Inferring Software Component Interaction Dependencies
for Adaptation Support

NAEEM ESFAHANI, Google Inc.
ERIC YUAN and KYLE R. CANAVERA, George Mason University
SAM MALEK, University of California, Irvine

A self-managing software system should be able to monitor and analyze its runtime behavior and make adap-
tation decisions accordingly to meet certain desirable objectives. Traditional software adaptation techniques
and recent “models@runtime” approaches usually require an a priori model for a system’s dynamic behavior.
Oftentimes the model is difficult to define and labor-intensive to maintain, and tends to get out of date due
to adaptation and architecture decay. We propose an alternative approach that does not require defining
the system’s behavior model beforehand, but instead involves mining software component interactions from
system execution traces to build a probabilistic usage model, which is in turn used to analyze, plan, and
execute adaptations. In this article, we demonstrate how such an approach can be realized and effectively
used to address a variety of adaptation concerns. In particular, we describe the details of one application
of this approach for safely applying dynamic changes to a running software system without creating incon-
sistencies. We also provide an overview of two other applications of the approach, identifying potentially
malicious (abnormal) behavior for self-protection, and improving deployment of software components in a
distributed setting for performance self-optimization. Finally, we report on our experiments with engineering
self-management features in an emergency deployment system using the proposed mining approach.

Categories and Subject Descriptors: D.2.11 [Software Engineering]: Software Architectures
General Terms: Algorithms
Additional Key Words and Phrases: Data mining, self-adaptation, component-based software

ACM Reference Format:

Naeem Esfahani, Eric Yuan, Kyle R. Canavera, and Sam Malek. 2016. Inferring software component inter-
action dependency for adaptation support. ACM Trans. Auton. Adapt. Syst. 10, 4, Article 26 (February 2016),
32 pages.

DOI: http://dx.doi.org/10.1145/2856035

1. INTRODUCTION

A self-managing software system is comprised of two conceptual parts, a base-level sub-
system that provides the software system’s application logic and domain functionalities
and a metalevel subsystem that manages the behavior of the base-level subsystem to
satisfy certain desirable objectives, for example, performance, security, reliability, etc.

This work was supported in part by awards CCF-1252644 from the U.S. National Science Foundation,
W911NF-09-1-0273 from the U.S. Army Research Office, and D11AP00282 from the U.S. Defense Advanced
Research Projects Agency.

Authors’ addresses: N. Esfahani (corresponding author), Google Inc., 1600 Amphitheatre Pkwy, Moun-
tain View, CA 94043; email: naeeem@google.com; E. Yuan and K. R. Canavera, Department of Com-
puter Science, George Mason University, 4400 University Drive, Fairfax, VA 22030; emails: {eyuan,
kcanaver}@gmu.edu; S. Malek, University of California, Irvine, 5226 Donald Bren Hall, Irvine, California
92697; email: malek@uci.edu.

Permission to make digital or hard copies of part or all of this work for personal or classroom use is granted
without fee provided that copies are not made or distributed for profit or commercial advantage and that
copies show this notice on the first page or initial screen of a display along with the full citation. Copyrights for
components of this work owned by others than ACM must be honored. Abstracting with credit is permitted.
To copy otherwise, to republish, to post on servers, to redistribute to lists, or to use any component of this
work in other works requires prior specific permission and/or a fee. Permissions may be requested from
Publications Dept., ACM, Inc., 2 Penn Plaza, Suite 701, New York, NY 10121-0701 USA, fax +1 (212)
869-0481, or permissions@acm.org.

© 2016 ACM 1556-4665/2016/02-ART26 $15.00

DOI: http://dx.doi.org/10.1145/2856035

ACM Transactions on Autonomous and Adaptive Systems, Vol. 10, No. 4, Article 26, Publication date: February 2016.

http://dx.doi.org/10.1145/2856035
http://dx.doi.org/10.1145/2856035

26:2 N. Esfahani et al.

Such management often takes the form of dynamically changing the structure of the
base-level software, for example, replacing software components at runtime.

To make proper decisions, the metalevel subsystem relies on an abstract represen-
tation of the software and the environment it executes. The collection of such models is
often referred to as models at runtime, as they need to be kept in sync with the changes
that unfold in a running system and its environment. An example of architectural
models that is used extensively in the construction of adaptive software is component
interaction model, which represents the behavior of the system’s components in their
explicit interactions (e.g., message exchanges, interface invocations) with one another.

Component interaction models could be used for a variety of purposes in runtime
management of software, including (1) determining the dependencies among the sys-
tem’s component to ensure their adaptation (e.g., replacement) does not leave the
system in an inconsistent state [Canavera et al. 2012], (2) detecting abnormal in-
teractions among the system’s components that are indicative of security attacks to
enable self-protection capabilities [Yuan et al. 2014a], and (3) optimizing a software
system’s performance by collocating components that are highly interactive with one
another [Malek et al. 2012]. The construction of such models, however, is a difficult
task. First, in a complex software system, manually defining models that represent
the component interactions is time consuming. Second, it is not always possible to
construct such models a priori, before the system’s deployment (i.e., during the devel-
opment phase). In Service-Oriented Architectures (SOA) or peer-to-peer environments,
for instance, component behavior may be user driven and nondeterministic. Third, even
when such models are built, it is a heavy burden to keep them in sync with the ac-
tual implementation of the software. Indeed, they are susceptible to the well-studied
problem of architectural decay [Taylor et al. 2009], which tends to occur when changes
applied to the software are not reflected in its architecture models.

An approach toward addressing the preceding issues is to automatically mine such
models from execution traces of the system, thus alleviating the engineers from defin-
ing the models manually. Automated mining-based approaches also allow for their
application throughout the system’s execution, naturally enabling the refinement of
models to changing behavior of the system and its environment.

Our preliminary progress at supporting an association rule mining approach that
can learn the component interaction model of a system by simply observing its behavior
was described in our prior work [Canavera et al. 2012; Yuan et al. 2014a]. This article
builds on our prior work by providing a comprehensive, extended description of the
approach as well as our experiences with applying it to an emergency response software
system. The approach is comprised of three steps: (1) collect execution traces of the
system at runtime, (2) use association rule mining to infer a probabilistic model of
the component interactions from the collected execution traces, and (3) continuously
monitor the accuracy of the inferred models, and upon detecting substantial variations,
refine the models by mining the newly collected data.

We have used the component interaction models inferred using our approach to
address three self-management concerns: (1) Consistency of Adaptation: safely apply-
ing dynamic changes to a running software system without creating inconsistencies;
(2) Self-Protection: automatically identifying potentially malicious (abnormal) behav-
ior; and (3) Self-Optimization: improving the performance of a software system by
changing its deployment in a distributed setting. We first provide a detailed descrip-
tion of the first concern (i.e., ensuring consistency of adaptation), and subsequently
outline the remaining two to illustrate the broader implications of our approach in the
construction of self-managing software systems.

Using our approach in the construction of a self-managing emergency response sys-
tem has shown to be quite promising. However, mining-based approaches, such as the

ACM Transactions on Autonomous and Adaptive Systems, Vol. 10, No. 4, Article 26, Publication date: February 2016.

Inferring Software Component Interaction Dependencies for Adaptation Support 26:3

Weather
Analyzer

SAKB UI

Weather y
Deployment
Advisor

Strategy
Analyzer

HQ UI

/ \ \d Repos@

Strategy
Analysis KB

Simulation
Agent Map
Resource | Resource
Monitor Manager
Legend
\:l Software Component ~«—— Static Dependency

Fig. 1. Subset of EDS software architecture.

one described in this article, present their own unique challenges, which impact their
widespread usage. Thus, we also provide an overview of these challenges to frame the
future research.

This article extends our prior work [Canavera et al. 2012; Yuan et al. 2014a] along
four dimensions: (1) presents a reference architecture for building self-managing soft-
ware systems using the aforementioned approach; (2) presents a new instance of this
architecture for self-optimization of deployment topology, including the corresponding
evaluation results; (3) provides a more detailed, comprehensive description of our ap-
proach and reports on several new experiments; and (4) articulates the limitations and
assumptions underlying our research, as well as an agenda for future research.

The remainder of this article is organized as follows. Section 2 introduces a dis-
tributed software system and its adaptation requirements to motivate the research.
Section 3 provides an overview of our approach, while Section 4 describes how the
approach can be applied in the context of a specific adaptation concern having to do
with the consistency of runtime change. Sections 5 and 6 outline applications of our ap-
proach for solving two other concerns in runtime management of software. Finally, the
article concludes with an overview of the related research in Section 7, and a discussion
of the remaining challenges and avenues of future research in Section 8.

2. MOTIVATING EXAMPLE

We illustrate the concepts and evaluate the research using a software system, called
Emergency Deployment System (EDS), which is intended for the deployment and man-
agement of personnel in emergency response scenarios. Figure 1 depicts a subset of
EDS’s software architecture, and in particular shows the dependency relationships
among its components. EDS is used to accomplish four main tasks: (1) track the emer-
gency operation resources (e.g., ambulances, rescue teams, etc.) using Resource Mon-
itor, (2) distribute resources to the rescue teams using Resource Manager, (3) analyze
different deployment strategies using Strategy Analyzer, and finally (4) find the re-
quired steps toward a selected strategy using Deployment Advisor. EDS is representa-
tive of a large component-based software system, where the components communicate
by exchanging messages (events). In the largest deployment of EDS to date, it was
deployed on 105 nodes and used by more than 100 users [Malek et al. 2005].

ACM Transactions on Autonomous and Adaptive Systems, Vol. 10, No. 4, Article 26, Publication date: February 2016.

26:4 N. Esfahani et al.

T Strategy | | Weather | Strategy
o vl Analyzer | | Analyzer | |Analysis KB E

'.'_;1;1 | = 1

Y@ | | | !
T T T

: :)]

i i i 1

e . ' o || :

gl | 1

t —~ |t i er) |ts]

(es) el

s [5 " | : 1

(eg) | | 1

=] — k I

% : lew) |t :

Yy . = I I I 1

ICIT } ! ! ! |

_ ~ Legend
() RequestEvent () Response Event UTransaction
— P

Fig. 2. EDS use case example.

Like any software system, the EDS functionality can be decomposed into a number
of use cases. The sequence diagram for one such use case, conducting strategy analysis,
is shown in Figure 2 as an example. We see that the execution of the use case involves a
sequence of interactions among different software components. Note that a component
here represents a coarsely grained software unit that deploys and runs independently
from other components (in contrast to lower level entities such as a Java object or a
code library). For instance, a component could be an Enterprise JavaBean or a web
application that resides on a web server.

Once deployed and operational, a real-world system such as EDS needs to contin-
ually evolve to ensure quality, meet changing user requirements, and accommodate
environment changes (such as hardware upgrades). The system must satisfy a number
of architectural objectives such as availability, performance, reliability, and security.

Nontrivial system adaptations typically require an abstract representation of the
components and their interactions at runtime, which can be used to formulate adap-
tation strategies and tactics [Garlan et al. 2004]. In the case of EDS, a model such as
Figure 2 could be used to reason about several adaptation concerns: (1) The model tells
us when it is safe to adapt the components. For instance, as shown in Vandewoude et al.
[2007], a model such as that of Figure 2 could be used to determine Strategy Analyzer
can be safely adapted prior to event e4 or after event e11, but not in between, as its state
is inconsistent. (2) The model could be used in the construction of self-protecting soft-
ware to detect abnormal (malicious) behavior. For instance, assuming that the model
of Figure 2 represents the only possible sequence of interaction among the components
under this use case, one could determine a suspicious behavior when Strategy Ana-
lyzer interacts with a component it has not previously interacted with, such as Resource
Manager. (3) The model could be used in the construction of self-optimizing software
by changing the deployment of software, that is, allocation of software components
to the system’s hardware nodes. For instance, as shown in Malek et al. [2012], to re-
duce the response time, components that interact frequently could be either collocated
on the same hardware node or on nodes that have reliable and fast network connectivity.

Building and maintaining such a component interaction model, however, faces sev-
eral difficult challenges, as outlined in Section 1. Our approach to addressing these
challenges involves learning a usage proximity model of dynamic component interac-
tions at runtime, without any predefined behavior specifications. Machine-learning-
based approaches alleviate engineers from maintaining the models manually, and also

ACM Transactions on Autonomous and Adaptive Systems, Vol. 10, No. 4, Article 26, Publication date: February 2016.

Inferring Software Component Interaction Dependencies for Adaptation Support 26:5

allow for their automatic adaptation and refinement to changing behavior of the system
and its environment.

3. APPROACH OVERVIEW

We first start with some definitions and assumptions to frame the discussion of our
mining approach. An event e is defined as a triple tuple e =<src, dst, time>, where
src and dst are identifiers for the source and destination components, and ¢ime is the
timestamp of its occurrence. Although an event is also likely to have a payload (e.g.,
a message in XML format), it is not relevant to this line of research, and thus not
modeled. In the EDS example of Figure 2, 12 events (e;—e12) are depicted.

