
A Taxonomy and Survey of Self-Protecting Software Systems

Eric Yuan
Department of Computer Science

George Mason University
Fairfax, VA 22030
eyuan@gmu.edu

Sam Malek
Department of Computer Science

George Mason University
Fairfax, VA 22030
smalek@gmu.edu

Abstract—Self-protecting software systems are a class of
autonomic systems capable of detecting and mitigating security
threats at runtime. They are growing in importance, as the
stovepipe static methods of securing software systems have
shown inadequate for the challenges posed by modern software
systems. While existing research has made significant progress
towards autonomic and adaptive security, gaps and challenges
remain. In this paper, we report on an extensive study and
analysis of the literature in this area. The crux of our
contribution is a comprehensive taxonomy to classify and
characterize research efforts in this arena. We also describe
our experiences with applying the taxonomy to numerous
existing approaches. This has shed light on several challenging
issues and resulted in interesting observations that could guide
the future research.

Keywords – self-protection; autonomic systems; taxonomy;
self-management; adaptive security

I. INTRODUCTION

Security is the Achilles heel of most modern software
systems. In spite of the significant progress over the past few
decades, the challenges posed by security are more prevalent
than ever before. As the awareness grows of the limitations
of traditional, often static and rigid, security models, research
shifts to dynamic models, where security threats are detected
and mitigated at runtime, i.e., self-protection.

Self-protection is closely related to the other self-*
properties, such as self-configuration and self-optimization.
On one hand, a self-configuring and self-optimizing system
relies on self-protection functions to ensure the system
integrity remains intact during dynamic changes. On the
other hand, the implementation of self-protection functions
may also leverage the same techniques used for system
reconfiguration and adaptation.

Self-protection has been identified as one of the essential
traits of self-management for autonomic computing systems.
Kephart and Chess characterized self-protection from two
perspectives [16]: From a “reactive” perspective, the system
automatically defends against malicious attacks or cascading
failures, while from a “proactive” perspective, the system
anticipates security problems in the future and takes steps to
mitigate them.

Chess et al. also provided valuable guidance on the key
research directions for securing autonomic systems, such as
ways to represent and reason about security policies and
state, methods for effectively differentiating between normal
system failures and malicious attacks, policies and
algorithms for resisting fraud and persuasion, and common

languages and taxonomies for communicating and
negotiating security policies and states [7].

The past decade has seen extensive and systematic
research being conducted around self-adaptive and self-
managing systems. Research that focuses on self-protecting
capabilities, however, has been relatively speaking less
abundant. Scattered efforts can be found in various
application domains such as autonomic computing, mobile
and ad-hoc networks, sensor networks, fault tolerant
systems, trust management, and military domains such as
information survivability and tactical systems.

This paper surveys recent research on self-protecting
software systems with a dual focus – to evaluate relevant
research approaches, but at the same time identify the
taxonomies and schemes against which such research efforts
may be classified and organized. The contributions of the
paper include: (1) A proposed taxonomy for consistently and
comprehensively classifying self-protection mechanisms and
research approaches; (2) An extensive survey of the state of
the art of self-protecting software systems using the proposed
taxonomy; (3) Observations and comparative analysis across
these self-protecting systems, to identify trends, patterns, and
gaps; and (4) A set of recommendations for future research
directions for self-protecting systems

The rest of the paper is organized as follows. Section 2
details the need for self-protection in today’s software
systems through a motivating example. Section 3 surveys the
existing taxonomies and classification schemes related to
system self-protection and adaptive security. Section 4
proposes a coherent and comprehensive taxonomy that
builds on top of existing taxonomies, and Section 5 attempts
to classify current and past self-protection research initiatives
against the proposed taxonomy. Section 6 presents the
analysis on the survey results, offering observations on
patterns, trends, gaps, and opportunities. Based on this
analysis, Section 7 concludes the paper with a set of
recommendations for future self-protecting system research.

II. MOTIVATION

There is an unprecedented need for autonomic and
adaptive security in today’s software systems, driven by both
external factors such as cyber threats as well as internal
factors that lie within the system architecture.

A. From Outside: Ever-Increasing Cyber Threats

As software systems become more distributed, interactive
and ubiquitous, networking services become an integral part
of system architecture, making these systems more prone to
malicious attacks. Over the years the frequency, complexity,

and sophistication of attacks are rapidly increasing, causing
severe disruptions of online systems with sometimes
catastrophic consequences. From some of the well-
publicized recent incidents we can get a glimpse of the
characteristics of such threats:
 The Conficker worm, first detected in 2008, caused the

largest known computer infection in history and was
able to assemble a botnet of several million hosts — an
attack network that, if activated, would be capable of
large-scale Distributed Denial of Service (DDoS)
attacks. What is unique about Conficker is not just the
scale it achieved, but also its use of sophisticated
software techniques including peer-to-peer networking,
self-defense through adaptation, and advanced
cryptography [52].

 The Stuxnet worm, discovered in 2010, is the first
known malware to target and subvert industrial control
systems. In addition to being credited with damaging the
Iranian nuclear program, the attack demonstrates its
ability to target multiple architecture layers of the target
system — exploiting the network and host-level
vulnerabilities is only a stepping stone for malicious
actions at the application level [55].

 The Duqu worm, lately discovered in September 2011,
is a reconnaissance worm that does no harm to the
infected systems but is tasked to collect and exfiltrate
information such as valid digital certificates that may be
used in future attacks. It further illustrates the deliberate,
coordinated and persistent nature of today’s cyber
threats [54].

What becomes increasingly clear from examples like
these is that to protect today’s software systems, especially
those that are mission critical, applying static point security
solutions (e.g., firewall and one-time password
authentication) is no longer sufficient. Rather, there is a need
for dynamic approaches that actively evaluate and reassess
the overall security posture of the entire system architecture
at different layers.

B. From Within: Dynamic Architectural Behaviors

An equally pressing need for system self-protection
arises from the fact that software systems are increasingly
designed to take on more dynamic behaviors at runtime. As
dynamic architectural styles, such as service-orientation,
become more widely adopted, a system function may, for
example, be reassembled and provisioned with different
components (e.g., using Service Component Architecture
[56]). Similarly, a web service orchestrator could be
constructed to dynamically discover and access different
service providers (e.g., using Business Process Execution
Language (BPEL) and a BPEL engine).

