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ABSTRACT

The current security mechanisms for Android apps, both static
and dynamic analysis approaches, are insufficient for detection
and prevention of the increasingly dynamic and sophisticated secu-
rity attacks. Static analysis approaches suffer from false positives
whereas dynamic analysis approaches suffer from false negatives.
Moreover, they all lack the ability to efficiently analyze systemswith
incremental changes—such as adding/removing apps, granting/re-
voking permissions, and dynamic components’ communications.
Each time the system changes, the entire analysis needs to be re-
peated, making the existing approaches inefficient for practical use.
To mitigate their shortcomings, we have developed SALMA, a novel
self-protecting Android software system that monitors itself and
adapts its behavior at runtime to prevent a wide-range of security
risks. SALMA maintains a precise architectural model, represented
as aMultiple-Domain-Matrix, and incrementally and efficiently ana-
lyzes an Android system in response to incremental system changes.
The maintained architecture is used to reason about the running
Android system. Every time the system changes, SALMA deter-
mines (1) the impacted part of the system, and (2) the subset of the
security analyses that need to be performed, thereby greatly im-
proving the performance of the approach. Our experimental results
on hundreds of real-world apps corroborate SALMA’s scalability
and efficiency as well as its ability to detect and prevent security
attacks at runtime with minimal disruption.

CCS CONCEPTS

• Security and privacy→ Software security engineering;

KEYWORDS

Self-protecting system;Android security;Software Engineering

ACM Reference Format:

Mahmoud Hammad, Joshua Garcia, and Sam Malek. 2018. Self-Protection
of Android Systems from Inter-component Communication Attacks. In
Proceedings of the 2018 33rd ACM/IEEE International Conference on Automated
Software Engineering (ASE ’18), September 3–7, 2018, Montpellier, France.
ACM,NewYork, NY, USA, 12 pages. https://doi.org/10.1145/3238147.3238207

Permission to make digital or hard copies of all or part of this work for personal or
classroom use is granted without fee provided that copies are not made or distributed
for profit or commercial advantage and that copies bear this notice and the full citation
on the first page. Copyrights for components of this work owned by others than the
author(s) must be honored. Abstracting with credit is permitted. To copy otherwise, or
republish, to post on servers or to redistribute to lists, requires prior specific permission
and/or a fee. Request permissions from permissions@acm.org.
ASE ’18, September 3–7, 2018, Montpellier, France
© 2018 Copyright held by the owner/author(s). Publication rights licensed to ACM.
ACM ISBN 978-1-4503-5937-5/18/09. . . $15.00
https://doi.org/10.1145/3238147.3238207

1 INTRODUCTION

Reusability is a major reason behind the meteoric rise in the popu-
larity of the Android platform [12] and the increasing number of
apps [10]. To develop rich apps, Android promotes reusability of (1)
information and services provided by third-party apps, through its
flexible Inter-Component Communication (ICC) model, and (2) sen-
sitive resources protected by a permission-based model. However,
since the inception of Android, the ICC and the permission-based
models have become themain attack vector for Android apps, which
can lead to serious security and privacy risks [23, 32, 42, 57].

The current state-of-the-art security mechanisms for Android
apps, both static and dynamic analysis approaches, are insufficient
for detecting and preventing the increasingly sophisticated security
attacks. Static analysis approaches suffer from false positives due
to their over-approximation of the analyzed apps, e.g., producing
warnings for vulnerabilities that are not executable at runtime.
On the other hand, dynamic analysis approaches suffer from false
negatives due to the reachability problem, where vulnerabilities are
missed due to inputs that fail to reach the vulnerable code.

Moreover, due to the complex and dynamic nature of Android
systems (e.g., adding/removing an app, granting/revoking a permis-
sion, and dynamic class loading), their security posture changes
over time. Simply repeating the entire security analysis of an An-
droid system, either statically or dynamically, every time the system
changes is prohibitively expensive for practical use.

To overcome the shortcomings of the current approaches, we
have developed SALMA, a novel self-protecting Android software
system that (1) continuously monitors the running Android system,
(2) incrementally and efficiently analyzes the security posture of
the system, and (3) dynamically enforces security policies to pre-
vent security attacks at runtime. SALMA leverages static program
analysis to automatically derive the initial abstract representation,
i.e., a model, of an Android system. SALMA then monitors the
running system to keep the model synchronized with the running
system. Whenever the model changes, SALMA determines (1) the
impacted part of the system, and (2) the required security analyses
that need to be performed. Finally, SALMA adjusts security policies
and enforces them at runtime, thus ensuring the system is safe and
protected at all times.

SALMAmodels the system as a Multiple-Domain-Matrix (MDM)
[49]—which provides an elegant, yet compact, representation of all
relationships among principal elements, such as components and
permissions, in a system. Our implementation of the MDM provides
a flexible way to load and analyze parts of the system, improving
the scalability and efficiency of the overall approach. SALMA can be
used to protect Android systems without modification of the apps’
implementation logic, allowing our approach to be applied to all
existing Android apps. Our evaluation of SALMA using hundreds
of real-world apps corroborates its efficiency and scalability in
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analyzing evolving Android systems with minimal disruption to
apps and their services while thwarting security threats to keep
the system protected at all times. SALMA achieves 70%-84% greater
detection of attacks than state-of-the-art approaches and 45%-85%
greater prevention of attacks than those approaches.

The rest of this paper is organized as follows. Section 2 describes
the security attacks our approach can detect and prevent. The
research gap in the current security mechanisms for Android apps
is presented in Section 3. Section 4 illustrates an Android system to
motivate our research. The approach and its implementation are
discussed in Sections 5 and 6, respectively. The evaluation results
are presented in Section 7. Finally, the paper concludes with an
overview of the related literature and areas of future research.

2 ANDROID SECURITY ATTACKS

Inter-component communication (ICC) inAndroid ismainly achieved
either by sending Intents or using Unified Resource Identifiers
(URIs). An Intent is a message exchanged among apps, whose pay-
load includes an action to be performed along with the data that
supports that action. Component capabilities are then specified as
a set of Intent Filters that represent the kinds of requests handled
by a given component. Component invocations come in different
flavors, including explicit or implicit, and intra-app or inter-app.
URIs are used to access or manipulate the encapsulated data in
Content Providers, the database components in Android apps.
Android’s ICC allows for late run-time binding between compo-
nents in the same or different apps, where the calls are not explicit
in the code, but instead are made through exchanging messages
that correspond with certain events, a key property of event-driven
systems. Android applies a permission-based model to protect sen-
sitive resources, both system resources and application resources,
that each app is allowed to access. Since Android version 6, Google
changed the permissionmanagement system from static to dynamic,
allowing users to grant or revoke permissions at runtime.