A transaction ¢ is defined as a triple tuple ¢ =<start, end, R>, where start and end
respectively represent the events initiating and terminating the transaction ¢, while
R is a set of transactions that subsequently occur as a result of &. R # ¢ when ¢
is a dependent transaction (e.g., 1, 3, and #; in Figure 2), and R = ¥ when ¢ is an
independent transaction (e.g., o, t5, and #; in Figure 2).

A top-level transaction t is a kind of transaction where there is no other transaction x
in the system such that ¢ € x.R. In other words, a transaction is top level ifits occurrence
is not tied to other transactions in the system. A top-level transaction corresponds to
the system’s use cases (functional capabilities). For instance, # in Figure 2 is a top-
level transac980tion, initiated in response to e;, which represents the user requesting
a service from the system.

In this example, we see that the components involved in a use case interact closely
with one another. Given enough observations of the system at runtime, it is possible
to infer the stochastic component interaction model of the system. Such a model not
only infers the dynamic dependencies among the components (i.e., information equiv-
alent to that captured in Figure 2), but it also provides a probabilistic measure of the
certainty with which events and transactions may occur. Even though such a model is
simplistic and by no means captures the complete and precise behavior of the system,
it is surprisingly useful in addressing a number of adaptation objectives as we shall
see in later sections.

To keep our approach widely applicable, we make minimal assumptions about the
available information from the underlying system:

—Black-Box Treatment: We assume the software components’ implementation is not
available. This allows our approach to be applicable to systems that utilize services
or commercial off-the-shelf (COTS) components, whose source code is not available. It
also enables our approach to naturally support the evolution of software components.

—Observability of Event: We assume that events marking the interactions among the
system’s components are observable. An event could be either a message exchange
or a method call, which could be monitored via the middleware facilities that host
the components or instrumentation of the communication links.

—Observability of Transaction Duration: We assume events start and end, which as
you may recall indicate beginning and termination of a transaction, to be observable.
This is a reasonable assumption consistent with several prior research approaches
that have dealt with safely effecting runtime changes [Kramer and Magee 1990;
Vandewoude et al. 2007; Ma et al. 2011].

—Top-level transactions can be identified. Here we assume that a number of “entry
point” events exist that initiates top-level transactions. Such events typically repre-
sent the starting point of a system use case. An online banking system, for example,
may have menu items such as “Withdrawal,” “Deposit,” or “Check Balance” that trig-
ger different use cases. The EDS system, likewise, has client-server events (such as
e1 in Figure 2) that initiate different use cases.

ACM Transactions on Autonomous and Adaptive Systems, Vol. 10, No. 4, Article 26, Publication date: February 2016.

26:6 N. Esfahani et al.

Metalevel Subsystem
Analysis Planning
(Section §) (Section 6)

Monitori oy - E i
- Knowledge | (Section 4)

E_ve;'at/ ula > Self-Management ,
Log \ Base, Models
I'u'I-ina :

: Inferand l
! Interaction | ! Update :
! Rules i ! Models |

Is Monitored Manages
Sensor Effector
@] @

‘ Base-Level Subsystem ‘

ol

Fig. 3. Overview of our approach in the context of MAPE-K reference architecture.

With these assumptions, we proceed to define a novel approach for automatically
deriving the stochastic component interaction model by mining the execution history of
the software system. Figure 3 provides an overview of our approach in the context of the
well-known MAPE-K reference architecture [Kephart and Chess 2003]. Conceptually,
our approach belongs to the Monitoring component of the MAPE-K architecture. The
goal of our research is to use the data collected from the execution of the system to infer
useful models for self-management of software. Our approach consists of two high-level
components: Mine Interaction Rules and Infer and Update Models.

The Mine Interaction Rules component receives the Event Log of the system as
input and produces Transaction Association Rules (TARs) relating the relationship
between transactions that are occurring in the system and those that may happen in the
future. In essence, a TAR is a probabilistic rule representing the interaction behavior
of components comprising the system. This component also continuously compares the
predictions based on the inferred rules against the actual execution of the software.
Upon detecting an unacceptable level of error in the predictions, it discards the old
rules and learns a new set of rules given the latest collection of data.

The Infer and Update Models component takes the generated rules together with
the events that are occurring in the system to infer a suitable model of the base-level
subsystem for the purposes of self-management. It also ensures this model remains up
to date as it detects changes in the execution of the base-level software. These models
are intended for use by the other three phases of the MAPE cycle, that is, Analysis,
Planning, and Execution. The nature of the self-management model produced by this
component differs based on the nature of self-management concern. We provide three
examples of self-management models that have been inferred using such an approach
in our research and describe the challenges of building such models in Section 8.

First, in the next section, we describe in detail how our approach can be used to
infer the necessary models for balancing the trade-off between disruption and reach-
ability, while avoiding inconsistencies that may arise when changes are effected in a
running software system. The resulting solution is dubbed MOSAIC (Mining Of Safe
Adaptation Intervals for Component-based Software). MOSAIC illustrates an example
of a self-management model that is intended for use by the Execution phase of the
MAPE cycle. Afterward, we describe two more applications of our approach; one for
detecting potentially malicious behavior at runtime (Section 5), and the other for self-
optimizing a software system’s performance through redeployment of its components

ACM Transactions on Autonomous and Adaptive Systems, Vol. 10, No. 4, Article 26, Publication date: February 2016.

Inferring Software Component Interaction Dependencies for Adaptation Support 26:7

(Section 6). These two other examples help illustrate the applications of our approach
in the Analysis and Planning phases of the MAPE cycle.

4. SAFE COMPONENT ADAPTATION

Replacing a component in the middle of a transaction could place the system in an
inconsistent state. Consider a situation in which the Strategy Analyzer component of
Figure 2 is replaced after sending the request event e5, but before receiving the response
event eg. Since the newly installed component does not have the same state as the old
one, it may not be able to handle response eg and subsequently initiate transaction ¢
via event eg, resulting in an inconsistency and potentially the system’s failure. Three
general approaches to this problem have been proposed: quiescence, tranquility, and
version consistency.

Quiescence [Kramer and Magee 1990] is the established approach for safe adapta-
tion of a system. A component is in quiescence and can be adapted if (1) it is not
active, meaning it is not participating in any transaction, and (2) all of the components
that may initiate transactions requiring services of that component are passivated. A
component is passive if it continues to receive and process transactions, but does not
initiate any new ones. At runtime, the decision about which part of the system should
be passivated is made using a static component interaction model, such as that shown
in Figure 1. For instance, to change the Map component, on top of passivating itself,
Weather Analyzer, Strategy Analysis KB, HQ UI, Simulation Agent, and Resource Man-
ager components need to be passivated as well, since those are the components that
may initiate a transaction on Map.

While quiescence provides consistency guarantees, it is very pessimistic in its anal-
ysis and, therefore, sometimes very disruptive. Consider that the static interaction
model includes all possible dependencies among the system’s components, while at any
point in the execution of a software system only some of those dependencies take effect.
To address this issue, tranquility [Vandewoude et al. 2007] proposes to use the dynamic
component interaction model of a system in its analysis, an example of which is shown
in Figure 2. Under tranquility a component can be replaced within a transaction as
long as it has not already participated in a transaction that it may participate in again.
For instance, under tranquility, Map could be replaced either before it receives event
ey or after it sends event e, but not in between.

A shortcoming of tranquility, as realized in Vandewoude et al. [2007], was lack of
support for handling dependent transactions. This issue was addressed in version
consistency [Ma et al. 2011], which guarantees a dependent transaction is served by
either the old version or a new version of a component that is being changed.

Figure 4 depicts the high-level overview of MOSAIC, which is an instance of the
overarching approach depicted in Figure 3. It shows the steps comprising the Mine
Interaction Rules and Infer and Update Models of Figure 3.

The Mine Interaction Rules activities, shown on the left, start with the Construct
Itemsets activity processing the Event Log of the system to construct a large number
of Itemsets. An itemset indicates the events that occur close in time. Itemsets are
then passed through a data mining algorithm to derive TARs relating the relationship
between transactions that are occurring in the system and those that may happen in
the future. Since mining may generate a large number of rules, some of which may be
invalid and redundant, we Prune Rules using heuristics to arrive at a small number of
predictive rules that can be applied efficiently at runtime.

The Infer and Update Models activities, shown on the right in Figure 4, start with
the Track Active Transactions activity monitoring the currently running transactions
in the system. Select Relevant TARs then uses the information about currently active
transactions to pick a set of candidate TARs from the Rule Base for estimating the

ACM Transactions on Autonomous and Adaptive Systems, Vol. 10, No. 4, Article 26, Publication date: February 2016.

26:8 N. Esfahani et al.

Select
Relevant
TARs

]
i

T

r O

HE

(] ' .

e e 1. Usage

‘5 [Construct Fregichons] Usage ElRiptilties ~
'g ltemsets H Prediction Candidate

: :I" Registry Update TARS

' @

£ il Chek || el

‘o so<o=|Prediction| | CoraC 3 T
= Accuracy | -1 i

: H

Fig. 4. Overview of MOSAIC.

usage probability of components. Update Predictions uses candidate TARs to update the
Usage Prediction Registry, which is the model used by the Execution phase of the MAPE
cycle for determining whether a component should be adapted or not. Essentially, it is a
data structure that contains the up-to-date usage predictions for the components in the
system. The usage prediction for each component is the probability that the component
will imminently be used as a result of the transactions running in the system. These
predictions can be calculated either continuously or on an as-needed basis.

Finally, as indicated by Check Prediction Accuracy, the predictions are scrutinized
at runtime, and if they go above an unacceptable threshold, a new round of mining
based on the newly collected log of events is initiated. As a result of a new round of
mining, old rules are discarded and a new set of rules are adopted for use. This allows
the approach to incorporate changes due to how the software is used or its evolution
into the mining process. In the following sections, we describe the details of MOSAIC.

As discussed in detail next, using the usage predictions at runtime, MOSAIC is
able to determine “safe” times to adapt a component, in the sense that the usage
predictions indicate whether disruption would likely occur if adaptation were to take
place for a particular component. Beneficially, MOSAIC is able to use the same minimal
assumptions as quiescence in order to provide inconsistency-free adaptation, while also
minimizing disruptions that occur as a result of adaptation. While MOSAIC may be
deployed independently, one beneficial implementation allows deployment of MOSAIC
alongside a quiescence implementation. This approach has the benefit of allowing safe
adaptation when disruption-reduced or -free adaptation is possible (using MOSAIC),
while allowing fallback to quiescence and its forced disruptions when a high level of
usage does not allow disruption-reduced or -free adaptation.

4.1. Mine Interaction Rules

This section describes the Mine Interaction Rules activities (recall Figure 4). These
activities run asynchronously, separate from the system’s execution, and potentially
on a different platform. It may repeat throughout the system’s execution to adjust the
model to the evolving behavior of the software system.

4.1.1. Event Log. Mining operates on an Event Log of the system, which represents an
execution history of the system for a sufficiently long period of time to be truly rep-
resentative of how the system is used. Clearly, MOSAIC is not applicable to systems
where such a history cannot be collected, or the system’s past behavior is not indicative
of its future, but we believe most systems do not fall in this category. Since our objective

ACM Transactions on Autonomous and Adaptive Systems, Vol. 10, No. 4, Article 26, Publication date: February 2016.

Inferring Software Component Interaction Dependencies for Adaptation Support 26:9

is to infer the relationship among the transactions, we would like mining to operate on
a representation that is in terms of transactions as opposed to events. As a result, the
Event Log of the system is automatically processed to determine all of the transactions
that have occurred by pairing the start and the end events for each transaction. Recall
from the preamble of Section 4 that consistent with the prior work, we assume these
types of events are observable and could be used to identify the occurrence of transac-
tions. From this point forward, we will mainly focus on transactions, though the reader
should be aware of the relationship to the events.

4.1.2. Constructing Itemsets. The first step to mining the relationship among the trans-
actions is to Construct Itemsets (see Figure 4). An itemset, as in the data mining lit-
erature for association rule mining, is a set of items that have occurred together. In
the context of our research, an itemset I is a set of transactions that have occurred
temporally close to one another at some particular point during the execution of the
system: I = {t1,to, ..., t,}.

The transaction records for the execution history of the system are transformed
into itemsets through a simple process. A new itemset is formed for each top-level
transaction, but not the transactions that those top-level transactions initiate. A top-
level transaction is automatically detected if its beginning, end, or both do not fall
within the beginning and end of another transaction. All other transactions are placed
in the itemsets for the transactions whose beginning and end times fully surround the
beginning and end times of the present transaction.