Runtime architectural changes like these tend to be
security-relevant. For example, if a BPEL orchestrator
switches a Partner Link from a non-responsive local service
provider to an alternative external provider, the new SOAP
connection becomes an additional source of vulnerability.

Thus, as runtime system architectures become adaptive
and dynamic, so must their protection, as manual changes in
security policies would simply be too slow and too costly.

C. A Simple Motivating Example

Self-protecting mechanisms for a software system can
take many diverse forms. As an example, let us suppose an
intruder, through attempts such as phishing, has gained
access to an online banking application and starts to
exfiltrate a large amount of confidential user information.
The much simplified architecture of the application is shown
in Figure 1.

Suppose shortly after the intruder breaks into the system,

his access gets denied and he can no longer gain access. To
achieve this effect, the system could have taken any of the
following different measures:
 The intrusion detection capability of the network router

detects this illegal access and automatically disabled the
connection from the source IP address;

 The firewall detects unusually large data transfer which
exceeds predefined policy threshold and accordingly
disables the HTTP connection;

 An overall system transaction monitor (not shown),
sensing an unusual data retrieval pattern from the
Windows server, shuts down the server and redirects all
request to a backup server;

 Multiple application server instances are deployed on
the Windows machine. By comparing the behavior from
all server instances, the anomaly from the compromised
application server instance is detected and the instance
consequently is shut down;

 The built-in access control policies within the online
banking application detects abnormal usage pattern, and
therefore disables the user account in question.

As the paper will show later, many other self-protecting
mechanisms are possible. How do these different approaches
compare against one another? What approaches apply to
what threats? Are some more effective than others? If so,
under what conditions? To better answer these questions, one
must take a methodical approach in evaluating the state of
the art of the self-protection approaches, architectures, and
techniques, and assess how they address the externally-
driven and internally-driven security needs mentioned above.

This paper seeks to take a step further toward this goal by
proposing a comprehensive taxonomy for self-protecting
systems. The next section starts with a survey of existing
taxonomies and classification schemes that are relevant to
self-protection.

III. RELATED TAXONOMY WORK

Figure 1: Simple Online Banking System Example

A. Taxonomy of Compositional Adaptation

Reference [25] focuses on composition as a key
paradigm for adaptation, which includes enabling techniques
such as Separation of Concerns, Computational Reflection,
and Component-based Design. The paper describes a
taxonomy based on how, when, and where software
composition takes place:
 The “how” metric consists of criteria around techniques,

transparency, granularity, coverage, and support;
 The “when” metric looks at whether the composition is

static or dynamic, and whether the adaptation occurs at
development time, compile/link time, load time, or
runtime;

 The “where” metric is concerned with whether the
adaptation occurs in the application layer, the
middleware layer, or in the Operating System or
hardware layer.

A related survey can be found in [34] with a stronger
focus on middleware. It classifies middleware as either
Quality of Service (QoS) oriented, dependable, or embedded.
It follows the same taxonomy on adaptation type, namely,
static (customizable, configurable) and dynamic (tunable and
mutable).

B. Adaptive Security Approaches at the Application Level

Reference [8] provides a good survey on application-
level adaptive security mechanisms. It builds on top of the
taxonomy of computational paradigms defined in [34], and
adds the following additional dimensions: (1)
Reconfiguration scale, which categorizes whether the
reconfiguration happens in a single unit, inter-unit, or
architecture wide; (2) Conflict handling, which refers to
whether the system resolves conflicts among candidate
configurations in an autonomic fashion or delegates it to a
human user (or a hybrid of the two)

These classification dimensions are certainly applicable
to self-protection systems in general; however, the paper’s
focus is primarily on the application layer.

C. Taxonomy of Self-Adaptive Software

Reference [35] is a comprehensive survey on self-
adaptive software in general. It offers a taxonomy of self-
adaptation that covers a variety of dimensions, such as
objects to adapt, realization approach, adaptation type,
temporal characteristics, and degree of human interactions.
Some security-relevant ones include:
 Adaptation layers, such as middleware or application-

layer, as defined by McKinkey et al. [25]
 Realization approach, such as static vs. dynamic

decision making, and external vs. internal
 Realization type, such as open vs. close, model-based

vs. model-free, or specific vs. generic
 Temporal characteristics, such as reactive vs. proactive

adaptation
 Trust. The paper offers different views on the

interpretation of trust on self-adaptive systems without
offering a definitive taxonomy

Even though many of these dimensions are relevant for
self-protection, they need to be further defined in the specific
context of security before they become useful.

D. Intrusion-Tolerant System (ITS) Architectures

Reference [29] offers an up-to-date survey on ITS, a
class of self-protecting systems that focus on continued
system operations even in the presence of intrusion attacks.
ITS architectures are often based on fault tolerance
techniques. This paper classifies ITS approaches using a
taxonomy with four categories: (1) Detection-triggered, (2)
Algorithm-driven, (3) Recovery-based, and (4) Hybrid of the
three. The paper identified a rich set of research initiatives,
some of which are also covered in our analysis in Section V.

This taxonomy is closely related to other classifications
identified earlier. For example, detection-triggered
approaches are by definition “reactive” approaches, while
recovery-based approaches are “proactive” in nature. As
correctly pointed out by the authors, these approaches are by
no means mutually exclusive and may be used together.

E. Other related taxonomies

A number of surveys focused on classifying security
patterns. Reference [6], for example, uses metrics such as
purpose (creational, structural, and behavioral) and
abstraction level (network, host, application). Even though
they are used to classify security patterns, metrics such as
abstraction level will apply to adaptive security approaches
as well.

It is worth noting that software systems today have
evolved to include another layer of abstraction beyond
middleware and software applications – namely, the services
layer. SOA as an architecture style promotes loose-coupling,
heterogeneity and composability, and deserves security
treatment in its own right.

