TypeInvariant is also added to the theorem to
ensure that the model checker only explores the valid states of the
system, as specified by definition 6.

Having the specification of Android system and safety rules in
TLA+, TLC model checkers verifies formula 9.

For this purpose, TLC explores reachable states, looking for any
unsatisfying safety rules. In case of finding a violation, it reports
the minimal-length trace from an initial state that leads to an unsafe
state. The unsafe traces are then stored in the Unsafe Traces database
in the Android device.

4.3 Enforcement

State Monitor keeps track of the Android system states, looking for
violating traces that match any of the traces stored in the database.
The monitor component is realized as an Android app that uses
Xposed module for collection of runtime data [6]. The Xposed
module instruments the root process of Android, without making any
changes in the apps’ APK files. The implemented module intercepts
those events corresponding to TLA+ action operators defined in
Section 4.2. Examples of monitored events include but not limited
to: granting/revoking of a permission via a permission request dialog,
granting/revoking of a permission via system settings, and running
or terminating an app.

If the State Monitor finds a match, it marks the matching unsafe
trace in the database, which triggers the Permission Adapter com-
ponent. The goal of this component is to regulate the permission
configuration of apps such that the system remains in a safe state.
Since the identified security risks are all permission-induced, it is
sufficient to revoke the corresponding risk-enabling permissions to
thwart the attack.

In its effort to thwart an attack, Permission Adapter may encounter
a situation in which there are multiple candidate permissions for
revocation. For instance, consider the inter-app data leak, where a
sensitive data protected by the source permission in App1 is leaked
through a sensitive channel protected by the sink permission in App2.
In this case, permission Adapter has two choices, since revoking
either of the source or sink permissions would prevent the leak
form happening. To provide an effective yet non-disruptive defense
against permission-induced attacks, Permission Adapter applies the
following method to select the best permission.

It first calculates two scores for each candidate permission:
Risk score that reflects the number of attacks enabled by granting
the permission. A permission with high involvement in the identified
security threats would have a higher Risk Score. The risk score is
calculated based on the analysis results of Model Checker. Usage

score that indicates the usage frequency of the app requesting the
permission. If the permission is requested by an app that is highly
used by the user, that permission would receive a high usage score.
Unlike the risk score, the usage score is based on user behavior
and calculated by the State Monitor component using the Android’s
USAGE_STATS_SERVICE APIs.

Afterwards, Permission Adapter selects the permission with the
highest Revoke Score, which is calculated as a function parameter-
ized by both the Risk Score and the reverse of the Usage Score, i.e.,
F (RiskScore,UsageScore−1). In other words, to prevent a security
risk, Permission Adapter revokes permissions with higher security
risks that are requested by less-frequently-used apps.

Since TERMINATOR is not aware of the user’s context, in certain
situations the user may disagree with the way in which it prioritizes
permissions for revocation. This might happen, for example, when

the user anticipates using a rarely used app. Our implementation
allows the user to override the TERMINATOR’s decision by adding
exception rules. Such rules exclude specific app permissions from
being revoked, even if they violate the safety rules.

5 EVALUATION

Our evaluation of TERMINATOR addresses the following research
questions:

RQ1. Coverage: How does TERMINATOR compare against alter-
native approaches in preventing the variety of permission-
induced attacks?

RQ2. Disruption: How effective is TERMINATOR in reducing the
unnecessary disruptions due to unavailability of permission-
protected app functionality?

RQ3. Applicability & Reliability: What percentage of Android apps
are compatible with TERMINATOR? Does the temporal en-
forcement of TERMINATOR cause any unexpected behaviors?

RQ4. Performance: What are the performance characteristics for
each phase of TERMINATOR?

5.1 RQ1: Coverage

For a thorough evaluation, we compared the coverage of TERMI-
NATOR with the other state-of-the-art approaches, enumerated in
Table 1 under the “Alternative Approaches” column. We considered
two criteria in selecting other approaches for our comparative analy-
sis. First, the approach should support both detection and prevention
of security attacks.7 Second, the approach should provide a pub-
licly available tool suite. In accordance with the above criteria, we
selected three alternative approaches intended to prevent permission-
induced security attacks, namely SEPAR [11], SEALANT [34], and
DELDroid [28]. SEPAR enforces fine-grained security policies, syn-
thesized by a SAT-based constraint solver, to prevent capability
leaks. SEALANT extends Android framework to provide an intercep-
tor that blocks potentially malicious intents. Finally, DELDroid uses
a multiple-domain matrix to eliminate the security vulnerabilities
violating the least-privilege property of the system.

To eliminate bias in favor of TERMINATOR, we built a collection
of subject apps consisting of the apps used in the evaluation of the
three mentioned prior approaches as well as a reputable benchmark
collection, namely DroidBench [8]. The resulting dataset consisted
of a collection of 255 subject apps with known security issues. Out
of this collection of apps, we selected those that target Android 6.0
(API level 23) or newer versions. Older versions of the Android
framework provide just a static permission model and do not allow
users to dynamically grant or revoke permissions at run-time. We
then ended up with a total of 69 apps suitable for our experiments.

To evaluate the extent TERMINATOR can prevent security attacks,
we executed the attack scenarios from our dataset on an Android
phone running TERMINATOR. Recall from Section 4, TERMINATOR

relies on static analysis tools to identify the potential security threats.
In our experiments, we used a combination of two static analysis
tools, namely FlowDroid [8] and IC3 [40], that have also been used
in the construction of three prior approaches to which we compare.

