
PATDroid: Permission-Aware GUI Testing of Android

Alireza Sadeghi
Department of Informatics

University of California, Irvine, USA

alirezs1@uci.edu

Reyhaneh Jabbarvand
Department of Informatics

University of California, Irvine, USA

jabbarvr@uci.edu

Sam Malek
Department of Informatics

University of California, Irvine, USA

malek@uci.edu

ABSTRACT

Recent introduction of a dynamic permission system in Android,

allowing the users to grant and revoke permissions after the instal-

lation of an app, has made it harder to properly test apps. Since an

app’s behavior may change depending on the granted permissions,

it needs to be tested under a wide range of permission combinations.

At the state-of-the-art, in the absence of any automated tool support,

a developer needs to either manually determine the interaction of

tests and app permissions, or exhaustively re-execute tests for all

possible permission combinations, thereby increasing the time and

resources required to test apps. This paper presents an automated

approach, called PATDroid, for eiciently testing an Android app

while taking the impact of permissions on its behavior into account.

PATDroid performs a hybrid program analysis on both an app

under test and its test suite to determine which tests should be exe-

cuted on what permission combinations. Our experimental results

show that PATDroid signiicantly reduces the testing efort, yet

achieves comparable code coverage and fault detection capability

as exhaustively testing an app under all permission combinations.

CCS CONCEPTS

· Software and its engineering → Software testing and de-

bugging; · Security and privacy → Access control; Mobile plat-

form security;

KEYWORDS

Android, Software Testing, Access Control (Permission)

ACM Reference format:

Alireza Sadeghi, Reyhaneh Jabbarvand, and Sam Malek. 2017. PATDroid:

Permission-Aware GUI Testing of Android. In Proceedings of 2017 11th Joint

Meeting of the European Software Engineering Conference and the ACM

SIGSOFT Symposium on the Foundations of Software Engineering, Paderborn,

Germany, September 4ś8, 2017 (ESEC/FSE’17), 13 pages.

https://doi.org/10.1145/3106237.3106250

1 INTRODUCTION

Access control is one of the key pillars of software security [38].

Many access control models exist for selectively restricting access

to a software system’s security-sensitive resources and capabilities.

Permission to make digital or hard copies of all or part of this work for personal or
classroom use is granted without fee provided that copies are not made or distributed
for proit or commercial advantage and that copies bear this notice and the full citation
on the irst page. Copyrights for components of this work owned by others than ACM
must be honored. Abstracting with credit is permitted. To copy otherwise, or republish,
to post on servers or to redistribute to lists, requires prior speciic permission and/or a
fee. Request permissions from permissions@acm.org.

ESEC/FSE’17, September 4ś8, 2017, Paderborn, Germany

© 2017 Association for Computing Machinery.
ACM ISBN 978-1-4503-5105-8/17/09. . . $15.00
https://doi.org/10.1145/3106237.3106250

Among such models, permission-based access control has gained

prominenace in recent years, partly due to its wide adoption in

several popular platforms [24], including Android.

In Andriod, permissions are granted to apps. The Android run-

time environment prevents an app lacking the proper permissions

from accessing both sensitive system resources (e.g., sensors) as

well as other protected applications. Initially, Android employed a

static permission system, meaning that the users were prompted

to consent to all the permissions requested by an app prior to its

installation, and the granted permissions could not be revoked af-

terwards. To provide the users more control over their device, in

2015, starting with API level 23, Android switched to a dynamic per-

mission system, allowing users to change the permissions granted

to an app at run-time [3].

The introduction of a dynamic permission system, however,

poses an important challenge for testing Android apps. A test exe-

cuted on an app may pass under one combination of granted per-

missions, yet fail under a diferent combination. As recommended

by Android’s best practices:łBeginning with Android 6.0 (API level

23), users grant and revoke app permissions at run-time, instead of

doing so when they install the app. As a result, you’ll have to test your

app under a wider range of conditions.ž [3].

At the state-of-the-art, properly testing an Android app with

respect to its permission-protected behavior entails re-execution

of each test on all possible combination of permissions requested

by an app, as there are no tools available to assist the developers

with determining the interplay between tests and permissions. Such

an exhaustive approach is time consuming, and often impractical,

particularly in the case of regression testing, where the execution of

an entire test suite needs to be repeated for an exponential number

of permission combinations.

To mitigate this challenge, we have developed PATDroid, short

for Permission-Aware GUI Testing of AnDroid. The insight guid-

ing our research is that a given test may not interact with all the

permissions requested by an app, meaning that some permissions,

regardless of whether they are granted or revoked, may not afect

the app’s behavior under a particular test. By excluding the permis-

sions that do not interact with tests, we can achieve a signiicant

reduction in testing efort, yet achieve a comparable coverage and

fault detection capability as exhaustive testing.

PATDroid leverages a hybrid program analysis approach to

determine the interactions between an app’s GUI tests and its per-

missions. It irst dynamically pinpoints the entry-points of the app

exercised by each test case. It then statically examines the parts

of code that are reachable from the identiied entry points to ind

the permission-protected code fragments. Afterwards, it statically

determines the app inputs (i.e., GUI widgets) that control the exe-

cution of permission-protected code fragments. Finally, it statically

identiies usages of the app inputs in the test scripts. Employing

220

https://www.acm.org/publications/policies/artifact-review-badging
https://doi.org/10.1145/3106237.3106250
https://doi.org/10.1145/3106237.3106250

ESEC/FSE’17, September 4–8, 2017, Paderborn, Germany Alireza Sadeghi, Reyhaneh Jabbarvand, and Sam Malek

a suiciently precise, yet scalable technique, PATDroid is able to

efectively determine which tests should be executed under what

permission combinations for an app.

Our experiments indicate that PATDroid is able to reduce both

number of tests and their execution time by 71% on average, while

maintaining a similar coverage as exhaustive execution of tests on

all permission combinations. In addition, using PATDroid, we were

able to identify several defects in real-world apps, as conirmed by

their developers, that can only be exposed under certain permission

settings, further demonstrating the usefulness of PATDroid in

practice.

The paper makes the following contributions:

• Theory: To the best of our knowledge, the irst approach that

considers the dependencies between a program, its test suite,

and access control model for the reduction of testing efort;

• Tool: A fully automated environment that realizes the approach

for Android programs, and made available publicly [10];

• Experiments: Empirical evaluation of the approach on a large

number of real-world android apps demonstrating its eicacy.

The remainder of this paper is organized as follows. Section 2

introduces an illustrative example to motivate the research. Sec-

tion 3 provides an overview of PATDroid, while more details are

presented in Sections 4-7. Section 8 provides the implementation in-

formation associated with the tool realizes our approach. Section 9

presents the experimental evaluation of the research. Finally, the

paper outlines the related research and concludes with a discussion

of future work.

2 ILLUSTRATIVE EXAMPLE

We use a simpliied version of an Android app, called Suntimes,

to motivate the research and illustrate our approach. Suntimes

calculates and displays sunrise, sunset, and twilight times for a

particular location. It is developed to target Android version 6.

Sample screen shots of this app are captured in Figure 1.

Figure 1: Screenshots of Suntimes app (a) Initially, asking user for

the łLocationž permission; (b) Main activity with available menu

options, where the irst option, i.e., location setting, is selected by

the user; (c) Adding a new location to the app using GPS data

Since the app requires access to GPS data, it asks for Location

permission once launched for the irst time (Figure 1a). If a user

grants the Location permission, the app periodically calculates and

updates sunrise, sunset, and twilight times based on the current

user location. Alternatively, the user can update her current lo-

cation on demand from the option menu (Figure 1b), either by

manually providing speciic latitude and longitude, or using GPS to

obtain location data (Figure 1c). However, Suntimes crashes when a

user, who has previously denied the requested location permission,

tries to update the current location using GPS, as the app at that

point is neither granted the required permission (i.e., Location) to

accomplish this task, nor it asks for it again.

To validate its behavior, Suntimes comes with a GUI test suite, a

subset of which is shown in Figure 2. In contrast to unit tests, these

tests run on a hardware device or emulator and commonly referred

to as instrumented tests [4]. Regardless of the testing framework

(e.g., Espresso [5], Robotium [13]), instrumented tests are compiled

and packed as a separate apk ile and installed together with the

apk of the main app. To distinguish these two software artifacts

throughout the paper, we call the apk containing the test suit and

testing libraries as Test Harness App (THA), and the apk of the main

app as App Under Test (AUT).

In the test cases shown in Figure 2, testSunTimesNavigation

(Test #1) veriies the smooth navigation between diferent sun-

times and dates, testSettingLocationToUserDefined (Test #2) val-

idates adding a new user-deined location based on GPS data,

and testExportLocations (Test #3) ensures the correctness of ex-

porting retrieved location information to storage. Since Android

version 6, it is recommended to test an app with various com-

binations of granted and revoked permissions to ensure correct

behavior of the app under diferent conditions [3]. For example,

testSettingLocationToUserDefined can reveal the aforementioned

crash only when the developer has revoked the Location permission

before running the test.

1 @Test //Test#1

2 public void testSunTimesNavigation () {

3 onView(withId(R.id.info_note_flipper)).perform(click ());

4 onView(withId(R.id.info_note_flipper)).perform(click ());

5 onView(withId(R.id.info_time_nextbtn)).perform(click ());

6 onView(withId(R.id.info_time_prevbtn)).perform(click ());

7 // Check the navigation between suntimes is correct ...