In reference to Figure 2, a new itemset would be created for #;, as its beginning
and end (determined by e; and eq2) do not fall within any other transactions. All
the remaining transactions fo, t3, #4, t5, and fg are added to I;; itemset as follows:
Ly ={ti.to, t3, L, t5, L}

Using this process, an entire segment of a software system’s execution history can
be transformed into a list of itemsets representing the occurrence of transactions to-
gether in time. This list, which contains all the itemsets, is conveniently called Itemsets.
MOSAIC is able to mitigate the impact of concurrently running top-level transactions
by using a sufficiently large usage history. Consider a version of the scenario depicted
in Figure 2 in which a second top-level transaction #; overlapping partially in time
with # starts and itself initiates a transaction tg that falls wholly within the begin-
ning and end times of both # and #;. MOSAIC would include ¢g in both I;; and I;5.
However, since transactions #; and ¢; are truly independent, the false placement of #g
in I;; is a random event that is not likely to occur in a significantly large number of
itemsets, and thus safely ignored by the algorithm using minimum frequency thresh-
olds. Section 4.4.2 discusses the effectiveness of this technique. While concurrency
undoubtedly deteriorates the effectiveness of the approach, the results discussed in
Section 4.4.2 demonstrate that the approach is generally effective and demonstrates
no notable concurrency-based deterioration until extremely high levels of concurrency
are encountered.

After constructing the itemsets, we trim the notion of time from the transactions
(recall tzme in the definition of e in Section 3). This essentially transforms transactions
into transaction types. In other words, we only use time for forming itemsets and from
now on we only use the type of transactions. However, for the sake of simplicity, we
keep referring to the transaction types as transactions, in the rest of this section.

4.1.3. Deriving Rules. Several data mining approaches [Han and Kamber 2006] can be
used to perform learning on the set of itemsets constructed this way. We found the
association rule mining class of algorithms to be the most suitable for our purposes.
The output of an algorithm of this type for our problem is a set of TARs. TARs are
probabilistic rules for predicting the occurrence of transactions as follows: X - Y : p

ACM Transactions on Autonomous and Adaptive Systems, Vol. 10, No. 4, Article 26, Publication date: February 2016.

26:10 N. Esfahani et al.

A TAR states that the occurrence of a set of transactions X implies the occurrence of
a set of transactions Y with probability p. As shown in Figure 4, TARs derived in this
way are eventually stored in the Rule Base for use during the system’s adaptation at
runtime.

For association rule mining algorithms, an appropriate value for p is the confidence
of the implication X — Y. Confidence is defined as

B ‘”eis:”s' 1 ifXCLAYCL, '”ef:e“‘ 1 ifXCI,
p= — 0 otherwise. 0 otherwise /

i=1

Confidence is an appropriate metric for p in TARs because it provides a measure of
the strength of the implication X — Y. TARs with strong relations between X and Y
have a high confidence value, while TARs with weak relations between X and Y have
a low confidence value.

Another metric that is commonly generated by data mining algorithms during the
learning phase is support:

|Itemsets| .
1 if XCTLAYCIL,
°T (21 {0 otherwise >/|Itemsets|.

While support is not appropriate for the value of prediction probability in TARs (i.e., p
in TARs definition), it is useful in that it provides a measure of the frequency with which
X and Y occur together. As such, we use a minimum support value during the mining
phase in order to filter out rare relationships that represent outliers in the general
usage of the system. Thus, the errors introduced in itemsets due to concurrent execution
of transactions in the system (recall Section 4.1.2) can be filtered out effectively using
a minimum support and confidence threshold.

While the mining algorithm in the Derive Rules activity produces logically accurate
TARs, it typically produces an excessively large number of TARs, some of which are
not useful. As such, the generated rules must be pruned to make them suitable for use
at runtime. As shown in Figure 4, the Derive Rules step terminates by passing the raw
set of generated TARs to Prune Rules.

4.1.4. Pruning the Rule Base. An excessively large number of TARs is produced as a
result of the Derive Rules activity, because we set the minimum confidence for a TAR
to be very small, that is, we do not filter out many TARs based on the confidence
level. While a TAR with a small p expresses less confidence in the prediction than
another TAR with a larger p, both predictions are accurate and can be used in unison
as explained in Section 4.2.3. We take this approach because a TAR with a small
confidence level may represent a valid transaction that rarely happens; thus, we should
not categorically exclude this information.

In addition, many of the unnecessary TARs are produced because the data mining
algorithm and its input (i.e., itemsets) do not fully incorporate all of the knowledge
that we have about the system. For instance, itemsets are unordered and thereby the
resulting TARs incorporate no ordering information. As a result, the mining algorithm
produces an excessively large number of TARs that are not useful.

Since we would like to use the rules at runtime, we need to prune them to a subset
of highly predictive rules that can be applied efficiently at runtime. To that end, and
as depicted in Figure 4, the Derive Rules step terminates by passing the raw set
of generated TARs to Prune Rules. There are three effective heuristics that we have
developed for pruning the TARs. While these heuristics are not exhaustive in removing
all redundancy in the Rule Base, they have proven effective in producing a manageable
set of TARs to apply at runtime.

ACM Transactions on Autonomous and Adaptive Systems, Vol. 10, No. 4, Article 26, Publication date: February 2016.

Inferring Software Component Interaction Dependencies for Adaptation Support 26:11

(1) Redundant TAR Pruning Heuristic: Consider TARs satisfying this pattern:

TAR, : X; — Y : py,

TARQZXQ—)Ysz,

where (Xp € Xi) A (p1 = po).

In this scenario, TAR; and TAR, predict the same set of transactions and at the same
level of confidence. However, the conditions for satisfying TARs is a subset of those
for TAR,, that is, X; is a subset of X;. As will be explained in Section 4.2.2, a TAR’s
conditions are considered to be satisfied, when the transactions comprising its left-hand
side have been observed. Therefore, TAR, and TAR; predict the same exact outcome,
except TAR; requires fewer conditions to be satisfied. We can safely prune TAR, since
it is redundant.

(2) Less Specific TAR Pruning Heuristic: Consider TARs satisfying this pattern:

TARl X — Y1:p1,

TARy : X — Y3 : po,

TAR3 X — Y32p3,

where (Y1 =Y, UY3).

In this scenario, TAR; makes a composite prediction of TARs and TARj3. All three TARs
are satisfied with the observation of the same set of transactions X. However, because
Y1 =Y, UY;3, TAR; is a composite prediction of the more specific predictions made by
TARs and TARj3. Given the definition of confidence and its use as the prediction value
D, the prediction value p; for TAR; will always be weaker (lower) than the prediction
values of ps and ps for TAR, and TAR3, respectively. As a result, TAR; is a less specific
rule and can be pruned.

(3) Misordered TAR Pruning Heuristic: We can also prune rules by incorporating
our knowledge of what constitutes a valid behavior. We can prune TAR : X — Y : p,
where 3x € X Ay € Y : x.start.src = y.end.dst. In this kind of TAR one of the predicted
transactions in Y has as its destination the source of one of the observed transactions
in X. Therefore, the TAR is useless because it predicts the use of a component that
must have already been used. It is important to note that, while this type of TAR
seems illogical and perhaps presumptively unlikely to be generated, the association
rule mining algorithm and its input (i.e., itemsets) do not recognize any transaction
ordering. Furthermore, these types of TARs can be highly predictive and are very com-
mon. Essentially they predict that the transaction necessary for another transaction
to occur will in fact occur with that transaction. Therefore, this pruning step removes
many useless rules and has the largest impact in MOSAIC.

At the completion of this activity a subset of generated rules remains, which is stored
in the Rule Base and used for runtime prediction of component usage. In EDS, these
heuristics were able to reduce the number of rules to one-tenth without losing their
expressive power. Section 4.4.1 evaluates rule reduction in the context of EDS.

4.2. Infer and Update Model
We now describe the activities comprising the Infer and Update Model from Figure 4.

4.2.1. Tracking Active Transactions. Track Active Transactions step processes any ob-
served event t,.start and ¢,.end, indicating the beginning and termination of transaction
t,, respectively. To that end, we use a data structure, called Top-Level Tracker, and rep-
resented as set TLT, for each top-level transaction active (i.e., currently running) in
the system. The purpose of TLTs is to keep account of the present transaction activity
in the system.

Upon observing ¢,.start, the state of TLTs is updated as follows. If ¢, is a top-level
transaction, a new TLT is created. But if ¢, is not a top-level transaction, its identifier
is added to all open TLTs, that is, ¢, is associated with every top-level transaction that
may have caused it. This is done because there is no way of knowing which top-level

ACM Transactions on Autonomous and Adaptive Systems, Vol. 10, No. 4, Article 26, Publication date: February 2016.

26:12 N. Esfahani et al.

transaction has actually initiated this transaction. Upon observing ¢,.end, if ¢, is not a
top-level transaction, it is ignored. On the other hand, if ¢, is a top-level transaction,
then the TLT corresponding to ¢, is closed.

Changes to TLTs impact the Usage Prediction Registry. In the following subsections,
we describe the process assuming ¢,.start has been observed, but revisit the situation
in which ¢,.end is observed before concluding.

4.2.2. Selecting the Relevant Rules. The updated TLTs are used to determine what new
predictions can be made about the probability with which components will be used.
All predictions of the system activity are made by using the TARs stored in the Rule
Base. We must determine what new TARs, if any, are implicated by the observation of
t,.start.

To that end, we iterate over all TARs in the Rule Base. A tar € Rule Base can only be
implicated by the observation of ¢, .start, if ¢, is a member of set X of that tar. That is to
say, we cannot make a new prediction based on the given tar, unless ¢, contributes to
the prediction. If this criterion is met, then we look to see if the tar is satisfied by any
open top-level transaction as tracked by TLT's. For a tar to be satisfied, all transactions
in X must have been observed during the processing of at least one TLT. Furthermore,
the tar’s prediction (i.e., Y) should have new transactions other than the ones that have
already occurred during the processing of the satisfying TLT. Stated differently, the tar
is only considered to have a useful prediction if (1) all of its prerequisites have been
seen, and (2) at least some of its predictions are unseen. If both of these conditions are
met, then the tar is added to the set CTAR, which is a set of all new TARs that are
candidates for being applied at that given point in time.

The TLT that satisfies the conditions for the presence of a tar in CTAR is said to be
a basis for the application of that tar. This basis information is tracked along with the
tar and used in the next stages.

4.2.3. Updating the Usage Prediction Registry. The next step is to apply the implicated
TARs to update the Usage Prediction Registries. Given a component ¢, there are typi-
cally more than a single TAR predicting its usage probability. While some may be due
to the new observation ,.start, others may be due to the prior observations. Therefore,
we must combine the various p values from all of the satisfied TARS into a single
prediction value u.. In the following discussion, we will use an example with ¢ = Clock.

Before describing how u. can be calculated, we need to define three sets: (1) CTAR, is
a set of candidate TARs that are supposed to affect a given component ¢ and defined as
CTAR, = {tar|tar € CTARA3t € tar.Y : t.start.dst = c)}. These are the new TARs based
on the observation #,.start. (2) ATAR, is the set of active TARs currently contributing
to u. due to observations made prior to £,.start. (3) Finally, PTAR. = CTAR. UATAR,
is the complete set of TARs that determine the new value of u,.

As an example, consider that ¢,.start = <StrategyAnalyzer, StrategyAnalysisKB>.!
Let us assume that we have ATAR o, = {tary : x1 — y1 : 0.5, tare : xo — y9 : 0.3},
where

x1 = {<HQU, StrategyAnalyzer>, <StrategyAnalyzer, Weather Analyzer=>},

y1 = {<Weather Analyzer, Clock>},

x9 = {<HQU I, Deployment Advisor>, <Deployment Advisor, Weather Analyzer=>},

yo = {<Weather Analyzer, Clock>}.

This is to say, prior to observation of the present #,.start, two TARs were predicting the
usage of Clock and ucjocr, was 0.65.

1For the sake of brevity, in this example, we are dropping the time value of the events and depict transactions
only by their start events.

ACM Transactions on Autonomous and Adaptive Systems, Vol. 10, No. 4, Article 26, Publication date: February 2016.

Inferring Software Component Interaction Dependencies for Adaptation Support 26:13

Based on the observed ¢,.start, CTARc;ocr. would be the set of all TARs in CTAR
such that <StrategyAnalyzer, StrategyAnalysisKB> ¢ tar.X and <some_component,
Clock> € tar.Y. For this example, let us assume that we have CTARc,cr = {tars :
x3 — y3:0.6,tary : x4 — y4:0.3, tars : x5 — y5 : 0.2}, where

x3 = {<HQU I, StrategyAnalyzer>, <StrategyAnalyzer, StrategyAnalysis K B>},

ys = {<StrategyAnalysisKB, Clock>},

x4 = {<StrategyAnalyzer, StrategyAnalysisKB>},

y4 = {<StrategyAnalysisKB, Clock>},

x5 = {<HQU I, Deployment Advisor>, <Strategy Analyzer, StrategyAnalysisK B>},

y5 = {<Deployment Advisor, Weather Analyzer>, <Weather Analyzer, Clock>}.