Table 1 shows the result of assessing the effectiveness of TERMI-
NATOR compared to the state-of-the-art techniques. The first three
columns of Table 1 show the attack scenarios, their source dataset,
and the permissions involved in the attack scenarios, respectively.

7Approaches such as IccTA [35], JITANA [50], COVERT [12] DialDroid [14], etc. are
excluded in our study as they only perform detection, not prevention.

ICSE ’18, May 27-June 3, 2018, Gothenburg, Sweden A. Sadeghi et al.

Table 1: Ability of TERMINATOR in preventing permission-induced attacks in comparison with alternative approaches.

Permission-Induced Data Set Involved TERMINATOR
Alternative Approaches

Attack Type (Subtype) Permissions SEPAR[11] DELDroid[28] SEALANT[34]
1 Custom Permission DD STORAGE, SMS ⊠ � � �

2 Privilege Escalation DB LOCATION, STORAGE ⊠ ⊠ ⊠ ⊠

3 Passive Content Leak (CP) DD STORAGE, SMS ⊠ � � �

4 Passive Content Leak (CP) DD SMS ⊠ � � �

5 Passive Content Leak (CP) DD STORAGE, SMS ⊠ � � �

6 Privilege Escalation DB READ_PHONE_STATE, STORAGE ⊠ ⊠ ⊠ ⊠

7 Custom Permission DD STORAGE, SMS ⊠ � � �

8 Privilege Escalation (AH) DD STORAGE, SMS ⊠ � ⊠ �

9 Privilege Escalation (DCL) DD STORAGE, SMS ⊠ � ⊠ �

10 Custom Permission DD SMS ⊠ � � �

11 Passive Content Leak (CP) DD STORAGE, SMS ⊠ � � �

12 Privilege Escalation (PR) SP WAKE_LOCK ⊠ � ⊠ �

13 Privilege Escalation (PR) DD SET_WALLPAPER ⊠ � ⊠ �

14 Custom Permission DD STORAGE, SMS ⊠ � � �

15 Privilege Escalation SL SMS ⊠ ⊠ ⊠ ⊠

16 Passive Content Leak (CP) DD STORAGE, SMS ⊠ � � �

17 Privilege Escalation (BT) SP WAKE_LOCK ⊠ � ⊠ �

18 Privilege Escalation SL LOCATION ⊠ � ⊠ ⊠

19 Privilege Escalation (SH) DD SMS ⊠ � ⊠ ⊠

20 Privilege Escalation (PR) DD LOCATION, SMS ⊠ ⊠ ⊠ �

21 Privilege Escalation SL CONTACTS ⊠ � ⊠ ⊠

22 Custom Permission DD STORAGE, SMS ⊠ � � ⊠

23 Privilege Escalation (PR) DD LOCATION, SMS ⊠ ⊠ ⊠ ⊠

24 Privilege Escalation (MAL) DD SMS ⊠ ⊠ ⊠ �

25 Privilege Escalation DB LOCATION, STORAGE ⊠ ⊠ ⊠ ⊠

26 Privilege Escalation SL LOCATION ⊠ � ⊠ �

27 Privilege Escalation (PR) DD SMS ⊠ � ⊠ ⊠

28 Privilege Escalation DB READ_PHONE_STATE, STORAGE ⊠ ⊠ ⊠ ⊠

29 Passive Content Leak (CP) DD SMS ⊠ � � �

30 Privilege Escalation DB READ_PHONE_STATE, STORAGE ⊠ ⊠ ⊠ ⊠

31 Privilege Escalation (PR) DD SMS ⊠ ⊠ ⊠ �

32 Privilege Escalation (PR) DD LOCATION ⊠ � ⊠ ⊠

33 Privilege Escalation (DCL) DD STORAGE, LOCATION ⊠ � ⊠ �

34 Passive Content Leak (CP) DD STORAGE, SMS ⊠ � � �

35 Privilege Escalation (AH) DD STORAGE ⊠ � ⊠ �

36 Custom Permission DD STORAGE, SMS ⊠ � � �

37 Privilege Escalation DB READ_PHONE_STATE, SMS ⊠ ⊠ ⊠ ⊠

38 Privilege Escalation (AH) DD STORAGE ⊠ � ⊠ �

39 Privilege Escalation DB ACCESS_FINE_LOCATION ⊠ ⊠ ⊠ ⊠

40 Privilege Escalation DB LOCATION, STORAGE ⊠ ⊠ ⊠ ⊠

41 Custom Permission DD SMS ⊠ � � �

Total thwarted attacks 41 13 27 16
Coverage (true-positive rate) 100% 31.7% 65.9% 39.0%

⊠(�): attack scenario is (not) prevented by the approach, �: the approach crashed during the analysis
Attack Subtypes: PR: Permission Re-Delegation, AH: Activity Hijack, SH: Service Hijack, BT: Broadcast Theft, MAL: Malicious Activity Lunch,
DCL: Dynamic Class Loading, Content Provider (CP)
Data-sets: DD: DELDroid [28], SL:SEALANT[34], SP:SEPAR[11], DB: DroidBench [8]

The other columns indicate whether each of the four approaches
assessed was successful in preventing the attack (⊠) or not (�, �).