8 }

9 @Test //Test#2

10 public void testSettingLocationToUserDefined () {

11 onView(withId(R.id.action_location_add)).perform(click ());

12 onView(withId(R.id.appwidget_location_edit)).perform(click ());

13 onView(withId(R.id.appwidget_location_getfix)).perform(click ())

14 onView(withId(R.id.appwidget_location_name)).perform(

replaceText("My Location"));

15 onView(withId(R.id.appwidget_location_save)).perform(click ());

16 onView(withId(android.R.id.button1)).perform(click ());

17 // Check the newly added location is shown properly ...

18 }

19 @Test //Test#3

20 public void testExportLocations () {

21 openContextualActionModeOverflowMenu ();

22 onView(withId(R.id.action_settings)).perform(click ());

23 onData(withKey(configLabel_places)).perform(click ());

24 onData(withKey(configLabel_places_export)).perform(click ());

25 // Check the locations are saved correctly ...

26 }

Figure 2:A subset of Espresso [5] tests embedded in the THA to ver-

ify the behavior of Suntimes app. The test assertions are not shown

here

221

PATDroid: Permission-Aware GUI Testing of Android ESEC/FSE’17, September 4–8, 2017, Paderborn, Germany

As another example, consider Test #3 of Figure 2, which requires

Location and Storage permissions to save user’s location. Depending

on the permissions granted to Suntimes, Test #3 can exhibit diferent

behaviors:

1) Both required permissions are already granted and Suntimes

is able to successfully save the user’s location on the external

storage.

2) Only the Location permission is already granted. Hence, Suntimes

asks for the Storage permission. In case of denial, Suntimes saves

the location information in the app’s internal storage, which

does not require Storage permission.

3) Only the Storage permission is already granted. Hence, Suntimes

asks for the Location permission. In case of denial, the app takes

no action.

4) Neither of the required permissions have been previously

granted. Hence, Suntimes asks for both of them. In case of denial,

the app takes no action.

In any case, if the user denies any of the requested permissions,

Suntimes should not crash.

The problem of testing an app’s behavior under diferent permis-

sion settings becomes more complicated as the number of permis-

sions deined in the app coniguration ile, a.k.a.Manifest, increases.

One approach is to randomly grant and revoke permissions and

run the test suite. Though simple, this approach fails to thoroughly

test the app’s behavior and is prone to miss important defects.

Alternatively, a developer could manually review the test scripts

and source code of an app to determine which tests should be exe-

cuted under what app permissions. Such an approach, however, is

quite cumbersome, especially considering that every time the app’s

source code changes, the developer needs to manually establish the

relationships between the app’s tests and its permissions.

Another approach is to exhaustively run the test suite under

all possible combinations of requested permissions. In this ap-

proach, if an application requires p permissions, each test should

be executed 2p times, since each permission takes two values of

{дranted, revoked }.1 For instance, Suntimes requests four permis-

sions in its manifest ile (i.e., Location, Storage, Alarm, and Internet).

Considering the three tests in Figure 2, exhaustive approach runs

each test 24 = 16 times. For only the 3 test shown in Figure 2,

we would need a total of 3 × 16 = 48 test runs. Clearly, such an

approach does not scale as the number of requested permissions

and the size of test suite increase.

The insight guiding our research is that exhaustive execution

of tests for all permission combinations is overly conservative. For

instance, we found that Test #2 requires only Location permission, as

the code executed by this test does not require access to capabilities

guarded by other permissions. As a result, this test can only be

executed twiceÐwith and without the Location permissionÐrather

than the 16 times required under the exhaustive scenario.

App Under
Test (AUT)

<Dynamic>

<Static>

<Static>

TW

App Analyzer

THA Analyzer

AUT Analyzer

Interaction
Detector

In
st

ru
m

en
t

{<test, widget>}

TE
{<test, entryPoint>}

EWP
{<entryPoint, widget,

permission>}

TP
 [test: {permissions}]

Test Harness
App (THA)

Figure 3: Overview of the approach

3 APPROACH OVERVIEW

As mentioned in the previous section, in all popular Android testing

frameworks (e.g., [5], [13]), a test suite is compiled and packed to

produce the Test Harness App (THA), which is installed together

with the App Under Test (AUT). Given a pair of THA and AUT, PAT-

Droid identiies the minimum number of permission combinations

for AUT that should be tested for each of the test cases embedded

in THA. Figure 3 depicts an overview of PATDroid, consisting of

four major components.

PATDroid irst identiies those parts of AUT that could be ex-

ercised by the test cases embedded in THA. However, this is a

challenging task as the test suite and test subject are realized in the

form of two separate software artifacts (apk iles). Moreover, THA

is composed of instrumented test cases that require more involved

analysis compared to, for example, unit tests. In contrast to unit

tests that have no Android framework dependencies and directly

invoke AUT’s methods, instrumented tests run on a hardware de-

vice or emulator, and indirectly trigger a sequence of actions via

GUI events.2 The triggered GUI events are handled initially by the

testing framework, then Android run-time environment, and even-

tually delegated to certain methods in AUT, called entry-points. Due

to such implicit dependency, static analysis cannot resolve the parts

of the AUT executed by THA.

To mitigate the diiculties of resolving the relationships between

AUT and THA statically, PATDroid leverages a hybrid (static and

dynamic) approach that traces the dependencies between AUT and

THA at two levels of granularity. First, at the method level, dynamic

analysis identiies the entry-point methods of AUT that are exer-

cised as a result of running the tests embedded in THA (represented

as the set TE in Figure 3). Second, at the sub-method level, static

analysis components narrow the entry-points discovered by dy-

namic analysis down to the blocks executable by a particular test

case. The selected blocks of the entry-point methods are the targets

for further static analysis.

To appreciate the need for restricting the scope of analysis, recall

Suntimes app and the test suite shown in Figure 2. The second test

(testSettingLocationToUserDefined) triggers an event by selecting

the Location option from the main menu (line 11), which is even-

tually handled by an entry-point method shown in Figure 4. This

method is among the entry-point methods identiied by dynamic

1In Android, only the dangerous permissions are conigurable at run-time, while
normal permissions are automatically granted at installation time. Without loss of
generality, we consider all the permissions can be granted/revoked at run-time. for
the evaluation however, we distinguish between dangerous and normal permissions.
2Instrumented tests can also trigger other events, such as sending Intents. Those events,
however, are outside the scope of this research, which focuses on GUI testing.

222

ESEC/FSE’17, September 4–8, 2017, Paderborn, Germany Alireza Sadeghi, Reyhaneh Jabbarvand, and Sam Malek

1 @Override

2 public boolean onOptionsItemSelected(MenuItem item){

3 switch (item.getItemId ()){

4 case R.id.action_alarm:

5 scheduleAlarm ();

6 return true;

7 case R.id.action_settings:

8 showSettings ();

9 return true;

10 case R.id.action_location_add:

11 configLocation ();

12 return true;

13 case R.id.action_location_refresh:

14 refreshLocation ();

15 return false;

16 case R.id.action_timezone:

17 configTimeZone ();

18 return true;

19 // other options

20 default:

21 return super.onOptionsItemSelected(item);

22 }

23 }

Figure 4: An entry-point of Suntimes app that handles the

event corresponding to the selection of menu items shown

in Figure 1b (A subset of options are shown here)

analyzer for Test #2. However, inspecting onOptionsItemSelected

method more carefully, it is clear that only the third case of the

switch statement (i.e., lines 10-12 in Figure 4) is executable by Test #2,

since other cases are intended to handle the other options never

triggered by this test. Including the entire method, instead of fo-

cusing on lines 10-12, in the search for relevant permissions would

increase the false-positive rate of our analysis.

The above example demonstrates that the execution low of the

GUI event handlers is controlled by the widgets triggering those

events. Hence, a precise analysis should also take the GUI widgets

afecting the control-low of the app into account, otherwise it

would over-approximate the code segments that could be exercised

by each test. To that end, THA Analyzer determines the widgets

used in each test case (represented as the set TW in Figure 3), While

AUT Analyzer determines the permissions needed for executing

each block of code in AUT, if any, along with the widgets afecting

the reachability of those blocks (represented as the set EWP in

Figure 3).

Finally, Interaction Detector integrates the outputs of the static

and dynamic components and generates the relevant permissions

for each test case (represented as the map TP in Figure 3). The

following sections describe the four components of PATDroid in

more details.

4 DYNAMIC ANALYSIS

Unlike the conventional Java program with a single main method,

Android apps comprise several methods that are implicitly called by

the framework, usually referred to as entry-points. Entry-points are

responsible for handling various events, including GUI events (e.g.,

onOptionsItemSelected shown in Figure 4 that handles the selection

of a menu option), as well as changing the status of the application,

a.k.a. life-cycle events (e.g., onResume to activate a paused app).

As a result of running a test, an app’s entry-points are invoked by

the Android framework. These are identiied by the Dynamic App

Analyzer component. For this purpose, PATDroid irst automati-

cally instruments the given AUT and injects loggers at the beginning

of every possible entry-point of the app, which are distinguishable

by the virtue of implementing speciic interfaces of the Android

framework (e.g., onOptionsItemSelected, onResume, etc.). For a com-

prehensive list of Android’s entry-point interfaces, we have relied

on the results of prior research [20, 39, 40, 50].