The Android ICC interaction mechanism and the current per-
mission model of Android are the root cause of many security
vulnerabilities. They have become a vulnerable attack surface of
an Android system which threatens user privacy and has affected
millions of users [9]. These attacks are widely discussed in the
literature [22, 23, 28, 29, 32–34, 42, 44, 64, 70]. ICC attacks are se-
curity risks facilitated by (1) incorrectly or maliciously using the
message-passing system in Android or (2) misusing the permis-
sions in Android. SALMA provides self-protection against these
ICC attacks. This section briefly describes these attacks.

Unauthorized Intent Receipt: In this attack, a malicious com-
ponent intercepts an implicit Intent by declaring an Intent Filter
that matches the sent Intent [23, 44]. In such an attack, a malicious
component can access all enclosed data in the intercepted Intent
and, possibly perform a phishing attack [13].

Intent Spoofing: In such an attack, a malicious component can
communicate with an exported component that is not expecting
such communication [23, 44]. If a victim component blindly trusts
the received Intent, the malicious component can cause the victim
component to perform undesirable actions [36].

Privilege Escalation: This attack allows a malicious compo-
nent to indirectly perform a privileged task [22, 34]. In this attack,
if a vulnerable component possesses a permission without appropri-
ately protecting its interface, a malicious component can perform
a privileged task, such as sending a text message or tracking the
location of a user, by interacting with that vulnerable component.

Identical Custom Permission: Any Android app can also de-
fine its own permissions and use them to protect its components.
Each permission must define a name and a protection level, where
each level affects the extent to which a permission can be granted
or revoked. The notable protection levels for this paper are Normal
and Signature. A Normal permission is automatically granted to
apps that request them without asking for the user’s approval. A
Signature permission is granted to apps that are signed with the
same certificate as the app that declared the permission.

The custom permission model of Android contains a vulnera-
bility rooted in its design: "if two apps define the same custom
permission, whichever app is installed first is the one whose defini-
tion is used" [18]. A malicious app can exploit this vulnerability to
access a protected component with a custom permission by declar-
ing another permission with the same name as that legitimate one.

Passive Data Leak: Content Providers can be used for both
intra-app data persistence as well as sharing data across apps. If the
read access to a Content Provider is not properly guarded with
a permission, other apps can exploit this vulnerability to disclose
and leak sensitive data [42].

Content Pollution: This attack is possible when the write ac-
cess to a Content Provider is not properly guarded with a permis-
sion [42]. This vulnerability allows a malicious app to manipulate
sensitive data managed by a vulnerable app. The manipulated data
can cause severe side effects such as altering firewall rules or block-
ing incoming calls.

3 RESEARCH GAP

The current security mechanisms for Android apps, both static and
dynamic analysis approaches, are insufficient for detecting and
preventing the increasingly dynamic and sophisticated attacks.

Static analysis approaches [48], [68], [46][50], [19], [70], [23],
[54], [34], [31], [47], [20], [60], [37], [38] suffer from false positives,
i.e., false alarms. The high number of false alarms generated by
such approaches lower their applicability. Moreover, static analysis
approaches face severe limitations when it comes to analyzing
obfuscated or dynamically loaded code [57], thus in practice also
suffer from false negatives. Precise forms of static analysis also
require significant amounts of computing resources and can take a
substantial amount of time to execute.

Dynamic analysis approaches [30], [66], [17], [40], [27], [55],
[21] are not sound, and are thus prone to false negatives. These
approaches are susceptible to a variety of anti-debugging and anti-
monitoring defenses [15, 24, 26, 35, 43, 56, 58, 59, 62, 67] as well as
time bombs [25], which further decrease their efficacy. Furthermore,
dynamic approaches are tedious and time consuming, as exhaustive
execution of apps can take a substantial amount of time.

To overcome the limitation of pure static or pure dynamic anal-
ysis, Holla and Katti [39] discussed the need for hybrid Android
security approaches. Despite that, few approaches proposed hybrid
techniques such as Dr. Android [41], SmartDroid [71], and Profile-
Droid [69]. Nevertheless, these tools provide detection capabilities
but not prevention mechanisms. Moreover, they require changes to
apps’ implementation logic which prevent their practical use.

All of these approaches perform complete analysis of Android
systems, and hence lack the ability to efficiently analyze systems as
changes occur—such as adding/removing apps, granting/revoking
permissions at runtime, or dynamically loading code. SALMA miti-
gates the aforementioned shortcomings through (1) continuously
monitoring the running system, (2) incrementally and efficiently
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analyzing the system against a broad-range of ICC security vulner-
abilities, and (3) enforcing adaptation tactics to prevent security
attacks at runtime with minimal disruption.

4 ILLUSTRATIVE EXAMPLE

To further motivate our research and illustrate our approach, we
provide an example of an evolving Android system that consists
initially of two apps: SuperPhone and StayHealthy apps, illus-
trated in Figure 1 (a). The MakeCalls Activity in the SuperPhone
allows a user to make phone calls and it stores calls’ information in
the CallsDB, a Content Provider component. The History queries
the stored calls in CallsDB and lists them to a user. StayHealthy
is a fitness app that allows users to log their daily workouts, via
Exercises, and meals, via Meals. Both of these Activities are acces-
sible from the Home Activity. The LocTracker is a service that runs
in the background and tracks the user’s location upon receiving
an Intent. Exercises uses LocTracker to draw a route map of a
user’s workout. StayHealthy also allows a user to share his logged
activities, either workouts or meals, with friends by sending text
messages. The Share Service sends spatial data, i.e., tagged data
with the current user’s location, as a text message to the phone
number specified in the received Intent. Share is being used by
both Exercises and Meals Activities.

The Share Service is a vulnerable service since it does not check
if the calling component has the appropriate permissions, SMS
and Location in this example, before sending spatial data. Whereas
the LocTracker is a secure Service since it checks for the granted
permissions of the caller component. Such a check in Android can
be achieved using the checkCallingPermission API. Although
Share is a vulnerable component in the Android system illustrated
in Figure 1 (a), the current system is not actively threatened since
no component is exploiting this vulnerability.