According to the results, TERMINATOR is able to prevent all the
attack scenarios with no false negatives. The success rate of the other
techniques in preventing the permission-induced attacks ranges from
31.7% to 65.9%. A detailed look at Table 1 indicates that most of
the missing attacks are those whose detection requires temporal
analysis. For instance, consider the attack scenario #36, where a
malicious application has defined a custom permission identical to
the permission defined by a vulnerable app to protect its internal
database. As a result, the malware can illegally access sensitive
information stored in the vulnerable app. This vulnerability, however,
is only exploitable if the malware is installed before the victim
app. Thereby, all prior non-temporal approaches fail to detect such
attacks. To tackle this issue, a conservative approach might prevent
the aforementioned attack by permanently revoking database access
of the victim app. This approach, however, would cause unnecessary
disruptions, particularity when the vulnerability is not exploitable,
i.e., the victim app is installed before malware in this case. In the
next research question (RQ2), we investigate the consequences of
permanently revoking the permissions of vulnerable apps through
additional experiments.

5.2 RQ2: Disruption

For this research question, we focus on alternative permission-based
enforcement techniques. Generally speaking, permission-based se-
curity enforcement can be applied at install-time or run-time [25].
An install-time approach prevents the installation of vulnerable apps,
while a run-time approach revokes the permissions upon identifi-
cation of an attack scenario. Run-time approaches can further be
either permanent, whereby the permission decisions are final, or

temporal, as in the case of TERMINATOR, whereby the permission
decisions are adjusted over time. Since the prior tools implementing
the competing techniques are either not available, as is the case with
AppFence [30] and AppGuard [9], or outdated and inapplicable, as
is the case with Kirin [24], we implemented both install-time and
permanent-run-time enforcement approaches described in the prior
work to compare against TERMINATOR’s enforcement strategy.

To evaluate the level of disruption due to unavailability of
permission-protected app functionality, we needed access to legit-
imate use-cases for apps in our dataset. Attack scenarios used in
the evaluation of RQ1 are not representative of the apps’ functional
use-cases; thereby, they are not suitable for evaluating the level of
disruption caused by the revocation of app permissions. To that end,
we followed a semi-systematic approach to extract functional use-
cases for the vulnerable apps in our dataset. We first downloaded the
description of subject apps from the app markets (Google Play or
F-Droid). We then asked a group of graduate students to construct, if
possible, functional use-cases for each sentence or bullet in the app
description. Additionally, we used available system tests for open-
source subject apps as another source for identifying the legitimate
use-cases. In total, we were able to derive 186 legitimate use-cases
for subject apps in this research question. The full set of use-cases
and subject apps are publicly available on the project website [4].

To measure the disruptions caused by the two run-time ap-
proaches, we first executed the attack scenarios from Table 1 to
instigate an enforcement decision, i.e., force the approach to adjust
the permission configuration. Subsequently, we ran the legitimate
use-cases involving the apps in the attack to determine if the use-
cases can be executed successfully or not. Table 2 summarizes the
results of comparing different enforcement strategies for permission-
based approaches. The first column shows the subject apps. The

A Temporal Permission Analysis and Enforcement Framework for Android ICSE ’18, May 27-June 3, 2018, Gothenburg, Sweden

Table 2: Efficacy of permission-based techniques in reducing
the unnecessary disruptions.

Vulnerable Apps #Use- #Allowed Scenarios
cases Run-time Install-timeTemporal Permanent

de.*.geobookmark 3 3 0 0
com.*.multismssender 8 8 4 0
com.*.calendar 14 14 6 0
com.*.smsscheduler 9 9 5 0
org.*.trackbook 9 9 2 0
com.*.simpledeadline 13 13 9 0
com.getback_gps 10 10 6 0
com.*.camera 12 12 0 0
com.*.gallery 4 4 3 0
com.*.manager 11 11 5 0
com.*.anki 18 18 0 0
com.*.screennotification 3 3 2 0
com.*.notes 2 2 1 0
cz.*.forcastie 7 7 4 0
com.*.loginexample 2 2 1 0
com.*.sms 3 3 1 0
com.*.opps_wrong_tab 8 8 7 0
code.*.sendsmstest 3 3 1 0
org.*.myexpenses 24 24 8 0
com.*.ukweather 4 4 0 0
com.*.client 8 8 7 0
fr.*.ommons 11 11 9 0

Total allowance 186 81 0
Disruption (false-positive rate) 0% 56.45% 100%

second column shows the number of legitimate use-cases for the
subject apps. The last three columns show the number of use-cases
allowed by each approach. The results from this analysis confirm
that the run-time-temporal approach adopted in TERMINATOR out-
performs other enforcement techniques in terms of unnecessary
disruption, i.e., false-positive rate. The install-time enforcement ap-
proach performs worst (100% false positive), as it does not allow the
installation of a vulnerable app. The run-time-permanent approach
(with 56% false positive) on the other hand, allows installation, yet
revokes unsafe permissions permanently. Therefore, some of the
legitimate permission-protected use-cases can never execute after
revocation, even in the absence of a security threat.

For example, the security analysis performed by TERMINATOR

identified GetbackGPS app (com.getback_gps in Table 2) as being
vulnerable to privilege escalation attack—attack scenario #20 in
Table 1, whereby its sensitive location information can be leaked.
This vulnerability is only exploitable if two conditions are satisfied
simultaneously: (1) a malware app with access to a sink channel (e.g.,
SMS) is installed and running on the phone, and (2) the malware
has been granted the sink permission. Since the app is vulnerable,
the install-time approach simply does not allow its installation to
avoid any chance of leaking user’s location information. The run-
time-permanent approach on the other hand, allows the installation
of GetbackGPS, yet permanently revokes its LOCATION permission
to remove the vulnerability. Our run-time-temporal enforcement
approach, however, leases Location permission to GetbackGPS, as
long as the above conditions are not satisfied, during which all of
the legitimate use-cases of the app are available.