PATDroid subsequently runs the entire test suite on the instru-

mented app with an arbitrary permission setting. Since the invoca-

tion of entry-points are independent of the permission settings, our

approach efectively inds the THA-dependent entry-points in the

AUT. Unlike the test script, the code covered inside the entry-points

depends on the permission settings during the test execution. Thus,

we use static analysis technique, described in Section 6, to further

explore the logic inside the entry-point methods.

Finally, the log obtained through the instrumentation of app’s

entry-points is processed to capture the executed entry-points for

each test case. The generated output of this phase, called TE, is a

set of tuples ⟨test , entryPoint⟩, where the irst element is the test

identiier and the second element is an exposed entry-point during

the test execution. Figure 5 provides a subset of generated output

for Test #2 of Figure 2.

5 STATIC ANALYSIS OF TEST HARNESS APP

As briely discussed in Section 3, PATDroid traces the dependencies

between AUT and THA at two levels of granularity. At a high-level

of granularity, the dependencies at the method-level are identiied

by dynamic analysis, as described in the previous section. At a

low-level of granularity, within the entry-point methods, the de-

pendencies are reined through static analysis.

To statically trace the dependencies between AUT and THA, PAT-

Droid resolves the app inputs, namely GUI widgets, that are the

target of actions performed by test scripts. In the running example,

action_location_add is a widget identiier used in both THA and

AUT artifacts (lines 11 and 10 in Figures 2 and 4, respectively). For

this purpose, PATDroid’s static analysis component extracts the

widget information from both AUT and THA. The extracted infor-

mation should uniquely identify the widget throughout the entire

app’s implementation, and thus, usually includes a widget identiier

or a key. While this section focuses on extracting widgets from

THA, Section 6.2 describes how our approach applies to AUT.

Each Android testing framework (e.g., Espresso [5],

Robotium [13], etc.) encodes the widget interactions in its

own unique way, based on the framework’s APIs and patterns.

To generalize the problem of inding the used widgets and make

{

<test:testSettingLocationToUserDefined ,

entryPoint :" SunActivity:boolean onOptionsItemSelected(Menu)">,

<test:testSettingLocationToUserDefined ,

entryPoint :" LocationConfigDialog$3$1:void onClick(View)">,

<test:testSettingLocationToUserDefined ,

entryPoint :" LocationConfigDialog:void onResume ()">,

}

Figure 5: A subset of Suntimes app’s entry-points exercised

by Test #2 of Figure 2

223

PATDroid: Permission-Aware GUI Testing of Android ESEC/FSE’17, September 4–8, 2017, Paderborn, Germany

our approach test-framework-agnostic, we deine this problem as

a general data-low analysis. Accordingly, our goal is to ind the

low of data within the test programs, from certain sources to sinks.

For this purpose, data sources are deined as the set of testing

framework APIs for retrieving a widget by a speciic property,

e.g., inding widgets based on ID using ViewMatcher.withId(int)

and Solo.findViewById(String) APIs in Espresso and Robotium

frameworks, respectively. Similarly, data sinks are deined as the

set of testing framework APIs for performing an action on the

widgets, e.g., a click action deined by ViewActions.click() and

Solo.clickOnButton() APIs.

Deining the problem in this way allows us to perform the static

analysis independent of the testing framework. To support a new

testing framework, it is only needed to provide the list of frame-

work’s APIs for retrieving and performing actions on widgets. A

slightly faster, yet less precise approach to ind the widgets is to

only look for widget retrieval APIs (i.e., source set only) and sim-

ply return the extracted information. This approach, however, can

increase the false-positive rate, since some widgets might be re-

trieved for purposes other than performing an action (e.g., making

an assertion). For this reason, we opted for a precise analysis.

To solve the data-low problem, we employed an Android-

compatible data-low analysis framework, FlowDroid [20], but with

a signiicant modiication that allows us to perform the analysis

on a THA. By default, FlowDroid is intended to analyze apps that

comply with the conventional structure expected by the Android

framework, e.g., to be composed of Android components. In con-

trast to AUT, THA does not follow such conventional structure

and thus, is not supported by FlowDroid. Therefore, we replaced

FlowDroid’s default entry-point creator with a customized creator

speciically tailored for THA analysis. For each THA, PATDroid

creates a dummy main method, which is responsible for preparing

the test environment encoded in @Before methods, and then invok-

ing the @Test methods embedded in THA. Recall the use of such

annotations in the test script example shown in Figure 2.

Solving the data-low problem, THA Analyzer generates the out-

put, TW, which is a set of tuples ⟨test ,widдet⟩, where the irst ele-

ment is the test identiier and the second element is a widget that

is the target of an action performed by the test. Figure 6 provides a

subset of the analysis output generated for Test #2 of Figure 2.

6 STATIC ANALYSIS OF APP UNDER TEST

Running under an arbitrary permission settings, Dynamic App An-

alyzer partially explores the AUT code executable by each test.

Subsequently, PATDroid leverages AUT Analyzer to statically ex-

amine all parts of the code that could be exercised by each test.

{

<test:testSettingLocationToUserDefined ,

widget:action_location_add (2131624168) > ,

<test:testSettingLocationToUserDefined ,

widget:appwidget_location_getfix (2131624120) >

}

Figure 6: A subset of widgets extracted from Test #2 of Fig-

ure 2

Algorithm 1: AUT Analysis

Input: AUT: App under test, TE: Tests to entry-points set

Output: EWP: {⟨entryPoint, widget, perm⟩}

1 EWP ← ∅

// ▶ Permission Analysis - see Section 6.1

2 permSummaries ← PermissionAnalysis(AUT , T E)

// ▶ Widget Analysis - see Section 6.2

3 widgetSummaries ←WidgetAnalysis(AUT)

4 foreach entryPoint ∈ T E do

5 foreach stmt ∈ entryPoint .statements do

6 if stmt .type is Method Invocation then

7 perms ← permSummaries[stmt .targetMethod]

8 foreach perm ∈ perms do

9 widgets ← widgetSummaries[stmt]

10 if widget = ∅ then
11 EWP ← EWP ∪ ⟨entryPoint, ∅, perm⟩

12 else

13 foreach widget ∈ widgets do

14 if ⟨entryPoint, widget, perm⟩ < EW P then
15 EWP ← EWP ∪ ⟨entryPoint, widget, perm⟩

16 end

17 end

18 end

19 end

As depicted in Figure 3, the AUT Analyzer receives the AUT

and TE as input and generates EWP as output. The gener-

ated output is a set of tuples, each containing three elements

⟨entryPoint ,widдet ,permission⟩, indicating an entry-point method

invoked during the execution of a test, a widget that can afect the

reachability of permission-protected code within that entry-point,

and the corresponding permission. AUT Analyzer’s main procedure

is summarized in Algorithm 1.

The analysis procedure performs several steps to generate the

output. Initially, PermissionAnalysis sub-procedure (line 2) identiies

the required permissions for executing each statement, if any, for

all of the app’s entry-point methods exercised by the test suite. The

details of this sub-procedure are described in Section 6.1. Subse-

quently,WidgetAnalysis procedure is invoked in line 3 to determine

the statements that are controlled by each widget, the details of

which are described in Section 6.2.

For each entry-point method (line 4) and each statement within it

(line 5), the algorithm determines whether it is a method invocation

statement (line 6) that is permission protected (lines 7ś8). These

could be either Android API calls or user-deined methods. For each

permission-protected method invocation statement, all the widgets

that control the execution of this statement are retrieved (line 9).

Finally, the algorithm adds tuples consisting of method, widget,

and permission information to set EWP, unless they already exist

in this set (lines 14ś15). If a permission-protected statement is not

controlled by any widget, the widget element is set to Null in the

corresponding generated tuple (lines 10ś11).

6.1 Permission Analysis

For each method deined in a given AUT, Permission Analysis proce-

dure captures all permissions required for executing that method,

224

ESEC/FSE’17, September 4–8, 2017, Paderborn, Germany Alireza Sadeghi, Reyhaneh Jabbarvand, and Sam Malek

SuntimesActivity.
onOptionsItemSelected ʛ...ʜ GetFixHelper.

getFixʛʜ

LocationConfigDialog.
onCreateDialogʛʜ

SuntimesActivity.
configLocationʛʜ

...

GetFixTask.
doInBackgroundʛ...ʜ

 Location gpsLastLocation =
locationManager.getLastKnownLocation(GPS_PROVIDER)

LOCATION
permission

Legendexecute()

show()

Call Graph Node
(Method) w/

Perm Summary

Control-flow
Graph Node
(Statement)

Explicit Call

implicit Call

caller

Class.
methodʛʜ

3

5

6

8

9

11

12

20

21

...

...

...

loc_addalarm

se
tti

ng
s default...

{Location}

{Location}

{Location}

{Location}

{Perm}

GetFixUI.
showProgressʛʜ

{ }

...
Figure 7: A sub-graph of inter-procedural control-low graph for Suntimes app. The collapsed parts of the sub-graph are denoted by ł. . . ž.

The method call in node (=line) 11 of the control-low-graph for SuntimesActivity.onOptionsItemSelected() method eventually leads to

calling an Android framework API that requires Location permission (i.e. getLastKnownLocation). Since this permission is used under the

branch with widget id location_add, it is inferred that Location is a relevant permission for a GUI test that exercises this entry-point method

(onOptionsItemSelected) by performing an action on location_add widget

called Permission Summaries (PS), through performing an inter-

procedural ixed-point analysis, summarized in Algorithm 2.