We can now describe how u, is calculated in five steps:

(1) Removing duplicate TARs: We do not need to reconsider a tar € CTAR,, which is
already actively predicting the usage of component ¢ (i.e., tar € ATAR,). Therefore, we
remove any such tar from CTAR, (i.e., CTAR. = CTAR. — ATAR,).

In our example, PTAR, contains no duplicates (all five TARs are different), so no
modifications are made to the sets at this step.

(2) Removing superseded TARs: A superseding relationship occurs when we have
TARs satisfying this pattern:

TAR, : X; —> Y : p1,

TAR; : Xo — Y : po,

where (X7 C X3).

In this scenario, TARs predicts the same set of transactions as TAR1, however, TAR,
makes use of more information than TAR; and hence makes a more informed predic-
tion. Therefore, TAR; is removed from its set (i.e., either CTAR, or ATAR,., depending
on which one it came from).

In our example, tars supersedes tary. In particular, tars predicts a more specific
execution path to the execution of <StrategyAnalysisKB, Clock>, so tars makes a
more informed prediction. As such, tary is removed from CTARc, leaving us with
ATARcjoer, = {tary, tares} and CTARc.cr, = {tars, tars}.

(3) Selecting the best candidate: Even after removing the redundant rules, we may
still have some partially overlapping ones. Partially overlapping rules express the
various execution paths that may eventually result in the use of same component.
Consider the following two TARs:

TAR; : {t1,t,} — {t3.%.} : p1,

TAR2 : {t25 to} g {t47 tc} - P2,

where (¢..start.dst = c).

Since TAR1.Y # TAR.Y, the superseding relationship cannot be used to remove one
of the TARs. However, the observation of a single ¢,.start should at most result in a
single prediction for the component ¢. We use a heuristic and choose the TAR with the
highest p value to be the best candidate. This TAR expresses the greatest risk that ¢
will be used. After this step, CTAR, must have a single member.

In our example, tars has the highest p value at 0.6. Therefore, tars is removed from
CTARcocr, leaving us with ATAR o, = {tary, tars} and CTAR e, = {tars).

(4) Trimming PTAR.: Analogous to the logic in the previous step, it is reasonable to
expect each top-level transaction to make a single prediction for a component ¢. When
there is more than one active top-level transaction, we cannot know with certainty
which top-level transaction actually initiated ¢,.start. However, based on the number
of active TLTs (recall Section 4.2.1), we know how many top-level transactions are
active in the system when ¢,.start is observed. Therefore, we approximate by limiting
the number of TARs contributing to u. to the number of top-level transactions active
at that point in time. As with the reduction of CTAR, in the previous step, we choose to
be conservative by keeping the TARs with the highest p values. We remove the TARs

ACM Transactions on Autonomous and Adaptive Systems, Vol. 10, No. 4, Article 26, Publication date: February 2016.

26:14 N. Esfahani et al.

with the lowest p value from PTAR, until the size of PTAR, is equal to the number of
active TLTs.

In our example, PTAR ;0. has three members: tary, tars, and tars. However, because
ATAR(jocr, only had two members prior to observation of ¢,.start, we know that there
are only two TLTs and thus two active top-level transactions. As such, PTAR ¢, is
now limited to the two TARs with the highest p values. As such, tary is removed from
PTAR(ocr, leaving us with PTAR ¢y, = {tary, tars}.

(5) Combining the predictions: At this point, we let the ATAR, to be equal to PTAR..
We can now recalculate u. based on the updated ATAR,.. Because there are no duplicate,
overlapping, or related TARs in ATAR,, we calculate u. by combining the prediction

values from individual TARs in ATAR, as independent probabilities:

u. = 1— probability c is not used = 1 — HﬁfARCl(l — pi)-

This follows from the fact that according to each TAR; € ATAR,, the probability of ¢
not being used as a result of the relationship modeled in TAR; is 1 — p;.

In our example, the new ATARjocr is PTARcjocr = {tary, tars}). Therefore, we can
calculate ucier, =1—(1—-0.5) % (1—0.6) = 1—(0.5) % (0.4) = 1—0.2 = 0.8. Therefore, the
new Usage Prediction Registry value for Clockis 0.8, up from the previous value of 0.65.

So far, we explained how the Usage Prediction Registries are updated when ¢,.start
is observed. However, the observation of #,.end can also update the Usage Prediction
Registries. If t,.end is a top-level transaction, the ¢/¢, corresponding to #,.end is removed.
As a result, all the TARs that have tl¢, as their only basis are removed from ATAR,.
Since in this case CTAR, = ¢, steps 1-4 are skipped, and step 5 is performed to
propagate the impact of these deletions on all of the components’ predictions.

The Usage Prediction Registry is either updated each time a transaction and its
corresponding events are observed, or on an as-needed basis.

4.3. Using Registry for Adaptation

The ultimate goal in our research is to use the models obtained through the mining
approach for finding a proper time to execute the adaptation decisions. In particular, the
predictive power of models allows us to achieve proper adaptation of components in the
Execution phase of the MAPE cycle. The probabilistic rules inferred using MOSAIC
collectively represent the stochastic dependency model of the system. Such a model
could be used in the context of both tranquility [Vandewoude et al. 2007] and version
consistency [Ma et al. 2011] for adaptation. In our current approach, we employ a
technique similar to that described in tranquility, where we temporarily buffer (store)
events intended for a component during the time it is being replaced. Alternatively,
we could have employed a technique similar to that of version consistency, where two
instances of a component are leveraged, and incrementally new top-level transactions
are shifted to use the new version.

4.3.1. Guaranteeing Consistency. As specifically noted in the preamble of Section 4, in-
consistency could result if a component is adapted at a time in which it has already
participated in a transaction that it participates in again. That is to say, to maintain
consistency, a component must not be adapted if it has been used in some top-level
dependent transaction until that top-level dependent transaction terminates. Our pre-
dictions would approximate that type of protection, given that a component that is
used typically ends up with a high usage prediction in its register and that value will
not dissipate until the top-level transaction that caused it terminates. However, there
is a slight risk that MOSAIC as described up to this point would not fully guarantee
consistency, because one cannot guarantee the accuracy of mined rules.

In situations where such a risk is unacceptable, we make a slight modification to
MOSAIC described in Section 4.2.3 that allows us to provide consistency guarantees.

ACM Transactions on Autonomous and Adaptive Systems, Vol. 10, No. 4, Article 26, Publication date: February 2016.

Inferring Software Component Interaction Dependencies for Adaptation Support 26:15

When we observe a transaction #,, which engages component ¢ (i.e., ¢,.start.dst = c),
we lock the value of u, = 1, since we now know ¢ has participated in a transaction,
and changes to it may result in inconsistencies. Locking the value of u, prevents ¢ from
being adapted. Once the top-level transaction that caused ¢, finishes, we can remove
the lock from the value of u. to roll back to the mechanism described in Section 4.2.3 for
updating u.. However, as you recall from Section 4.2.1, we cannot determine which top-
level transaction caused #, (i.e., we do not know the TLT). Therefore, to be on the safe
side, we take the conservative approach and keep the u, locked at 1 until all of the TLT's
that are the basis of that observation have closed. In this way, once a component has
been engaged, it will not be allowed to adapt until all top-level transactions that could
have caused that engagement are complete. Further, because this technique is based on
observed usage and not predicted usage, this technique guarantees consistency despite
the probabilistic nature of the Rule Base.

Although expected to be rare, if a transaction is observed that reflects a component
dependency that was not observed during Mine Interaction Rules, the approach makes
the most conservative assumption that the transaction is a top-level transaction. This
maintains the consistency guarantee even in the presence of previously unobserved
component dependencies. Such an observation may also be used to initiate a new
iteration of Mine Interaction Rules, as the observation demonstrates that the actual
component dependencies of the system have evolved from those reflected in the Rule
Base.

4.3.2. Disruption versus Reachability. When u, = 1, we do not adapt ¢, since the change
is likely to leave the system in an inconsistent state. However, when u. < 1, ¢ has not
yet been in a top-level transaction, but could still be used at anytime in the future. If
we adapt ¢, we may disrupt the system, as events sent to that component would be
buffered until the adaptation has finished. To eliminate disruption, it is tempting to
use u, = 0 as a condition for adapting c. It may, however, take a long time for u, to
become 0 and this could create a reachability problem, that is, a situation in which one
has to wait a long time, or even forever, before the condition for adaptation is met.

On the other hand, as you recall from Section 4.2.1, since we cannot determine the
top-level transaction that caused a transaction ¢,, it is very likely that we associate ¢,
with other top-level transactions that have not caused #,, and hence, it will impact the
usage prediction of many other components that are only involved in other top-level
transactions. This conservative approach, which puts consistency at the forefront, re-
sults in overestimating the usage prediction. Therefore, the value of ., would be nonzero
most of the time, and hence, in practice, it is often reasonable to allow adaptation when
U, < €.

The value of ¢ impacts disruption and reachability. Disruption and reachability
present a trade-off. We can either assign a very low value to ¢, and wait until the system
is not busy, or assign a very high value to ¢, and just make the change. The first option
has a limited disruption, however, reachability of the adaptation is not guaranteed as
the system may constantly remain busy. The second option causes disruption in the
system with the goal of making the adaptation reachable faster. The trade-off between
disruption and reachability boils down to selecting the right value for €. As described
next, we take an approach that allows us to base this trade-off on the past behavior of
the system in combination with a user understandable threshold specified by the user.

Figure 5 depicts a hypothetical example that shows how the registries behave in
practice. A typical registry goes through this motion many times over the execution
of the system: starting at 0 when a top-level transaction is initiated, rising as new
observations are made and TARs are applied, and falling back to 0 once the top-level
transaction has terminated. The steps in these functions represent the times at which

ACM Transactions on Autonomous and Adaptive Systems, Vol. 10, No. 4, Article 26, Publication date: February 2016.

26:16 N. Esfahani et al.

Component is Used - Component is Not Use?i

Fig. 5. Hypothetical behavior of u. as ¢,.start is observed for some top-level transactions over time: (a) c is
eventually used, and (b) ¢ is not used.

the registries are updated. Finally, when the rules are accurate, we expect the step
function to be skewed to the left (similar to log(x) function) when the component is
eventually used, and skewed to the right (similar to e* function) otherwise. This is
because typically when a component is eventually used, additional observations are
made that subsequently satisfy more TARs, which combine to increase the component’s
usage probability.

As depicted in Figure 5, when a component has a u. > ¢ at the time of adaptation
decision and the component actually gets used before the end of that transaction (ac-
tive), we say it is a True Positive (TP) result. When a component has a u, < ¢ at the
time of adaptation decision and the component is eventually used (active), we say it
is a False Negative (FN) result. Similarly, False Positive (FP) and True Negative (TN)
results can be defined when a component is not eventually used (inactive) as depicted
in Figure 5(b). FN impacts the disruption in the system, as it depicts the period of time
in which we allow adaptation, even if the component could be used. On the other hand,
FP impacts reachability of safe interval, as it depicts the period of time in which we
could allow adaptation, but refuse to do so.

The remaining challenge is how to pick a value for € that is meaningful. We define ¢
in terms of another parameter r, which represents the tolerable rate of all adaptations
that may result in disruption. Essentially, we ask the user of the system as to what is
the acceptable level of disruption in the system. We then use the history of the system to
find a right value for ¢ to maximize the reachability of adaptation within the boundary
of acceptable disruption. We believe r is a reasonable threshold that can be specified
by the user, for example, the user stating that on average no more than 0.05 (5%) of
adaptations should result in a disruption. In essence, r is used to derive the value of ¢,
which is the basis of the trade-off between reachability and disruption.

To be able to calculate ¢ based on r, we have to relate a system-wide user-provided
threshold defined by r to a component-specific threshold defined by €. We do this from
a probability distribution of prior predictions, embodied in the recorded u, values, that
were calculated in the past. Let U, represent the set of all recorded predictions for
components that were eventually used (active), and U; represent the set of all recorded
predictions for components that were eventually not used (inactive). In essence, U,
represents the set of all recorded u. values corresponding to the step function of
Figure 5(a) for all components in the system (we refer to these values as u,). Simi-
larly, U; represents the set of all recorded u,. values corresponding to the step function
of Figure 5(b) for all components in the system (we refer to these values as u;). As a
result, U, indicates the situations in which adaptations could have possibly disrupted
the system in the past.

Given U, and U, it is possible to build the corresponding frequency distributions Py,
and Py, as shown in Figures 6(a) and 6(b), respectively (though € is not known when
these are first built). Using conventional techniques [Bertsekas and Tsitsiklis 2008],
we can derive the Cumulative Distribution Functions (CDFs) Fy, and Fy, from Py, and

ACM Transactions on Autonomous and Adaptive Systems, Vol. 10, No. 4, Article 26, Publication date: February 2016.

