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Abstract—Self-protecting software systems are a class of 
autonomic systems capable of detecting and mitigating security 
threats at runtime. They are growing in importance, as the 
stovepipe static methods of securing software systems have 
shown inadequate for the challenges posed by modern software 
systems. While existing research has made significant progress 
towards autonomic and adaptive security, gaps and challenges 
remain. In this paper, we report on an extensive study and 
analysis of the literature in this area. The crux of our 
contribution is a comprehensive taxonomy to classify and 
characterize research efforts in this arena. We also describe 
our experiences with applying the taxonomy to numerous 
existing approaches. This has shed light on several challenging 
issues and resulted in interesting observations that could guide 
the future research. 
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I.  INTRODUCTION 

Security is the Achilles heel of most modern software 
systems. In spite of the significant progress over the past few 
decades, the challenges posed by security are more prevalent 
than ever before. As the awareness grows of the limitations 
of traditional, often static and rigid, security models, research 
shifts to dynamic models, where security threats are detected 
and mitigated at runtime, i.e., self-protection.  

Self-protection is closely related to the other self-* 
properties, such as self-configuration and self-optimization. 
On one hand, a self-configuring and self-optimizing system 
relies on self-protection functions to ensure the system 
integrity remains intact during dynamic changes. On the 
other hand, the implementation of self-protection functions 
may also leverage the same techniques used for system 
reconfiguration and adaptation. 

Self-protection has been identified as one of the essential 
traits of self-management for autonomic computing systems. 
Kephart and Chess characterized self-protection from two 
perspectives [16]: From a “reactive” perspective, the system 
automatically defends against malicious attacks or cascading 
failures, while from a “proactive” perspective, the system 
anticipates security problems in the future and takes steps to 
mitigate them. 

Chess et al. also provided valuable guidance on the key 
research directions for securing autonomic systems, such as 
ways to represent and reason about security policies and 
state, methods for effectively differentiating between normal 
system failures and malicious attacks, policies and 
algorithms for resisting fraud and persuasion, and common 

languages and taxonomies for communicating and 
negotiating security policies and states [7]. 

The past decade has seen extensive and systematic 
research being conducted around self-adaptive and self-
managing systems. Research that focuses on self-protecting 
capabilities, however, has been relatively speaking less 
abundant. Scattered efforts can be found in various 
application domains such as autonomic computing, mobile 
and ad-hoc networks, sensor networks, fault tolerant 
systems, trust management, and military domains such as 
information survivability and tactical systems. 

This paper surveys recent research on self-protecting 
software systems with a dual focus – to evaluate relevant 
research approaches, but at the same time identify the 
taxonomies and schemes against which such research efforts 
may be classified and organized. The contributions of the 
paper include: (1) A proposed taxonomy for consistently and 
comprehensively classifying self-protection mechanisms and 
research approaches; (2) An extensive survey of the state of 
the art of self-protecting software systems using the proposed 
taxonomy; (3) Observations and comparative analysis across 
these self-protecting systems, to identify trends, patterns, and 
gaps; and (4) A set of recommendations for future research 
directions for self-protecting systems 

The rest of the paper is organized as follows. Section 2 
details the need for self-protection in today’s software 
systems through a motivating example. Section 3 surveys the 
existing taxonomies and classification schemes related to 
system self-protection and adaptive security. Section 4 
proposes a coherent and comprehensive taxonomy that 
builds on top of existing taxonomies, and Section 5 attempts 
to classify current and past self-protection research initiatives 
against the proposed taxonomy. Section 6 presents the 
analysis on the survey results, offering observations on 
patterns, trends, gaps, and opportunities. Based on this 
analysis, Section 7 concludes the paper with a set of 
recommendations for future self-protecting system research. 

II. MOTIVATION 

There is an unprecedented need for autonomic and 
adaptive security in today’s software systems, driven by both 
external factors such as cyber threats as well as internal 
factors that lie within the system architecture. 

A. From Outside: Ever-Increasing Cyber Threats 

As software systems become more distributed, interactive 
and ubiquitous, networking services become an integral part 
of system architecture, making these systems more prone to 
malicious attacks. Over the years the frequency, complexity, 



and sophistication of attacks are rapidly increasing, causing 
severe disruptions of online systems with sometimes 
catastrophic consequences. From some of the well-
publicized recent incidents we can get a glimpse of the 
characteristics of such threats: 
 The Conficker worm, first detected in 2008, caused the 

largest known computer infection in history and was 
able to assemble a botnet of several million hosts — an 
attack network that, if activated, would be capable of 
large-scale Distributed Denial of Service (DDoS) 
attacks. What is unique about Conficker is not just the 
scale it achieved, but also its use of sophisticated 
software techniques including peer-to-peer networking, 
self-defense through adaptation, and advanced 
cryptography [52]. 

 The Stuxnet worm, discovered in 2010, is the first 
known malware to target and subvert industrial control 
systems. In addition to being credited with damaging the 
Iranian nuclear program, the attack demonstrates its 
ability to target multiple architecture layers of the target 
system — exploiting the network and host-level 
vulnerabilities is only a stepping stone for malicious 
actions at the application level [55]. 