In the irst step, Permission Analysis constructs a call graph (CG)

of the entire application (line 2). However, due to the event-driven

structure of the Android platform, the traditional CG generation

methods do not connect the call sites corresponding to implicit in-

vocations. The challenges of generating call graph for Android apps

are widely discussed in the prior research and several techniques

are suggested for this purpose [20, 46], which are employed by PAT-

Droid. Figure 7 depicts a subset of the call graph for the Suntimes

app. In this graph, the implicit calls are denoted by dashed lines. For

instance, the method GetFixHelper.getFix() starts an AsyncTask,

namely GetFixTask, by invoking the execute() interface. Conse-

quently, the method doInBackground() of the task class is invoked

indirectly by the Android framework.

Permission Analysis iterates over all Android framework APIs

that are called throughout the given app (lines 3ś7) and adds the

required permission for the API to the permission summaries (PS) of

themethodswhere that API is called.3Wehave relied on permission-

API mappings produced in the prior work [21, 23] to determine the

required permission for Android APIs.

Finally, Permission Analysis traverses the constructed call

graph (CG) using breadth-irst search (BFS) method (lines 9ś15).

Starting from the given entry-point methods (EE), it propagates the

permission in the graph. In each iteration, the algorithm updates

the permission summaries (PS) of all methods calling the current

method, by augmenting their PS with the PS of the callee method

(line 13). This procedure is repeated until a ixed point is reached

for the permission summaries (line 16), meaning that PS does not

change in further iterations. In Figure 7, the permission summaries

are shown at the top-left corner of each call-graph node.

3In addition to the Android framework APIs, certain Intents and queris on Content
Providers need speciic permissions. For brevity, however, only the iteration over the
APIs is shown in Algorithm 2.

Algorithm 2: Permission Analysis

Input: AUT: App under test, TE: Tests to entry-points set

Output: PS: Permission Summaries

1 PS ← ∅

// PS is a map with method signature as its key and the

corresponding set of required permissions as its value

2 CG ← constructCG(AUT)

3 foreach API ∈ AUT .AndroidAPICalls do

4 method ← caller(API)

5 perm← perm(API)

6 PS[method]← perm

7 end

8 repeat

9 foreach method ∈ BFS.next(CG, TE) do

10 callerMethods ← G .edgesTo(method)

11 foreach callerMethod ∈ callerMethods do

12 perms ← PS[method]

13 PS[callerMethod]← PS[callerMethod] ∪ perms

14 end

15 end

16 until PS reaches a ixed-point;

6.2 Widget Analysis

Recall the entry-point method presented in Figure 4. To handle a se-

lected menu option, this method (onOptionsItemSelected) invokes

several other methods, each one under a case corresponding to the

menu option. For instance, Set Alarm (third option in Figure 1b)

is handled by the irst case statement shown in Figure 4, where

scheduleAlarm() method is called consequently (line 5). Therefore,

if a GUI test only clicks on Set Alarm option, it does not execute the

methods called in other cases, and thereby the summarized permis-

sions for other methods (e.g., showSetting(), configLocation(),

etc.) are irrelevant to this test. To exclude the irrelevant permis-

sions, we need to determine whichwidgets afect the control-low of

which program statements, particularly the statements that invoke

225

PATDroid: Permission-Aware GUI Testing of Android ESEC/FSE’17, September 4–8, 2017, Paderborn, Germany

methods with non-empty permission summaries.Widget Analysis

procedure, summarized in Algorithm 3, provides this capability.

For a given method, Widget Analysis procedure performs a

branch-sensitive, partial, inter-procedural data-low analysis and

generates theWidget Summaries (WS) as the output. For this pur-

pose, a trimmed version of inter-procedural control-low graph

(ICFG) is constructed irst (line 3). An ICFG is a collection of control-

low graphs connected to each other at all call sites. Our analysis,

however, targets app widgets exclusively and thus, only the call

sites that pass a widget object are included in the trimmed ICFG,

denoted as ICFGT . Performing the analysis over ICFGT , instead

of ICFG, signiicantly improves the scalability of our approach, yet

keeps the precision acceptable.

Afterwards, the gen set is populated through iterating over every

statement of each method (lines 4ś11). We are only interested in the

conditional statements that afect the control-low of the program,

namely IF (lines 5ś6) and SWITCH (lines 7ś10) statements, with

the widget as the condition. For instance, the switch statement in

Figure 4 could be a target of our analysis, as it is (1) a conditional

statement controlling the low of the program, and (2) a widget, i.e.,

MenuItem, is used as the statement’s condition.

Finally, the algorithm traverses the ICFGT in a breadth-irst

search manner and propagates the widget information through the

graph. By doing this, at each statement we have the information

of all widgets that can afect the control-low of the program from

the beginning to that statement. For example, as highlighted in

the control-low graph of onOptionsItemSelected method depicted

in Figure 7, with location_add as the selected menu option, the

Algorithm 3:Widget Analysis

Input: AUT: App under test

Output:WS: Widget Summaries

1 WS ← ∅

2 gen, in, out ← ∅

// WS, gen, in, and out are maps with program statement as its

key and set of related widgets as its value.

3 ICFGT ← constructTrimmedICFG(AUT)

4 foreach stmt ∈ AUT .methods.statements do

5 if stmt .type is IF & stmt .condition.type is Widget then

6 gen[stmt .target]← stmt .condition

7 else if stmt .type is SWITCH & stmt .condition.type is Widget then

8 foreach case ∈ stmt .cases do

9 gen[case.target]← case.condition

10 end

11 end

12 repeat

13 foreach stmt ∈ BFS.next(ICFGT) do

14 foreach stmt′ ∈ pred(stmt) do

15 in[stmt]← in[stmt] ∪ out[stmt′]

16 end

17 foreach stmt′ ∈ succ(stmt) do

18 out [stmt′]← in[stmt] ∪ gen[stmt]

19 end

20 end

21 WS ← out

22 until WS reaches a fixed-point ;

{

<entryPoint :" SuntimesActivity:boolean onOptionsItemSelected(MenuItem)",

widget: action_location_add (2131624168) ,

permission: LOCATION >

}

Figure 8: A subset of EWP generated for Suntimes app

control-low of the program will reach to lines 11 and 12. Hence,

location_add is added to the widget summaries of the statements

at nodes 11 and 12. The widget analysis terminates upon reaching

a ixed point for the widget summaries (WS).

It is essential to note the diference between the precision and

scope of two sub-procedures described in Sections 6.1 and 6.2,

namely Permission Analysis andWidget Analysis. Due to low and

branch sensitivity, Widget Analysis is more costly than Permis-

sion Analysis. On the other hand, while Permission Analysis is

performed on every method in the app through traversing its call

graph, the scope of Widget Analysis is limited to a few entry-point

methods exercised by running the tests. This distinction lets PAT-

Droid keep the app analysis precise and yet, scalable.

Combining the outputs of Permission Analysis and Widget Anal-

ysis sub-procedures, the main procedure (Algorithm 1) generates

the inal output of AUT Analyzer component, i.e., EWP. A subset of

generated EWP for Suntimes app is provided in Figure 8.

7 BUILDING PERMISSION COMBINATIONS

As shown in Figure 3, Interaction Detector generates the inal output,

TP, which is a map from tests to the set of relevant permissions. It

does so by correlating the outputs of the other components, namely

TE, TW, and EWP, as follows.

Interaction Detector procedure, summarized in Algorithm 4, iter-

ates over the three input sets (TE, TW, EWP), and matches the tuple

Algorithm 4: Interaction Detector

Input: TE= {⟨test, entryPoint⟩}, TW= {⟨test, widget⟩},

EWP= {⟨entryPoint, widget, permission⟩}, THA:Test harness app

Output: TP, A map with tests as the key and the set of relevant

permissions as the value.

1 T P ← ∅

2 testWithPerm← ∅

3 foreach ewp ∈ EW P do

4 foreach tw ∈ TW do

5 if ewp.widget = ∅ Or ewp.widget = tw .widget then

6 foreach te ∈ T E do

7 if ewp.entryPoint = te.entryPoint then

8 if te.test = tw .test then

9 T P [te.test]← T P [te.test] ∪ ewp.perm

10 testWithPerm← testWithPerm ∪ te.test

11 end

12 end

13 end

14 foreach test ∈ THA.tests do

15 if test < testWithPerm then

16 T P [test]← ∅

17 end

226

ESEC/FSE’17, September 4–8, 2017, Paderborn, Germany Alireza Sadeghi, Reyhaneh Jabbarvand, and Sam Malek

[

testSunTimesNavigation :{},

testSettingLocationToUserDefined :{ LOCATION},

testExportLocations :{LOCATION , STORA’E}

]

Figure 9: Relevant permissions for a subset of the tests listed

in Figure 2

members of these sets based on the shared elements, i.e., entry-

Point, test, and widget.4 The only exception occurs when no widget

is found for an EWP (i.e., no widget is used to control access to

permission-protected code in an entry-point), in which case it is

conservatively assumed that the entire entry-point method could

be executed by a single test and hence, the algorithm does not

attempt to match EWP .widдet and TW .widдet (line 5). Based on

the matched tuples, relevant permissions for a test are added to

the output, TP (line 9). Finally, an empty set is assigned to those

tests that have no relevant permissions (lines 14ś17). The generated

output, TP , for the test set of Suntimes app is provided in Figure 9.