A similar effort [14] proposed other ways to organize
security patterns, many of which are applicable to classifying
self-protection approaches:
 Along the “CIA” model [51], i.e. Confidentiality,

Integrity, and Availability;
 Along the context of where the security patterns are

applied: perimeter security, core security, and external
security;

 Along Microsoft’s classification scheme of Stakeholder,
Function, Data, and Test;

 Along the Zachman’s Enterprise Architecture
Framework [57] which uses the familiar “What, Where,
Who, When, Why, How” dimensions;

 Along the “STRIDE” security threat model [40]:
Spoofing, Tampering, Repudiation, Information
Disclosure, Denial of Service, Elevation of Privilege.

Other related taxonomies include those on software
vulnerabilities [53], and fault tolerance schemes [2].

F. Observations

The aforementioned taxonomies, though relevant and
useful, are not sufficiently specific and systematic enough
for classifying self-protection approaches in that they either:

 focus on adaptive systems in general, but not
specifically on security, or

 focus on software security in general, but not on
autonomic and adaptive security, or

 focus only on certain layers of self-protection systems
(such as middleware), or

 are too generic (e.g., open vs. closed) and need to be
further qualified in the self-protection context.

Furthermore, many of the taxonomies and classification
schemes lean heavily towards implementation tactics and
techniques (such as those for implementation patterns) but
perhaps fall short on covering architectural strategies or
styles (with [29] being an exception).

In the next section, we propose our taxonomy to help
classify existing self-protection and adaptive security
research.

IV. PROPOSED TAXONOMY

The proposed taxonomy builds on top of the existing
work surveyed in the previous section. It consists of nine
dimensions that fall into two categories: Research
Positioning and Technique Characterization. The dimensions
and their allowed values are shown in Table 1, along with
examples using the simple online banking service scenario
given in Section II.C.

The first category, Research Positioning, helps
characterize the “WHAT” aspects, that is, the objectives and
intent of self-protection research. It includes four
dimensions:

1) Self-Protection Levels. This dimension focuses on the
sophistication of self-protection mechanisms, and is inspired
by the Monitor, Analyze, Plan, Excute (MAPE) value chain
proposed in [16]. “Monitor & Detect” is the most basic
level, followed by “Analyze & Characterize”, which focuses
on the characterization and understanding of the nature/type
of the attacks. The third level is “Plan & Prevent” that
represents the highest level of sophistication; a security
approach reaching this level will allow a system to predict
security issues and plan for countermeasures in an
autonomous fashion. The three levels are also consistent
with Kramer and Magee’s three level reference architecture
for self-managed systems [17], namely, Component
Management, Change Management, and Goal Management.

2) Architecture Levels. This dimension denotes which
architecture layer is the focus of a particular research effort,
namely:
 Network – focusing on communication links, protocols,

intrusion detection, and intrusion protection
 Host – dealing with hardware, firmware, OS, and

virtualization
 Software/applications – concerning programming

languages, middleware, and application platforms
 Services – seeking to protect web services and service

interactions, a recent security area attributed to the rise
of SOA [49].

This dimension also includes a 5th level, called “abstract
architecture”, to indicate any self-protection research that
focuses on the architecture as a whole, at the abstract level,
i.e., dealing with architecture components, connectors,
configurations, and architecture styles. An architecture-based
approach enjoys many benefits such as generality,
abstraction, and potential for scalability, as pointed out in
[17].

3) Lifecycle Focus. This dimension indicates what part
of the software development lifecycle is a research effort
concerned with. For the purposes of this paper we simply
use two phases, Development Time and Runtime.
Obviously self-protection is for the most part concerned
with a system at runtime, however, it is also necessary to
consider how to design, develop, test, and deploy software
systems for self-protection.

4) Protection Goals. This dimension specifies the
security goal(s) of a research approach. Here we follow the
same traditional CIA model for its simplicity, as used in
[29] and [14].
 Confidentiality – to protect against unauthorized access,

spoofing, impersonation, etc.
 Integrity – to protect against system tampering,

hijacking, defacing, and subversion
 Availability – to protect against degradation or denial of

service
Other goals such as Authenticity and Non-Repudiation

may also be considered as implicit sub-goals that fit under
this model.

The second category, Technique Characterization, is
concerned with describing the “HOW” aspects of self-
protection research. It includes five dimensions:

5) Adaptation Topology looks at whether a security
approach focuses on the local (i.e., a single host or node) or
global scale of the system. For those approaches focusing on
the global scale, this dimension also specifies whether they
use centralized or decentralized coordination and planning.
In a decentralized topology, the nodes often “federate” with
each other in a peer-to-peer fashion without relying on a
central node.

6) Adaptation Decision-Making. This dimension deals
with how the adaptive security decisions are made – is it
made by a human user? If it is made autonomously by the
system, is it driven by an algorithm, or by heuristics such as
policies or rule sets? This dimension is important in the
sense that it characterizes the extent of the “intelligence”
behind an adaptive security approach.

7) Adaptation Tempo. This dimension indicates when
and how often adaptations occur, which in turn is dependent
on whether the approach is reactive or proactive. In reactive
mode, system adaptation occurs in response to detected
threats. In proactive mode, system adaptation may occur
according to a predefined schedule, with or without detected
threats.

8) Adaptation Point represents where in the system
security adaptations occur. Here we adopt a metric from
[14] and define the values as System Boundary or System
Internal. In the former case, the system self-protection relies
on peremeter security. For the latter, the system relies on
internal security mechanisms.

9) Adaptation Patterns indicate any recurring
architectural patterns that rise from the self-protection
approaches. Many architecture and design patterns exist, but
five key patterns have emerged in our research as being
especially effective in establishing self-protecting behavior:
 Containment – use proxies, wrappers, or containers

around the protected resource, so that the request to and
response from the resource may be monitored and
sanitized in a way that is transparent to the resource. The
SITAR system [43], for instance, protects COTS servers
by deploying an adaptive proxy server in the front,
which detects and reacts to intrusions. Invalid
requests/responses trigger reconfiguration of the COTS
server.

