
Mining Software Component Interactions to Detect
Security Threats at the Architectural Level

Eric Yuan
Department of Computer Science

George Mason University
Fairfax, Virginia, USA

eyuan@gmu.edu

Sam Malek
Department of Informatics

University of California, Irvine
Irvine, California, USA

malek@uci.edu

Abstract—Conventional security mechanisms at network, host,
and source code levels are no longer sufficient in detecting and re-
sponding to increasingly dynamic and sophisticated cyber threats
today. Detecting anomalous behavior at the architectural level
can help better explain the intent of the threat and strengthen
overall system security posture. To that end, we present a
framework that mines software component interactions from
system execution history and applies a detection algorithm to
identify anomalous behavior. The framework uses unsupervised
learning at runtime, can perform fast anomaly detection “on the
fly”, and can quickly adapt to system load fluctuations and user
behavior shifts. Our evaluation of the approach against a real
Emergency Deployment System has demonstrated very promising
results, showing the framework can effectively detect covert
attacks, including insider threats, that may be easily missed by
traditional intrusion detection methods.

Index Terms—Data Mining, Security, Software Architecture

I. INTRODUCTION

Despite significant progress made in computer security over
the past few decades, the challenges posed by cyberthreats
are more prevalent than ever before. Many well-publicized
incidents point to the agile, deliberate, and persistent nature
of cyber attacks today. Conventional techniques for securing
software systems, often manually developed and statically em-
ployed, are therefore no longer sufficient. This has motivated
active research in dynamic, adaptive security approaches [1].

The first step towards autonomic and responsive security is
the timely and accurate detection of security compromises and
software vulnerabilities at runtime, which is a daunting task
in its own right. Data mining techniques have been widely
applied in this regard, ranging from mining network traffic
for intrusion detections to finding recurring vulnerabilities
across multiple software codebases (see Section IX for details).
However, the vast majority of security research to-date, includ-
ing those using data mining, have focused on lower layers
of a software system, that is, mining data at network, host
machine, or source code levels. As a result, such approaches
mainly address specific signatures or categories of threats that
are tactical in nature, but the “big picture” understanding of
attacker strategy and intent appears to be lacking, as argued in
the authors’ recent survey [2]. Furthermore, these approaches
typically can do very little to address the growing concern of
insider threats, where attackers use the system with legitimate
credentials, instead of external intrusions [3].

In this paper, we present an innovative data mining ap-
proach for detecting anomalous behavior from interaction
among software components at the architectural level. With
the architecture-based approach, detection and mitigation of
security threats are informed by an abstract representation of
software that is kept in sync with the running system. The
architectural model allows the system to monitor “macro-
level” system properties (i.e., abstract components and their
interfaces) and reason about the global impact of a potential
security breach, as opposed to examining lower-level metrics
such as system calls and network packets. Anomalous patterns
at the application level can be much stronger clues for a
human administrator or an autonomous agent to understand
the intent of the malicious attack and deploy appropriate
countermeasures. As such, our approach does not seek to
replace existing security mechanisms such as network- and
host-based Intrusion Detection Systems (IDS), but rather to
complement them and achieve defense in depth.

Our proposed mining framework, dubbed Architectural-
level Mining of Undesired behavior (ARMOUR), operates
under the premise that by observing the execution traces of
the system for component interaction events at runtime, it is
possible to build a model consisting of event association pat-
terns that approximates normal system behavior. The model is
then used in real-time to determine the likelihood of software
component(s) being potentially ill-used. To build the model,
the ARMOUR framework employs Generalized Sequential
Pattern (GSP) Mining [4] as a machine learning technique,
but tailors it in novel ways such as incorporating knowledge
of system use cases and components. The framework then uses
an efficient and adaptive algorithm that applies the model for
anomaly detection.

The remainder of paper is organized as follows. Section II
introduces our reference system called EDS to illustrate how
software components may be compromised for malicious use,
causing anomalous system behavior. The problem definition
and research objectives are followed in Section III. The
overview of the ARMOUR framework is provided in section
IV, followed by its details in Sections V and VI. Section VII
reports on our evaluation results. Section IX surveys related
work. The paper concludes with a discussion of the potential
threats to the validity of our approach along with the future
work.

Fig. 1: Subset of EDS Software Architecture
II. MOTIVATING EXAMPLE

We illustrate the concepts and evaluate the research using
a real-world software system, called Emergency Deployment
System (EDS), which was developed in another project in
partnership with a government agency. EDS is intended for
the deployment and management of personnel in emergency
response scenarios. Figure 1 depicts a subset of EDS’s soft-
ware architecture, and in particular shows the dependency
relationships among its components. EDS is used to support
emergency responders on tasks such as tracking and distribut-
ing resources to rescue teams, analyzing different deployment
strategies, etc. In the largest deployment of EDS to-date, it was
deployed on 105 nodes and used by more than 100 users [5].

EDS is representative of a large component-based software
system, with each component being a coarsely grained unit
of software that can be independently built and deployed [6],
possibly at different host nodes and locations. For EDS, in
particular, each component is realized as a collection of Java
objects deployed in its own JVM. Each component provides
one or more Remote Method Invocation (RMI) interfaces
(arrows in the diagram), discoverable from a registry and
invoked over the network by any RMI client application.

Like any software system, the EDS is designed to fulfill
a number of user requirements or use cases. The sequence
diagrams for two of them are shown in Figure 2 as examples.
We see that each diagram involves a sequence of interactions
among different components. The components interact with
one another by exchanging messages (events) that may utilize
various communication mechanisms (Java RMI in this case).

In today’s environment of ubiquitous connectivity, online
systems such as EDS are often subject to various exploits and
attacks, both external and internal. Intrusion detection sensors
have been developed and perfected over the years to effectively
detect network-level (such as port scanning and denial of
service) and host-level (such as buffer overflow or illegal
root access) attacks. Attacks at the software application level,
however, are often more sophisticated and much harder to de-
tect, especially when they exploit vulnerabilities in seemingly
innocuous user interfaces such as a web browser or a mobile

(a) Use Case 1 (UC1) – Strategy Analysis

(b) Use Case 2 (UC2) – Scenario Simulation
Fig. 2: Examples of EDS Component Interactions

app. Consider a scenario in which an attacker employs SQL
Injection [7] through the browser-based Headquarters User
Interface (HQUI) component and successfully compromises
the StrategyAnalyzer, a Java Servlet application residing in
a web server. Using a malicious database script to modify
the component’s configurations, the attacker is able to make
StrategyAnalyzer send requests to a ResourceManager
component to retrieve sensitive information about all de-
ployed resources, as shown in Figure 3 (a) (Compare with
Figure 2 (a)). SQL Injection is only one of many threats
to web applications today (see [8]). As another example,
the HQUI client may be used by a rogue employee to log
into SimulationAgent with administrator credentials. The
employee manually rewrites the URL parameters to access
ResourceMonitor for real-time personnel locations (Figure 3
(b), compare with Figure 2 (b)).