5.3 RQ3: Applicability & Reliability

5.3.1 Applicability. Recall from Section 4.3, TERMINATOR relies
on the dynamic permission mechanism, supported by Android 6 and
newer versions of the framework, to regulate app permissions at run-
time. However, not all the apps available on the Android marketplace
are compatible with the new versions of Android. To investigate the
extent to which TERMINATOR is applicable to Android apps, we
measured percentage of the apps on the official Android marketplace,
i.e., Google Play, that target API level 23 (Android 6) and above.

To that end, we randomly collected 48,795 apps from different
app categories, and distinguished Android-6-compatible apps by
examining the targetSdkVersion tag specified in their manifest file.

To avoid any bias in the results, we did not use any particular criteria,
such as high popularity or high ranking, in selection of the apps to be
analyzed. Table 3 demonstrates percentage of the apps targeting API
level 23 and above among the apps collected from 15 different app
categories of the Google Play repository.According to the results, on
average 89.8% of the G.Play apps support dynamic permissions.

To further investigate the support for dynamic permissions among
popular apps, we also collected top 100 popular apps on Google
Play. As shown in the last column of Table 3, all of the top 100
apps on Google Play support dynamic permissions, thereby are
compatible with TERMINATOR. These results indicate that a large
majority of the apps on the Android official marketplace can benefit
from TERMINATOR for run-time security enforcement.

5.3.2 Reliability. Although the majority of collected apps sup-
port Android 6 and above, it is possible that they do not properly
handle dynamic permissions. Failing to adjust the functionality of
an app to dynamic permissions can lead to unexpected behaviors,
e.g., app crashes if the user decides to revoke a permission. Hence,
we also need to investigate the reliability of adopting an approach
like TERMINATOR, which revokes permissions at run-time.

To investigate reliability of TERMINATOR, we recorded Logcat
outputs during the execution of both the attack scenarios and canoni-
cal use-cases for subject apps discussed in RQ1 and RQ2. We later
explored collected logs, searching for any crash messages due to
improper handling of dynamic permissions. Out of the 69 subject
apps in our dataset, we found one app, SMS Scheduler (marked with
 in Table 2), that crashes due to the permission revocation.

From this data—low percentage (around 1.5%) of apps crashing
when revoking their permissions and high percentage (around 89.8%)
of app compatibility with recent versions of Android—we conclude
that TERMINATOR can reliably be applied to a large majority of
Android apps available on the market.

5.4 RQ4: Performance

To examine the performance characteristics of TERMINATOR, we
measured the execution time taken for each phase of TERMINATOR,
i.e., analysis and enforcement . We performed our experiments on a
PC with an Intel Core i7 2.4 GHz CPU processor and 16 GB of main
memory for the analysis phase, and a Nexus 5x phone operated by
the Android framework version 6 for the enforcement phase.

TLC is configurable in two operating modes, simulation and
model-checking. In the simulation mode, TLC verifies the system be-
havior up to a fixed number of system states. In the model-checking
mode, on the other hand, there is no limit for the number of states
to be explored. Applying an upper bound over the state exploration
may lead to the possibility of missing attacks concealed within states
not explored. We configured TLC to operate in the simulation mode
to guarantee the termination of the analysis phase. This guarantee
is required for TERMINATOR given that the reachable states of our
model for the Android system is infinite. In our experiments, TERMI-
NATOR was able to identify all of the attack scenarios (see Table 1).
For these attack scenarios, TLC took at most 7 seconds to find the
attack through the exploration of over 707,000 states.

To determine the performance of the enforcement phase, we cal-
culated the overhead of running Monitor and Adapter components
of TERMINATOR during the execution of 227 (41 attack scenarios
and 186 canonical use-cases) scenarios exercised in RQ1 and RQ2.
We repeated the execution of each scenario 5 times to ensure 95%
confidence interval for the reported values. According to our experi-
ments, the run-time overhead of TERMINATOR enforcement phase

ICSE ’18, May 27-June 3, 2018, Gothenburg, Sweden A. Sadeghi et al.

Table 3: Percentage of Android-6-compatible apps in Google Play
Randomly Selected by Category Average Top

Art Books Finance Food Health Maps Music News Photo Shopping Social Tools Video Weather Game 100
100% 78.9% 86.6% 96.1% 85.9% 92.2% 89.1% 90.4% 89.9% 94.6% 90.9% 86.5% 86.1% 88.2% 91.6% 89.8% 100%

is 714±33 milliseconds on average for each use-case. Given that the
average execution time for each use-case is 12 seconds, this over-
head is negligble, as it is less than the threshold users can perceive
slowness in an app, according to offical Android documentation [2].
Note that the analysis phase is performed once per system configu-
ration, while the enforcement component runs continuously as the
user interacts with the apps.

6 RELATED WORK

We provide a discussion of the related efforts in light of our work.
Assessment of Security Properties. A large body of research

focuses on performing security analysis in the context of Android.
Using a taxonomy, Sadeghi et al. [44] classified over 300 research
papers for security assessment of Android apps. According to this
taxonomy, our work is classified under the group of research [7, 10,
12, 17, 22, 26, 48] that leverages formal analysis to reason about
security properties of a system.