 Redundancy – use replicas in parallel or failover
configurations. To safely switch requests from one
instance to another, the system may need to use
checkpointing to save the current system state.
Redundancy is a well-known pattern that is widely used
in self-protecting systems (e.g., to mitigate denial of
service attacks) and often combined with other patterns.

 Diversity – develop different implementations for the
same software specification, in the hope that the attacks
to one implementation may not affect others. This may
be achieved through the use of different programming
languages, OS, or hardware platforms. The HACQIT
system [32] combines redundancy and diversity by
using two software components with identical functional
specifications (such as a Microsoft IIS web server and
an Apache web server) for error detection and failure
recovery. The TALENT system [30] uses OS-level
heterogeneity such as deployment C-language programs
on different OS kernels to thwart platform-specific
attacks.

 Recomposition – Use techniques such as reorganization,

 Dimension Value Example (Illustrated using the Simple Online Banking System in Section II.C)

R
es

ea
rc

h
 P

os
it

io
n

in
g

Self-Protection
Levels

Monitor & Detect Network based instruction detection function of the router detects intrusion event

Analyze & Characterize System Management (SM) component analyzes intrusion event and matches against known attacks

Plan & Prevent SM reconfigures router policy to prevent similar attack types

Architecture
Levels

Network Firewall adapts policies on ports and protocols based on security threat levels

Host SM pushes OS patches to the server in response to new Windows vulnerabilities

Software/Apps SM instructs application server to disable the faulting application module

Services The online banking web service disables trust for the infected user account

Abstract Architecture Triggered by slow response time, SM uses adapation strategy to spawn a new app server instance

Lifecycle Focus
Development Time The intrusion was captured as a new security test case in the system dev/test environments

Runtime See all examples for the “Self-Protection Level” and “Archtiecture Level” dimensions

Protection Goals

Confidentiality Prevent intruder from getting user financial or personal data

Integrity Prevent intruder from altering or erasing user financial data

Availability Prevent intruder from bringing down the banking app or web service

T
ec

h
n

iq
u

e
C

h
ar

ac
te

ri
za

ti
on

Adaptation
Topology

Local only Adaptative security measures within a single app server

Centralized When the SM monitors and controls multiple host servers

Decentralized The system in Figure 1 are deployed in multiple sites, interconnected with one another

Adaptation
Decision-Making

Human-driven Intrusion alert is sent to system administrator, who immediately logs in to disable access to server

Heuristics-driven A policy states “When the data retrieval amount exceeds 100KB threshold, disable user account”

Algorithm-driven There are N servers running concurrently; SM uses voting algorithm to identify the infected server

Adaptation Tempo
Reactive System reacts to the intrusion event by disabling old server, connect router to backup server

Proactive System runs penetration testing every night to ensure system integrity

Adaptation Point
System boundary System relies on network based instruction detection function of the router

System internal System relies on access control policies managed within the SM

Adaptation
Patterns

Containment App server has a proxy serve that inspects every request before it is sent to the banking app

Redundancy Multiple app server instances are running at the same time

Diversity System runs two implementations of the banking web service, one in Java, the other in .NET

Recomposition SM uses instrumentation interfaces to adjust the maximum concurrent requests to app server

Rejuvenation System recycles the existing app server instance every 15 minutes

Table 1: Proposed Taxonomy for Self-Protection Approaches, with Examples.

parameterization, orchestration, or aspect-orientation to
dynamically change the behavior of a software
component at runtime. The E2R Autonomic Security
Framework [18], for example, allows each node to
collect and derive security context information from
neighboring nodes. When a node fails, other nodes can
use their security contexts and pre-defined policies to
reorganize the network and prevent service disruption.
The approach is especially suited for protecting
pervasive distributed systems, such as wireless sensor
networks.

 Rejuvenation – periodically regenerates or recycles
system to valid state. The R-Xen framework [21], for
example, used hypervisor-based software rejuvenation
techniques to proactively regenerate new Virtual
Machines (VM) that can seamlessly take over control
from potentially compromised VMs.

These patterns are not mutually exclusive. It is
conceivable that a system may use a combination of them to
provide more robust and flexible self-protection behavior.

V. APPLYING THE PROPOSED TAXONOMY

A number of research efforts related to self-protecting
systems and adaptive security have been identified in this
survey, and are then evaluated against the proposed
taxonomy. The results are summarized in Table 2.

Note that the survey is meant to be representative not
exhaustive, and the check marks in the table are meant to
indicate the primary focus of the research effort. For
example, if the “Availability” under Protection Goals is not
checked for a certain research effort, it does not necessarily
mean that this approach cannot help address availability
issues. Rather, it simply means availability is not its primary
focus.

The number of the research papers surveyed will not
allow elaboration on each one of them in this paper. Rather,
we highlight some of them as examples in the following
observations section.

VI. OBSERVATIONS AND ANALYSIS

By using the proposed taxonomy as a consistent point of
reference, many insightful observations may be drawn from
the survey results of Table 2.

1) Correlating Self-Protection Levels and Architecture
Levels

Here we see that abundant research approaches focus on
the “Monitor & Detect” level, such as detecting security-
relevant events and enforcing security policies that respond
to these events. For example, reference [38] uses Event
Calculus to specify security monitoring patterns for detecting
breaches in confidentiality, integrity and availability,
respectively. Reference [20] uses policy-aware OS kernels
that can dynamically change device protection levels. At the
“Analyze & Characterize” level, research efforts attempt to
characterize and understand the nature of security events. For
example, reference [22] uses forensic analysis of victim
server’s memory to generate attack message signatures. At
the highest “Plan & Prevent” level, research efforts are

relatively speaking not as abundant; such efforts seek to
tackle the harder problem of planning for security adaptation
to counter existing and future threats. Techniques and
approaches vary greatly, from fuzzy reasoning [46] for
predicting network intrusions to architecture regeneration
based on Quality of Service scenarios [26].