Can these threats be thwarted by conventional security
mechanisms? In the former scenario, a network-based IDS
(e.g., Snort) may be used to examine the HTTP traffic and
look for specific patterns (such as SQL quote marks). However,
the security administrator must manually maintain an up-to-
date database of known signatures to keep up with evolving
attacks and also keep a difficult balance between the signature
patterns being too generic (high false positives) and too
specific (high false negatives). The limitations of IDS tools
against such application-level attacks have been highlighted
in recent empirical studies [9]. In the second scenario, since
the user is a legitimate user with full access to the system, she
will not trigger any network or host based IDS alarms. In this

(a) Compromised UC1 with SQL Injection Attack

(b) Compromised UC2 resulting from Insider Attack
Fig. 3: Examples of EDS Attack Cases

case, the conventional mechanisms are generally ineffective
against insider attacks.

Given these limitations, we believe a more robust approach
should (a) complement existing security approaches with
additional focus on architectural-level behavior and (b) use
the system’s “normal” usage model as the basis for threat
detection, which eliminates the need for maintaining attack
specifications. The approach will have the obvious advantage
of being effective against insider attacks as well as outside,
and being able to detect threats both known and unknown.

Building such a model for a component-based software
system, however, is not without challenges. First, the tar-
get system’s behavior model is not always completely and
accurately documented; nor is it always kept up to date
with actual implementations. Reverse-engineering the system
design from source/binary code can only help to a limited
extent. Second, component interactions (such as sequences
shown in Figure 2) can be user-driven, stochastic and non-
deterministic. In service-oriented or peer-to-peer architectures,
in particular, components may be dynamically discovered and
invoked without a prescribed specification. The combinations
of all possible execution sequences can be very large. Our
approach to addressing these challenges involves learning a
usage model of dynamic component interactions at runtime,
without any pre-defined behavior specifications. We first start
with some definitions and assumptions to frame the problem.

III. PROBLEM DESCRIPTION

First, let C = {ci} be a set of software components that
run independently and are capable of sending and receiving
messages among one another. An event is defined as a message
from a source component to a destination component, captured
as a tuple e =< csrc, cdst, ts, te >, where csrc, cdst ∈ C
and ts, te are the start and end timestamps of the event’s

occurrence, respectively1. In Figure 2 (a), for example, event
e3 is a message from StrategyAnalyzer to Map, also
denoted as StrategyAnalyzer ⇀ Map. Here we assume the
network clock is synchronized (e.g., using the Network Time
Protocol (NTP) [10]) such that timestamps recorded in all
components are within a margin of error, εNTP ; we account
for this margin in the mining process (see Section V-A).

A transaction Ti is performed in a component when
receiving a message ei. Note that even though Figure 2 depicts
transactions that happen to be synchronous, i.e., a response
message goes back to the source component at the end of
Ti (as in the case with many request-response protocols like
HTTP or Java RMI), we do NOT rely on such an assumption;
an event may also be asynchronous, without waiting for the
completion of the transaction. In the latter case, the duration
of the event is simply the network latency.

An event’s Perceived Execution Closure (PEC) e+ is an
itemset that includes the event itself plus all child events that
may have been triggered by the event. In Figure 2 (a), for
example, events e5, e6, and e7 are all triggered by e4, therefore
e+4 = {e4, e5, e6, e7}. Here the closure is considered perceived
because we do not assume we know the true causality among
events; they can only be inferred by the source and destination
of components and the timestamps of events.

A Use-case Initiation Event (UIE) represents a “top level”
event that is not part of the PEC of any other events. For
EDS, a UIE naturally corresponds to one of the system’s
user interface sections such as simulation analysis or strategy
analysis. In Figure 2 (a), for instance, e1 is the UIE that
initiates events e2 through e9.

These definitions reflect the following key assumptions:
• Even though the components of the system are known

(as depicted in Figure 1), the dynamic behavior model of
the target system, like what is shown in Figure 2, is not
available or even non-deterministic due to reasons cited
in the previous section.

• Component interactions are observable at runtime, i.e.,
some runtime supporting infrastructure exists to monitor
and log component-level interactions. Web-based sys-
tems, for instance, typically have web server logs that
can be filtered and processed for this purpose. In EDS,
we developed a common logging service that stores all
RMI calls in a database.

• UIEs can be identified. Here we simply assume that, when
treating the system as a black box, its main use cases can
be externally identified. An online banking system, for
example, may have menu items such as “Withdrawal”,
“Deposit”, or “Check Balance” that trigger different
internal processes. The EDS system, likewise, has user-
triggered events such as HQUI ⇀ StrategyAnalyzer
and HQUI ⇀ SimulationAgent that are identifiable,
which provide context for the ensuing interactions among
software components.

1For convenience we assume each component has a single interface or
“port”. In reality different types of messages may be going through different
ports, in which case we can simply add ports to the tuple

Fig. 4: Creating PECs from the Event Stream

Given the observability of the UIEs, we can use them to
divide the system’s execution event traces into “baskets”, with
each basket being a UIE Ui’s perceived execution closure
U+
i = {e1, e2, ..., en}, as illustrated in Figure 4. The figure is

a visual depiction of events from the system execution history,
each aligned along the time axis based on its start time and
duration. Four UIEs, U1 through U4, divide the events into
four PECs U+

1 through U+
4 , respectively. Note that, in a multi-

user system such as EDS, multiple concurrent user sessions
will cause UIEs to overlap. The events a and c (highlighted
in yellow), for example, are captured in both U+

3 and U+
4 .