Several approaches [17, 26, 48] under this category leverage
formal methods to abstract the semantics of application code and
express the security properties of the apps. Using the derived model
of the program, this group of techniques are able to identify se-
curity issues such as data leakage. Another group of formal ap-
proaches [7, 10, 12, 22] perform the security analysis at a higher
level of abstraction— i.e., architectural level. This thrust of research
model an Android system as a set of components that communicate
with each other through connectors. Working at this level of abstrac-
tion allows the research to detect more involved security attacks,
such as privilege escalation attacks or app collusion. In contrast to
TERMINATOR, all of the prior formal approaches fail to incorporate
the notion of time in their model of Android permissions— that is,
they assume all requested permissions are permanently granted to
an app as soon as the user accepts to install the app.

Enforcement of Security Policies. In addition to the security
analysis, TERMINATOR enforces policies at run-time. Similar to our
work, a plethora of approaches [11, 23, 32, 34, 43, 46, 51, 52] have
been constructed to enforce security policies in Android devices. In
their survey of security solutions for Android, Sufatrio et al. [49]
categorized this group of research based on the security attacks they
can prevent. In another study, Heuser et al. [29] classified this group
of research based on the authorization hook semantics.

To enhance the security of the system, the proposed techniques
place additional constraints on different elements of Android system,
from inter-component communication (ICC) [11, 34] to network
access [32, 38, 54], and Content Providers [13, 56]. Hence, each
technique might fail to protect those attacks carried out through the
other channels that are not hooked by the approach. For instance
intent-based preventive methods [11, 34] are not able to prevent inter-
app security attacks exploiting unprotected content providers. By
identifying and thwarting the root cause of all permission-induced
attacks, i.e. unsafe permission, TERMINATOR is able to prevent all of
them, regardless of the type of vulnerable elements being exploited.

Moreover, due to modification of Android framework [16, 28,
30, 42, 51] or individual apps [9, 18, 43, 52], the prior approaches
are prone to place the app in an unexpected state or even cause it
to crash. TERMINATOR avoids any such side effect as it relies on

dynamic permission mechanism, which is officially provided by the
Android framework, and adopted by app developers.

Enhancement of Permission Model. The other relevant thrust
of research has focused on enhancing the permission model of An-
droid, in order to mitigate the risk associate with permission mis-
use. A comprehensive study of permission-induced security issues,
along with the proposed countermeasures are provided by Fang et
al. [25]. Coarse granularity is a shortcoming of Android permis-
sions discussed in several research papers. To overcome this issue,
several finer-grained implementation of permissions have been pro-
posed [20, 24, 31, 41, 52]. Dissimilar to this group of the approaches
that limit the scope of permissions to specific components, TERMINA-
TOR restricts the availability of permissions over the time dimension.

To enhance the permission mechanism of Android, several ap-
proaches [13, 30, 37, 39, 56] provide easy-to-use interfaces that
allow users to selectively grant permissions to apps. Beside the
fact that such feature is officially supported by the Android ver-
sion 6 and above, enabling users to revoke permissions, either via
Android’s build-in interface or through the academic approaches,
is not a solution for security enhancement of the system. Rather,
it shifts the problem from installation-time to run-time. The users
still do not know when it is safe to grant a requested permission
to an app. Using temporal permission, TERMINATOR lets user take
full advantage of app functionality while protecting them against
permission-induced attacks.

7 CONCLUSION AND FUTURE WORK

We presented a permission analysis and enforcement framework
that, in contrast to the prior work, considers the temporal aspects of
permission-induced attacks for their detection and prevention. The
framework, called TERMINATOR, is realized in two phases. In the
analysis phase, it uses a temporal logic model checker to identify
the security risks with respect to dynamic states of the system. In the
enforcement phase, it relies on Android’s dynamic permission mech-
anism to prevent the identified security threats from materializing by
regulating the permission configuration of the system. Our evalua-
tion results indicate that TERMINATOR is able to provide an effective,
yet non-disruptive, defense against permission-induced attacks. The
results also show that our approach, which is implemented without
modification of Android framework or implementation logic of apps,
is highly reliable and compatible with the great majority of Android
apps available on the marketplace.

In this work, temporal rules are enforced at the app level, meaning
that permissions are leased to the whole app. A more fine-grained
temporal rule, that reduces an app’s attack surface further through
leasing permissions to a subset of its components, is potentially an
interesting avenue of future research.

ACKNOWLEDGEMENT

This work was supported in part by awards CCF-1252644, CNS-
1629771 and CCF-1618132 from the National Science Foundation,
HSHQDC-14-C-B0040 from the Department of Homeland Security,
and FA95501610030 from the Air Force Office of Scientific Research.

A Temporal Permission Analysis and Enforcement Framework for Android ICSE ’18, May 27-June 3, 2018, Gothenburg, Sweden

REFERENCES
[1] 2014. NVD:CVE-2014-8609. (2014). https://nvd.nist.gov/vuln/detail/

CVE-2014-8609
[2] 2017. Keeping your app responsive. (2017). https://developer.android.com/

training/articles/perf-anr.html
[3] 2017. PendingIntent. (2017). https://developer.android.com/reference/android/

app/PendingIntent.html
[4] 2017. Terminator web page [In accordance with the double-blind policy]. (2017).

https://sites.google.com/view/terminator18
[5] 2017. Working with System Permissions. (2017). https://developer.android.com/

training/permissions
[6] 2017. Xposed Framework. (2017). http://repo.xposed.info/
[7] Alessandro Armando, Gabriele Costa, and Alessio Merlo. 2012. Formal Modeling

and Reasoning about the Android Security Framework. In Trustworthy Global
Computing - 7th International Symposium, TGC 2012, Newcastle upon Tyne, UK,
September 7-8, 2012, Revised Selected Papers. 64–81.