At a later time, a user installs a new app called BrainTease
r, as shown in Figure 1 (b). BrainTeaser is a malicious app that
challenges a user to solve mathematical questions and then mea-
sures her intelligence quotient (IQ). The IQtest Activity displays
questions and communicates with the Qgenerator Service to get
the next question. Qgenerator is a malicious component that, once
started, communicates with the Share Service of the StayHealt
hy app. Since Share does not check if the caller components has
the required permissions, i.e., SMS and LOCATION permissions,
this component is vulnerable to a privilege-escalation ICC attack.
Therefore, the communication between the Qgenerator and Share
results in exploiting this vulnerability which allows Qgenerator
to leak the user’s location to any premium rate number without
having the proper permissions to perform such a task.

The attack described in this section is a legitimate scenario in the
current implementation of the Android platform [19]. Moreover,
performing a complete analysis of all Android apps in the system
every time the system changes is neither efficient nor practical. We
show how, through a runtime monitoring and incremental analysis,
SALMA can efficiently and effectively mitigate such a threat.

5 APPROACH

Figure 2 depicts a high-level overview of SALMA—which contains
two layers, the protected layer and the protecting layer. The pro-
tected layer consists of our modified Android framework and a set
of apps that a user installs on a device. The protecting layer real-
izes the IBM MAPE-K control loop [45]. MAPE-K consists of four
components and a knowledge component. The Knowledge contains

Figure 2: Overview of SALMA.

an architectural model of the system. The Monitor observes the
system and keeps the model synchronized with the running system.
The Analyzer assesses the system for security threats. The Planner
determines the best security policies, a.k.a. adaptation tactics, to be
enforced at runtime by the Executor.

Figure 2 depicts instantiations of each of the MAPE-K compo-
nents in the protecting layer:Monitor Extractor & Synthesizer (MES),
which is aMonitor ; Incremental Security Analyzer (ISA), which is an
Analyzer ; Policy Synthesizer, which is a Planner ; and Policy Enforcer,
which is an Executor. MES automatically obtains and maintains a
precise runtime architectural model of an Android system. When
a change occurs in the maintained runtime model, the ISA (1) de-
termines the impacted part of the system due to that change, (2)
runs a subset of security analyses that need to be performed, and
(3) updates the security posture of the system by either adding
new potential security attacks or removing existing threats. After
that, Policy Synthesizer takes the analysis results computed by the
previous component and constructs security policies in the form
of Event-Condition-Action (ECA) rules—which the Policy Enforcer
enforces at runtime, through various effectors.

5.1 Model Extractor & Synchronizer (MES)

Similar to other self-* software systems, SALMA leverages an ab-
stract representation of the software to manage and adapt the sys-
tem at runtime. Prior research assumes these models are developed
in advance. Given the rich app ecosystem of Android, this assump-
tion does not hold, since users can install a variety of apps that are
unknown a priori. To address this challenge,MES utilizes static and
dynamic analysis techniques to automatically obtain and maintain
a precise model of an Android system.

To obtain an architectural model of an Android system, MES
uses APKtool [3], a reverse-engineering tool for Android APK files,
to recover an app’s manifest file.MES then parses the file to extract
the app’s components, their properties, their provided interfaces,
the required permissions, and the defined permissions, if any.

Parsing the manifest file is not enough to obtain a system’s ar-
chitecture, since a large amount of information is latent in the app’s
bytecode—including all ICCs, programmatically registered compo-
nents, or defined interfaces. ICC communications are facilitated
either by (1) sending Intents or (2) using URIs (see Section 2). To
obtain this information, MES utilizes IC3 [53], a tool that extracts
Intents and URIs along with their information from apps’ bytecode.

MES determines the permissions enforced by components. In
Android, a component enforces permissions to either (1) protect
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Figure 1: An evolving Android system before, (a), and after, (b), installing BrainTeaser app.

access to the entire component or (2) restrict access to parts of the
component using permission checks in the code (e.g., use of the
checkCallingPermission API). MES extracts protected access of
components from the manifest file and restricted access to parts
of components from code. MES leverages prior work of architec-
tural modeling [63] to extract enforced permissions from an app’s
bytecode. Finally, MES determines permissions actually used by
components either to (1) access a protected Content Provider or
(2) call a protected API. To determine such permissions, regarding
to (1), we rely on [38] that maps a protected Content Provider to
the required permission to access that Content Provider. Regarding
to (2), we leverage PScout [16] which maps each sensitive API in
Android with the required permission to call that API.

MES captures the architecture of an Android system as aMultiple-
Domain-Matrix (MDM)[49], which is a matrix representation of all
relationship types (i.e., domains) among principal elements, such
as components and permissions, in a system. An MDM consists of
multiple Design-Structured Matrices (DSMs) [65]. Each domain is
modeled as a DSM—a simple matrix that captures the relationships
of one type. For the purpose of security analysis, SALMAmodels an
Android system using seven domains, four component interaction
domains and three permission domains. As a concrete example,
Figure 3 shows the derived MDM of the example illustrated in
Figure 1 (a). To keep the MDM valid as the system changes, MES
synchronizes the MDM with the running system.

The four component interaction domains in the MDM model of
Figure 3 represent the various component-to-component communi-
cations. Each non-empty cell in these domains indicates that there
is a communication between two components, either by sending
Intents or using URIs to access the encapsulated data in Content
Providers. Rows represent sender components; columns represent
receiver components. The explicit and the implicit communication
domains show all component-to-component interactions using ex-
plicit and implicit Intents, respectively. Similarly, the data access
and the data manipulation domains show component-to-content
provider interactions for reading (i.e., querying) and modifying (i.e.,
updating, inserting, or deleting) stored data, respectively.

The three permission domains in the MDMmodel of Figure 3 rep-
resent the various component-to-permission relationships. The per-
mission usage domain shows that a permission is making protected
API calls. The permission granted domain shows that a permission
is granted to a component T because it is either (1) directly using
the permission; or (2) its parent app requests that permission, and
T is interacting with another component that uses that permission.
The permission enforcement domain shows that a permission is
enforced by a component through its manifest file or in its code.

To derive the MDM representation of an Android system, MES
asynchronously interacts with the Static Analysis Engine (see Fig-
ure 2), a cloud-based web service that leverages various static anal-
ysis tools [3, 52, 53, 63] to extract a model of an Android system.
Once the Static Analysis Engine analyzes the requested app(s), it
returns a tuple S = (C, I ,DBR,DBW ,P ) to theMES. In the tuple S ,C
is a set of components; I is a set of Intents; DBR is a set of database
read accesses; DBW is a set of database write requests; and P is a
set of permissions. Using this extracted information (i.e., tuple S),
and SALMA’s knowledge of the Android framework embodied in
a set of definitions, formally presented below, it derives the MDM
representation of an Android system. The explicit communication
domain is derived using the following rule.