Conceivably, the larger the number of concurrent users, the
more overlap UIEs will have with one another. As will be
seen later, concurrency of user activities turns out to be a
major source of noise in the data mining process and thus a
major challenge to be addressed.

Under our problem setting, anomalous and potentially ma-
licious events may be present in the target system’s event
stream, like events e and f (highlighted in red) in Figure 4.
Our threat detection problem can now be summarized as the
following question: Given an event stream Q = {..., ej−1, ej}
in which ej is the most recent event, the observed UIEs {Ui}
along with their PECs {U+

i }, what is the likelihood of ej
being an anomaly?

IV. APPROACH OVERVIEW

The architecture of our mining framework, ARMOUR, is
depicted in Figure 5. It consists of two major phases, Mining
the Behavior Model and Applying the Model, that form a
continuous MAPE-K cycle to protect the target system at
runtime.

In the mining phase, system execution traces are captured
by sensors in the target system, from which inter-component
events are extracted and stored in the Event Log. The events
are then preprocessed to produce event sequences for each
UIE based on pre-identified UIE types. Afterwards, a tailored
Generalized Sequential Pattern (GSP) mining algorithm is
applied to the sequences. Sequential patterns mining [4],
also known as frequent episode mining, is a technique for

Fig. 5: ARMOUR Self-Protection Framework Overview

discovering frequently occuring patterns in data sequences,
used in a wide range of application domains from retail
industry to biological research. Here we employ it to build a
pattern registry that represents a component interaction model
for the normal system behavior at runtime. Our framework is
based on the intuitive insight that if an event does not have any
strong associations with past events in the model, the event
is likely to be anomalous. Since regular GSP mining may
generate a vast number of patterns, we customize it using the
architecture knowledge in order to drastically prune the search
space and make the algorithm efficient enough for runtime use,
as described in detail in Section V.

The second phase is applying the model on current sys-
tem events as they occur to detect anomalous behavior. We
developed an efficient detection algorithm for this purpose,
which produces a quantitative anomaly measure for each
event. When the anomaly likelihood exceeds a configurable
threshold, the event is marked as suspicious and its details are
recorded. As mentioned earlier, the number of simultaneously
running user sessions may fluctuate at runtime and adversely
impact the detection accuracy. We therefore take an extra step
to monitor the degree of execution concurrency and adapt
the model accordingly. Section VI elaborates on the design
details of this phase. Once detected, the anomalous events are
flagged and sent to Threat Mitigation, which may result in
autonomic and/or manual countermeasures being deployed to
the target system (e.g., isolating a compromised component).
This final step is beyond the scope of this paper, but has
been demonstrated by the authors using a pattern-based self-
protection approach [11].

V. MINING THE BEHAVIOR MODEL

In the context of sequential pattern mining, a sequence is
defined as an ordered list of itemsets, where each itemset is
a set of literals called items. We denote a sequence by ≺
s1, s2, ..., sn �, where si is an (unordered) itemset, denoted by
(x1 x2 ... xk). Using a retail example, a customer’s purchase
history at a store may be viewed as a data sequence consisting
of a list of transactions ordered by transaction time, with
each transaction si containing one or more purchased items.

Fig. 6: Event Sequence Example

A sequence ≺ a1, a2, ..., an � is a subsequence of another
sequence ≺ b1, b2, ..., bm � if there exists integers i1 < i2 <
... < in such that a1 ⊆ bi1 , a2 ⊆ bi2 , ..., an ⊆ bin . For exam-
ple, ≺ c, (d e) � is a subsequence of ≺ g, (c h), k, (d e f) �,
but ≺ d, e � is not a subsequence ≺ (d e) � (and vice versa).
Given a set of data sequences, the objective of sequencial
pattern mining is therefore to find all subsequences that meet a
user-defined minimum frequency (called support). Continuing
with the retail example, mining customer transactions may
reveal a pattern like “15% customers bought Star Wars movies,
followed by Lego Star Wars toys in a later transaction”.
Now we provide details of applying this technique to mine
component interactions in the EDS system.

A. Event Preprocessing

The first step of our approach is pre-processing the event
log into data sequences as input to the mining algorithm.
Under our problem setting, the list of events supporting a
use case naturally constitutes a “customer” sequence, with
each sequence being initiated by a UIE, bounded by its PEC,
and ordered by their start time ts. For the EDS system,
because all user actions are initiated at the user interface
component HQUI , each UIE is of the form HQUI ⇀
c ∈ C, such as HQUI ⇀ SimulationAgent, HQUI ⇀
StrategyAnalyzer, etc. At runtime, we can easily keep track
of active user sessions by monitoring web server logs, and
allocate each incoming event into one or more UIE clousures
according to their start and end timestamps. When a UIE is
completed, a data sequence is produced and stored.

As mentioned in Section III, concurrent user activities
may produce component interaction events that occur at the
same time. Further, due to the margin of error in network
time keeping, it is not possible to determine the exact order
of events occurring with close proximity to one another.
Therefore, in the preprocessing step we use a sliding εNTP
window: consecutive events whose start timestamps fall within
the window are treated as co-occurring and added to the
sequence as a single itemset. For instance, the events shown
in Figure 6 will be sequenced into ≺ e1, (e2 e3), e4 �.

B. Customized GSP Mining

A variety of sequential pattern mining algorithms exist; we
chose to use the well-known GSP algorithm [4], due in part
to its available open-source implementation [12]. We use GSP
to discover Event Association Patterns (EAP) of the form:

P = ≺ s1, s2, ..., sn � : supp (1)

where each element si is an itemset of co-occurring events
and support supp is the count of all sequences to which
P is a subsequence, divided by the total number of data
sequences: supp = σ(P)/N . Naturally supp ∈ [0, 1], and the

more frequently P occurs, the higher the supp. As a concrete
example, here is an EAP generated from GSP test runs:

≺ HQUI ⇀ StrategyAnalyzer,
(StrategyAnalyzer ⇀ Clock
StrategyAnalyzer ⇀ StrategyKB) � : 0.45

The original GSP algorithm follows an iterative process that
generates candidate sequences with (k+1) elements based on
existing k-sequences, then prunes the candidates that do not
meet the minimum support level.