[8] Steven Arzt, Siegfried Rasthofer, Christian Fritz, Eric Bodden, Alexandre Bartel,
Jacques Klein, Yves Le Traon, Damien Octeau, and Patrick D. McDaniel. 2014.
FlowDroid: precise context, flow, field, object-sensitive and lifecycle-aware taint
analysis for Android apps. In ACM SIGPLAN Conference on Programming Lan-
guage Design and Implementation, PLDI ’14, Edinburgh, United Kingdom - June
09 - 11, 2014. 259–269.

[9] Michael Backes, Sebastian Gerling, Christian Hammer, Matteo Maffei, and Philipp
von Styp-Rekowsky. 2013. AppGuard - Enforcing User Requirements on Android
Apps. In Tools and Algorithms for the Construction and Analysis of Systems -
19th International Conference, TACAS 2013, Held as Part of the European Joint
Conferences on Theory and Practice of Software, ETAPS 2013, Rome, Italy, March
16-24, 2013. Proceedings. 543–548.

[10] Hamid Bagheri, Eunsuk Kang, Sam Malek, and Daniel Jackson. 2015. Detection of
Design Flaws in the Android Permission Protocol Through Bounded Verification.
In FM 2015: Formal Methods - 20th International Symposium, Oslo, Norway,
June 24-26, 2015, Proceedings. 73–89.

[11] Hamid Bagheri, Alireza Sadeghi, Reyhaneh Jabbarvand Behrouz, and Sam Malek.
2016. Practical, Formal Synthesis and Automatic Enforcement of Security Policies
for Android. In 46th Annual IEEE/IFIP International Conference on Dependable
Systems and Networks, DSN 2016, Toulouse, France, June 28 - July 1, 2016.
514–525.

[12] Hamid Bagheri, Alireza Sadeghi, Joshua Garcia, and Sam Malek. 2015. COVERT:
Compositional Analysis of Android Inter-App Permission Leakage. IEEE Trans.
Software Eng. 41, 9 (2015), 866–886.

[13] Alastair R. Beresford, Andrew C. Rice, Nicholas Skehin, and Ripduman Sohan.
2011. MockDroid: trading privacy for application functionality on smartphones.
In 12th Workshop on Mobile Computing Systems and Applications, HotMobile’11,
Phoenix, AZ, USA, March 1-3, 2011. 49–54.

[14] Amiangshu Bosu, Fang Liu, Danfeng (Daphne) Yao, and Gang Wang. 2017.
Collusive Data Leak and More: Large-scale Threat Analysis of Inter-app Com-
munications. In Proceedings of the 2017 ACM on Asia Conference on Computer
and Communications Security, AsiaCCS 2017, Abu Dhabi, United Arab Emirates,
April 2-6, 2017. 71–85.

[15] Sven Bugiel, Lucas Davi, Alexandra Dmitrienko, Thomas Fischer, Ahmad-Reza
Sadeghi, and Bhargava Shastry. 2012. Towards Taming Privilege-Escalation
Attacks on Android. In 19th Annual Network and Distributed System Security
Symposium, NDSS 2012, San Diego, California, USA, February 5-8, 2012.

[16] Sven Bugiel, Lucas Davi, Alexandra Dmitrienko, Thomas Fischer, and Ahmad-
Reza Sadeghi. 2011. Xmandroid: A new android evolution to mitigate privilege
escalation attacks. Technische UniversitÃd’t Darmstadt, Technical Report TR-
2011-04 (2011).

[17] Stefano Calzavara, Ilya Grishchenko, and Matteo Maffei. 2016. HornDroid:
Practical and Sound Static Analysis of Android Applications by SMT Solving. In
IEEE European Symposium on Security and Privacy, EuroS&P 2016, Saarbrücken,
Germany, March 21-24, 2016. 47–62.

[18] Kevin Zhijie Chen, Noah M. Johnson, Vijay D’Silva, Shuaifu Dai, Kyle MacNa-
mara, Thomas R. Magrino, Edward XueJun Wu, Martin Rinard, and Dawn Xi-
aodong Song. 2013. Contextual Policy Enforcement in Android Applications
with Permission Event Graphs.. In 20th Annual Network and Distributed System
Security Symposium, NDSS 2013, San Diego, California, USA, February 24-27,
2013.

[19] Erika Chin, Adrienne Porter Felt, Kate Greenwood, and David A. Wagner. 2011.
Analyzing inter-application communication in Android. In Proceedings of the 9th
International Conference on Mobile Systems, Applications, and Services (MobiSys
2011), Bethesda, MD, USA, June 28 - July 01, 2011. 239–252.

[20] Mauro Conti, Vu Thien Nga Nguyen, and Bruno Crispo. 2010. CRePE: Context-
Related Policy Enforcement for Android. In Information Security - 13th Interna-
tional Conference, ISC 2010, Boca Raton, FL, USA, October 25-28, 2010, Revised
Selected Papers. 331–345.

[21] Maxwell John Cresswell and George Edward Hughes. 2012. A new introduction
to modal logic. Routledge.

[22] Mads Dam, Gurvan Le Guernic, and Andreas Lundblad. 2012. TreeDroid: a tree
automaton based approach to enforcing data processing policies. In the ACM
Conference on Computer and Communications Security, CCS’12, Raleigh, NC,
USA, October 16-18, 2012. 894–905.

[23] Michael Dietz, Shashi Shekhar, Yuliy Pisetsky, Anhei Shu, and Dan S. Wallach.
2011. QUIRE: Lightweight Provenance for Smart Phone Operating Systems. In

20th USENIX Security Symposium, San Francisco, CA, USA, August 8-12, 2011,
Proceedings.