The output of this algorithm enables eicient permission-aware

testing of the given app. In total, for an app consisting ofT tests and

P permissions, the number of test-runs by PATDroid are calculated

as follows:
T∑

t=1

2 |T P [t].perms |

whereTP[t].perms denotes the relevant permissions for test t iden-

tiied by PATDroid. As our experiments will show, this number

turns out to be signiicantly smaller than |T | × 2 |P | tests required

for execution under the exhaustive approach.

8 IMPLEMENTATION

PATDroid is realized with over 2,500 lines of Java code and 800

lines of Python script. It also relies on a few third-party libraries,

most notably Soot [53] for static analysis of Android apps, IC3 [46]

to resolve ICC communications, and Xposed [17] for run-time in-

strumentation of the root Android process.

PATDroid runs in two modes: (1) Developers mode, and (2)

Testers mode. The irst mode is applicable when the source code

of subject apps (AUT) and their GUI tests (THA) are available. The

second mode can be used when only apk iles (AUT) are avail-

able. PATDroid currently supports the major Android’s GUI test

frameworks, namely Espresso, Robotium, and Monkey.

The artifacts associated with PATDroid, including the exe-

cutable tool and its user manual are available for download from

PATDroid’s web page, accessible via this link:

http://www.ics.uci.edu/~seal/projects/patdroid/

9 EVALUATION

Our evaluation of PATDroid addresses the following questions:

RQ1. Eiciency: How does PATDroid compare against alter-

native approaches with respect to test-run size and test-

execution time?

4Matching elements are distinguished by the same colors in Figures 5, 6, 8, and 9.

RQ2. Coverage: How does PATDroid compare against alternative

approaches with respect to code coverage?

RQ3. Efectiveness: Is PATDroid able to reveal defects in real-

world apps, particularly those that are only exposed under

certain permission settings?

RQ4. Performance: How does PATDroid scale in relation to the

size of app?

9.1 Experiment Setup

To evaluate our approach on realistic subjects, we crawled Google

Play and GitHub repositories and searched for Android apps with

the following criteria:

(i) Should target Android API level ≥ 23; otherwise, the app does

not support run-time permission modiication, and thereby

does not sufer from the problems that are the focus of our

work.

(ii) Should deine at least two dangerous permissions in the mani-

fest ile, because other types of permissions are not adjustable

at run-time and solving the problem with less than two ad-

justable permissions is trivial.

In accordance with the above criteria, we collected 110 apps:

(1) 100 popular apps from Google Play, and (2) 10 open-source

apps from Github (listed in Table 1), since investigating RQ2, i.e.,

measuring code coverage, requires the availability of source code.

For the open-source apps, we manually created or extended

the existing GUI tests using Espresso [5] or Robotium [13] frame-

works to achieve at least appriximately 50% statement coverage.

For Google Play apps we used Monkey [8] to generate black-box

GUI tests.

We have compared PATDroid against three alternative strate-

gies, as follows:

ExhaustiveÐexhaustively includes all permission combinations.

PairwiseÐgenerated according to pairwise technique [44]; that is,

for any two permissions, all possible pairs of permission settings

(i.e., granted, revoked) should be in the output set.

All-and-NoneÐincludes two combinations, one with all permis-

sions granted, the other with all permissions revoked.

As we will discuss in Section 10, none of the existing test suite

reduction tools support Android framework, nor consider its access

control model, therefore, are not included in our evaluation.

Table 1: A subset (those with available source code) of subject apps.

App
Size # of permissions test-suite

(KLOC) all dangerous size

A2DP Volume [1] 9.1 17 9 17
AlwaysOn [2] 15.9 18 6 16
Budget Watch [6] 8.0 3 2 12
Dumbphone Assistant [7] 1.4 3 3 7
Notes [9] 5.7 3 2 29
RadioBeacon [11] 31.4 10 6 17
Riot [12] 55.2 15 6 20
SMS Scheduler [14] 1.5 4 2 6
Suntimes [15] 22.4 4 3 13
SysLog [16] 12.1 4 2 13

227

http://www.ics.uci.edu/~seal/projects/patdroid/

PATDroid: Permission-Aware GUI Testing of Android ESEC/FSE’17, September 4–8, 2017, Paderborn, Germany

Table 2: Test size and time reduction achieved by PATDroid compared to other approaches. +, - indicate that the reduction achieved by the

the alternative approach is greater, or less than PATDroid, respectively.

App
Test-run size (% of diference compared to PATDroid) Testing time in sec. (% of diference compared to PATDroid)

PATDroid Exhaustive Pairwise All&None
PATDroid Exhaustive Pairwise All&None∑|T |

t=1 2
|T P [t].perms | |T | × 2|P | 2 × |T |

A2DP Volume 59 8,704(-99.32%) 136(-56.62%) 34(+73.53%) 314 39,591(-99.21%) 619(-49.32%) 155(+102.74%)
Always On 29 1,024(-97.17%) 96(-69.79%) 32(-9.38%) 208 7,133(-97.09%) 669(-68.92%) 223(-6.75%)
Budget Watch 15 48(-68.75%) 48(-68.75%) 24(-37.50%) 67 221(-69.47%) 221(-69.47%) 110(-38.94%)
Dumbphone Assist 56 56(0%) 28(+100.00%) 14(+300.00%) 447 447(0%) 224(+100.00%) 112(+300.00%)
Notes 35 116(-69.83%) 116(-69.83%) 58(-39.66%) 162 531(-69.50%) 531(-69.50%) 266(-38.99%)
RadioBeacon 66 1,088(-93.93%) 102(-35.29%) 34(+94.12%) 462 6,200(-92.55%) 581(-20.50%) 194(+138.50%)
Riot 48 1,280(-96.25%) 120(-60.00%) 40(+20.00%) 398 10,379(-96.16%) 973(-59.05%) 324(+22.84%)
SMS Scheduler 7 24(-70.83%) 24(-70.83%) 12(-41.67%) 34 110(-69.11%) 110(-69.11%) 55(-38.23%)
Suntimes 32 104(-69.23%) 52(-38.46%) 26(+23.08%) 317 931(-65.92%) 465(-31.84%) 233(+36.32%)
SysLog 27 52(-48.08%) 52(-48.08%) 26(+3.85%) 144 299(-51.77%) 299(-51.77%) 149(-3.54%)

In the presented formulas used for calculating the size of the test-runs, T is the set of tests, P is the set of app’s permission, and T P [t].perms is the set of

relevant permissions for the test t generated by PATDroid.

Table 3: Test coverage achieved by PATDroid compared to other approaches. +, - indicate that the coverage of the alternative approach is

greater, or less than PATDroid, respectively.

App
Statement Coverage (% of diference compared to PATDroid) Branch Coverage (% of diference compared to PATDroid)

PATDroid Exhaustive Pairwise All&None PATDroid Exhaustive Pairwise All&None

A2DP Volume 49.55% 49.55%(0%) 49.55%(0%) 47.18%(-5%) 23.87% 23.87%(0%) 23.87%(0%) 21.61%(-9%)
Always On 45.31% 45.31%(0%) 10.54%(-77%) 45.31%(0%) 25.58% 25.58%(0%) 1.69%(-93%) 25.58%(0%)
Budget Watch 72.24% 72.24%(0%) 72.24%(0%) 56.52%(-22%) 51.04% 51.04%(0%) 51.04%(0%) 37.35%(-27%)
Dumbphone Assist 64.90% 64.90%(0%) 7.56%(-88%) 64.90%(0%) 43.10% 43.10%(0%) 11.21%(-74%) 43.10%(0%)
Notes 77.89% 77.89%(0%) 77.89%(0%) 62.24%(-20%) 61.30% 61.30%(0%) 61.30%(0%) 48.54%(-21%)
RadioBeacon 49.22% 49.22%(0%) 49.22%(0%) 43.24%(-12%) 25.76% 25.76%(0%) 25.76%(0%) 22.41%(-13%)
Riot 50.40% 50.40%(0%) 46.49%(-8%) 46.92%(-7%) 42.28% 42.28%(0%) 40.24%(-5%) 39.81%(-6%)
SMS Scheduler 65.25% 65.25%(0%) 65.25%(0%) 65.25%(0%) 45.32% 45.32%(0%) 45.32%(0%) 45.32%(0%)
Suntimes 50.23% 50.23%(0%) 50.23%(0%) 44.14%(-12%) 32.95% 32.95%(0%) 32.95%(0%) 27.23%(-17%)
SysLog 71.33% 71.33%(0%) 71.33%(0%) 65.66%(-8%) 48.75% 48.75%(0%) 48.75%(0%) 42.19%(-13%)

9.2 Eiciency

To answer RQ1, we compare the test-run size and test-execution

time of PATDroid with exhaustive, pairwise and all-and-none, as

shown in Table 2. Test-run size indicates the cumulative number of

tests required to run for each technique. This number is calculated

by the formulas shown in Table 2, under the corresponding columns.

In addition, the table shows the percentage of decrease or increase

for each reported metric in comparison to PATDroid.

The results in Table 2 conirm that PATDroid can signiicantly

reduce the number of test-runs and test-execution time. On average,

PATDroid requires 71.35% and 41.78% fewer test executions than

exhaustive and pairwise, respectively. Similarly, on average, PAT-

Droid takes 71.07% and 39.07% less execution time than exhaustive

and pairwise, respectively. In comparison to all-and-none, however,

the results are mixed, where in some cases PATDroid achieves a

higher reduction (e.g., Budget Watch), while in other cases PAT-

Droid achieves a lower reduction (e.g., RadioBeacon). Although

all-and-none achieves a higher reduction in some cases, the next

section shows that it does not maintain the same coverage as other

approaches.