We need to tailor the GSP algorithm in two unique ways.
First, given the fact that anomalies, esp. malicious attacks
seeking to covertly exploit the target system, are rare events
occurring with very low frequency, the vast majority of the
EAPs represent normal system use. Therefore, we need to
set the minimum support level minsupp to very low (e.g.,
0.1) in order to comprehensively capture the system behavior
model. This is very different from the typical use of GSP,
which is to discover only the highly frequent patterns. A
direct consequence of this is that an exponentially large
number of pattern sequences will be produced for any slightly
more complex system, with unacceptable time and space
requirements. Fortunately, our architecture knowledge of the
system comes to assistance in this regard. In particular, we
notice that component interactions have causal relationships:
an event is triggered by a user action (UIE), and the event’s
destination component in turn triggers events to other com-
ponents. Therefore we inserted the following heuristic to the
candidate generation phase of GSP: keep a candidate sequence
≺ s1, s2, ..., sn � iff each non-UIE event in the sequence has
a preceding triggering event. Formally, for any element si,

∀ev ∈ si (∃eu ∈ sj,1≤j≤i−1 (eu.cdst = ev.csrc)) (2)

With this heuristic, the number of added candidates in each
GSP iteration becomes linear to the number of possible
event types (i.e., source to target component combinations),
or O(|C|2), effectively reducing the growth of candidate
sequences from permutational to quadratic in relation to the
number of system components.

Second, we recognize that the prior probabilities of use
cases that drive system behavior may vary greatly. Some UIEs,
such as viewing map and weather data for situation awareness,
occur quite frequently, whereas others such as performing
system maintenance occur far less often. Furthermore, the
system behavior shifts over time. Deploying disaster response
resources, for instance, tends to occur at times of emergency.
As a result, it is likely that some component interaction events,
especially those associated with infrequent user actions, may
not meet the minimum support level. This led us to tailor the
GSP logic to mine the component interactions under a specific
usage context. We therefore revise the definition of an EAP:

P = ≺ s1, s2, ..., sn � : suppi | UIEi (3)

where suppi is the conditional support with respect to a
specific use case. The implementation of this tailored logic is
relatively simple: the training sequences from the event log are
put into different “bins” by their UIE types; the GSP algorithm
is applied to each bin to generate the conditional EAPs for the

specific UIE. The pattern registry can thus be viewed as having
multiple partitions, one for each UIE type.

It is not difficult to envision that, the set of EAPs produced
from GSP mining can serve as a simple form of a system
behavior model at runtime. The EAPs collectively provide
insight into how the components interact with one another
at the architecture level.

VI. DETECTING ANOMALOUS BEHAVIOR

Since the generated EAPs collectively represent the system’s
normal behavior, we have reasons to suspect any component
interaction pattern that falls outside of this model to be
an anomaly. In security nomenclature, our method takes an
anomaly-based approach for threat detection as opposed to a
signature-based approach: rather than attempting to formulate
and recognize all possible attack signatures, we consider any
interaction pattern that falls outside of the normal system
usage a potential threat. As will be discussed later, the former
approach has a significant benefit of being effective against
future unknown threats.

Algorithm 1 measureAnomaly: Compute Anomaly Likelihood
Input: P = {pi} . Pattern registry, use case-partitioned, indexed
Input: minsupp . Minimum support level used by GSP

1: procedure measureAnomaly(e)
2: Lanomaly(e)← 1
3: for Ui ∈ findEnclosingUIEs(e) do
4: {PTSj} ← findPTSs(Ui, e) . Find all PTS sequences for e
5: suppi ←Maxj(patternLookup(PTSj , Ui)) . Find highest support
6: Lanomaly(e)← Lanomaly(e)× (1− suppi)
7: end for
8: Lanomaly(e)← Lanomaly(e)

1/m

9: return Lanomaly(e)
10: end procedure
11: procedure patternLookup(PTS, UIE)
12: if ∃(p = PTS : suppp|UIE) ∈ P then
13: return suppp . Look up pattern registry, return support value
14: else
15: return minsupp/2 . PTS not found in registry, return estimate
16: end if
17: end procedure

We have developed an effective method for quantitatively
determining the anomaly likelihood of an event. The skeleton
of the method, measureAnomaly, is shown in Algorithm
1. The idea behind the algorithm is as follows. Any new
event e captured in the system event log may fall under
multiple UIEs due to system concurrency (recall Figure 4),
and it is possible to observe the UIE closures of which
e is a perceived member, that is, e ∈ U+

i , i = 1, ...,m.
Method findEnclosingUIEs(e) (line 3) performs a time
stamp-based search in the event log to find all enclosing
UIEs for event e. Within each U+

i , it is also possible to
use event source and destination information to discover
zero or more Perceived Triggering Sequences (PTS) for e,
in the form of {PTSe =≺ Ui, e1, ..., ek, e �}, such that
Ui.cdst = e1.csrc, e1.cdst = e2.csrc, ... , ek.cdst = e.csrc.
Method findPTSs(Ui, e) on line 4 achieves this by
performing a recursive, depth-first search within U+

i .
Again, the word “perceived” signifies that the sequence is

purely by observation, not by any knowledge of the events’
true causality. For example, in Figure 4, potential PTS’s for

event c include ≺ U3, a, c �, ≺ U3, b, c �, ≺ U3, c �,
≺ U4, a, c �, and ≺ U4, c �. Intuitively, if we can find at
least one PTSe matching an EAP in the pattern registry, it
means the presence of event e is “explained” by UIE Ui.
Conversely, if none of the Ui’s can explain e, we have reason
to believe it is an anomaly. In other words, the likelihood
of e being an anomaly is the conjunctive probability of e
not explained by Ui for all i = 1, ...,m. Assuming mutual
independence of system use case occurrences, the anomaly
likelihood is

∏m
i=1(1− suppi), where suppi is the highest

support we can find in the pattern registry for e’s triggering
sequences within U+

i (see line 5). When no matching EAP is
found, it is necessary that the support of a PTS falls between 0
and minsupp. In this case patternLookup() returns the mean,
(0 +minsupp)/2, as an estimate for suppi (line 15).