Definition 1 (Explicit Communication). Let c1 and c2 be two
arbitrary components in the system, i.e., {c1,c2} ⊆ C , i be an Intent,
i.e., i ∈ I . We say that c1 can explicitly communicate with c2, if i is
sent by c1, i.e., i .sender = c1, and c2 is explicitly specified in the Intent
i as a target component, i.e., i .tarдet = c2, and either both c1 and c2
belong to the same app or c1 is granted the permissions enforced by
c2:

communicatee (c1,c2) ≡ ∃i ∈ I | i .sender = c1 ∧ i .tarдet =
c2 ∧ (appc1 = appc2 ∨ enf orcedc2 ⊆ дrantedc1 )

The explicit communication domain in Figure 3 shows the re-
sults of applying definition 1 to all extracted Intents, i.e., the set I .
According to definition 1, component 4 explicitly communicates
with component 5, since there is an explicit Intent sent by Home to
Exercises (recall Figure 1 (a)).

Similarly, the communications in the implicit communication
domain are derived using the following rule.

Definition 2 (Implicit Communication). Let c1 and c2 be two
arbitrary components in the system, i.e., {c1,c2} ⊆ C , i be an Intent,
i.e., i ∈ I . We say that c1 can communicate with c2, if i is sent by c1,
i.e., i .sender = c1, and c2 is exporting an Intent Filter that can handle
i , i.e.,match(i,c2. f ), and either both c1 and c2 belong to the same
app or c1 is granted the permissions enforced by c2:

communicatei (c1,c2) ≡ ∃i ∈ I | i .sender =
c1 ∧match(i,c2. f ) ∧ (appc2 = appc1 ∨ enf orcedc2 ⊆ дrantedc1 )

Thematch(i,c2. f ) function in Definition 2 performs Intent res-
olution [7] to check if there is an Intent Filter declared by c2 that
can handle the Intent i . The implicit communication domain in
Figure 3 shows the results of applying Definition 2 to all extracted
Intents, i.e., the set I . According to Definition 2, component 5 im-
plicitly communicates with component 7 since there is an implicit
Intent sent by Exercises in which LocTracker can handle (recall
Figure 1 (a)).
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Figure 3: An MDM representation of the system illustrated in Figure 1(a). Each colored box in the MDM corresponds to the

matching colored app in Figure 1(a).

The data access and the data manipulation domains are derived
using the following rules.

Definition 3 (Data Access). Let c be an arbitrary component in
the system, i.e., c ∈ C , cp be a content provider, i.e., cp ∈ C , and dbr
be a database read (query) request in the system, i.e., dbr ∈ DBR. We
say that c can access the stored data in cp, if c sends a database query
(dbr ) where the authority attribute ofdbr matches the authority name
of cp, and either c and cp belong to the same app or c is granted the
enforced read access permission by cp.
access (c,cp) ≡ ∃dbr ∈ DBR | dbr .sender = c ∧ dbr .authority =

cp.authority ∧ (appc = appcp ∨ readcp ⊆ дrantedc )

To illustrate an instance of Definition 3 on the extracted database
requests, i.e., DBR, Figure 1 shows that component 2 accesses the
stored data in component 3 —which is also reflected in Figure 3.

Definition 4 (Data Manipulation). Let c be an arbitrary com-
ponent in the system, i.e., c ∈ C , cp be a content provider, i.e., cp ∈ C ,
and dbw be a database write (insert, delete, or update) request in the
system, i.e., dbw ∈ DBW . We say that c can access the stored data
in cp, if c sends a database manipulation request (dbw) where the
authority attribute of dbw matches the authority name of cp, and
either c and cp belong to the same app or c is granted the enforced
write access permission by cp.

manipulate (c,cp) ≡ ∃dbw ∈ DBW | dbw .sender =
c ∧ dbw .authority = cp.authority ∧ (appc = appcp ∨writecp ⊆

дrantedc )

As an example of Definition 4, Figure 1 depicts component 1,
MakesCall, updates the stored data in component 3, CallsDB—
which is further shown in Figure 3.

Table 1 shows a list of the events (i.e., changes in the system)
thatMES tracks. In this paper, we refer to these events as significant
events. For each significant event, MES receives a notification from
the system and updates the model accordingly. For example, when a
user installs a new app,MES receives a system notification with the
ACTION_PACKAGE_ADDED Intent action. In this case, MES ob-
tains the architecture of the new app, i.e.,M = (C, I ,DBR,DBW ,P ),
from the Static Analysis Engine; mergesM with S ; and applies Def-
initions 1–4 to add the new app to the current MDM. To avoid
substantial analysis time caused by running static analysis tools,

Table 1: The Significant Events that SALMA Monitors.

ID Event ID Event

1 ADD_APP 5 NEW_IMPLICIT_COMM

2 REMOVE_APP 6 NEW_EXPLICIT_COMM

3 GRANT_PERMISSION 7 NEW_DATA_ACCESS

4 REVOKE_PERMISSION 8 NEW_DATA_MANIPULATION

the Static Analysis Engine can analyze Android apps in advance
without waiting for a user to install an app.

In our running example, after a user installs the BrainTeaser
app (see Figure 1(b)),MES updates the maintained model. The MDM
illustrated in Figure 4 displays the results of merging BrainTeaser
with the current MDM, presented in Figure 3. Figure 4 shows that
IQtest explicitly communicates with Qgenerator, which implic-
itly communicates with Share (see Figure 1(b)).

To synchronize the runtime model with the system, MES relies
on receiving system notifications from the sensors in Figure 2, indi-
cating significant changes that occur in the system. Some system
notifications are already implemented in the Android framework,
such as ADD_APP and REMOVE_APP events. For these events, the
framework sends broadcast Intents with ACTION_PACKAGE_ADDED
and ACTION_PACKAGE_REMOVED actions, respectively. While in all
other significant events, see Table 1, the framework silently executes
the event. Therefore, we have introduced new system-generated
broadcast Intents to the Android platform. The new broadcasts
inform MES of certain events whenever they occur in the system.
Each system-generated broadcast Intent contains information about
a particular event. For example, in case a user grants a permission to
an app, the framework sends a GRANT_PERMISSION broadcast Intent
with the permission name and the application package name.