Along the Architecture Levels dimension, we see many
adaptive security approaches focusing on the “traditional”
architecture layers, such as network, host, and application
code. At the network level, abundant research can be found
in the field of intrusion-detection and intrusion-prevention,
as represented by [46] and [11]. Because network
vulnerabilities are closely linked to the network topology and
equipment configurations, devoted research can also be
found on adapting network security policies based on such
network characteristics [5]. At the host/node level, antivirus
and malware detection/prevention have been receiving a lot
of attention from the research community (a latest example
on adaptive rule-based malware detection can be found in
[4]). As we move up to the application level, adaptive
security research is more concerned with programming
language level vulnerabilities such as those concerning
pointers, memory buffers, and program execution points.
Reference [23], for example, presents a technique, called
From Failures to Vaccine (FFTV), that detects faults using
code-level assertions and analyzes the application to identify
relevant programming points that can mitigate the failures.

More recent research has started to focus on adaptive
security for web services in a SOA. Such research is
generally around service trust [27], service-level monitoring
[39], and service middleware [1]. Research around the
security behavior of a collection of services (such as a BPEL
orchestration or a composite service), however, seems to be
lacking.

Even less research seems to be focusing on the adaptation
of the abstract software architecture as a whole, let alone
from the adaptive security perspective. The RAINBOW [12]
and SASSY [26] frameworks are two examples that fit into
this category, even though they are not specifically focused
on self-protection alone.

To take a further look at the research trends, we use Self-
Protection Levels and Architecture Levels as two
crosscutting dimensions to map out the existing adaptive
security research approaches, as shown in Figure 2. In the
plot, a dot represents a research effort presented in the
referenced paper. A cloud represents a cluster of rich
research that exists but not covered in detail here in this
paper. From this plot it becomes more apparent that existing
research starts to “thin out” as we move up the two
respective levels. Autonomic and adaptive security
approaches that apply to service-based architectures or
abstract architectures seem like a research gap to be filled.

2) Lifecycle Focus
As expected, a vast majority of self-protection research

focuses on runtime not development time, as it is generally
assumed that software components will never be completely
fault-free and vulnerability-free.

Still, a few research efforts can be
found to also involve development time
activities. The FFTV approach [23], for
instance, complements runtime
healing/protection strategies with design-
time construction of “oracles” and analysis
of relevant program points, and also with
test-time generation of reference data on
successful executions. In [15], the
dynamically reconfigurable security
policies for mobile Java programs also rely
on supporting mechanisms put in at
development time (such as policy class
loaders).

Because the philosophy, structure, and
process through which software
components are constructed could have a
significant impact on their quality of
protection at runtime, we feel that
combining development-time and run-time
approaches will result in the best self-
protection of software systems – another
research opportunity.

3) Balancing the Protection Goals
Along the Protection Goals dimension (see Table 2), the

survey results revealed that research efforts seem to focus on
either Confidentiality+Integrity or Availability+Integrity, but
not all three goals. The dichotomy between confidentiality
and availability objectives is not surprising: the former seeks
mainly to protect the information within the system, but is
not so much concerned with keeping the system always
available; the opposite is true for the latter. For example,
when a network intrusion is detected, reconfiguration of the
network settings (such as VPN settings [11]) oftentimes
involves cutting off the affected host/node – system
confidentiality and integrity are preserved, whereas
availability suffers.

In fact, preserving system availability goes beyond the
security realm and is closely related to system QoS, thus
requiring different treatments. Intrusion Tolerant Systems
(e.g., [37], [42], [43]), for example, addresses availability
especially well by leveraging fault tolerance mechanisms,
though they tend to focus on the network and host levels
rather than taking a broader architectural approach.

This observation, though a bit subtle, shows that a self-
protecting system may need to include a “best of breed”
combination of adaptive security techniques rather than
relying on a single mechanism, to meet all protection goals.

4) Topology Tradeoffs
Survey results along the Adaptation Topology metric (see

Table 2) clearly shows that adaptive security approaches
functioning at the global level are predominantly centralized.
For example, many research efforts (e.g., [19] and [24])
recognize the need for coordination between local and global
security policies. In most cases, the coordination is through a
central controller (e.g., [28]). One of the few exceptions
seems to be the Malicious-and Accidental-Fault Tolerance
for Internet Applications (MAFTIA) effort [23], which uses

local middleware controllers (called “wormholes”) at each
node that are interconnected, but do not require a central
controller.

A central controller makes coordination and global
optimization easier, yet runs the risk of becoming the single
point of failure of the system, prone to denial of service and
subversion attacks. Therefore, some approaches put more
robust protection around the central controller, such as using
hardened and trusted hardware/software [42], or putting the
controller in dedicated network zones [31].

Another potential disadvantage for the centralized
approach is scalability. For pervasive systems with highly
distributed computing resources, it may be inefficient and
costly to have all of the resources communicate with a
central controller. Decentralized security approaches in such
case hold more promise in their resilience and scalability,
and may need more research attention.

5) Basis of Adaptation Decision-Making
Security threats are diverse and often unpredictable;

wrong decisions usually will lead to severe consequences. As
such, few approaches in this survey leave adaptive security
decisions (such as reconfiguration or conflict resolution)
solely to an algorithm. Instead, most approaches use heuristic
rules/policies, in such forms as expert system rule sets [4],
policy specification languages [5], event-condition-action
rules [10], or human input as a last resort [45].

The limited few algorithm-based approaches are only
used against narrowly focused problems, such as anomaly
detection (e.g., using security automata [9]), event pattern
recognition (e.g., using event calculus [38]), or fault isolation
(e.g., using Byzantine agreement or threshold cryptography
[33] [37]). The algorithms are often used in conjunction with
heuristic policies.

The lack of algorithm-based methods may be explained
by the daunting challenge of quantitatively assessing the
overall security posture of a complex software system.

	

Figure 2: Correlating Self-Protection Levels with Architecture Levels.

Reference [36] proposes the concept of a Security Health
Index comprised of a weighted basket of security metrics as
an attempt at this goal, but it is not clear whether the
approach has been empirically validated. This is definitely a
pressing research need, especially in today’s heated domain
of cyber warfare.