Algorithm 2 mainArmour: Main Routine
Input: P = {pi} . Pattern registry, use case-partitioned, indexed
Input: Q = {..., ei, ...} . Event log / queue
Input: Lthreshold . Detection confidence threshold

1: procedure mainArmour(Q)
2: e← dequeue(Q) . Retrieve event from queue
3: while e 6= null do
4: if refreshPeriodReached() then . Refresh pattern registry
5: minsupp← 1.0− Lthreshold

6: Pnew ← runCustomGSP (minsupp) . Run in new thread
7: P ← Pnew

8: end if
9: Lanomaly(e)← measureAnomaly(e)

10: if Lanomaly(e) ≥ Lthreshold then
11: flagEvent(e) . Flag event for subsequent mitigation
12: end if
13: end while
14: end procedure

This likelihood value, however, is not yet a useful detection
metric due to the compounding effect introduced by system
concurrency. For example, suppose we let minsupp = 0.10
and use a detection threshold of 0.9. In a single user sce-
nario, if an anomalous event is injected into the system, its
perceived triggering sequences will not match any EAPs in the
registry, therefore procedure patternLookup() will return the
default minimum confidence minsupp/2 = 0.05 (line 15 of
Algorithm 1). The resulting likelihood of anomaly will then
be (1 − 0.05) = 0.95 > 0.9, correctly marking the event
as an anomaly. Now let’s imagine the malicious event falls
into 3 concurrent UIE closures. Here the likelihood will be∏3
i=1(1 − confi) = (1 − 0.05)3 = 0.86 < 0.9, falling below

the threshold and thus rendering this event as a false negative.
To address this challenge, we further normalize the likelihood
by taking its geometric mean:

Lanomaly(e) = [

m∏
i=1

(1− suppi)]
1
m (4)

where m is the number of enclosing UIEs for e (line 8 of
Algorithm 1). Obviously Lanomaly(e) ∈ [0, 1], and the higher
its value, the higher likelihood that e is an anomaly.

As mentioned in Section IV, ARMOUR runs in a con-
tinuous loop in parallel to the target system. Events are fed
into the detection algorithm as they are captured in the event
log. At the same time, the pattern registry is regenerated
periodically based on most recent event history, in a sepa-
rate thread that doesn’t block the detection process. Putting

everything together, Algorithm 2 lists the pseudo code for the
main routine of the ARMOUR framework, omitting details of
self-explanatory subroutines. Please note the complementary
relationship between the detection threshold and the minsupp
parameter (line 5): the higher confidence we would like on
the detections, the lower support level we need for the GSP
mining algorithm in order to have a more thorough capture of
the system behavior model.

VII. EVALUATION

Our experimentation environment involves an instantiation
of the original EDS system that uses Java RMI for sending
and receiving event messages among components. As men-
tioned earlier, logging functionality ensures all component-
level events are captured in a MySQL database. A multi-
threaded RMI client is written to play back a configurable
number of concurrent user sessions. All ARMOUR framework
components are developed in Java, including the customized
GSP implementation adapted from Weka [12]. Both test runs
and data analysis are run on quad-core Mac OS X machines.

As mentioned in Section V-A, we take into account the
impact of network timing errors as we pre-process the event
log into data sequences. Even though we conducted all test
runs within a LAN, we set the network timing error margin
εNTP to be 10ms, a value safe for the public Internet [10] to
mimic the real-world EDS runtime environment.

In order to evaluate the performance of the framework under
different concurrency settings, we set up different test cases
with a varying number of concurrent users, from 10 to 100.
In reality, however, users may have different proficiency levels
and browsing habits, therefore the number of concurrent users
is not a consistent measure of system concurrency. The number
of enclosing UIEs for an event, described in Section VI, on
the other hand, is a more objective measure. Here we define a
concurrency measure γ at the time of event ek as the moving
average of the number of UIE closures to which ek belongs,
computed for the most recent N events:

γ(ek) =
1

N
(

N∑
j=k−N+1

|findEnclosingUIEs(ej)|) (5)

The correlation between γ with the number of simulated users
in our experiments is shown in the header rows of Table I and
other tables. Note that the users in our simulations are active,
always-busy users intended to generate a heavy load on the
system, and therefore may represent a much larger number of
human users in a real-world setting.

A. Determining Training Window

How much training data from the system execution history
should we use to generate (and re-generate) the pattern reg-
istry? In our evaluation we observed that as the size of the
training set increases, the size of the pattern registry |P | grows
asymptotically towards a stable limit, indicating nearly all
component interactions have been captured. Accordingly, we
run GSP repeatedly over an increasing training window size,
until the growth in |P | over the previous iteration falls below
a threshold (say, 5%). Figure 7 shows the pattern registry

Fig. 7: Pattern Registry Growth Over Training Window Size

size (i.e., EAP count) growth rate under different concurrency
settings. It shows that the higher the concurrency level, the
more noise is added in system behavior (recall Section III),
therefore more training data is needed for the pattern registry
to converge (with a training window of 2,500 for 100 users).

B. Threat Detection Accuracy

Our evaluation uses two threat scenarios described in Fig-
ure 3. Based on the assumption that anomalies are outlier
events, each of the attack cases was inserted with a probability
of 0.27% (i.e., following the three-sigma rule of thumb [13]).
We will revisit this assumption later in this section. We used
a training window of 2,500 sequences (that is, UIEs) from the
event log for GSP mining, while testing was done on 1,000
sequences. minsupp for the mining algorithm is set to 0.1
in order to capture as many normal component interactions
as possible. Accordingly we set the confidence threshold to
(1−minsupp) (recall line 5 of Algorithm 2), or 0.9.

The test results, listed in Table I, demonstrate our framework
is quite effective in detecting both threats hidden among a large
number of normal system events, especially considering these
attacks may have been missed by IDS sensors. Precision is
close or equal to 100% for most tests and recall is consistently
over 70%, without any degradation over the 10x increase in
system concurrency, an indicator of not only the effectiveness
of the concurrency-normalized anomaly measure defined in
Section VI, but also the practical potential of using the
ARMOUR framework with large-scale, multi-user systems.
The table also includes metrics for ARMOUR’s computational
efficiency such as mining time and detection time, which will
be analyzed later in Section VII-F.