Figure 10 plots the test-execution time for all of the 110 subject

apps. As illustrated in the igure, test-execution time grows expo-

nentially with respect to the number of permissions in exhaustive

approach. Therefore, the reduction rates compared to exhaustive

approach are higher in apps with more permissions. For example,

the reduction in the case of A2DP Vol app with 9 permissions is

above 99%, while the reduction in the case of Budget Watch app

with 2 permissions is close to 70%.

9.3 Coverage

To answer RQ2, we compare the statement and branch coverage

achieved by PATDroid against that of achieved by the alternative

techniques. As shown in Table 3, PATDroid achieves the same exact
δ e

δ p

Figure 10: Test execution time based on the number of per-

missions. δe and δp represent the reduction in test execu-

tion time, achieved by PATDroid, compared to exhaustive

and pairwise approaches, respectively

228

ESEC/FSE’17, September 4–8, 2017, Paderborn, Germany Alireza Sadeghi, Reyhaneh Jabbarvand, and Sam Malek

coverage as exhaustive in all subject apps. The fact that PATDroid

achieves the same coverage as exhaustive is particularly important,

as it shows that PATDroid does not produce many false negatives,

i.e., failing to execute a test with a relevant permission combination

for an app.5

Moreover, on average, PATDroid achieves 14% and 10% higher

coverage than pairwise and all-and-none techniques, respectively.

It is worth noting that while in 7 apps pairwise achieves the same

coverage as PATDroid, in 3 apps it achieves signiicantly lower

coverage. A closer look at the apps where PATDroid outperformed

pairwise showed that these situations occur when certain capabili-

ties provided by an app depend on more than two permissions. For

instance, AlwaysOn app asks for four permissions, and if any of

those permissions are not granted, the app’s functionally is signii-

cantly downgraded. Since the pairwise technique does not include

a combination with all four permissions granted, it achieves 77%

lower statement coverage and 93% lower branch coverage than

PATDroid.

In summary, the results of RQ1 and RQ2 conirm that PATDroid

is able to signiicantly reduce the number of tests without trading-

of code coverage.

9.4 Efectiveness

To answer RQ3, we investigate the power of our approach in identi-

fying permission-related defects in real-world apps. To that end, we

carefully analyzed Android log, and the output of the tests executed

under the permission combinations generated by PATDroid. Partic-

ularly, we were interested in crashes or unexpected behaviors that

could only be veriied by running the tests under certain permission

combinations.

Running PATDroid on the set of 110 apps, we found 14 apps (i.e.,

13%) with defects that are due to inappropriate handling of dynamic

permissions. We reported the identiied defects for the open-source

apps to their developers through GitHub issue tracker, along with

information to reproduce the faults and suggestions for ixing the

defects. Table 4 provides a summary of the reported defects and

the current status of each issue for the apps that provide a public

issue tracker. As of the date of this paper submission, most of the

defects are veriied and ixed by the app developers.

Note that exhaustive and pairwise approaches are also able to

identify the reported defects, except they take signiicantly longer

time to execute as shown in Section 9.2. all-and-none on the other

hand, is not able to reveal these issues. For instance, in Open Note

Scanner app, which asks required permissions initially, revoking

the Storage permission while granting Camera permission would

make the application crash. Such behavior is not reproducible using

all-and-none technique. Furthermore, exhaustive approach was not

able to ind a defect that PATDroid missed, further demonstrating

the eicacy of PATDroid in revealing permission-related defects.

9.5 Performance

To answer RQ4, we measured the performance of running PAT-

Droid over the subject apps. The experiments are run on a PC with

5In our experiments, PATDroid did not produce any false negatives, but in principle
it could, due to limitations of static analysis upon which PATDroid relies.

Table 4: A subset (those with public issue tracker) of defects in real-

world Android apps identiied for the irst time by PATDroid.

App Reported issue link Defect Type Status
Open Food https://goo.gl/4eIm3E Crash Fixed
Budget Watch https://goo.gl/8XBvkf Unexpected Behavior Fixed
A2DP Volume https://goo.gl/9sfS09 Unexpected Behavior Fixed
RadioBeacon https://goo.gl/80Mb5j Crash Veriied
Riot https://goo.gl/MNEdkx Unexpected Behavior Fixed
OpenNoteScanner https://goo.gl/yKNiRZ Crash Reported

an Intel Core i7 2.4 GHz CPU processor and 16 GB of main mem-

ory. According to the experimental results, the average time spent

on identifying the relevant permissions is 356 seconds, which is

negligible compared to the time saved due to reducing the test-run

size (See Section 9.2).

Figure 11 shows the performance measurements of running

PATDroid. The analysis times for each phase of PATDroid, i.e.,

static and dynamic analyses, are plotted separately in the igure. On

average, static and dynamic analyses take 97 and 259 seconds, re-

spectively. According to the igure, the static analysis time increases

as the app size increases, while there is no correlation between the

dynamic analysis time and the app size. Dynamic analysis time

depends on the logic and workload of the subject app. For instance,

the size of the data that an app downloads from the Internet can

afect the execution time of the app’s system tests.

10 RELATED WORK

Test reduction has been the goal of research eforts in several do-

mains. In this section, we provide a discussion of such eforts in

light of our research.

Combinatorial Interaction Testing (CIT). Combinatorial in-

teraction testing proposes a set of techniques to reduce the test

space of a software system while maintaining the efectiveness of

the whole test space [47, 56]. CIT approaches can be categorized

as greedy [27, 29, 30], heuristic-based [31, 45], genetic [51] and

search-based algorithms [52].

Another thrust of research in CIT includes identifying and re-

moving constraints from coniguration. While the main body of

research [25, 28, 55] has focused on the hard constraintsśthose mak-

ing the coniguration infeasible or not permitted, the problem of

soft constraintsśvalid, yet undesirable or irrelevant coniguration,

is unexplored by the prior research. To the best of our knowledge,

Figure 11: Performance measurements of PATDroid

229

https://goo.gl/4eIm3E
https://goo.gl/8XBvkf
https://goo.gl/9sfS09
https://goo.gl/80Mb5j
https://goo.gl/MNEdkx
https://goo.gl/yKNiRZ

PATDroid: Permission-Aware GUI Testing of Android ESEC/FSE’17, September 4–8, 2017, Paderborn, Germany

PATDroid is the irst attempt at reducing the test space by address-

ing soft constraints in the context of access control, i.e. excluding

app permissions that are irrelevant to the test cases.

Testing Software Product Lines (SPL). Systematic testing of

programs constituting software product lines (SPL) is expensive,

as it requires examining combinations of the features for testing.

Therefore, several prior works [34ś37] have attempted to reduce the

test space of SPL. For instance, SPLat [37] and its predecessor [35]

leverage dynamic and static program analysis techniques to identify

and exclude irrelevant features from each test case.

Despite having similar objectives, the proposed techniques for

SPL test reduction are not applicable to permission-aware GUI

testing of Android apps for several reasons. In contrast to the SPL

features that are explicitly speciied in the code, app permissions

are not embedded in the app code. Moreover, the target of SPL test

reduction techniques is unit tests. While unit tests are traceable

from the program, there is no explicit dependency between the

source code and the GUI test suite in the case of Android programs,

as discussed in Section 5.

Regression Test Selection (RTS). A large body of prior re-

search has focused on speeding up the regression testing in con-

tinuous integration processes [32, 48, 49, 57]. In contrast to these

RTS techniques that track dependency at the ile, class, or method

level, PATDroid captures the dependency at the control-low level.

Applying a precise yet scalable analysis, PATDroid is able to sig-

niicantly reduce the testing time. Despite the similarity of the

techniques applied for tracking the dependencies between tests and

system under test, the goal of our approach is rather diferent from

RTS. While RTS techniques aim to identify the tests relevant to

the changes introduced in the codebase due to software revisions,

the goal of PATDroid is to ind the relevant permissions for GUI

testing.

None of the aforementioned three categories of related research

are applicable to Android. We next briely provide an overview of

the related work in Android GUI testing.

Android GUI Testing. Android GUI testing has received sub-

stantial attention in recent years [26]. Proposed approaches employ

a variety of techniques, including random [18, 19, 33], hueristic-

based [41], model-based [22, 54], and search-based [42] approaches.

Nonetheless, only a few research approaches have applied combi-

natorial test reduction techniques to Android testing domain. Most

notably, TrimDroid [43] extracts dependencies among the widgets

to reduce the number of combinations in GUI testing. TrimDroid,

however, difers from our approach in several ways. First, Trim-

Droid performs static analysis over the app code to generate new

test cases, while PATDroid employs hybrid analysis on both app

under test and test harness app to determine a subset of permission

combinations for running the existing tests. Second, TrimDroid

captures dependencies among the widgets, while PATDroid tracks

dependencies among app widgets and permissions. To the best of

our knowledge, access control models, particularly permissions, are

not considered in any of the prior research for test generation or

reduction.

11 CONCLUSION AND FUTUREWORK

Recent introduction of a dynamic permission system in Android

has made it necessary to test the behavior of Android apps under a

variety of permission settings. Without an automated solution to

reason about which tests should be executed under what permis-

sion combinations, the developers have to either manually make

such determinations or exhaustively re-run each test under an ex-

ponential number of permission combinations. Both approaches

are impractical, time-consuming, and cumbersome.