6) Proactive Defense
From Table 2, we can see that survey results along the

Adaptation Tempo dimension indicate reactive adaptation
based on the “sense and respond” paradigm still seems to be
the norm for self-protection. That being said, the survey

results also show an interesting trend that proactive security
architectures are gaining ground. The TALENT system [30],
for example, addresses software security and survivability
using a “cyber moving target” approach, which periodically
migrates running applications across different platforms
while preserving application state. The SCIT system [28]
uses redundant and diverse servers to periodically “self-
cleanse” the system to pristine state. The aforementioned R-
Xen framework [21] proactively instantiate new VM
instances to ensure system reliability, a technique much
faster than rebooting hardware servers thanks to hypervisor-
based virtualization technology [21].

Table 2: Applying the Proposed Taxonomy to Self-Protection Research Approaches.

Source
(see

References)

Solution
Name

Research Positioning ("What") Technique Characterization ("How")
Self-

Protection
Levels

Architecture
Levels

Life
Cycle
Focus

Protection
Goals

Adapt.
Topology

Adaptation
Decision-
making

Adapt.
Tempo

Adapt.
Point

Adaptation Patterns

M
on

it
or

 &
 D

et
ec

t

A
na

ly
ze

 &
 C

ha
ra

ct
er

iz
e

P
la

n
&

 A
da

pt

N
et

w
or

k

H
os

t

A
pp

 /
S

of
tw

ar
e

S
er

vi
ce

s

A
bs

tr
ac

t A
rc

hi
te

ct
ur

e

D
ev

el
op

m
en

t T
im

e

R
un

ti
m

e

C
on

fi
de

nt
ia

li
ty

In
te

gr
it

y

A
va

il
ab

il
it

y

L
oc

al
 O

nl
y

C
en

tr
al

iz
ed

D
ec

en
tr

al
iz

ed

H
um

an
-D

ri
ve

n

H
eu

ri
st

ic
s-

D
ri

ve
n

A
lg

or
it

hm
-D

ri
ve

n

O
th

er

R
ea

ct
iv

e

P
ro

ac
ti

ve

N
eu

tr
al

 /
H

yb
ri

d

S
ys

te
m

 B
ou

nd
ar

y

S
ys

te
m

 I
nt

er
na

ls

N
eu

tr
al

 /
H

yb
ri

d

P
ro

xy
/C

on
ta

in
m

en
t

R
ed

un
da

nc
y

D
iv

er
si

ty

R
ec

om
po

si
ti

on

R
ej

uv
en

at
io

n

O
th

er

[1] GEMOM x x x x x x x x x x x x x x x x x
[4] LCS x x x x x x x x
[5] x x x x x x x x x x x
[9] SASI x x x x x x x x x x
[10] SECURE x x x x x x x x x x
[11] IDIAN x x x x x x x x x x x x x
[12] RAINBOW x x x x x x x x x x x x x x
[13] x x x x x x x x x x x x
[15] x x x x x x x x x x x x
[18] E2R x x x x x x x x x x x x x
[19] ASPF x x x x x x x x x x x x x x
[20] VSK x x x x x x x x x x x x
[21] X-Spy, R-Xen x x x x x x x x x x x x
[22] COVERS x x x x x x x x x x
[23] FFTV x x x x x x x x x x x x x x
[24] ASI x x x x x x x x x x x
[26] SASSY x x x x x x x x x x x x x x x x
[27] WSAF x x x x x x x x x x
[28] SCIT x x x x x x x x x x x x x x
[30] TALENT x x x x x x x x x x x x x
[31] DPASA x x x x x x x x x x x x x x
[32] HACQIT x x x x x x x x x x x x x x
[33] VM-FIT x x x x x x x x x x x x x x
[36] GEMOM x x x x x x x x x x x x
[37] PRM x x x x x x x x x x x x x x x
[38] x x x x x x x x x x
[39] x x x x x x x x x x x
[42] MAFTIA x x x x x x x x x x x x x x x
[43] SITAR x x x x x x x x x x x x x x x x
[45] x x x x x x x x x x x x x x x
[46] ADAT x x x x x x x x x x
[48] WILLOW x x x x x x x x x x x x x

7) From Perimeter Security to Overall Protection
The Adaptation Point dimension of Table 2 shows that

many adaptive security approaches still rely on perimeter
security, especially those that focus on intrusion detection
and intrusion tolerance. Systems relying solely on perimeter
security, however, are often rendered helpless when the
perimeter is breached; nor can they effectively deal with
threats that originate from inside of the system.

To counter this, some approaches follow the “defense-in-
depth” principle and establish multiple layers of perimeters
or security zones [31], but the disadvantage still exists.

In light of this, we feel there is a need to shift focus from
perimeter security to overall system protection, especially
from monitoring the system boundary to monitoring overall
system behavior. Recent research on service-based systems,
for instance, has started to focus on monitoring and
analyzing service interaction patterns [39] [41].

8) Determining Adaptation Patterns
Another revealing insight from the survey results is that

adaptation patterns are often determined by, or strongly
correlated with, the other dimensions in the taxonomy. Their
relationship is briefly described in Table 3.

It is perhaps not entirely a surprise that the positioning
and techniques employed by a self-protection approach will
to some extent determine the architectural patterns being
used. This observation, however, does point to a critical
research opportunity, that is, to further identify and catalogue
such correlations, to codify them into machine-readable
forms, so that a system may dynamically re-architect itself
using repeatable patterns as requirements and environments
change. This is a higher level of self-protection and may only
be enabled through an architecture-based approach.

VII. CONCLUSION

Self-protection of software systems is becoming
increasingly important as these systems face increasing
external threats from the outside and adopt more dynamic
architecture behavior from within. Self-protection, like other
self-* properties, allows the system to adapt to the changing
environment through autonomic means without much human
intervention, and can thereby be responsive, agile, and cost
effective. Existing research has made significant progress
towards autonomic and adaptive security, but gaps and
challenges remain. This paper proposes a comprehensive
taxonomy to classify and characterize research efforts in this
arena. The analysis of past and ongoing research efforts
using this taxonomy has revealed some gaps and needs for
future research. Specifically, to stay ahead of today’s
advancing cyber threats, adaptive security research needs to:
 Concurrently advance (a) from monitoring and analysis

to planning and goal management, and (b) from
network, host, and application levels to service-based
and holistic architecture-based approaches

 Pursue more “integrated” approaches that span both
development-time and runtime

 Explore more decentralized coordination, planning, and
optimization approaches

 Explore qualitative and quantitative measures that can
be used to dynamically assess overall system security
posture

 Continue the paradigm shift from perimeter security to
overall system protection and monitoring

 Catalog and automate security adaptation patterns at the
abstract architecture level

ACKNOLWEDGEMENTS

This work is partially supported by grants CCF-0820060
and CCF-1217503 from the National Science Foundation
and grant N11AP20025 from Defense Advanced Research
Projects Agency.