C. Training Environment

Under ideal circumstances, the pattern registry would need
to be mined using clean, attack-free training sets before use at
runtime on real data. In fact many prior data mining techniques
for security require such supervised learning (more details
in Section IX). The nature of the pattern mining process,
however, hinted that we can eliminate the need for a clean
training environment altogether – due to the outlier nature of
anomalies, they do not occur frequently enough to make their

TABLE I: Detection Results for 2 Threat Scenarios
#active users 10 20 50 100
Concurrency Measure(γ) 5 11 28 56

Attack A (Figure 3 (a))
TP Count (#Events) 14 22 16 26
FP Count 2 0 0 0
FN Count 5 9 6 9
TN Count 14,375 13,606 13,377 13,954
TP Rate (TPR) 0.737 0.710 0.727 0.743
FP Rate (FPR) 1.39E-4 0.0 0.0 0.0
Precision 0.875 1.0 1.0 1.0
Recall 0.737 0.710 0.727 0.743
F-Measure 0.800 0.830 0.842 0.852
EAP Count 125 147 147 152
Mining Time (ms) 315 347 356 436
Detection Time / Event (ms) 31 29 35 41

Attack B (Figure 3 (b))
TP Count 17 19 14 15
FP Count 1 0 0 0
FN Count 5 8 4 4
TN Count 13,475 14,005 13,697 14,810
TP Rate (TPR) 0.773 0.704 0.778 0.789
FP Rate (FPR) 7.42E-5 0.0 0.0 0.0
Precision 0.944 1.0 1.0 1.0
Recall 0.773 0.704 0.778 0.789
F-Measure 0.850 0.826 0.875 0.882
EAP Count 127 143 147 147
Mining Time (ms) 359 322 344 451
Detection Time / Event (ms) 35 32 34 61
TPR = TP/(TP+FN);FPR = FP/(FP+TN);Precision = TP/
(TP+FP);Recall = TPR;F -Measure = 2TP/(2TP+FP+FN)

way into the EAPs, as long as the minsupp level of the GSP
algorithm is set well-above the anticipated anomaly rate.

It is worth noting that the detection results shown in Table I
were indeed produced while running ARMOUR in parallel to
the EDS system, with the model trained over actual, tainted
event logs. This confirms that ARMOUR can run unsupervised
and does not need a clean training environment. This gives
ARMOUR a big practical advantage as clean training data for
a real-world system is usually costly to obtain.

D. Detecting Unknown Threats
As alluded to in Section VI, because an anomaly-based

detection model focuses on capturing normal system behavior
rather than capturing all possible attack signatures, it has the
natural advantage of being able to detect new threats that
are not previously known. To validate that the ARMOUR
framework has this capability, we set up a cross-validation
procedure that performs GSP pattern mining in the presence
of Attack A and then runs threat detection against an event
log that includes injected Attack B, and vice versa.

Table II shows the test results at different concurrency
levels. We can see the algorithm is equally effective for
detecting threats that were not present during the mining
phase! Given the ever-changing attack vectors and so-called
“zero-day” threats for applications today, ARMOUR can be
an extra layer of protection against future exploits involving
undiscovered software vulnerabilities.

E. Sensitivity Analysis
ARMOUR makes very few assumptions on the target sys-

tem’s runtime behavior and its runtime environment. In fact,
the only two key parameters our evaluations depend on are the
minsupp level of the mining algorithm and the prior probabil-
ity of anomalies. We would like to examine how ARMOUR’s
detection performance is impacted by these parameters in
order to discover any limitations of our approach.

TABLE II: Unknown Threat Detection Results
#active users 10 20 50 100
Concurrency(γ) 6 11 28 56

Mining with Attack A, detection against Attack B
TP Count (#Events) 13 15 19 10
FP Count 1 0 0 0
FN Count 5 5 8 2
TN Count 14,444 14,239 14,090 14,103
Precision 0.929 1.0 1.0 1.0
Recall 0.722 0.750 0.704 0.833

Mining with Attack B, detection against Attack A
TP Count 16 24 14 16
FP Count 1 0 0 0
FN Count 8 12 7 6
TN Count 35,086 34,539 34,430 34,339
Precision 0.941 1.0 1.0 1.0
Recall 0.667 0.667 0.667 0.727

(a) TPR Plot

(b) FPR Plot
Fig. 8: TPR and FPR Sensitivity to minsupp

First, we repeated the test runs for Attack A under different
minsupp levels, from high to low, in order to see the impact
on the True Positive Rate (TPR) and False Positive Rate (FPR)
results, which are shown in Figure 8. We see that as minsupp
is lowered, TPR remains at a high level and is not very
sensitive to minsupp changes, while FPR rapidly decreases
towards 0. These plots confirm our earlier understanding
that setting support at low levels can effectively capture the
component interaction model. The “hockey stick” shape of
the FPR plot indicates our framework is far less sensitive
to minsupp at lower levels, implying that there is no need
to search for an optimal minsupp; ARMOUR can operate
effectively over a range of minsupp towards the lower end.

Also of interest to our work is the prior probabilities of
anomalous events, which we assumed is very low compared
with normal system use. Our approach, when run in the
unsupervised mode with tainted data, is based on the premise
that rare events do not occur frequent enough to interfere with
building the normal system usage model. Using the Attack
A scenario, we performed test runs that gradually increased
the anomaly rate above the default 3-sigma level, with other
parameters kept the same. The results for 20 concurrent users
are listed in Table III. The results of default anomaly rate
(0.27%) are repeated from Table I for comparison. We can see
that, while precision remains high, recall deteriorates quickly

TABLE III: Detection Results Under Increased Anomaly Rates
Anomaly Rate 0.27% 1.0% 2.0% 3.5% 5.0%
TP Count 22 5 11 11 6
FP Count 0 2 0 1 1
FN Count 9 28 59 117 169
TN Count 13,606 13,892 15,066 14,712 14,284
Precision 1.0 0.714 1.0 0.917 0.857
Recall 0.710 0.152 0.157 0.086 0.034

when the anomaly rate gets higher, driven by more false
negatives, indicating more and more anomalies start to be
considered normal events.

The results are hardly surprising: when the prior probability
of anomalies approaches minsupp, anomalous patterns start to
be captured by the mining algorithm as EAPs and thus become
mixed with the normal system behavior. At this point the
model starts to lose its ability to distinguish anomalous events
from legitimate ones2. Fortunately, higher-frequency attacks
that seek to do immediate harm to the system will likely be
recognized as Denial of Service (DoS) attacks and dealt with
accordingly. This serves as a good reminder that ARMOUR
should be used in conjunction with existing intrusion detection
mechanisms rather than replacing them.