To overcome this problem and help developers eiciently test

Android apps under various permission settings, we presented PAT-

Droid. Through a hybrid program analysis of Android app and

its test suite, PATDroid is able to identify relevant permissions

for each test case. By excluding the irrelevant permissions, PAT-

Droid is able to signiicantly reduce the number of test runs and

execution time of tests without trading-of coverage and fault detec-

tion ability of tests. Our experimental results show that PATDroid

can achieve 71% reduction in execution time of tests compared to

the exhaustive approach, without any degradation in code cover-

age. Moreover, using PATDroid, we were able to identify several

previously unknown permission-related defects in real-world apps.

Our current implementation of PATDroid has two limitations

that will be the subject of our future work. First, it is assumed that

GUI widgets are retrieved by a single unique identiier, such as ID

or key. Though this assumption is true in the vast majority of cases,

widgets are occasionally retrieved by a combination of multiple

properties, such as position and parent’s ID.

Second, it is assumed that the GUI-dependent low of the pro-

gram is controlled directly using the widgets. Meaning that, if the

execution of a program block depends on a speciic GUI event, de-

velopers specify a conditional guard on the widget triggering that

event. However, another less common, yet plausible scenario is that

a developer indirectly uses the widget. For example, by saving a

reference to the widget in a global variable and using this reference

to control the low of program.

Addressing the aforementioned limitations is possible through

the construction of more advanced static analyses. However, the ad-

ditional precision is likely to reduce the scalability and performance

of our approach for little gain in the overall eicacy. Studying such

tradeofs will be a focus of our future research.

We plan to extend our approach to include other conigurable pa-

rameters in Android that can afect the behavior of programs, such

as the settings for network and battery usage. Generalizing PAT-

Droid beyond permissions would require replacing the permission-

to-API mapping (Algorithm 2) with an input that maps APIs to

other Android conigurations, such as network setting.

Finally, since the theoretical contribution of PATDroid is ap-

plicable to any software with a permission-based access-control

model, we intend to investigate the applicability of our approach

to other platforms that use permission-based security model.

ACKNOWLEDGEMENT

This work was supported in part by awards CCF-1252644, CNS-

1629771 and CCF-1618132 from the National Science Foundation,

HSHQDC-14-C-B0040 from the Department of Homeland Security,

and FA95501610030 from the Air Force Oice of Scientiic Research.

230

ESEC/FSE’17, September 4–8, 2017, Paderborn, Germany Alireza Sadeghi, Reyhaneh Jabbarvand, and Sam Malek

REFERENCES
[1] 2017. A2DP Volume. (2017). https://github.com/jroal/a2dpvolume
[2] 2017. Always On. (2017). https://github.com/rosenpin/AlwaysOnDisplayAmoled
[3] 2017. Android Permissions Best Practices. (2017). https://developer.android.com/

training/permissions/best-practices.html
[4] 2017. Android Studio User Guide: Test your app. (2017). https://developer.android.

com/studio/test/index.html
[5] 2017. Android Testing Support Library : Espresso. (2017). https://google.github.

io/android-testing-support-library/docs/espresso/
[6] 2017. Budget Watch. (2017). https://github.com/brarcher/budget-watch
[7] 2017. Dumbphone Assistant. (2017). https://github.com/yeriomin/

DumbphoneAssistant
[8] 2017. The Monkey UI android testing tool. (2017). https://developer.android.

com/studio/test/monkey.html
[9] 2017. Notes. (2017). https://github.com/SecUSo/privacy-friendly-notes
[10] 2017. PATDroid: Permission-Aware Testing for Android. (2017). http://www.ics.

uci.edu/~seal/projects/patdroid/
[11] 2017. Radio Beacon. (2017). https://github.com/openbmap/

radiocells-scanner-android
[12] 2017. Riot. (2017). https://github.com/vector-im/riot-android
[13] 2017. Robotium. (2017). http://robotium.com/pages/about-us
[14] 2017. SMS Scheduler. (2017). https://github.com/yeriomin/SmsScheduler
[15] 2017. Suntimes. (2017). https://github.com/forrestguice/SuntimesWidget
[16] 2017. SysLog. (2017). https://github.com/Tortel/SysLog
[17] 2017. Xposed Framework. (2017). http://repo.xposed.info/
[18] Domenico Amalitano, Anna Rita Fasolino, and Poririo Tramontana. A GUI

Crawling-Based Technique for Android Mobile Application Testing. In Fourth
IEEE International Conference on Software Testing, Veriication and Validation,
ICST 2012, Berlin, Germany, 21-25 March, 2011, Workshop Proceedings. 252ś261.

[19] Domenico Amalitano, Anna Rita Fasolino, Poririo Tramontana, Salvatore De
Carmine, and Atif M. Memon. Using GUI ripping for automated testing of An-
droid applications. In IEEE/ACM International Conference on Automated Software
Engineering, ASE’12, Essen, Germany, September 3-7, 2012. 258ś261.

[20] Steven Arzt, Siegfried Rasthofer, Christian Fritz, Eric Bodden, Alexandre Bartel,
Jacques Klein, Yves Le Traon, Damien Octeau, and Patrick McDaniel. Flowdroid:
Precise context, low, ield, object-sensitive and lifecycle-aware taint analysis for
android apps. In ACM SIGPLAN Conference on Programming Language Design
and Implementation, PLDI ’14, Edinburgh, United Kingdom - June 09 - 11, 2014.
259ś269.

[21] Kathy Wain Yee Au, Yi Fan Zhou, Zhen Huang, and David Lie. PScout: Analyzing
the Android Permission Speciication. In the ACM Conference on Computer and
Communications Security, CCS’12, Raleigh, NC, USA, October 16-18, 2012. 217ś228.

[22] Tanzirul Azim and Iulian Neamtiu. Targeted and depth-irst exploration for
systematic testing of android apps. In Proceedings of the 2013 ACM SIGPLAN
International Conference on Object Oriented Programming Systems Languages &
Applications, OOPSLA 2013, part of SPLASH 2013, Indianapolis, IN, USA, October
26-31, 2013. 641ś660.

[23] Michael Backes, Sven Bugiel, Erik Derr, Patrick McDaniel, Damien Octeau, and
Sebastian Weisgerber. On Demystifying the Android Application Framework:
Re-Visiting Android Permission Speciication Analysis. In 25th USENIX Security
Symposium (USENIX Security 16). 1101ś1118.

[24] David Barrera, Hilmi Günes Kayacik, Paul C. van Oorschot, and Anil Somayaji.
A methodology for empirical analysis of permission-based security models and
its application to android. In Proceedings of the 17th ACM Conference on Computer
and Communications Security, CCS 2010, Chicago, Illinois, USA, October 4-8, 2010.
73ś84.

[25] Renée C. Bryce and Charles J. Colbourn. 2006. Prioritized interaction testing
for pair-wise coverage with seeding and constraints. Information & Software
Technology 48, 10 (2006), 960ś970.

[26] Shauvik Roy Choudhary, Alessandra Gorla, and Alessandro Orso. 2015. Au-
tomated Test Input Generation for Android: Are We There Yet? (E). In 30th
IEEE/ACM International Conference on Automated Software Engineering, ASE 2015,
Lincoln, NE, USA, November 9-13, 2015. 429ś440.

[27] David M. Cohen, Siddhartha R. Dalal, Michael L. Fredman, and Gardner C. Patton.
1997. The AETG System: An Approach to Testing Based on Combinatiorial
Design. IEEE Trans. Software Eng. 23, 7 (1997), 437ś444.

[28] Myra B. Cohen, Matthew B. Dwyer, and Jiangfan Shi. 2008. Constructing Interac-
tion Test Suites for Highly-Conigurable Systems in the Presence of Constraints:
A Greedy Approach. IEEE Trans. Software Eng. 34, 5 (2008), 633ś650.

[29] Charles J. Colbourn, Myra B. Cohen, and Renée Turban. A deterministic density
algorithm for pairwise interaction coverage. In IASTED International Conference
on Software Engineering, part of the 22nd Multi-Conference on Applied Informatics,
Innsbruck, Austria, February 17-19, 2004. 345ś352.

[30] Jacek Czerwonka. Pairwise testing in the real world: Practical extensions to
test-case scenarios, Portland, Oregon, October 14-15, 2008. In Proceedings of 24th
Paciic Northwest Software Quality Conference. 419ś430.

[31] Brady J. Garvin, Myra B. Cohen, and Matthew B. Dwyer. 2011. Evaluating
improvements to a meta-heuristic search for constrained interaction testing.

Empirical Software Engineering 16, 1 (2011), 61ś102.
[32] Milos Gligoric, Lamyaa Eloussi, and Darko Marinov. Practical regression test

selection with dynamic ile dependencies. In Proceedings of the 2015 International
Symposium on Software Testing and Analysis, ISSTA 2015, Baltimore, MD, USA,
July 12-17, 2015. 211ś222.

[33] Cuixiong Hu and Iulian Neamtiu. Automating GUI testing for Android applica-
tions. In Proceedings of the 6th International Workshop on Automation of Software
Test, AST 2011, Waikiki, Honolulu, HI, USA, May 23-24, 2011. 77ś83.