[24] William Enck, Machigar Ongtang, and Patrick D. McDaniel. 2009. On lightweight
mobile phone application certification. In Proceedings of the 2009 ACM Confer-
ence on Computer and Communications Security, CCS 2009, Chicago, Illinois,
USA, November 9-13, 2009. 235–245.

[25] Zheran Fang, Weili Han, and Yingjiu Li. 2014. Permission based Android security:
Issues and countermeasures. Computers & Security 43 (2014), 205–218.

[26] Yu Feng, Saswat Anand, Isil Dillig, and Alex Aiken. 2014. Apposcopy: semantics-
based detection of Android malware through static analysis. In Proceedings of
the 22nd ACM SIGSOFT International Symposium on Foundations of Software
Engineering, (FSE-22), Hong Kong, China, November 16 - 22, 2014. 576–587.

[27] Elli Fragkaki, Lujo Bauer, Limin Jia, and David Swasey. 2012. Modeling and
enhancing androidâĂŹs permission system. In European Symposium on Research
in Computer Security. Springer, 1–18.

[28] Mahmoud Hammad, Hamid Bagheri, and Sam Malek. 2017. Determination and
Enforcement of Least-Privilege Architecture in Android. In 2017 IEEE Interna-
tional Conference on Software Architecture, ICSA 2017, Gothenburg, Sweden,
April 3-7, 2017. 59–68.

[29] Stephan Heuser, Adwait Nadkarni, William Enck, and Ahmad-Reza Sadeghi. 2014.
ASM: A Programmable Interface for Extending Android Security. In Proceedings
of the 23rd USENIX Security Symposium, San Diego, CA, USA, August 20-22,
2014. 1005–1019.

[30] Peter Hornyack, Seungyeop Han, Jaeyeon Jung, Stuart Schechter, and David
Wetherall. 2011. These Aren’T the Droids You’Re Looking for: Retrofitting
Android to Protect Data from Imperious Applications. In Proceedings of the 18th
ACM Conference on Computer and Communications Security, CCS 2011, Chicago,
Illinois, USA, October 17-21, 2011. 639–652.

[31] Jinseong Jeon, Kristopher K. Micinski, Jeffrey A. Vaughan, Ari Fogel, Nikhilesh
Reddy, Jeffrey S. Foster, and Todd Millstein. 2012. Dr. Android and Mr. Hide:
Fine-grained Permissions in Android Applications. In SPSM’12, Proceedings
of the Workshop on Security and Privacy in Smartphones and Mobile Devices,
Co-located with CCS 2012, October 19, 2012, Raleigh, NC, USA. 3–14.

[32] Limin Jia, Jassim Aljuraidan, Elli Fragkaki, Lujo Bauer, Michael Stroucken,
Kazuhide Fukushima, Shinsaku Kiyomoto, and Yutaka Miyake. 2013. Run-Time
Enforcement of Information-Flow Properties on Android. In Computer Security -
ESORICS 2013 - 18th European Symposium on Research in Computer Security,
Egham, UK, September 9-13, 2013. Proceedings. 775–792.

[33] Leslie Lamport. 2002. Specifying systems: the TLA+ language and tools for
hardware and software engineers. Addison-Wesley Longman Publishing Co.,
Inc.

[34] Youn Kyu Lee, Jae Young Bang, Gholamreza Safi, Arman Shahbazian, Yixue
Zhao, and Nenad Medvidovic. 2017. A SEALANT for inter-app security holes
in android. In Proceedings of the 39th International Conference on Software
Engineering, ICSE 2017, Buenos Aires, Argentina, May 20-28, 2017. 312–323.

[35] Li Li, Alexandre Bartel, Tegawendé F. Bissyandé, Jacques Klein, Yves Le Traon,
Steven Arzt, Siegfried Rasthofer, Eric Bodden, Damien Octeau, and Patrick D.
McDaniel. 2015. IccTA: Detecting Inter-Component Privacy Leaks in Android
Apps. In 37th IEEE/ACM International Conference on Software Engineering,
ICSE 2015, Florence, Italy, May 16-24, 2015, Volume 1. 280–291.

[36] Li Li, Tegawendé F. Bissyandé, Mike Papadakis, Siegfried Rasthofer, Alexandre
Bartel, Damien Octeau, Jacques Klein, and Yves Le Traon. 2017. Static analysis of
android apps: A systematic literature review. Information & Software Technology
88 (2017), 67–95.

[37] Kurt Mueller and Kevin Butler. 2011. Poster: Flex-p: flexible android permissions.
In Proc. of IEEE S&P.

[38] Adwait Nadkarni and William Enck. 2013. Preventing accidental data disclosure
in modern operating systems. In 2013 ACM SIGSAC Conference on Computer
and Communications Security, CCS’13, Berlin, Germany, November 4-8, 2013.
1029–1042.

[39] Mohammad Nauman, Sohail Khan, and Xinwen Zhang. 2010. Apex: extending
android permission model and enforcement with user-defined runtime constraints.
In Proceedings of the 5th ACM Symposium on Information, Computer and Commu-
nications Security, ASIACCS 2010, Beijing, China, April 13-16, 2010. 328–332.

[40] Damien Octeau, Daniel Luchaup, Matthew Dering, Somesh Jha, and Patrick D.
McDaniel. 2015. Composite Constant Propagation: Application to Android Inter-
Component Communication Analysis. In 37th IEEE/ACM International Confer-
ence on Software Engineering, ICSE 2015, Florence, Italy, May 16-24, 2015,
Volume 1. 77–88.