F. Computational Efficiency

1) Mining Performance: Since our customized GSP al-
gorithm complexity is closely tied to the number of valid
candidates it generates, we expected to see a strong correlation
between the EAP Count and the mining time, as confirmed in
Table I. The table shows that at the highest concurrency level
for attack scenario A, it takes about 0.4 second to complete a
mining run. Considering the mining process runs in a separate
thread and the pattern registry only needs to be refreshed
periodically, it is quite practical to apply this algorithm to
support on-the-fly anomaly detection at runtime. To put this
in perspective, we were not even able to complete a mining run
of the original, unaltered GSP algorithm for just 10 concurrent
users once minsupp drops below 0.4 due to either time or
memory limitations; the number of candidates it generated
was simply too large. By comparison, our architecture-based
heuristics prove to be highly effective in reducing the candidate
search space even at low support levels.

2) Anomaly Detection Performance: To be used at runtime,
the detection portion of ARMOUR must be efficient and fast,
in order to keep up with real-time system execution. A quick
complexity analysis of Algorithm 1 shows that:
• Running time of findEnclosingUIEs(e) on line 3

depends on concurrency measure γ, i.e., in O(γ) time;
• Similarly, the for loop on lines 3-7 is repeated γ times;
• findPTSs() on line 4 carries out a DFS search in U+

i .
Its runtime depends on the size of U+

i which is UIE
specific, but can be amortized to O(γ) time;

• patternLookup() is hash table-based and runs in O(1).
In theory, we can therefore conclude that Algorithm 1

runs in O(γ) time, that is, proportional to the concurrency
measure. After realizing that once a UIE and its associated
data structures (such as DAGs for the PTSs) are constructed in

2Clearly, if clean training data is available from a controlled environment,
this will not be an issue

memory, they can be cached and reused, we further optimized
Algorithm 1 so that the amortized running time per event is
nearly O(1), regardless of the system concurrency level. The
average detection time per event, as shown in Table I, is about
30ms, indicating the detection algorithm is highly capable of
keeping up with high-volume user activities.

VIII. THREATS TO VALIDITY

Two possible threats to the validity of our approach deserve
additional discussion. First, the ability to identify external
interfaces or UIEs might be a challenge for certain types
of systems. An ad-hoc system with free-form interactions
across components (such as a wireless network of sensors),
for example, may not be a good candidate for our approach.
The ideal candidates for applying the ARMOUR framework
would be online enterprise systems that have clear business use
cases and process patterns, regardless of application domain.

Second, all self-protection frameworks, including AR-
MOUR, are subject to exploitations once their approaches
are known to attackers. In ARMOUR’s case, for instance, an
attacker could slowly increase the frequency of the anomaly
events, to a point that they start to “blend in” with normal
usage, as mentioned in earlier sensitivity analysis. To mitigate
this threat in practice, the ARMOUR framework should be
used in conjunction with conventional security mechanisms,
such as DoS prevention, application firewalls, and IDS, that
are quite effective at detecting frequently seen attacks at
the network or host level. ARMOUR complements these
approaches by detecting covert attacks at the application level.

IX. RELATED WORK

Software engineering research has actively focused on min-
ing behavioral models automatically from system execution
traces ([14], [15], and our prior work [16], [17], to name
a few). Recent efforts have also expanded to modeling user
behavior [18] and concurrent systems [19]. However very few
of these efforts focused on security. Only recently did we start
to see adaptive security approaches tackling application-level
attacks including insider threats, as seen in [20] for instance,
which employs dynamically generated access control models.

The idea of detecting security anomalies based on a model
of the system’s “normal” behavior is by no means a new one.
Early research in the nineties ([21] and many others) exploited
the correlation of short sequences of system calls; a sequence
that falls outside of normal call patterns may indicate abnormal
behavior. Later approaches used other constructs such as
method call profiles based on dynamic sandboxing [22], finite
state automata based on static program analysis [23], program
execution paths extracted from call stack information during
normal program runs [24], execution graphs [25], process
creation trees [26], or call graphs and calling context trees of
cloud-based applications [27]. ARMOUR differs from these
approaches in that: (a) these approaches are host-based, i.e.
mining metadata of individual processes or programs, while
ARMOUR looks at abstract software component interactions
that may span across multiple process spaces or even multiple
hosts; (b) most require supervised training whereas ARMOUR

can run unsupervised; (c) most assume normal program be-
havior is deterministic and stable, where ARMOUR assumes
the behavior for an interactive system is inherently fluid and
user-driven, and hence continually updates the model based
on recent system execution traces.

From the techniques perspective, ARMOUR joins a large
body of research in applying data mining methods to the
security domain, especially those for anomaly detection [28].
Much of existing research, however, centered around intrusion
detection, especially at network and host levels (e.g., [29]),
and malware/virus detection for source code and executables
(e.g., [30]). Among those, several efforts share our approach of
unsupervised learning, i.e., using unlabeled or “noisy” training
data [21], [31]. Still others used mining algorithms such as
Support Vector Machines (SVM) [32], Hidden Markov Models
(HMM) [33], ensemble based learning [34], etc. Few of these
efforts took advantage of sequential pattern mining as does
ARMOUR. Moreover, many previous efforts rely on domain-
specific features (e.g., TCP/IP protocol attributes, UNIX shell
commands), whereas ARMOUR is domain-independent.

X. CONCLUSIONS AND FUTURE WORK

In this paper, we have argued for the importance of moni-
toring and assessing the overall security posture of a software
system at the architectural level in order to detect more
sophisticated threats that may otherwise go unnoticed using
traditional network or host level intrusion detection techniques.
Towards this objective, we have proposed a use case-driven
mining framework with an adaptive detection algorithm to
efficiently identify potential malicious events. Our evaluation
of the approach has demonstrated very promising results with
high detection accuracy, regardless of system concurrency lev-
els. ARMOUR complements existing perimeter-based security
mechanisms, provides an approach to achieve “defense in
depth” for large-scale software systems with many practical
advantages, including unsupervised learning with no need for
clean training data, potential to detect unknown threats, and
effective detection of application-level insider attacks.

Our future work will attempt to make the framework more
robust, such as improving computational efficiency using cloud
computing techniques and integrating ARMOUR with system
self-protection methods (such as those proposed in [11]) to
auto-respond to threats at runtime.