REFERENCES
[1] H. Abie, et al., "GEMOM - Significant and Measurable Progress

beyond the State of the Art," International Conference on Systems
and Networks Communications, 2008. pp.191-196, Oct. 2008

[2] A. Avižienis, et al., “Dependability and its Threats: A Taxonomy,”
proc. IFIP 18th World Computer Congress. 22-27 August 2004

[3] L. Blasi, et al., “Applicability of security metrics for adaptive security
management in a universal banking hub system,” European
Conference on Software Architecture (ECSA '10), pp.197-204, 2010

[4] J. Blount, D. Tauritz, S. Mulder, "Adaptive Rule-Based Malware
Detection Employing Learning Classifier Systems: A Proof of
Concept," proc. IEEE 35th Annual Computer Software and
Applications Conference Workshops, pp.110-115, July 2011

[5] J. Burns, A. Cheng, et al., "Automatic management of network
security policy," DARPA Information Survivability Conference &
Exposition II, 2001. pp.12-26 vol.2, 2001

[6] B. Cheng, et al., “Using Security Patterns to Model and Analyze
Security Requirements,” High Assurance Systems Workshop (RHAS
’03) of International Conference on Requirements Engineering, 2003.

[7] D. Chess, C. Palmer, S. White, "Security in an autonomic computing
environment," IBM Systems Journal , vol.42, no.1, pp.107-118, 2003

Table 3: Adaptation Patterns Influenced by Other
Taxonomy Dimensions.

Dimension Correlation with Adaptation Patterns
Self-
Protection
Level

While all patterns are effective for system adaptation,
approaches that offer monitoring and detection often uses
the Proxy / Containment pattern

Architecture
Level

Redundancy, diversity, and rejuvenation are mostly used
at the host-level, whereas recomposition is more common
at the application and service levels

Lifecycle
Focus

All patterns are for runtime security adaptation. More
sophisticated patterns such as diversity, recomposition
and rejuvenation, create significant testing challenges
during the development and deployment process

Protection
Goals

Proxy/containment is an effective pattern to address
system confidentiality; redundancy, diversity and
rejuvenation are particularly effective in ensuring system
availability

Adaptation
Decision-
Making

Algorithms usually go hand-in-hand with the applied
pattern(s). For example, voting/Byzantine agreements are
usually used in conjunction with redundancy patterns,
whereas learning classifiers are used in conjunction with
proxies

Adaptation
Tempo

Rejuvenation is usually the primary pattern for proactive
adaptation

Adaptation
Point

Proxy/Containment and Redundancy patterns are usually
applied at system boundaries, whereas the rest of the
patterns are concerned with system internals

[8] A. Elkhodary, J. Whittle, "A Survey of Approaches to Adaptive
Application Security," Workshop on Software Engineering for
Adaptive and Self-Managing Systems, pp.16, May 2007

[9] U. Erlingsson, F. Schneider, "SASI enforcement of security policies:
a retrospective," DARPA Information Survivability Conference and
Exposition, 2000. vol.2, pp.287-295, 2000

[10] C. English, S. Terzis, P. Nixon, “Towards Self-Protecting Ubiquitous
Systems Monitoring Trust-based Interactions,” in UbiSys '04, 2004

[11] R. Feiertag, et al., “Intrusion Detection inter-component adaptive
negotiation,” Computer Networks, vol. 34, pp.605-621, 2000

[12] S. Cheng, et al., "Rainbow: Architecture-Based Self Adaptation with
Reusable Infrastructure," IEEE Computer, vol 37, pages 46-54,, 2004

[13] M. Ganna, E. Horlait, "Toward secure autonomic pervasive
environments," proc. IEEE GLOBECOM '05. vol.2, pp.6, Nov 2005

[14] M. Hafiz, P. Adamczyk, R. Johnson, "Organizing Security
Patterns," in IEEE Software, vol.24, no.4, pp.52-60, July-Aug. 2007

[15] B. Hashii, et al., "Supporting reconfigurable security policies for
mobile programs", Computer Networks, vol. 33, pp.77-93, 2000

[16] J. Kephart, D. Chess, "The vision of autonomic computing," in IEEE
Computer, vol.36, no.1, pp. 41- 50, Jan 2003

[17] J. Kramer, J. Magee, "Self-Managed Systems: an Architectural
Challenge," International Conf. on Software Engineering, pp.259-
268, May 2007

[18] Ruan He, M. Lacoste, “Applying component-based design to self-
protection of ubiquitous systems,” ACM Workshop on Software
Engineering for Pervasive Services, pp.9-14, 2008

[19] R. He, et al., "A Policy Management Framework for Self-Protection
of Pervasive Systems," International Conference on Autonomic and
Autonomous Systems, pp.104-109, March 2010

[20] R. He, et al., "Virtual Security Kernel: A Component-Based OS
Architecture for Self-Protection," International Conference
on Computer and Information Technology, pp.851-858, June 2010

[21] B. Jansen, H. Ramasay, et al, "Architecting Dependable and Secure
Systems Using Virtualization", Architecting Dependable Systems V,
LNCS 5135, pp. 124-149, 2008

[22] Z. Liang and R. Sekar, “Fast and automated generation of attack
signatures: a basis for building self-protecting servers,” ACM conf.
on Computer and communications security, pp. 213-222, 2005

[23] D. Lorenzoli, L. Mariani, M. Pezze, "Towards Self-Protecting
Enterprise Applications," IEEE Int’l Symposium on Software
Reliability (ISSRE '07), pp.39-48, Nov. 2007