Inferring Software Component Interaction Dependencies for Adaptation Support 26:17

(a)
Py,
7 Ua i
0 € 1" g
(c)
Fy,
1 _____________ 1 1
TE------ Eua E ui
0 € 1 0 € 1°

Fig. 6. (a) Frequency distribution for U,, (b) frequency distribution for U;, (¢c) CDF for U,, and (d) CDF
for U;.

Table I. Experimental Systems Used in Evaluation, and Effects of
TAR Pruning Heuristics

of # of TLT Concurrency Errors # of TAR
Users Observed Rate ‘ Per Itemset Initial ‘ Remain
1 500 0.00% 0.00 38,582 1,683
10 1,628 1.69% 0.13 34,050 2,190
28 2,787 4.51% 0.35 38,248 2,331
40 3,330 10.94% 0.92 38,460 1,758
80 11,920 36.32% 4.19 35,168 3,126
137 3,543 60.77% 11.26 31,442 3,143

Py, as depicted in Figures 6(c) and 6(d), respectively. Fy, (¢) defines the fraction of all
uq, € U, samples where u, < €. In other words, r = Fy, (¢). Thus, we can calculate € based
on the r value specified by the user as the inverse € = Fl}al(r). In terms of probability
theory, this means that ¢ is the r-quantile of the probability distribution [Bertsekas and
Tsitsiklis 2008]. The CDF would need to be updated either periodically or as needed
based on the execution history of the system.

It should be apparent from Figures 6(a) and 6(b) that the key to limiting error in
MOSAIC is to skew Py, toward high values of v and Py, toward low values of u. This will
result in Fy;, remaining at low values and then escalating quickly as it approaches 1.0,
while Fy, escalates quickly and then grows gradually to 1.0. This difference in Fy;, and
Fy. can be seen in Figures 6(c) and 6(d) based on the slight difference in skewing shown
in Py, and Py, in Figures 6(a) and 6(b). If MOSAIC is able to skew the distributions for
active and inactive components differently, then it effectively achieves the real goal of
MOSAIC: it distinguishes between active and inactive components in advance.

4.4. Evaluation

We have developed a prototype of MOSAIC using Apriori—an association rule-mining
algorithm with an implementation provided in WEKA [Hall et al. 2009]. As explained in
Section 4.1.4, we intentionally use very low confidence and support thresholds: p = 0.05
and s = 0.045. We performed experimentation on runtime adaptation of EDS (recall
Section 2). To evaluate MOSAIC, we used several versions of EDS as shown in Table I.

ACM Transactions on Autonomous and Adaptive Systems, Vol. 10, No. 4, Article 26, Publication date: February 2016.

26:18 N. Esfahani et al.

@ [() |

10 Users

|t lh\v‘\‘v‘v‘v »‘H;
28 Users : |
1140 Users -
08| - - -80 Users
—— 137 Users
® 06
-]
L |
0.4}
0.2f

§ LR
0 el

0 0.2

Fig. 7. The results from the experiments: (a) CDF of U, and (b) CDF of U;.

We used a baseline version of EDS with a single user. We then repeated the eval-
uations on higher concurrency systems to evaluate the susceptibility of MOSAIC to
concurrency errors. The 80 and 137 experiments were simulated by using hyperactive
dummy users, as EDS never naturally reached that level of concurrency error. There-
fore, the values for users are merely projections, and the precise values for concurrency
error rate should receive primary focus. The Concurrency Errors column in Table I
shows what percentage of all recorded transactions were allocated to more than one
top-level transaction due to concurrency, as well as the average number of these
erroneously recorded transactions per top-level transaction. Across all experiments,
an average of 7.47 transactions occurred as part of each top-level transaction, with
minimum and maximum values of 7.27 and 7.78 occurring in the 137 and 1 experi-
ments, respectively. Finally, to assess the accuracy and performance of MOSAIC under
different conditions, the 80-user experiment was intentionally allowed to execute for
a longer period of time, which resulted in collection of significantly more top-level
transactions.

4.4.1. Effectiveness of TAR Reducing Heuristics. We first show the effectiveness of our rule
pruning heuristics (recall Section 4.1). Significant reduction in TAR volume in the
Prune Rules stage took place in all of the experiments. The reduction number can be
seen in Table I. This reduction can only be truly appreciated when considered with two
other facts: (1) the reduced rule base does not significantly degrade the accuracy as
evaluated next, and (2) because of this reduction, the remaining rules can be applied
very efficiently at runtime (evaluated in Section 4.4.4).

4.4.2. Accuracy of Component Usage Predictions. A crucial evaluation dimension for
MOSAIC is the degree to which it correctly predicts the usage of a component. As
discussed in Section 4.3.2, the accurate prediction is manifested through skewing Fy;,
to a slow growth function that then escalates quickly at high values of u,, while at the
same time skewing Fy, to a quickly escalating function that then grows only gradually
over high values of ;. Figures 7(a) and 7(b) show Fy, and Fy, for the various exper-
imental systems that we used. It is clear from comparison of these two charts that
MOSAIC achieved significant differentiation between active and inactive components.

Using these CDF's, we can quantify the effectiveness of MOSAIC in terms of FN,
TP, TN, and FP. As discussed in Section 4.3.2, MOSAIC uses ¢ to fix the FN rate at r.

ACM Transactions on Autonomous and Adaptive Systems, Vol. 10, No. 4, Article 26, Publication date: February 2016.

Inferring Software Component Interaction Dependencies for Adaptation Support 26:19

Table II. Error and Accuracy Rates for the Experimental Systems

of False True True False €
Users Negative Positive Negative Positive Value
1 0.212 0.788 0.951 0.049 0.66
10 0.204 0.796 0.947 0.053 0.71
28 0.203 0.797 0.951 0.049 0.74
40 0.203 0.797 0.946 0.054 0.72
80 0.204 0.796 0.937 0.063 0.92
137 0.202 0.798 0.825 0.175 0.95
1
0.9
0.8
2 [
© 0.7} 4]
o i
a
2%
5 05 ;
n? 0.4 #* Perfect Classification
o Mt Random Guess
3
2 0373 1 User
10 Users
= 0.2 28 Users
10 40 Users
0.1 - = =80 Users
0 —— 137 Users

0 01 02 03 04 o',js_o:s 07 08 09 1
False Positive Rate

Fig. 8. ROC Curve for various experiments.

Therefore, the effectiveness of MOSAIC must be measured in its ability to minimize
the FP rate based on the fixed value of FN. Because MOSAIC achieved significant
differentiation between Fy;, and Fy,, for r = 0.20, we were able to set € at relatively
high values and achieve the very favorable error rates as shown in Table II. As seen,
in all experiments except for that with the highest concurrency, the unfixed error rate
of FP was held to below 7%, well below the fixed FN error rate. Beyond demonstrating
accuracy in the prediction of component activity, these ratios also demonstrate that
MOSAIC was not noticeably impacted by an increase in concurrency in the system
until concurrency reached extreme levels.

This quality of differentiation can be viewed with a Receiver Operating Characteristic
curve (ROC curve) [Fawcett 2006; Tan et al. 2005], often used to evaluate a binary
classifier independent of any other binary classifiers, as shown in Figure 8. In our case,
the ROC curve depicts the change in the ratio of TP to FP as different ¢ thresholds are
chosen. The extreme of ¢ = 1.0 exists at the origin of the ROC plot, while the extreme
of ¢ = 0.0 exists at the point (1, 1) of the ROC plot. Therefore, it can be seen how the
TP and FP rates respond by moving the ¢ threshold to balance between (1) rate of
disruption and (2) reachability of adaptation. The ROC curve shows that MOSAIC is
able to achieve a high rate of true positives despite changes in the ¢ threshold.

The comparison of the different experiments also shows the effect of concurrency
on MOSAIC. As seen in Table II, higher values for ¢ are needed to achieve r = 0.20
as concurrency increases. This occurs because, with many users in the system, there
are many more observations that allow MOSAIC to predict usage of a component c,
when c is actually used. Therefore, as concurrency increases, the values for u, are more
skewed toward 1.0 until, at a concurrency error rate of roughly 60% for EDS (i.e., case
of 137 users), active components are constantly at u, = 1.0 until the transactions they

ACM Transactions on Autonomous and Adaptive Systems, Vol. 10, No. 4, Article 26, Publication date: February 2016.

26:20 N. Esfahani et al.

Table Ill. Tracking of False Negative (FN) Threshold
[#of Users | Mean False Neg. Rate | 95% Conf. Interval |

1 0.209 [0.204, 0.215]
10 0.200 [0.196, 0.205]
28 0.203 [0.199, 0.207]
40 0.210 [0.207, 0.213]
80 0.206 [0.191, 0.222]

137 0.208 [0.203, 0.213]

participate in subside. While this is beneficial because it approaches perfect classifi-
cation of active components (as can be seen in Figure 8, higher concurrency systems
actually escalate to the (0, 1) point more directly), it results in two detriments to
MOSAIC.

First, once the concurrency rate forces € to be set to 1.0 given some r value, ¢ has
reached its maximum value and as such cannot compensate for the increasing false
positive rate by moving to a higher value. Therefore, once concurrency forces ¢ to be set
to 1.0 to achieve r, MOSAIC can no longer compensate for the higher FP rates caused
by even further increases in concurrency. Second, as concurrency increases to greater
levels, components remain active for greater portions of time. But, since at that point
all active components are effectively always at u, = 1.0, problems of reachability may
occur if the components never become inactive. An implementation of MOSAIC based
on version consistency [Ma et al. 2011] would address this problem, by bringing a new
version of the component on line to service the new top-level transactions, while the old
component gradually transitions to an inactive state. In cases that having two versions
of a component is not possible (e.g., due to limited resources), MOSAIC can fall back
on quiescence [Kramer and Magee 1990], which by its nature disrupts the system, as
discussed in the preamble of Section 4. In general, since MOSAIC is an opportunistic
(passive) approach, in settings where a software component never reaches a suitable
state for adaptation without explicit intervention, one has to fall back on disruptive
methods, such as quiescence, for adaptation. That said, we have never been able to
recreate such an extreme scenario in EDS, using real user loads or even the highly
extreme simulated cases.

4.4.3. Accuracy of Desired Disruption Rate. The third point of evaluation is the degree to
which MOSAIC achieves the desired r rate of disruption during adaptation. The evalu-
ation results presented in the previous section and shown in Table II were prospective
error rates due to setting ¢ at the specified level based on historic prediction values. In
this section, then, we look to see how well the false negative rate r was tracked once
€ was set. Table IIT shows the mean false negative rates and 95% confidence intervals
for those false negative rates for the different experimental systems. These statistics
were calculated based on 450-sample moving averages that were recalculated at 45
sample intervals. As shown, the system very effectively tracks the chosen » = 0.20 and
maintains a fairly tight confidence interval around its mean. Furthermore, it should
be noted that the rate of concurrency does not noticeably affect the tracking of r.

4.4.4. Performance and Timing. The next evaluation criteria are the performance bench-
marks of Infer and Update Models activities. We have collected these numbers on a
MacBook Pro laptop with 2.53GHz Intel Core i5 processor and 4GB 1067MHz DDR3
memory. The performance of updating the predictions at runtime consists of two pri-
mary elements: retrieval of relevant TARs (recall CTAR from Section 4.2.2) and update
of the Usage Prediction Registry by applying the rules. For the former, MySQL database
version 5.5.8 is used to store the rule base. However, because retrieval of TARs from
MySQL was observed to take typically between 1.355s and 0.959s, we implemented a

ACM Transactions on Autonomous and Adaptive Systems, Vol. 10, No. 4, Article 26, Publication date: February 2016.

Inferring Software Component Interaction Dependencies for Adaptation Support 26:21

Table IV. Performance of Rule Application

of Mean Time for Rule 95% Confidence
Users Application (ms) Interval (ms)

1 3.23 [3.087, 3.378]

10 3.80 [3.587, 4.016]

28 2.88 [2.700, 3.056]

40 2.14 [2.093, 2.184]

80 4.90 [4.602, 5.204]

137 5.04 [4.962, 5.126]

Table V. Time to Derive Rules

[#of Users | Time for Rule Learning |
1 2min 36.425s
10 2min 38.946s
28 2min 11.308s
40 2min 35.236s
80 3min 28.568s
137 3min 26.992s

simple caching of the Rule Base. Based on this caching, the combined time of retriev-
ing relevant TARs and updating the Usage Prediction Registry by applying the rules
takes very little time. The mean processing times and 95% confidence intervals for
those processing times are given in Table IV. As seen, the processing times are quite
short, tlghtly bound in the 95% confidence intervals, and not noticeably effected by the
increase in concurrency except for a few m1lhsecond gain in mean processing time for
larger rule bases.