ACKNOWLEDGMENT

This work was supported in part by awards CCF-1252644
from the National Science Foundation, D11AP00282 from
the Defense Advanced Research Projects Agency, W911NF-
09-1-0273 from the Army Research Office, HSHQDC-14-
C-B0040 from the Department of Homeland Security, and
FA95501610030 from the Air Force Office of Scientific Re-
search.

REFERENCES

[1] D. M. Chess et al., “Security in an autonomic computing environment,”
IBM Systems Journal, vol. 42, no. 1, pp. 107–118, 2003.

[2] E. Yuan, N. Esfahani, and S. Malek, “A systematic survey of self-
protecting software systems,” ACM TAAS, vol. 8, no. 4, Jan. 2014.

[3] M. B. Salem et al., “A survey of insider attack detection research,” in
Insider Attack and Cyber Security. Springer, 2008, pp. 69–90.

[4] R. Srikant and R. Agrawal, “Mining sequential patterns: Generalizations
and performance improvements,” in Advances in Database Technology ł
EDBT ’96. Springer Berlin Heidelberg, Mar. 1996, no. 1057, pp. 1–17.

[5] S. Malek et al., “A style-aware architectural middleware for resource-
constrained, distributed systems,” IEEE Transactions on Software Engi-
neering, vol. 31, no. 3, pp. 256–272, Mar. 2005.

[6] B. Councill and G. T. Heineman, “Definition of a software component
and its elements,” in Component-based Software Engineering, 2001.

[7] The MITRE Corporation, “CWE-89: ’SQL injection’,”
http://cwe.mitre.org/data/definitions/89.html.

[8] OWASP.org, “Owasp top ten project,”
https://www.owasp.org/index.php/Category: OWASP Top Ten Project.

[9] I. Elia et al., “Comparing SQL injection detection tools using attack
injection: An experimental study,” in ISSRE 2010, pp. 289–298.

[10] The NTP Public Services Project, “The NTP FAQ,”
http://www.ntp.org/ntpfaq/NTP-s-algo.htm.

[11] E. Yuan, S. Malek et al., “Architecture-based self-protecting software
systems,” in QoSA ’13. New York, NY, USA: ACM, 2013, pp. 33–42.

[12] M. Hall et al., “The weka data mining software: an update,” SIGKDD
Explor. Newsl., vol. 11, no. 1, pp. 10–18, Nov. 2009.

[13] Wikipedia.org, “68-95-99.7 rule,” https://en.wikipedia.org/wiki/68-95-
99.7 rule.

[14] D. Lo, L. Mariani, and M. Pezzè, “Automatic steering of behavioral
model inference,” in FSE. ACM, 2009, pp. 345–354.

[15] I. Krka, Y. Brun, and N. Medvidovic, “Automatic mining of specifica-
tions from invocation traces and method invariants,” in FSE, 2014.

[16] E. Yuan, N. Esfahani, and S. Malek, “Automated mining of software
component interactions for self-adaptation,” in SEAMS 2014. New
York, NY, USA: ACM, 2014, pp. 27–36.

[17] N. Esfahani, E. Yuan, K. R. Canavera, and S. Malek, “Inferring software
component interaction dependencies for adaptation support.” ACM
Trans. on Autonomous and Adaptive Systems, 2016, vol. 10, no. 4.

[18] C. Ghezzi et al., “Mining behavior models from user-intensive web
applications.” in ICSE, 2014, pp. 277–287.

[19] I. Beschastnikh, Y. Brun et al., “Inferring models of concurrent systems
from logs of their behavior with csight,” in ICSE, 2014, pp. 468–479.

[20] C. Bailey, L. Montrieux, R. de Lemos et al., “Run-time Generation,
Transformation, and Verification of Access Control Models for Self-
protection,” in SEAMS 2014. ACM, pp. 135–144.

[21] T. Lane and C. E. Brodley, “An application of machine learning to
anomaly detection,” in Proc. of the 20th National Information Systems
Security Conference, vol. 377. Baltimore, USA, 1997, pp. 366–380.

[22] H. Inoue and S. Forrest, “Anomaly intrusion detection in dynamic
execution environments,” in Proceedings of the 2002 Workshop on New
Security Paradigms. New York, NY, USA: ACM, 2002, pp. 52–60.

[23] D. Wagner and D. Dean, “Intrusion detection via static analysis,” in
2001 IEEE Symposium on Security and Privacy, 2001, pp. 156–168.

[24] H. Feng et al., “Anomaly detection using call stack information,” in
2003 Symposium on Security and Privacy, May 2003, pp. 62–75.

[25] D. Gao et al., “Gray-box extraction of execution graphs for anomaly
detection,” in CCS ’04. ACM, 2004, pp. 318–329.

[26] M. Kwon et al., “PROBE: a process behavior-based host intrusion
prevention system,” in Information Security Practice and Experience.
Springer Berlin Heidelberg, Jan. 2008, pp. 203–217.

[27] S. Alsouri et al., “Dynamic anomaly detection for more trustworthy
outsourced computation,” in Information Security. Springer Berlin
Heidelberg, 2012, vol. 7483, pp. 168–187.

[28] V. Chandola, A. Banerjee, and V. Kumar, “Anomaly detection: A survey,”
ACM Comput. Surv., vol. 41, no. 3, pp. 15:1–58, Jul. 2009.

[29] W. Lee et al., “A data mining framework for building intrusion detection
models,” in IEEE Security and Privacy, 1999, pp. 120–132.

[30] M. Schultz et al., “Data mining methods for detection of new malicious
executables,” in IEEE Security and Privacy, 2001, pp. 38–49.

[31] E. Eskin et al., “A geometric framework for unsupervised anomaly
detection,” in App. of Data Mining in Comp. Sec., 2002, pp. 77–101.

[32] L. Khan, M. Awad, and B. Thuraisingham, “A new intrusion detection
system using support vector machines and hierarchical clustering,” The
VLDB Journal, vol. 16, no. 4, pp. 507–521, 2007.

[33] C. Warrender et al., “Detecting intrusions using system calls: Alternative
data models,” in IEEE Security and Privacy. IEEE, 1999, pp. 133–145.

[34] P. Parveen et al., “Supervised learning for insider threat detection using
stream mining,” in 23rd IEEE ICTAI, 2011, pp. 1032–1039.