[41] Machigar Ongtang, Stephen E. McLaughlin, William Enck, and Patrick D. Mc-
Daniel. 2012. Semantically rich application-centric security in Android. Security
and Communication Networks 5, 6 (2012), 658–673.

[42] Paul Pearce, Adrienne Porter Felt, Gabriel Nunez, and David A. Wagner. 2012.
AdDroid: privilege separation for applications and advertisers in Android. In
7th ACM Symposium on Information, Compuer and Communications Security,
ASIACCS ’12, Seoul, Korea, May 2-4, 2012. 71–72.

[43] Siegfried Rasthofer, Steven Arzt, Enrico Lovat, and Eric Bodden. 2014. Droid-
Force: Enforcing Complex, Data-centric, System-wide Policies in Android. In
Ninth International Conference on Availability, Reliability and Security, ARES
2014, Fribourg, Switzerland, September 8-12, 2014. 40–49.

[44] Alireza Sadeghi, Hamid Bagheri, Joshua Garcia, and Sam Malek. 2017. A Taxon-
omy and Qualitative Comparison of Program Analysis Techniques for Security

ICSE ’18, May 27-June 3, 2018, Gothenburg, Sweden A. Sadeghi et al.

Assessment of Android Software. IEEE Trans. Software Eng. 43, 6 (2017), 492–
530.

[45] Roman Schlegel, Kehuan Zhang, Xiao-yong Zhou, Mehool Intwala, Apu Kapadia,
and XiaoFeng Wang. 2011. Soundcomber: A Stealthy and Context-Aware Sound
Trojan for Smartphones. In Proceedings of the Network and Distributed System
Security Symposium, NDSS 2011, San Diego, California, USA, 6th February - 9th
February 2011.

[46] Daniel Schreckling, Joachim Posegga, Johannes KÃűstler, and Matthias Schaff.
2012. Kynoid: Real-Time Enforcement of Fine-Grained, User-Defined, and Data-
Centric Security Policies for Android. In Information Security Theory and Practice.
Security, Privacy and Trust in Computing Systems and Ambient Intelligent Ecosys-
tems - 6th IFIP WG 11.2 International Workshop, WISTP 2012, Egham, UK, June
20-22, 2012. Proceedings. 208–223.

[47] Wook Shin, Sanghoon Kwak, Shinsaku Kiyomoto, Kazuhide Fukushima, and
Toshiaki Tanaka. 2010. A Small But Non-negligible Flaw in the Android Permis-
sion Scheme. In POLICY 2010, IEEE International Symposium on Policies for
Distributed Systems and Networks, Fairfax, VA, USA, 21-23 July 2010. 107–110.

[48] Fu Song and Tayssir Touili. 2014. Model-Checking for Android Malware Detec-
tion. In Programming Languages and Systems - 12th Asian Symposium, APLAS
2014, Singapore, November 17-19, 2014, Proceedings. 216–235.

[49] Sufatrio, Darell J. J. Tan, Tong-Wei Chua, and Vrizlynn L. L. Thing. 2015. Se-
curing Android: A Survey, Taxonomy, and Challenges. ACM Comput. Surv. 47, 4
(2015), 58. https://doi.org/10.1145/2733306

[50] Yutaka Tsutano, Shakthi Bachala, Witawas Srisa-an, Gregg Rothermel, and Jack-
son Dinh. 2017. An efficient, robust, and scalable approach for analyzing interact-
ing android apps. In Proceedings of the 39th International Conference on Software

Engineering, ICSE 2017, Buenos Aires, Argentina, May 20-28, 2017. 324–334.
[51] Xueqiang Wang, Kun Sun, Yuewu Wang, and Jiwu Jing. 2015. DeepDroid:

Dynamically Enforcing Enterprise Policy on Android Devices. In 22nd Annual
Network and Distributed System Security Symposium, NDSS 2015, San Diego,
California, USA, February 8-11, 2014. The Internet Society.

[52] Rubin Xu, Hassen SaÃŕdi, and Ross Anderson. 2012. Aurasium: Practical Pol-
icy Enforcement for Android Applications. In Proceedings of the 21th USENIX
Security Symposium, Bellevue, WA, USA, August 8-10, 2012. 27–27.

[53] Yuan Yu, Panagiotis Manolios, and Leslie Lamport. 1999. Model Checking TLA+

Specifications. In Correct Hardware Design and Verification Methods, 10th IFIP
WG 10.5 Advanced Research Working Conference, CHARME ’99, Bad Herrenalb,
Germany, September 27-29, 1999, Proceedings. 54–66.

[54] Zhibo Zhao and Fernando C. Colón Osorio. 2012. TrustDroid: Preventing the use
of SmartPhones for information leaking in corporate networks through the used of
static analysis taint tracking. In 7th International Conference on Malicious and
Unwanted Software, MALWARE 2012, Fajardo, PR, USA, October 16-18, 2012.
135–143.

[55] Yajin Zhou and Xuxian Jiang. 2013. Detecting Passive Content Leaks and Pol-
lution in Android Applications. In 20th Annual Network and Distributed System
Security Symposium, NDSS 2013, San Diego, California, USA, February 24-27,
2013.

[56] Yajin Zhou, Xinwen Zhang, Xuxian Jiang, and Vincent W. Freeh. 2011. Taming
information-stealing smartphone applications (on android). In Trust and Trustwor-
thy Computing - 4th International Conference, TRUST 2011, Pittsburgh, PA, USA,
June 22-24, 2011. Proceedings. 93–107.