5.2 Incremental Security Analyzer (ISA)

Android systems are highly dynamic software systems. Reanalyzing
the entire system every time a change occurs is neither efficient
nor scalable. Therefore, our approach incrementally analyzes the
system whenever a change in the system occurs. Our approach
leverages the fact that a change in the system (1) impacts only part
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Figure 4: An MDM representation of the system illustrated in Figure 1(b) . Each colored box in the MDM corresponds to the

matching colored app in Figure 1(b).

of the system and (2) often requires running a subset of the security
analyses on the impacted part of the system. In Section 5.2.1, we
describe how our approach determines the impacted parts of the
system after a change occurs. Section 5.2.2 describes the security
rules that our approach applies on the impacted parts of the system
to detect the potential security attacks presented in Section 2.

5.2.1 Change Impact Analysis. This analysis consists of two
steps: (1) determining the impacted parts of the MDM and (2) iden-
tifying the subset of the security analysis rules, formally specified in
Section 5.2.2, that need to be considered. More specifically, in step
(1), ISA determines the affected parts of the system by calculating
∆MDMe = MDMt2 −MDMt1, where t2 is a time after an event e
and t1 is a time before e .

Each cell in ∆MDM has a value of either −1, 0, or 1. −1 means a
relationship in the previous system has been removed after e , e.g., e
is the revocation of a permission. 0 means there is no change in that
relationship before and after e . 1 indicates that a new relationship is
introduced due to e . For example, e may be the introduction of a new
communication between two components appearing at runtime
due to installing a new app, updating an existing app, dynamically
loaded code, or execution of obfuscated code. From the affected rela-
tionships, ISA determines the impacted domains. Applying ∆MDM
to our running system, described in Section 1, reveals that the com-
munications in rows 9 and 10 have been added to the system which
belong to the explicit and the implicit communication domains.

In step (2), ISA determines the subset of the security rules that
need to be considered in light of the affected domains. To that
end, ISA uses Table 2, which is a lookup table that maps each
Security Analysis with the Involved Domains in that analysis. This
table also shows the security analyses that need to be performed
when a specific domain changes. For example, if the EXPLICIT
domain changes, then ISA needs to perform only 3 security analyses
instead of all 6 analyses. In our running example where only the
explicit and the implicit domains have been changed after installing
BrainTeaser, Table 2 indicates that the security posture of the
system should be checked against the following security attacks:
Intent Spoofing, Unauthorized Intent Receipt, Privilege Escalation,
and Identical Custom Permission.

Table 2: Security analyses lookup table.

Security Analysis Involved Domain(s)

Intent Spoofing Explicit Implicit

Unauthorized Intent Receipt Implicit

Privilege Escalation
Explicit Implicit
Granted Usage

Enforcement

Identical Custom Permission Explicit Implicit
Granted Enforcement

Passive Data Leak Data Access Read Permission

Content Pollution Data Manipulation Write Permission

5.2.2 Security Rules. This section describes the security rules
that SALMA applies on the impacted parts of the system. Each rule
when applied on an interaction between two components would
reveal if that interaction is vulnerable to a given security attack.

Security Rule 1 (Unauthorized Intent Receipt). Let cm be
a malicious component, cv be a vulnerable component, and cx be a
component that cv intends to send an implicit Intent i to. cv and cx
belong to the same app, and cx declares a provided interface, i.e., an
Intent filter, through which cv aims to communicate with cx using
i . In an unauthorized Intent receipt, cm can intercept i from cv by
declaring a provided interface similar to the one declared by cx . As
such, cm may gain access to all enclosed data in any matching Intents
meant to be received by cx .

∃ communicatei (cv ,cm ) | (appcv ,
appcm ) ∧ ∃ communicatei (cv ,cx ) ∧ (appcv = appcx )

Security Rule 2 (Intent Spoofing). Let cm be a malicious
component, cv be a vulnerable component, and cx be a component
intending to communicate with cv . cv and cx belong to the same app.
cv declares a provided interface, i.e., an Intent filter, through which
it aims to communicate with cx . In Intent Spoofing, cm can send an
Intent to cv over the Intent filter and force cv to perform a nefarious
action upon receipt of the Intent.
∃ (communicatee (cm ,cv ) ∨ communicatei (cm ,cv )) | (appcv ,

appcm ) ∧ ∃ communicatei (cx ,cv ) ∧ (appcv = appcx )

731



Self-Protection of Android Systems from Inter-component Communication Attacks ASE ’18, September 3–7, 2018, Montpellier, France

Security Rule 3 (Privilege Escalation). Let p be a permission,
cm be a malicious component that is not granted p, and cv be a
vulnerable component that is granted and uses p but does not enforce
the use of p as requested by other components. In privilege escalation,
cm is able to indirectly obtain p by interacting with cv .

∃ (communicatee (cm ,cv ) ∨ communicatei (cm ,cv )) | p ∈
used (cv ) ∧ p < дranted (cm ) ∧ p < enf orced (cv )

Security Rule 4 (Identical Custom Permission). Let pm be a
custom permission defined bymalicious appappm , i.e.,pm .de f inedBy =
appm , and pv be a custom permission defined by the vulnerable app
appv , i.e., pv .de f inedBy = appv . Both pv and pm have the same
permission name, i.e., pv .name = pm .name . cm is a malicious com-
ponent in appm that is granted pm . cv is a vulnerable component
in appv that enforces pv . In an identical custom permission, cm can
communicate with cv since pv .name = pm .name , even if pv and pm
are semantically different permissions.

∃ (communicatee (cm ,cv ) ∨ communicatei (cm ,cv ) ∨
access (cm ,cv ) ∨manipulate (cm ,cv )) | appcm , appcv ∧ pm ∈

дranted (cm ) ∧ pv ∈ enf orced (cv ) ∧ pv .name =
pm .name ∧ pm .de f inedBy , pv .de f inedBy

Security Rule 5 (Passive Data Leak). Let cpv be a vulnerable
Content Provider that does not enforce a read access permission,
cm be a malicious component that accesses (queries) the stored data
in cpv . In a passive data leak, cm can passively disclose the sensitive
data stored in cpv .

∃ access (cm ,cpv ) | enf orcer (cpv ) = ∅

In Definition 5, enf orcer (cpv ) refers to the read access permis-
sion enforced by the Content Provider cpv . In our approach, for
each Content Provider component, we add two columns in the
permission domains of the MDM: one for the read access permis-
sion and the other one for the write access permission. For example,
each permission domain in the MDM illustrated in Figure 4 con-
tains two permissions for the CallsDB component,C3R for the read
permission and C3W for the write permission.