4.4.5. Learning Overhead. The final evaluation criteria are the performance bench-
marks of Mining Interaction Rules activities. We have collected these numbers on
a MacBook Pro laptop with 2.53GHz Intel Core i5 processor and 4GB 1067MHz DDR3
memory. The data used in the evaluation of the mining activities was collected from
30min execution of EDS under the varying number of use cases shown in Table 1. The
performance of these activities was generally given less focus, since the Mine Interac-
tion Rules activities are performed asynchronous to the operation of the system. As
such, the overhead involved in the Mine Interaction Rules activities do not impact the
operation of the system and can be executed independently thereof. Nonetheless, we
found that the mining of the event logs to generate the rules has been extremely fast.
Although we set our support and confidence values very low, resulting in a large num-
ber of rules to be generated, Apriori has always completed that in less than 2s in all of
the experiments described here. When including additional processes involved in the
learning of rules from the Event Log, the rule learning overhead amounted to less than
4 minutes in all experiments as shown in Table V. Of additional note, the increase in
concurrency level and observed transactions in the system across the experiments did
not result in a substantial increase in the time duration of learning rules. Therefore,
it is expected that the rule learning activities would be scalable even as the level of
concurrency in the system increases.

5. DETECTING ANOMALOUS BEHAVIOR FOR SELF-PROTECTION

This section outlines another application of our mining-based approach for inferring
the models for self-management. More specifically, we describe an application of our
approach in mining models that can be used for detecting anomalous, possibly malicious
behaviors in component-based software. Such capability would typically be realized in
the Analysis phase of the MAPE cycle in a self-protecting software system.

ACM Transactions on Autonomous and Adaptive Systems, Vol. 10, No. 4, Article 26, Publication date: February 2016.

26:22 N. Esfahani et al.

5.1. Background

As modern software systems become increasingly modular, distributed, and interactive,
they are also facing unprecedented security challenges, especially under new computing
paradigms such as mobile and cloud computing, prone to cyber attacks. Conventional
techniques for securing software systems, often manually developed and statically
employed, are therefore no longer sufficient. This has motivated active research in
dynamic and adaptive security approaches [Chess et al. 2003]. In particular, active
research has focused on self-protecting software systems, a class of systems capable of
autonomously defending itself against security threats at runtime [Yuan et al. 2014b].

The first step toward autonomic and responsive security is the timely and accurate
detection of compromises and vulnerabilities at runtime, which is a daunting task in its
own right. Data mining techniques have been widely applied in this regard, however,
most security-oriented data mining research to date has focused on “lower layers” of
a software system in an architectural sense, that is, mining data at network, host
machine, or source code levels. As a result, such approaches mainly address specific
types of threats that are tactical in nature, but the “big picture” understanding of
attacker strategy and intent, as well as overall security posture of the system appears
to be lacking. Furthermore, these approaches typically can do very little to address
the growing concern of insider threats, where attackers use the system with legitimate
credentials instead of intrusions [Salem et al. 2008].

In contrast, our research has focused on developing a threat detection approach based
on software component interactions as opposed to mining data collected from network
traffic or source code. Our underlying insight is that many cyber attacks misuse the
system in a way that deviates from normal system behavior. Take the EDS system
for instance; since it is an online system that manages sensitive information such as
personnel records and locations, it may be subject to various intrusions and exploits
including SQL Injection, Cross-Site Scripting (XSS), and Cross-Site Request Forgery
(CSRF), just to name a few [OWASP 2013]. As a concrete example, suppose an attacker
obtains a valid user login and hijacks the Strategy Analyzer component through the
Headquarters User Interface (HQUI) component. Instead of calling Weather Analyzer
and Strategy Analysis KB components as prescribed in the use case in Figure 2, the at-
tacker sends requests from Strategy Analyzer to the Resource Manager and Repository
components to retrieve sensitive information about all deployed resources, as shown
in Figure 9. Such a violation of system usage occurs at the application level and is
therefore much harder to detect and thwart using conventional firewalls and intrusion
detection devices, which are primarily concerned with ports and protocols.

To be able to effectively detect potentially malicious behavior at the application
level, there are two main categories of techniques: signature-based or anomaly-based.
Signature-based techniques attempt to capture the signatures or specifications of at-
tacks as the basis for detection, which are usually very accurate and efficient but
require constant maintenance as attack strategies and tactics evolve ever so rapidly.
Nor can these techniques detect unknown threats. Anomaly-based techniques, on the
other hand, seek to build a “normal” system usage model as the basis for threat detec-
tion. Our research shows that the generic mining approach depicted in Figure 3 can be
used as an effective model following the latter category.

5.2. Anomaly Detection Based on Association Rules

After association rules are generated from the mining phase as described in Section 4.1,
we are not quite ready to apply them directly to detect anomalous behavior from the
system’s event execution streams. In fact, this problem scenario is the opposite of
typical uses of association rules—instead of using them to predict what item(s) are

ACM Transactions on Autonomous and Adaptive Systems, Vol. 10, No. 4, Article 26, Publication date: February 2016.

Inferring Software Component Interaction Dependencies for Adaptation Support 26:23

Strategy Resource =
Analyzer Manager Reposftory \&J
I

HQUI |

@~ ~ i
() i i : i
T T T —
P ! L @)Y
= | 1] 1
(&) ! 1 1 |
L ! !
t ty : :
1 1]
. : |
I 1 1
= @ ! ! :
i |G oW |
% | eg_ . Ir :
T | I]
J — — I I 1 I
(o) ! ! I 1 i
Legend
() Request Event () Response Event |:|Tran5aclion
— g

Malicious Malicious Malicious
~—, Request Event 4 Response Event Transaction

Fig. 9. Example attack scenario.

frequently associated with a given set of items, the question we ask here is, “is this
transaction infrequently associated with the given itemset of transactions, so much as
to warrant an alarm?” Our basic approach can be roughly outlined as follows:

For an itemset containing a top-level transaction 7' and a set of child transactions
t1, %, ..., t,, by observing the start and end times of the messages, we can find all the
Enclosing Transaction Sequences (ETS) <x;, ..., xj_1, xj> such that each transaction is
the child of the preceding transaction. In Figure 2, for example, <t;, to>, <t1, t3, t4, t5>,
and <ty, t3, tg> are such sequences. For normal use cases, all such sequences should
have been captured in the rule base after we have observed enough transactions from
the event log. For malicious uses of the system, however, some of the ETS such as
<t, t3, t4> and <ty, t3, t5> in Figure 9 occur at a much lower frequency and thus not
found in the rule base. Each not-found ETS will be marked as a violation, and we
can mark the itemset as anomalous when the number of violations reach a certain
threshold.

Note that, given the fact that anomalous events are rare events occurring with
low frequency, the vast majority of the generated association rules represent normal
system use. Therefore, unlike traditional associations mining, we set the minimum
support and confidence levels of the Apriori algorithm to a very low level (e.g., 0.1).

Initial evaluations in our prior work [Yuan et al. 2014a], however, showed that
even though the approach works effectively for a single-user scenario, the precision of
detection deteriorates rapidly as the number of concurrent users grows. The reason is
obvious: as the system concurrency increases, a child transaction in the event log may
be observed to fall under multiple overlapping top-level transactions, thereby causing
more and more erroneous ETS sequences to be observed that resulted in False Positives.
To address this issue, we enhanced our approach by developing a quantitative anomaly
likelihood that accounts for multiple overlapping top-level transactions, in lieu of a
simple yes/no flag for marking ET'S violations.

For any transaction ¢, suppose by observing the start and end timestamps of mes-
sages we find m top-level transactions T4, Te, ..., T}, under which ¢ falls. For a normal
transaction, one of the top-level transactions should be a true parent, with matching
ETS sequences captured in the rule base that “explains” the existence of . Conversely, if
none of the T;’s can explain ¢, we have reason to believe it is an anomaly. In other words,

ACM Transactions on Autonomous and Adaptive Systems, Vol. 10, No. 4, Article 26, Publication date: February 2016.

26:24 N. Esfahani et al.

Table VI. Detection Results Under Varying Concurrency,
Confidence Threshold = 0.90

#Active users 10 20 50
TP Count 50 47 40
FP Count 10 9 5
FN Count 12 18 13
TN Count 35,056 34,505 | 34,398
TP Rate (TPR) 0.806 0.723 0.755
FP Rate (FPR) | 2.85E-4 | 2.61E-4 [1.45E-4
Precision 0.833 0.839 0.889
Recall 0.806 0.723 | 0.755
F-Measure 0.820 0.777 0.816
TPR = TP/(TP + FN); FPR = FP/(FP + TN)
Precision = TP/(TP + FP); Recall = TPR
F-Measure = 2TP/(2TP + FP + FN)

Size of data: 5000 itemsets/use cases per user.

the likelihood of # being an anomaly is the conjunctive probability of £ not explained by
T; for all i = 1, ..., m. More formally, assuming probabilistically independent actions
among concurrent users, we have

Ponomaly(t) = |:1_[(1 - conﬁ):| , (1)

i=1

where conf; is the highest confidence of the TARs (recall Section 4.1) we can find in the
rule base for the ETS’s of ¢ among the children of T;. Note that the anomaly likelihood
is normalized by taking the geometric mean. Obviously, Pynomay(t) € [0, 1], and when it
exceeds a configurable detection threshold, the transaction is detected to be an anomaly.

5.3. Evaluation

Our experimentation environment involves a customized instance of the original EDS
system in a similar setup as introduced in the previous section. In addition to the
normal system use cases, we injected the attack scenario outlined in Figure 9 to the
simulation runs according to a predefined anomaly probability, which is set at ~0.3%
(3 o or standard deviations of a normal distribution) under the assumption that covert
malicious attacks are rare events.

We use the same Apriori implementation from WEKA for association rule generation.
Both simulation and data analysis are run on a quad-core Mac OS X machine. Table VI
shows our new evaluation results with different numbers of users. The new results
show our enhanced algorithm is very effective in detecting the anomalous use of the
system in an automated, unattended fashion, with both high recall and high precision.
In the 10-user scenario, for example, our approach detects 80.6% of the anomalous
events with a 83.3% precision. This demonstrates that our approach can be used as
an effective mechanism to enhance both overall system security and security admin-
istrator productivity. As such, our approach does not seek to replace existing security
mechanisms, such as network- and host-based Intrusion Detection Systems (IDS), but
rather complement them as an added line of defense against sophisticated threats that
may otherwise go unnoticed.

More importantly, the new results show no apparent degradation in accuracy over
an increase in system concurrency all the way to 50 concurrent users, validating the
effective use of the normalized anomaly likelihood. Note that the concurrent users in
our simulation runs are “intense” users used to generate a heavy load on the system,

ACM Transactions on Autonomous and Adaptive Systems, Vol. 10, No. 4, Article 26, Publication date: February 2016.

Inferring Software Component Interaction Dependencies for Adaptation Support 26:25

therefore they actually represent a much larger number of human users in a real-world
system.

6. SELF-OPTIMIZATION OF DEPLOYMENT TOPOLOGY

As our final illustration, we outline an application of our approach for improving
the performance of software through redeployment of its components. Such capability
would typically be realized in the Planning phase of the MAPE cycle in a self-optimizing
software system.

6.1. Background

The design and development of large-scale, component-based software systems today
are influenced by modern software engineering practices as embodied by architecture
styles (e.g., pipe and filter), design patterns (e.g., proxies), and coding paradigms (e.g.,
aspect orientation). A direct consequence is that the deployment of such systems be-
comes more complex and fluid, with hundreds or perhaps even thousands of options and
parameters to consider, along dimensions such as location, capacity, timing, sequenc-
ing, service levels, security, etc. Many of them may be interdependent and possibly
conflicting. Due to the combinatorially large problem space, the values of these param-
eters are usually set and fine-tuned manually by experts, based on rules of thumb and
experience.

An objective for autonomic systems is therefore to intelligently navigate the solu-
tion space and seek ways to optimally (re)deploy the system to improve the system
performance and cost [Kephart and Chess 2003].

To illustrate the self-optimization challenge, we turn our attention to the deploy-
ment topology of the EDS system. As a geographically distributed system, some of the
components, such as HQUI (recall Figure 1), need to reside at the headquarters (HQ)
facility, while some, such as the Resource Monitor, are required to be at a remote site to
be collocated with emergency response equipment. Other components are more flexible
and can be deployed at either location. Depending on the topology, intercomponent mes-
sages can be either local (via interprocess communication on a single computer or over
a LAN), or remote over a WAN, with the latter having a much larger network latency.
Take the strategy analysis use case outlined in Figure 2 for example; if the Strategy
Analyzer and Strategy Analyzer KB components reside at different sites, transaction #
may take a much longer time than what it would be if the two components were col-
located, adversely affecting the response time experienced by the end user. Obviously,
the system should employ a deployment topology that minimizes remote transactions
to reduce overall network latency, subject to other constraints.