[34] Christian Kästner, Alexander von Rhein, Sebastian Erdweg, Jonas Pusch, Sven
Apel, Tillmann Rendel, and Klaus Ostermann. Toward variability-aware testing.
In 4th International Workshop on Feature-Oriented Software Development, FOSD
’12, Dresden, Germany - September 24 - 25, 2012. 1ś8.

[35] Chang Hwan Peter Kim, Don S. Batory, and Sarfraz Khurshid. Reducing combina-
torics in testing product lines. In Proceedings of the 10th International Conference
on Aspect-Oriented Software Development, AOSD 2011, Porto de Galinhas, Brazil,
March 21-25, 2011. 57ś68.

[36] Chang Hwan Peter Kim, Sarfraz Khurshid, and Don S. Batory. Shared Execution
for Eiciently Testing Product Lines. In 23rd IEEE International Symposium on
Software Reliability Engineering, ISSRE 2012, Dallas, TX, USA, November 27-30,
2012. 221ś230.

[37] Chang Hwan Peter Kim, DarkoMarinov, Sarfraz Khurshid, Don S. Batory, Sabrina
Souto, Paulo Barros, and Marcelo d’Amorim. SPLat: lightweight dynamic analysis
for reducing combinatorics in testing conigurable systems. In Joint Meeting of
the European Software Engineering Conference and the ACM SIGSOFT Symposium
on the Foundations of Software Engineering, ESEC/FSE’13, Saint Petersburg, Russian
Federation, August 18-26, 2013. 257ś267.

[38] Butler W. Lampson. 1974. Protection. Operating Systems Review 8, 1 (1974),
18ś24.

[39] Li Li, Alexandre Bartel, TegawendÃľ F. BissyandÃľ, Jacques Klein, Yves Le Traon,
Steven Arzt, Siegfried Rasthofer, Eric Bodden, Damien Octeau, and Patrick Mc-
Daniel. IccTA: Detecting Inter-Component Privacy Leaks in Android Apps.
In 37th IEEE/ACM International Conference on Software Engineering, ICSE 2015,
Florence, Italy, May 16-24, 2015, Volume 1. 280ś291.

[40] Long Lu, Zhichun Li, Zhenyu Wu, Wenke Lee, and Guofei Jiang. CHEX: stati-
cally vetting Android apps for component hijacking vulnerabilities. In the ACM
Conference on Computer and Communications Security, CCS’12, Raleigh, NC, USA,
October 16-18, 2012. 229ś240.

[41] Aravind Machiry, Rohan Tahiliani, and Mayur Naik. Dynodroid: an input gen-
eration system for Android apps. In Joint Meeting of the European Software
Engineering Conference and the ACM SIGSOFT Symposium on the Foundations of
Software Engineering, ESEC/FSE’13, Saint Petersburg, Russian Federation, August
18-26, 2013. 224ś234.

[42] Riyadh Mahmood, Nariman Mirzaei, and Sam Malek. EvoDroid: segmented
evolutionary testing of Android apps. In Proceedings of the 22nd ACM SIGSOFT
International Symposium on Foundations of Software Engineering, (FSE-22), Hong
Kong, China, November 16 - 22, 2014. 599ś609.

[43] Nariman Mirzaei, Joshua Garcia, Hamid Bagheri, Alireza Sadeghi, and SamMalek.
Reducing combinatorics in GUI testing of android applications. In Proceedings of
the 38th International Conference on Software Engineering, ICSE 2016, Austin, TX,
USA, May 14-22, 2016. 559ś570.

[44] Changhai Nie and Hareton Leung. 2011. A survey of combinatorial testing. ACM
Comput. Surv. 43, 2 (2011), 11:1ś11:29.

[45] Kari J. Nurmela. 2004. Upper bounds for covering arrays by tabu search. Discrete
Applied Mathematics 138, 1-2 (2004), 143ś152.

[46] Damien Octeau, Daniel Luchaup, Matthew Dering, Somesh Jha, and Patrick D.
McDaniel. Composite Constant Propagation: Application to Android Inter-
Component Communication Analysis. In 37th IEEE/ACM International Conference
on Software Engineering, ICSE 2015, Florence, Italy, May 16-24, 2015, Volume 1.
77ś88.

[47] Alessandro Orso and Gregg Rothermel. Software testing: a research travelogue
(2000-2014). In Proceedings of the on Future of Software Engineering, FOSE 2014,
Hyderabad, India, May 31 - June 7, 2014. 117ś132.

[48] Xiaoxia Ren, Fenil Shah, Frank Tip, Barbara G. Ryder, and Ophelia C. Chesley.
Chianti: a tool for change impact analysis of java programs. In Proceedings of the
19th Annual ACM SIGPLAN Conference on Object-Oriented Programming, Systems,
Languages, and Applications, OOPSLA 2004, October 24-28, 2004, Vancouver, BC,
Canada. 432ś448.

[49] Gregg Rothermel and Mary Jean Harrold. 1997. A Safe, Eicient Regression Test
Selection Technique. ACM Trans. Softw. Eng. Methodol. 6, 2 (1997), 173ś210.

[50] Feng Shen, Namita Vishnubhotla, Chirag Todarka, Mohit Arora, Babu Dhanda-
pani, Eric John Lehner, Steven Y Ko, and Lukasz Ziarek. Information lows as
a permission mechanism. In ACM/IEEE International Conference on Automated
Software Engineering, ASE ’14, Vasteras, Sweden - September 15 - 19, 2014. 515ś526.

[51] Toshiaki Shiba, Tatsuhiro Tsuchiya, and Tohru Kikuno. Using Artiicial Life
Techniques to Generate Test Cases for Combinatorial Testing. In 28th International
Computer Software and Applications Conference (COMPSAC 2004), Design and
Assessment of Trustworthy Software-Based Systems, 27-30 September 2004, Hong
Kong, China, Proceedings. 72ś77.

231

https://github.com/jroal/a2dpvolume
https://github.com/rosenpin/AlwaysOnDisplayAmoled
https://developer.android.com/training/permissions/best-practices.html
https://developer.android.com/training/permissions/best-practices.html
https://developer.android.com/studio/test/index.html
https://developer.android.com/studio/test/index.html
https://google.github.io/android-testing-support-library/docs/espresso/
https://google.github.io/android-testing-support-library/docs/espresso/
https://github.com/brarcher/budget-watch
https://github.com/yeriomin/DumbphoneAssistant
https://github.com/yeriomin/DumbphoneAssistant
https://developer.android.com/studio/test/monkey.html
https://developer.android.com/studio/test/monkey.html
https://github.com/SecUSo/privacy-friendly-notes
http://www.ics.uci.edu/~seal/projects/patdroid/
http://www.ics.uci.edu/~seal/projects/patdroid/
https://github.com/openbmap/radiocells-scanner-android
https://github.com/openbmap/radiocells-scanner-android
https://github.com/vector-im/riot-android
http://robotium.com/pages/about-us
https://github.com/yeriomin/SmsScheduler
https://github.com/forrestguice/SuntimesWidget
https://github.com/Tortel/SysLog
http://repo.xposed.info/

PATDroid: Permission-Aware GUI Testing of Android ESEC/FSE’17, September 4–8, 2017, Paderborn, Germany

[52] Charles Song, Adam A. Porter, and Jefrey S. Foster. 2014. iTree: Eiciently
Discovering High-Coverage Conigurations Using Interaction Trees. IEEE Trans.
Software Eng. 40, 3 (2014), 251ś265.

[53] Raja Vallée-Rai, Phong Co, Etienne Gagnon, Laurie J. Hendren, Patrick Lam, and
Vijay Sundaresan. 1999. Soot - a Java bytecode optimization framework. In Pro-
ceedings of the 1999 conference of the Centre for Advanced Studies on Collaborative
Research, November 8-11, 1999, Mississauga, Ontario, Canada. 13.

[54] Wei Yang, Mukul R. Prasad, and Tao Xie. A Grey-Box Approach for Automated
GUI-Model Generation of Mobile Applications. In Fundamental Approaches to
Software Engineering - 16th International Conference, FASE 2013, Held as Part of
the European Joint Conferences on Theory and Practice of Software, ETAPS 2013,

Rome, Italy, March 16-24, 2013. Proceedings. 250ś265.
[55] Cemal Yilmaz. 2013. Test Case-Aware Combinatorial Interaction Testing. IEEE

Trans. Software Eng. 39, 5 (2013), 684ś706.
[56] Cemal Yilmaz, Sandro Fouché, Myra B. Cohen, Adam A. Porter, Gülsen Demiröz,

and Ugur Koc. 2014. Moving Forward with Combinatorial Interaction Testing.
IEEE Computer 47, 2 (2014), 37ś45.

[57] Lingming Zhang,Miryung Kim, and Sarfraz Khurshid. Localizing failure-inducing
program edits based on spectrum information. In IEEE 27th International Con-
ference on Software Maintenance, ICSM 2011, Williamsburg, VA, USA, September
25-30, 2011. 23ś32.

232

	Abstract
	1 Introduction
	2 Illustrative Example
	3 Approach Overview
	4 Dynamic Analysis
	5 Static Analysis of Test Harness App
	6 Static Analysis of App Under Test
	6.1 Permission Analysis
	6.2 Widget Analysis

	7 Building Permission Combinations
	8 Implementation
	9 Evaluation
	9.1 Experiment Setup
	9.2 Efficiency
	9.3 Coverage
	9.4 Effectiveness
	9.5 Performance

	10 Related Work
	11 Conclusion and Future Work
	References