Security Rule 6 (Content Pollution). Let cpv be a vulnerable
Content Provider that does not enforce a write access permission,
cm be a malicious component that changes (inserts, updates, or deletes)
the stored data in cpv . In the content pollution attack, cm can inap-
propriately manipulate the sensitive data stored in cpv .

∃manipulate (cm ,cpv ) | enf orcew (cpv ) = ∅

In Definition 6, enf orcew (cpv ) refers to the write access permis-
sion enforced by the Content Provider cpv .

Regarding our example, SALMA determines that the security
rules 1, 2, 3, and 4 should be applied to all interactions in rows
and columns 9 and 10. Running these rules, mainly rule 3 on the
communication between Qgenerator and Share, reveals that the
implicit communication in row 10 and column 8 of Figure 4 is
vulnerable to privilege escalation attack.

5.3 Policy Synthesizer and Policy Enforcer

After ISA determines the security vulnerabilities in the system,
the Policy Synthesizer creates context-sensitive security policies to
be executed at runtime. The created security policies, in our ap-
proach, follow the Event-Condition-Action (ECA) rules paradigm
suitable for rapid evaluation as the system executes. Our approach
creates ECA rules that, based on a particular system context, will
be executed to prevent security threats. More specifically, SALMA

creates ECA rules to prevent the communication between the two
components that are involved in an identified security vulnerability.

SALMA further tries to minimize the disruption that the security
policies may cause. For example, in the case of a privilege escalation
attack, SALMA creates a security policy to prevent a vulnerable
communication instead of revoking the escalated permission from
the vulnerable app, as proposed in [60]. The later solution disrupts
all components in the vulnerable app from using that permission
which may stop crucial services provided by the disrupted compo-
nents such as sending text messages or getting driving directions.

As a concrete example, since the communication between Qgen-
erator and Share is marked as potential privilege escalation attack,
SALMA creates the following ECA rule.
Event: i ∈ ICC occurs
Condition: i .senderPkд = BrainTeaser ∧ i .senderComp =
Qgenerator ∧ i .receiverPkд = StayHealthy ∧ i .receiverComp =
Share
Action: prevent

Policy Enforcer administers security policies at runtime through
various effectors that we have added to the Android runtime en-
vironment, as shown in Figure 2. Policy Enforcer applies security
policies by intercepting the ICCs (both the Intent-based and the
URI-based communications) and the resource access transactions to
check if they are allowed or not. For Intent-based communication,
Policy Enforcer can prevent or allow transactions. For the URI-based
ICC transactions, Policy Enforcer can prevent a component from
accessing or manipulating either (1) the entire Content Provider
specified in the URI or (2) a specific table or file in that Content
Provider.

6 IMPLEMENTATION

We have implemented SALMA and its constituent components for
our experiments and make it available online for reproducibility
and reuse purposes [11]. To keep an Android system’s architecture
synchronized with the running system, the Static Analysis Engine
is implemented as a cloud-based web service that leverages several
prior static analysis tools [3, 16, 52, 53, 63]. Each tool provides
specific information that SALMA uses to tailor the architecture of
the system.

MES, Policy Synthesizer, and Policy Enforcer are implemented
on top of the Android Open-Source Project (AOSP) [2] version 6
(Marshmallow), API level 23. AOSP is the open-source repository for
the Android system. The enforcement mechanism introduced a new
package in the Android runtime environment. We also modified
other components such as ActivityManager, ContextWrapper, Con-
tentProvider, and PackageManager. The total framework changes
account for approximately 600 LOC. These changes allow any ex-
isting Android app using version 6 and below to run in our version
of the Android runtime environment without modification. We
have successfully installed the modified Android system image on a
Nexus 5X phone and an Android emulator using Android Fastboot
tools [5] and Android debug bridge [1].

7 EXPERIMENTAL EVALUATION

Our evaluation addresses the following research questions:
RQ1. How efficient is SALMA at incrementally analyzing the secu-
rity posture of Android systems compared to a complete analysis
approach?
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RQ2 How effective is SALMA at reducing the unnecessary dis-
ruption caused by the enforcement of security policies to prevent
permission-induced ICC attacks?
RQ3. How effective is SALMA at detecting and preventing security
attacks in real-world apps?

7.1 RQ1: Efficiency

For this experiment, we downloaded 984 apps comprising three
datasets: a dataset of 370 benign apps, randomly selected from
Google Play [6];a dataset of 389 vulnerable apps identified in prior
literature [48]; and a dataset of 225 malicious apps obtained from
various malware repositories [4, 51, 72].

To measure the efficiency of SALMA’s incremental analysis, we
compared the performance of SALMA with DELDroid [37, 38],
a prior approach that similar to our work analyzes the architec-
ture of an Android system for ICC vulnerabilities and enforces the
determined architecture at runtime. However, unlike SALMA, DEL-
Droid is not capable of continuous monitoring and incremental
analysis of an evolving Android system. We ran our experiments
on a MacBook Pro with 2.2 GHz Intel Core i7 processor and 16 GB
1600 MHz DDR3 RAM. We repeated our experiments 10 times to
achieve a 95% confidence interval.

Figure 5 contains box-and-whisker plots comparing the analysis
time of each approach as Android apps are added to the system. We
started with an Android system of 120 apps and added one app at a
time until the system contained 150 apps. We randomly selected 120
apps from the benign dataset, 15 apps from the vulnerable dataset,
and 15 apps from the malicious dataset.

Every time an app is added to the system, SALMA incrementally
analyzes the system whereas DELDroid reanalyzes the entire sys-
tem. As illustrated in Figure 5, the analysis time of SALMA takes,
on average, 2 seconds to incrementally analyze an Android system
whenever a new app is installed. On the other hand, DELDroid
takes, on average, 75 seconds.

Figure 5: The analysis time of SALMA and DELDroid as An-

droid apps are added to the system.

Figure 6 compares the analysis time of each approach with a
decreasing number of apps. We started with a bundle of 150 apps,
then we removed one app at a time until the system contained 120
apps. The average analysis time of SALMA is 0.2 seconds while the
average analysis time of DELDroid is 35.3 seconds. Due to space
limitations, Figures 5 and 6 show the analysis results of adding/re-
moving 30 apps, however, the project’s website [11] contains the
analysis results of an experiment of adding/removing 80 apps.