It is worth noting that this is by no means a new problem, and has been manifested in
various settings such as system resource management [Poladian et al. 2004], cloud per-
formance optimization [Casalicchio et al. 2013], wireless network configuration [Malek
et al. 2007], etc. However, traditional approaches, including our own prior work [Malek
et al. 2007, 2012], assume the availability of a detailed component interaction model,
that includes information about the component dependencies, frequency of interactions
among the components, size of exchanged data, processing sequences, etc. As pointed
out earlier in the article, such a model is difficult to come by and costly to maintain.

Our proposed approach, on the other hand, leverages the same component interaction
model for dynamic optimization of the deployment topology at runtime, a model that
needs no prior development and can stay up to date even when the system behavior
shifts. Many modern middleware frameworks that support adaptation (such as [Malek
et al. 2012]) provide facility for redeploying components across distributed locations
in a software system. Thanks to new advances in computing infrastructures such as
virtualization and cloud computing, dynamically redeploying software components is

ACM Transactions on Autonomous and Adaptive Systems, Vol. 10, No. 4, Article 26, Publication date: February 2016.

26:26 N. Esfahani et al.

being made easier than ever. Puppet software [PuppetLabs 2015] and CloudFormation
service from Amazon Web Services [Amazon Web Services 2015], for example, provide
programmable mechanisms to create, configure, and manage virtualized computing
resources on the fly.

6.2. Applying Association Rules

It is easy to see that the problem of determining deployment topology, namely, assign-
ing component ¢; to location S;, can be framed as a clustering problem. Intuitively,
transactions that have a higher probability of occurring together should be local (.e.,
in the same cluster). One straightforward implementation approach is to use an ag-
glomerative hierachical clustering algorithm [Tan et al. 2005]: we start with individual
components as single-point clusters, then successively merge the two closest clusters
until only the desired number of clusters remain. Typically, the “closeness” between
two clusters is based on a proximity/distance measure such as the Euclidean distance.
In our problem context, we could of course simply observe and compute the average fre-
quency of pairwise transaction events between two component clusters as the proximity
measure. This approach is effective in grouping frequently interacting components to-
gether, but has known limitations such as the tendency to reach local optima due to
the lack of a global objective—our evaluation will later confirm this.

Given the fact that our mining approach produces a rule base that captures not only
the frequency count of single pairwise transactions (note that a single transaction can
be viewed as a TAR of the form X — Y where X is the empty set ¢ and Y = {¢}), but
also the probability of the co-occurrence of a set of transactions, we can define a better
proximity measure. In this application scenario, we are only interested in the support
value s of an itemset XU Y as defined in Section 4.1.3, which is readily available as an
intermediate result from the Apriori algorithm. We also denote ¢; as a transaction that
is initiated from component i to component j (i.e., i = ¢.start.src and j = ¢.start.dst), or
vice versa.

More formally, we define the cohesion measure of a component cluster C as

Cohesion(C) = (Z s(U))/|C|,

Ue2T

where T' = {t;;|Vi € C A j € C} is the set of “local” transactions within cluster C, and T
is the powerset of T'. In other words, the cohesion measure of a cluster of components is
the sum of the support values of all subsets of local transactions within C, normalized
by the cluster size |C|.

Using the cohesion measure, the proximity between two clusters C; and Cs is there-
fore defined as the cohesion gain resulting from their would-be merge:

proximity(Cy, Co) = Cohesion(C1 U Cg) — Cohesion(C1) — Cohesion(Cs).

Intuitively, this measure encourages the merge of two sets of components if the merge
results in more localized transaction sequences. We can see that our component inter-
action model captured from associations mining can be used to provide a probabilistic
proximity measure that is informed by system-wide transactions rather than simple
pairwise events.

6.3. Evaluation

To evaluate the effectiveness of applying the TARs in improving EDS deployment
topology, we instrumented the server-side Java code to simulate network latency based
on a configurable topology “metamodel.” Before making an intercomponent method call,
each calling component (StrategyAnalyzer, Repository, etc.) queries the metamodel

ACM Transactions on Autonomous and Adaptive Systems, Vol. 10, No. 4, Article 26, Publication date: February 2016.

Inferring Software Component Interaction Dependencies for Adaptation Support 26:27

Deployment
Advisar

Legend

=
Strategy
Analyzes
N

E [] Software Component
i +«— Dependency
ﬁ E i""} Deployment Site
"‘ ; [] Hasite
. ;E [] Remote Site

Fig. 10. Alternative EDS deployments: (a) initial deployment, (b) optimized deployment based on the clus-
tering technique, and (c) optimized deployment based on the mined component interaction model.

to determine if it is a local (LAN) or remote (WAN) call and generates a Gaussian-
distributed network latency time accordingly.

In test runs with 20 active concurrent users, we set the mean network latency for
LAN and WAN at 10ms and 100ms, respectively. The first test run of the system used
an arbitrary deployment topology, as shown in Figure 10(a). Here, no special attention
was given to the locality of the components: they were divided up more or less evenly
between the HQ site and the remote site. System execution logs showed that average
transaction latency is about 44ms.

As an alternative technique for comparisons sake, we first used a basic hierarchi-
cal clustering algorithm that used pairwise event frequency o(#;) between any two
components and j as the distance function. The algorithm recommended a different
topology as shown in Figure 10(b). The second set of test runs conducted under this
new topology showed that average transaction latency was reduced to about 30ms,
indicating a significant improvement.

Now we turn to evaluate our proposed approach based on the component interaction
model. After mining the system execution traces, the Apriori algorithm created a rule
base that doubled as a probabilistic proximity matrix for any two sets of components.
Feeding the cohesion gain based function introduced in Section 6.2 to the hierachical
clustering algorithm, a third topology emerged, as shown in Figure 10(c). Test runs
based on the new topology showed that average transaction latency was further reduced
to 20ms, a 33% reduction compared with the pairwise transaction frequency based
clustering and a 54% reduction compared with the original topology.

ACM Transactions on Autonomous and Adaptive Systems, Vol. 10, No. 4, Article 26, Publication date: February 2016.

26:28 N. Esfahani et al.

Average Latency (ms)

43915025 ®
30.11+0.44

20.34+£0.39 W

0 10 20 30 40 50

| ® Topology (a) ® Topology (b) Topology (c)

Fig. 11. System latency for three deployment topologies (average latency at 95% confidence interval).

We conducted 20 batch runs for each deployment topology, eliminating transients by
taking observations only after the system entered a steady state. The average latency
for each deployment topology, along with the corresponding 95% confidence interval
are shown in Figure 11. During the clustering process, we ensured that the HQUI
and Resource Monitor components are preassigned to the HQ site and the remote site,
respectively (otherwise the optimization would result in all components being assigned
to a single site). Statistical tests can also confirm that the latency improvements are not
trivial. We have validated that taking into account system-wide event co-occurrences
can help overcome the local optima during the clustering process, resulting in improved
system performance.

Note that in practice, optimal deployment of resources depends on many other factors
besides network latency, such as cost of component redeployment, hardware capacity at
each location, etc. A more holistic approach needs to formulate a higher-level objective
function that weighs benefits against various costs and constraints (e.g., as developed
in Bobroff et al. [2007] and Malek et al. [2012]). In that case, the component-wise
probabilistic proximity measure from our model can become an input to the larger
optimization algorithm.

The advantage of the architecture-based approach is evident in this application
scenario: Even though the mapping from software components to hosts and sites is
changed as the result of automated redeployment, the self-adaptation happens within
the network and host configurations of the base-level subsystem (e.g., new URLs for
Java RMI calls). The abstract component interaction model within the metalevel sub-
system, in the form of TARs captured in the rule base, is transparent to the deployment
topology change, therefore remains intact and does not need to be relearned.

7. RELATED WORK

Researchers have used log of event data collected from a system to construct a model of
it for various purposes. Cook et al. [Cook and Wolf 1998a] use the event data generated
by a software process to discover the formal sequential model of that process. In a
subsequent work [Cook and Wolf 1998b], they have extended their work to use the
event traces for a concurrent system to build a concurrency model of it. Gaaloul et al.
[2008] discover the implicit orchestration protocol behind a set of web services through
structural web service mining of the event logs and express them explicitly in terms of
Business Process Execution Language (BPEL). Motahari-Nezhad et al. [2011] present
an algorithmic approach for correlating individual events, which are scattered across
several systems and data sources, semiautomatically. They use these correlations to
find the events that belong to the same business process execution instance. Wen et al.
[2009] use the start and end of transactions from the event log to build Petri nets
corresponding to the processes of the system. To our knowledge, except our recent

ACM Transactions on Autonomous and Adaptive Systems, Vol. 10, No. 4, Article 26, Publication date: February 2016.

Inferring Software Component Interaction Dependencies for Adaptation Support 26:29

work [Canavera et al. 2012], no previous work has used mining of execution log to
understand the dynamic behavior of the system for the purpose of self-adaptation.

As mentioned earlier in this article, even though data mining techniques, including
anomaly detection, have been extensively used in the security arena for decades, most
of the research has centered around (a) intrusion detection, especially at network
and host levels (e.g., Lee et al. [1999]) and (b) malware/virus detection at source code
and executable level (e.g., Schultz et al. [2001]). Among those, several efforts share
our approach of unsupervised learning, that is, using unlabeled or “noisy” training
data. Portnoy et al. [2001], for example, used a distance-based clustering for detecting
network intrusions. Lane and Brodley used unsupervised machine learning based on
a similarity measure to classify user behavior in UNIX command shells [Lane and
Brodley 1997]. Eskin et al. developed a geometric framework that projects unlabeled
data to a high-dimensional feature space before applying clustering algorithms to detect
anomalies in sparse regions of the feature space [Eskin et al. 2002]. Still others used
mining algorithms such as Support Vector Machines (SVM) [Khan et al. 2007], Hidden
Markov Models (HMM) [Warrender et al. 1999], ensemble-based learning [Parveen
et al. 2011], graph mining [Christodorescu et al. 2008], etc.

Our approach differs from these approaches in that (a) none of them used associ-
ations mining, except for the ADAM framework, which used associations mining for
network intrusions in supervised mode [Barbara et al. 2001]; and (b) little research
has focused on detecting malicious behavior at the architecture/component level. We
believe detecting malicious behavior at the architectural level is a prerequisite for de-
veloping self-protection mechanisms that modify the system’s architecture to mitigate
the security threats; (c) furthermore, most existing data mining research assume nor-
mal program behavior is deterministic and stable, whereas we assume the behavior
for an interactive system is inherently fluid and user driven, and hence continually
updates the model based on recent system execution traces.

Data mining techniques are increasingly applied in the software engineering do-
main to improve software productivity and quality [Xie et al. 2009]. The datasets of
interest include execution sequences, call graphs, and text (such as bug reports and
software documentation). One body of research, for instance, focuses on mining soft-
ware specifications—frequent patterns that occur in execution traces [Lo et al. 2009],
which is similar to our problem but the focus is on mining API call usages for purposes
such as bug detection, not for self-adaptation; their techniques (such as 1ibSVM) are
also different.

Finally, our research is related to models@runtime approaches [Bencomo et al. 2014],
where the models are considered to be the abstract representation of the system during
execution. In our approach, we use data mining techniques to derive these models from
the running system, while some other techniques (e.g., Bencomo et al. [2013]) keep the
running system up to date with the models.

8. DISCUSSION AND FUTURE WORK

The underlying assumption in the current version of our approach is that a single data
mining algorithm can process all the events/transactions in the system and build the
stochastic component interaction models. This may not be possible, especially when we
consider distributed software systems that permeate boundaries of several enterprises.
An enterprise may be unwilling to share its internal structure and event logs with
an entity that is out of its control for various reasons (e.g., protecting competitive
edge, security concerns, etc.). Therefore, we are working on a distributed version of
our approach, which achieves the same goal by running multiple local data mining
algorithms. In fact, initial results show that confining the algorithms to the boundaries
of enterprises improves the precision, not to mention scalability. The natural structure

ACM Transactions on Autonomous and Adaptive Systems, Vol. 10, No. 4, Article 26, Publication date: February 2016.

26:30 N. Esfahani et al.

imposed by the boundary of an enterprise only allows certain components to talk to the
outside world (i.e., other enterprises). This knowledge helps to reduce the concurrency
error significantly.

Regardless of the adaptation needs, the proposed mining approach needs to be highly
efficient and as scalable as the base subsystem itself in order to process the system
execution traces as they occur and provide dynamic, near-real-time predictions. For this
reason we plan to conduct an in-depth analysis of the computational characteristics
of association mining algorithms and ideally leverage elastic, on-demand computing
platforms (e.g., MapReduce) to speed up the mining performance.

The data mining algorithm that we used to build the stochastic component interac-
tion models is based on set theory. Therefore, it is not able to leverage the frequency of
event occurrences nor the temporal ordering among events, which are already available
in the execution log of the system. We believe using tis extra information can increase
the accuracy of the inferred models, and in turn, make our approach more precise.
Hence, we are studying the application of other types of data mining algorithms (e.g.,
sequential pattern mining [Tan et al. 2005]) that can use the extra information.