[24] L. Marcus, “Local and Global Requirements in an Adaptive Security
Infrastructure,” International Workshop on Requirements for High
Assurance Systems, Sep 2003

[25] P. McKinley, S. Sadjadi, E. Kasten, B. Cheng, "A taxonomy of
compositional adaptation", http://users.cs.fiu.edu/~sadjadi/
Publications/CompositionalAdaptationTaxonomy-
TechRep.pdf, May 2004

[26] D. Menasce, H. Gomaa, S. Malek, J. Sousa, "SASSY: A Framework
for Self-Architecting Service-Oriented Systems," IEEE Software,
vol.28, no.6, pp.78-85, Nov.-Dec. 2011

[27] E. Maximilien, M. Singh, “Toward autonomic web services trust and
selection,” Int’l Conf. on Service Oriented Computing, pp.212-221,
2004

[28] Q. Nguyen, A. Sood, "Designing SCIT architecture pattern in a
Cloud-based environment,", International Conference on Dependable
Systems and Networks Workshops (DSN-W), pp.123-128, June 2011

[29] Q. Nguyen, A. Sood, "A Comparison of Intrusion-Tolerant System
Architectures," IEEE Security & Privacy, vol.9, no.4, pp.24-31, July-
Aug. 2011

[30] H. Okhravi, et al., ”TALENT: Dynamic Platform Heterogeneity for
Cyber Survivability of Mission Critical Applications”, Secure and
Resilient Cyber Architecture Conference (SRCA'10), Oct 2010

[31] P. Pal, F. Webber, R. Schantz,"The DPASA Survivable JBI - A High-
Water Mark in Intrusion Tolerant Systems", First Workshop on
Recent Advances on Intrusion-Tolerant Systems, pp.33-37, 2007

[32] J. Reynolds, J. Just, et al, "The design and implementation of an
intrusion tolerant system," Foundations of Intrusion Tolerant
Systems, 2003

[33] H. Reiser, R. Kapitza, “Hypervisor-Based Efficient Proactive
Recovery,” IEEE International Symposium on Reliable Distributed
Systems (SRDS 2007), pp. 83–92, 2007

[34] S. Sadjadi, "A Survey of Adaptive Middleware",
http://users.cis.fiu.edu/~sadjadi/Publications/AdaptiveMiddle
wareSurvey.pdf, Dec 2003

[35] M. Salehie, L. Tahvildari, “Self-adaptive software: Landscape and
research challenges,” in ACM Trans. on Autonomic and Adaptive
Systems (TAAS), vol.4, no.2, Article 14, May 2009

[36] R. Savola, P. Heinonen, "Security-Measurability-Enhancing
Mechanisms for a Distributed Adaptive Security Monitoring
System," Int’l Conf. on Emerging Security Information Systems and
Technologies (SECURWARE), pp.25-34, 2010

[37] P. Sousa, et al., "Resilient Intrusion Tolerance through Proactive and
Reactive Recovery," Pacific Rim International Symposium on
Dependable Computing (PRDC 2007), pp.373-380, Dec. 2007

[38] G. Spanoudakis, et al., “Towards security monitoring patterns,” ACM
symposium on Applied computing (SAC '07), pp.1518-1525

[39] G. Spanoudakis, S. LoPresti, "Web Service Trust: Towards a
Dynamic Assessment Framework," International Conference on
Availability, Reliability and Security (ARES '09), pp.33-40, 2009

[40] F. Swiderski, W. Snyder, “Threat Modeling,” Microsoft Press, 2004.

[41] M. Uddin, M. Zulkernine, “ATM: an automatic trust monitoring
algorithm for service software,” ACM symposium on Applied
Computing (SAC '09), pp.1040-1044

[42] P. Verissimo, et al., "Intrusion-tolerant middleware: the road to
automatic security," IEEE Security & Privacy, vol.4, no.4, pp.54-62,
July-Aug. 2006

[43] F. Wang, F. Jou, F. Gong, et al., "SITAR: a scalable intrusion-tolerant
architecture for distributed services," Foundations of Intrusion
Tolerant Systems, 2003

[44] Y. Wang, M. Singh, “Evidence-based trust: A mathematical model
geared for multiagent systems,” ACM Trans. Auton. Adapt. Syst. 5,
4, Article 14, Nov. 2010

[45] S. White, M. Swimmer, et al., “Anatomy of a Commercial-Grade
Immune System,” International Virus Bulletin Conference, 1999

[46] Z. Yu, et al., “An adaptive automatically tuning intrusion detection
system,” ACM Trans. Autonom. Adapt. Syst. Vol 3, No 3, Aug.2008

[47] N. Yoshioka, H. Washizaki, K. Maruyama, “A survey on security
patterns,” Progress in Informatics, 5:35–47, 2008

[48] J. Knight, D. Heimbigner, A. Wolf, “The Willow Architecture:
Comprehensive Survivability for Large-Scale Distributed
Applications,” Intrusion Tolerance Systems Workshop of Int’l Conf.
on Dependable Systems and Networks, pp.C.7.1–C.7.8, 2002

[49] E. Yuan, J. Tong, "Attributed Based Access Control (ABAC) for Web
services,“ IEEE Int’l Conf. on Web Services (ICWS), July 2005

[50] Aspect Oriented Programming (AOP),
http://en.wikipedia.org/wiki/Aspect-oriented_programming

[51] The CIA Triad for Information Security,
http://en.wikipedia.org/wiki/Information_security

[52] Conficker worm, http://en.wikipedia.org/wiki/Conficker
[53] The MITRE Corporation, The 2011 CWE/SANS Top 25 Most

Dangerous Software Errors, http://cwe.mitre.org/top25/
[54] Duqu computer worm, http://en.wikipedia.org/wiki/Duqu

[55] Stuxnet, http://en.wikipedia.org/wiki/Stuxnet
[56] Service Component Architecture (SCA) specifications,

http://www.oasis-opencsa.org/sca

[57] Zachman’s Architecture Framework, http://www.zachman.com/