Due to the use of code obfuscation and dynamic class loading
in Android apps, not all communications can be discovered using

Figure 6: The analysis time of SALMA and DELDroid as An-

droid apps are removed from the system.

static analysis tools. As a result, some communication appears only
at runtime, e.g., a new explicit or implicit communication. In such
scenarios, SALMA also incrementally reanalyzes the security pos-
ture of the system to determine if the new communication poses
any threat to the system. If so, SALMA prevents the new com-
munication. In addition to ADD_APP and REMOVE_APP, we assessed
the efficiency of SALMA with respect to other system events men-
tioned in Table 1. We found that SALMA takes, on average across all
events, 1.6 milliseconds while DELDroid takes, on average across
all events, 63.8 seconds. Due to space limitations, details of this
experiment and the evaluation results are reported at the project’s
website [11].

SALMA takes about two hours to statically analyze an Android
system with 50 apps and determine its initial architectural repre-
sentation. Thereafter, SALMA incrementally determines the archi-
tecture of the running system. Table 3 shows the performance of
SALMA in statically analyzing apps, merging/removing an app
to/from the architectural model, and intercepting and checking
an ICC transaction against the stored security policies. To further
improve efficiency, the static analysis time can be performed in ad-
vanced without waiting for a user to install an app. All other times
in Table 3 cannot be perceived as delays by users, which follows
recommendations from Android development guidelines [8].

Table 3: SALMA’s static analysis and runtime performance.

Static Merge app Remove app Validating
analysis to the model from the model ICC trans.
(minute) (second) (second) (second)

Average 2.3 0.024 0.026 0.025
Std Dev. 1.2 0.027 0.028 0.001

Overall, these results corroborate the efficiency and the scalabil-
ity of SALMA in incrementally analyzing Android systems.

7.2 RQ2: Disruption

Enforcing security policies at runtime by preventing permissio
n-induced ICC attacks may disrupt benign behaviors of an app.
Permission-induced attacks are security breaches enabled by per-
mission misuse, i.e., privilege escalation, identical custom permis-
sions, content pollution, and passive data leaks. Preventing permission-
induced attacks can be applied at install-time or runtime [32].
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Install-time approaches, such as Kirin [31], prevent the installa-
tion of vulnerable apps. Runtime prevention approaches can ei-
ther (1) prevent only the malicious communication whenever it
occurs, as performed in SALMA, DELDroid [38], SEALANT [47],
and SEPAR [20]; or (2) revoke permissions of vulnerable apps at
runtime, as in TERMINATOR [60] and AppGuard [17].

For this experiment, we analyzed a bundle of 150 apps, the apps
used in RQ1, and found that 40 apps are vulnerable to various
permission-induced attacks. We then computed the disruption in
each vulnerable app caused by the enforcement of the various se-
curity policy mechanisms discussed earlier. Disruption of an app a
is computed using the following equation:

disruption(a) =
|compsdisr (a) |
|compstot (a) |

× 100

Where compsdisr (a) is the set of components in app a that are
disrupted and compstot (a) are the set of all components in app a.
We consider a component c to be disrupted if c uses a permission p
involved in a permission-induced attack, since c will be unable to
provide its full services if p is revoked.

As an example, consider an app av with 5 components where 3
of its components use permission p to provide their services. One
component using p is vulnerable to a privilege-escalation attack.
In this case, to protect the user, the install-time approaches pre-
vent the installation of av , disrupting all of its components, i.e.,
disruption(av ) = 100%. On the other hand, approaches that revoke
permission will revoke p to prevent the attack, resulting in 60%
disruption of that app, i.e., 3 components will not be able to provide
their full services due to the lack of the required permission p. How-
ever, SALMA, which only prevents malicious communication when
it occurs, results in 0% disruption, since all components will be able
to provide their full services while keeping the system protected.

Figure 7 compares the three different permission-induced pre-
vention mechanisms. The diagram shows that SALMA has 0.4%
disruption, meaning that SALMAdoes not disturb components from
providing their services except in one identical custom permission
case. In that case, SALMA created a security policy to revoke a
custom permission from the malicious app so it will not be able
to access the vulnerable app. On the other hand, the install-time
approach performs the worst (100%), as it does not allow installa-
tion of a vulnerable app. Finally, revoking permissions at runtime
to prevent permission-induced attacks would result, on average
per app, in 32% disruption. Meaning that, on average, 32% of the
components in a vulnerable app will not be able to provide their
full services due to the lack of required permissions even though
some of these components are not vulnerable or involved in any

Figure 7: Disruption results for each app

vulnerability. Moreover, revoking permissions from apps at run-
time lead to crashes or unexpected behaviors due to inappropriate
handling of dynamic permissions in Android [61].

DELDroid, SEPAR, SEALANT, and SALMA all attempt to pre-
vent malicious communication whenever it occurs. However, unlike
SALMA, the other three approaches assume that all permissions
are granted to all apps indefinitely. This assumption increases those
approaches false positives which, in turn, increases unnecessary
disruption. For example, a privilege-escalation vulnerability is not
exploitable unless the escalated permission is granted to the vul-
nerable app. However, the three approaches prevent vulnerable
communication at all times, while SALMA prevents vulnerable
communication only when the system is at risk, i.e., the permission
is granted to the vulnerable app.

7.3 RQ3: Attack Detection and Prevention

To evaluate SALMA’s ability to detect and prevent security threats,
we conducted a thorough evaluation using malicious and vulnera-
ble real-world apps with known security attacks, and compared the
detection and prevention results of SALMA with state-of-the-art
approaches. We included state-of-the-art approaches that are (1)
publically available, (2) provide detection and prevention mech-
anisms, and (3) extend the Android framework. To that end, we
included DELDroid [37, 38], SEPAR [20], and SEALANT [47]. DEL-
Droid determines the least-privilege architecture of an Android
system and enforces it at runtime. SEPAR provides an automatic
scheme for formal synthesis and enforcement of Android ICC secu-
rity policies. SEALANT is a technique that combine static analysis
with dynamic monitoring to detect security vulnerabilities in An-
droid apps and prevent ICC attacks.

To conduct this experiment, we used 188 malicious and vulner-
able apps for which the steps and inputs required to create the
attacks were known and documented. These apps have been used
in the evaluation of the included approaches. In total, the subject
apps contain 94 ICC attacks where 45 of them are hidden attacks,
i.e., the malicious code is not part of the apps’ bytescode but instead
is loaded at runtime using the dynamic class loading feature as
described in [57], and the rest (49 attacks) are not hidden attacks,
i.e., the malicious code is part of the apps’ bytecode. We ran each ap-
proach on the subject apps, then deployed the apps on the Android
environment, and manually exercised all known attacks. We report
the number of detected and prevented attacks for each approach.