The accuracy of mined rules depends on the availability of a sufficiently large usage
history of the software, exercising the interactions among the system’s component.
Such data could either be collected through benchmark of the system or its previous
deployments. However, determining how much data is needed to allow for generation
of accurate rules is challenging. The notion of component interaction coverage metric
[Williams and Probert 2001] provides a good starting point in addressing this issue.
In addition, we plan to investigate how this approach would work in a “cold-start”
mode, that is, when a system is initially launched. One solution would be to start off
with pessimistic (conservative) predictions, until actual usage patterns are learned. In
addition, we plan to explore the use of data stream mining [Gaber et al. 2005] in this
context, which allows for the mining to be performed incrementally using the real-time
stream of observations from the system.

Another issue worth considering is the scenario in which adaptations affect the func-
tional behavior of the system, for example, replacement of a component that introduces
new behaviors. In such a setting, the changes may make part of the historical data col-
lected from the system, and thereby the learned rules, obsolete. MOSAIC is currently
able to detect such changes through its Check Prediction Accuracy activity. However,
in such settings, MOSAIC would need additional data to be able to update the rules.
During the time it takes to collect the additional data, MOSAIC would still be able to
guarantee the consistency of adaptation through the conservative approach described
in Section 4.3.1, but may not be able to achieve an accurate trade-off between disrup-
tion and reachability (recall Section 4.3.2). In situations where such inaccuracies are
not acceptable, MOSAIC could still be used for adaptations that do not change the
functional behavior of the components, but change their nonfunctional properties (e.g.,
security, availability, etc.). In general, MOSAIC is most effective in settings where the
frequency of adaptation is not faster than the time it takes to learn the new rules.

Our ongoing research for anomalous behavior detection focuses on more extensive
evaluation of the detection algorithm to enhance its accuracy and robustness. In par-
ticular, we will evaluate the algorithm’s sensitivity against different input parameters
(e.g., minimum support and confidence levels) to better understand its “sweet spots”
and limitations. Last but not least, we seek to prove that our approach is effective
against unknown threats, which we hypothesized in Section 5.1.

REFERENCES

Amazon Web Services. 2015. Amazon Web Services (AWS) CloudFormation. Retrieved from http:/aws.
amazon.com/cloudformation/.

ACM Transactions on Autonomous and Adaptive Systems, Vol. 10, No. 4, Article 26, Publication date: February 2016.

http://aws.amazon.com/cloudformation/
http://aws.amazon.com/cloudformation/

Inferring Software Component Interaction Dependencies for Adaptation Support 26:31

Daniel Barbara, Julia Couto, Sushil Jajodia, and Ningning Wu. 2001. ADAM: A testbed for exploring the use
of data mining in intrusion detection. ACM Sigmod Record 30, 4 (2001), 15-24.

Nelly Bencomo, Amel Bennaceur, Paul Grace, Gordon Blair, and Valerie Issarny. 2013. The role of mod-
els@run.time in supporting on-the-fly interoperability. Computing 95, 3 (March 2013), 167-190.

Nelly Bencomo, Robert B. France, Betty H. C. Cheng, and Uwe ABmann (Eds.). 2014. Models@run.time:
Foundations, Applications, and Roadmaps. Springer.

Dimitri P. Bertsekas and John N. Tsitsiklis. 2008. Introduction to Probability (2nd. ed.). Athena Scientific.

Norman Bobroff, Andrzej Kochut, and Kirk Beaty. 2007. Dynamic placement of virtual machines for man-
aging SLA violations. In IFIP/IEEE International Symposium on Integrated Network Management,
119-128.

Kyle R. Canavera, Naeem Esfahani, and Sam Malek. 2012. Mining the execution history of a software
system to infer the best time for its adaptation. In Internatonal Symposium on the Foundations of
Software Engineering, 18:1-18:11.

Emiliano Casalicchio, Daniel A. Menasc, and Arwa Aldhalaan. 2013. Autonomic resource provisioning in
cloud systems with availability goals. In ACM Cloud and Autonomic Computing Conference, 1:1-1:10.

David M. Chess, Charles C. Palmer, and Steve R. White. 2003. Security in an autonomic computing environ-
ment. IBM Systems Journal 42, 1 (2003), 107-118.

Mihai Christodorescu, Somesh Jha, and Christopher Kruegel. 2008. Mining specifications of malicious be-
havior. In Proceedings of the 1st India Software Engineering Conference. ACM, 5-14.

Jonathan E. Cook and Alexander L. Wolf. 1998a. Discovering models of software processes from event-based
data. ACM Transactions on Software Engineering Methodology 7, 3 (July 1998), 215-249.

Jonathan E. Cook and Alexander L. Wolf. 1998b. Event-based detection of concurrency. In International
Symposium on the Foundations of Software Engineering, 35—45.

Eleazar Eskin, Andrew Arnold, Michael Prerau, Leonid Portnoy, and Sal Stolfo. 2002. A geometric framework
for unsupervised anomaly detection. In Applications of Data Mining in Computer Security, Daniel
Barbara and Sushil Jajodia (Eds.). Number 6 in Advances in Information Security. Springer US, 77—
101.

Tom Fawcett. 2006. An introduction to ROC analysis. Pattern Recognition Letters 27, 8 (June 2006), 861-874.

Walid Gaaloul, Karim Baina, and Claude Godart. 2008. Log-based mining techniques applied to Web service
composition reengineering. Service Oriented Computing and Applications 2, 2-3 (May 2008), 93-110.

Mohamed Medhat Gaber, Arkady Zaslavsky, and Shonali Krishnaswamy. 2005. Mining data streams: A
review. SIGMOD Record 34, 2 (June 2005), 18—-26.

David Garlan, Shang Wen Cheng, An Cheng Huang, Bradley Schmerl, and Peter Steenkiste. 2004. Rainbow:
Architecture-based self-adaptation with reusable infrastructure. IEEE Computer 37, 10 (Oct. 2004),
46-54.

Mark Hall, Eibe Frank, Geoffrey Holmes, Bernhard Pfahringer, Peter Reutemann, and Ian H. Witten. 2009.
The WEKA data mining software: An update. SIGKDD Explorations Newsletter 11, 1 (Nov. 2009), 10-18.

Jiawei Han and Micheline Kamber. 2006. Data Mining: Concepts and Techniques. Morgan Kaufmann.

Jeffrey O. Kephart and David M. Chess. 2003. The vision of autonomic computing. IEEE Computer 36, 1
(Jan. 2003), 41-50.

Latifur Khan, Mamoun Awad, and Bhavani Thuraisingham. 2007. A new intrusion detection system using
support vector machines and hierarchical clustering. The VLDB Journal the International Journal on
Very Large Data Bases 16, 4 (2007), 507-521.

Jeff Kramer and Jeff Magee. 1990. The evolving philosophers problem: Dynamic change management. I[EEE
Transactions on Software Engineering 16, 11 (Nov. 1990), 1293-1306.

Terran Lane and Carla E. Brodley. 1997. An application of machine learning to anomaly detection. In
Proceedings of the 20th National Information Systems Security Conference, Vol. 377, 366-380.

Wenke Lee, S. J. Stolfo, and K. W. Mok. 1999. A data mining framework for building intrusion detection
models. In IEEE Symposium on Security and Privacy, 120-132.

David Lo, Hong Cheng, Jiawei Han, Siau-Cheng Khoo, and Chengnian Sun. 2009. Classification of software
behaviors for failure detection: A discriminative pattern mining approach. In International Conference
on Knowledge Discovery and Data Mining, 557-566.

Xiaoxing Ma, Luciano Baresi, Carlo Ghezzi, Valerio Panzica La Manna, and Jian Lu. 2011. Version-consistent
dynamic reconfiguration of component-based distributed systems. In International Symposium on the
Foundations of Software Engineering, 245—-255.

Sam Malek, Nenad Medvidovic, and Marija Mikic-Rakic. 2012. An extensible framework for improving a

distributed software system’s deployment architecture. IEEE Transactions on Software Engineering 38,
1 (Feb. 2012), 73-100.

ACM Transactions on Autonomous and Adaptive Systems, Vol. 10, No. 4, Article 26, Publication date: February 2016.

26:32 N. Esfahani et al.

Sam Malek, Marija Mikic-Rakic, and Nenad Medvidovic. 2005. A style-aware architectural middleware for
resource-constrained, distributed systems. IEEE Transactions on Software Engineering 31, 3 (March
2005), 256-272.

Sam Malek, Chiyoung Seo, Sharmila Ravula, Brad Petrus, and Nenad Medvidovic. 2007. Reconceptualiz-
ing a family of heterogeneous embedded systems via explicit architectural support. In International
Conference on Software Engineering, 591-601.

Hamid Reza Motahari-Nezhad, Regis Saint-Paul, Fabio Casati, and Boualem Benatallah. 2011. Event cor-
relation for process discovery from web service interaction logs. The VLDB Journal 20, 3 (June 2011),
417-444.

OWASP. 2013. OWASP Top Ten Project. Retrieved from https:/www.owasp.org/index.php/Category: OWASP
Top_Ten_Project.

Pallabi Parveen, Zackary R. Weger, Bhavani Thuraisingham, Kevin Hamlen, and Latifur Khan. 2011. Su-
pervised learning for insider threat detection using stream mining. In 2011 23rd IEEE International
Conference on Tools with Artificial Intelligence (ICTAI), IEEE, 1032-1039.

Vahe Poladian, Joao Pedro Sousa, David Garlan, and Mary Shaw. 2004. Dynamic configuration of resource-
aware services. In International Conference on Software Engineering, 604—613.

Leonid Portnoy, Eleazar Eskin, and Sal Stolfo. 2001. Intrusion detection with unlabeled data using clustering.
In In Proceedings of ACM CSS Workshop on Data Mining Applied to Security (DMSA-2001). 5-8.

PuppetLabs. 2015. Puppet software. Retrieved from http:/puppetlabs.com/.

Malek Ben Salem, Shlomo Hershkop, and Salvatore dJ. Stolfo. 2008. A survey of insider attack detection
research. In Insider Attack and Cyber Security, Salvatore J. Stolfo, Steven M. Bellovin, Angelos D.
Keromytis, Shlomo Hershkop, Sean W. Smith, and Sara Sinclair (Eds.). Number 39. Springer, 69-90.

Matthew G. Schultz, Eleazar Eskin, Erez Zadok, and Salvatore J. Stolfo. 2001. Data mining methods for
detection of new malicious executables. In IEEE Symposium on Security and Privacy, 38—49.

Pang-Ning Tan, Michael Steinbach, and Vipin Kumar. 2005. Introduction to Data Mining (1st. ed.). Addison
Wesley.

Richard N. Taylor, Nenad Medvidovic, and Eric M. Dashofy. 2009. Software Architecture: Foundations, Theory,
and Practice. Wiley.

Yves Vandewoude, Peter Ebraert, Yolande Berbers, and Theo D’Hondt. 2007. Tranquility: A low disruptive al-
ternative to quiescence for ensuring safe dynamic updates. IEEE Transactions on Software Engineering
33, 12 (Dec. 2007), 856-868.

Christina Warrender, Stephanie Forrest, and Barak Pearlmutter. 1999. Detecting intrusions using system
calls: Alternative data models. In Proceedings of the 1999 IEEE Symposium on Security and Privacy.
IEEE, 133-145.

Lijie Wen, Jianmin Wang, Wil M. Aalst, Biging Huang, and Jiaguang Sun. 2009. A novel approach for process
mining based on event types. Journal of Intelligent Information Systems 32, 2 (April 2009), 163-190.

Alan W. Williams and Robert L. Probert. 2001. A measure for component interaction test coverage. In
ACS/IEEE International Conference on Computer Systems and Applications, 304—312.

Tao Xie, Suresh Thummalapenta, David Lo, and Chao Liu. 2009. Data mining for software engineering.
IEEE Computer 42, 8 (Aug. 2009), 55-62.

Eric Yuan, Naeem Esfahani, and Sam Malek. 2014a. Automated mining of software component interac-
tions for self-adaptation. In International Symposium on Software Engineering for Adaptive and Self-
Managing Systems, 27-36.

Eric Yuan, Naeem Esfahani, and Sam Malek. 2014b. A systematic survey of self-protecting software systems.
ACM Transactions on Autonomous and Adaptive Systems 8, 4 (Jan. 2014), 17:1-17:41.

Received October 2014; revised October 2015; accepted December 2015

ACM Transactions on Autonomous and Adaptive Systems, Vol. 10, No. 4, Article 26, Publication date: February 2016.

https://www.owasp.org/index.php/Category:OWASPTopTenProject
https://www.owasp.org/index.php/Category:OWASPTopTenProject
http://puppetlabs.com/