The Attack Detection column in Table 4 show the evaluation
results of each approach for detecting the security attacks. For
example, SALMA and DELDroid detected all of the 20 privilege-
escalation instances that are not dynamically loaded, i.e., not hidden
attacks, whereas SEPAR and SEALANT detected only 12 and 14
attacks, respectively. According to Table 4, SALMA is able to detect
all 94 attacks, including the hidden attacks, with no false positives
or false negatives, while the detection rate of the other approaches
ranges from 16% to 30%. Given the reliance of the included ap-
proaches on static program analysis to detect security risks, all of
them are unable to detect hidden attacks launched via dynamically
loaded code, see the gray area in Table 4. However, since SALMA in-
crementally analyzes the security posture of the system in response
to system changes, i.e., new inter-app communications added at
runtime (recall Section 7.1), SALMA is able to detect these attacks
at runtime.

The Attack Prevention column in Table 4 shows the evaluation re-
sults of each approach for thwarting the security attacks at runtime.

734



ASE ’18, September 3–7, 2018, Montpellier, France Mahmoud Hammad, Joshua Garcia, and Sam Malek

Table 4: The ability of SALMA in detecting and preventing security attacks compared to the state-of-the-art approaches.

Attack Type
Security Attack # Attacks

Attack Detection Attack Prevention

(Count) DELDroid SEPAR SEALANT SAlMA DELDroid SEPAR SEALANT SAlMA

N
ot

hi
dd

en
(4
9) Intent Spoofing 3 3 3 2 3 3 3 2 3

Unauthorized Intent Receipt 5 5 0 1 5 5 0 1 5
Privilege Escalation 20 20 12 14 20 20 12 14 20
Identical Custom Permission 7 0 0 1 7 0 0 1 7
Content Pollution 7 0 0 0 7 0 0 0 7
Passive Data Leak 7 0 0 0 7 0 0 0 7

H
id
de
n
(4
5)

Intent Spoofing 13 0 0 0 13 13 0 0 13
Unauthorized Intent Receipt 2 0 0 0 2 2 0 0 2
Privilege Escalation 9 0 0 0 9 9 0 0 9
Identical Custom Permission 7 0 0 0 7 0 0 0 7
Content Pollution 7 0 0 0 7 0 0 0 7
Passive Data Leak 7 0 0 0 7 0 0 0 7

Total attacks 94 28 15 18 94 52 15 18 94
Detection / Prevention Rate 30% 16% 19% 100% 55% 16% 19% 100%

SALMA is able to prevent all security attacks in Table 4 at runtime
while the prevention rate of the other approaches ranges from 15%
to 55%. Interestingly, DELDroid is able to prevent some of the ICC
attacks that it did not detect, because it prevents all communications
that are not part of the statically determined architecture.

8 RELATEDWORK

AttackDetection.Numerous static analysis approaches have been
proposed in the literature for detecting ICC attacks in Android
systems [48],[68],[46],[50],[19],[70],[23], and [54]. COVERT [19]
presents an approach for compositional analysis of Android inter-
app vulnerabilities. DidFail [46] tracks data flows between Android
components. Similarly, IccTA [48] leverages an Intent resolution
analysis to identify inter-component privacy leaks. Unlike SALMA,
all of these approaches cannot detect ICC attacks conducted through
dynamic class loading.

Attack Prevention. DELDroid [37, 38] is an approach that de-
termines the least-privilege architecture of an Android system and
enforces it at runtime. Similar to SALMA, DELDroid analyzes the
architecture of an Android system for ICC vulnerabilities and mod-
ifies the Android platform to enforce the determined architecture.
Unlike SALMA, DELDroid is a design-time solution that (1) does
not change the derived architecture as the system evolves; (2) as-
sumes that all permissions are granted to apps indefinitely, which
increases disruption; and (3) assumes that all hidden communica-
tions are malicious, which further contributes to disruption.

Other approaches, such as [32],[31],[20],[47], and [60], statically
analyze Android apps and dynamically enforce security policies to
prevent ICC attacks. IPC-Inspection [32] is an OS mechanism for
preventing privilege-escalation attacks that reduces the permissions
assigned to an app when it communicates with an app having fewer
privileges. Kirin [31] detects security vulnerabilities by only analyz-
ing an app’s configuration file. SEPAR [20] and SEALANT [47] rely
on the analysis results generated by COVERT [19] to prevent ICC
attacks at runtime. TERMINATOR [60] performs temporal analysis
for preventing permission-induced ICC attacks. All of these tools
do not update their models once the system changes.

Another set of approaches leverage dynamic analysis techniques
to detect and prevent security attacks [21, 27, 40, 55]. AppFence [40]
prevents apps from exfiltration of data outside the device. Quire [27]

prevents privilege-escalation attacks from leaking data outside the
device using the Internet permission. Saint [55] extends the func-
tionality of Kirin to allow for install-time permission assignment
and their run-time use as specified in the policies provided by an
app’s developer. XManDroid [21] presents a solution for privilege-
escalation attacks by restricting communication at runtime between
applications that could lead to dangerous information flows. While
SALMA automatically analyzes the system and creates security
policies to prevent ICC attacks, all of these tools depend upon defin-
ing security policies by developers and they require modifications
to apps’ implementation logic.

9 CONCLUSION

This paper presents SALMA, an automated self-protecting Android
system that monitors itself and adapts its behavior at runtime to
prevent ICC security risks. SALMA maintains a precise runtime
model, represented as a Multiple-Domain-Matrix (MDM), and incre-
mentally and efficiently analyzes an Android system in response to
incremental system changes. The maintained architecture is used
to reason about the running Android system. Every time the system
changes, SALMA determines (1) the impacted part of the system,
and (2) the subset of the security analyses that need to be performed,
thereby greatly improving the performance of the approach. Our
experimental results on hundreds of real-world apps corroborate
SALMA’s efficiency and scalability with minimal disruption.

Android components are increasingly shipped with native bi-
naries that are shown to have memory-based vulnerabilities (e.g.,
buffer overflow) [14]. Modeling native code in MDMs, building
associated security rules for native-code vulnerabilities, and model-
ing the interaction among managed and native code in MDMs can
provide further attack detection and prevention, but complicate
analyses and may lead to scalability issues. Such challenges are
interesting avenues of future work.
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