 The Duqu worm, lately discovered in September 2011, 
is a reconnaissance worm that does no harm to the 
infected systems but is tasked to collect and exfiltrate 
information such as valid digital certificates that may be 
used in future attacks. It further illustrates the deliberate, 
coordinated and persistent nature of today’s cyber 
threats [54]. 

What becomes increasingly clear from examples like 
these is that to protect today’s software systems, especially 
those that are mission critical, applying static point security 
solutions (e.g., firewall and one-time password 
authentication) is no longer sufficient. Rather, there is a need 
for dynamic approaches that actively evaluate and reassess 
the overall security posture of the entire system architecture 
at different layers. 

B. From Within: Dynamic Architectural Behaviors 

An equally pressing need for system self-protection 
arises from the fact that software systems are increasingly 
designed to take on more dynamic behaviors at runtime. As 
dynamic architectural styles, such as service-orientation, 
become more widely adopted, a system function may, for 
example, be reassembled and provisioned with different 
components (e.g., using Service Component Architecture 
[56]). Similarly, a web service orchestrator could be 
constructed to dynamically discover and access different 
service providers (e.g., using Business Process Execution 
Language (BPEL) and a BPEL engine). 

Runtime architectural changes like these tend to be 
security-relevant. For example, if a BPEL orchestrator 
switches a Partner Link from a non-responsive local service 
provider to an alternative external provider, the new SOAP 
connection becomes an additional source of vulnerability. 

Thus, as runtime system architectures become adaptive 
and dynamic, so must their protection, as manual changes in 
security policies would simply be too slow and too costly. 

C. A Simple Motivating Example 

Self-protecting mechanisms for a software system can 
take many diverse forms. As an example, let us suppose an 
intruder, through attempts such as phishing, has gained 
access to an online banking application and starts to 
exfiltrate a large amount of confidential user information. 
The much simplified architecture of the application is shown 
in Figure 1. 

 
 

 
Suppose shortly after the intruder breaks into the system, 

his access gets denied and he can no longer gain access. To 
achieve this effect, the system could have taken any of the 
following different measures: 
 The intrusion detection capability of the network router 

detects this illegal access and automatically disabled the 
connection from the source IP address; 

 The firewall detects unusually large data transfer which 
exceeds predefined policy threshold and accordingly 
disables the HTTP connection; 

 An overall system transaction monitor (not shown), 
sensing an unusual data retrieval pattern from the 
Windows server, shuts down the server and redirects all 
request to a backup server; 

 Multiple application server instances are deployed on 
the Windows machine. By comparing the behavior from 
all server instances, the anomaly from the compromised 
application server instance is detected and the instance 
consequently is shut down; 

 The built-in access control policies within the online 
banking application detects abnormal usage pattern, and 
therefore disables the user account in question. 

As the paper will show later, many other self-protecting 
mechanisms are possible. How do these different approaches 
compare against one another? What approaches apply to 
what threats? Are some more effective than others? If so, 
under what conditions? To better answer these questions, one 
must take a methodical approach in evaluating the state of 
the art of the self-protection approaches, architectures, and 
techniques, and assess how they address the externally-
driven and internally-driven security needs mentioned above. 

This paper seeks to take a step further toward this goal by 
proposing a comprehensive taxonomy for self-protecting 
systems. The next section starts with a survey of existing 
taxonomies and classification schemes that are relevant to 
self-protection. 

III. RELATED TAXONOMY WORK 

 

Figure 1: Simple Online Banking System Example 



A. Taxonomy of Compositional Adaptation 

Reference [25] focuses on composition as a key 
paradigm for adaptation, which includes enabling techniques 
such as Separation of Concerns, Computational Reflection, 
and Component-based Design. The paper describes a 
taxonomy based on how, when, and where software 
composition takes place: 
 The “how” metric consists of criteria around techniques, 

transparency, granularity, coverage, and support; 
 The “when” metric looks at whether the composition is 

static or dynamic, and whether the adaptation occurs at 
development time, compile/link time, load time, or 
runtime; 

 The “where” metric is concerned with whether the 
adaptation occurs in the application layer, the 
middleware layer, or in the Operating System or 
hardware layer. 

A related survey can be found in [34] with a stronger 
focus on middleware. It classifies middleware as either 
Quality of Service (QoS) oriented, dependable, or embedded. 
It follows the same taxonomy on adaptation type, namely, 
static (customizable, configurable) and dynamic (tunable and 
mutable). 

B. Adaptive Security Approaches at the Application Level 

Reference [8] provides a good survey on application-
level adaptive security mechanisms. It builds on top of the 
taxonomy of computational paradigms defined in [34], and 
adds the following additional dimensions: (1) 
Reconfiguration scale, which categorizes whether the 
reconfiguration happens in a single unit, inter-unit, or 
architecture wide; (2) Conflict handling, which refers to 
whether the system resolves conflicts among candidate 
configurations in an autonomic fashion or delegates it to a 
human user (or a hybrid of the two) 

These classification dimensions are certainly applicable 
to self-protection systems in general; however, the paper’s 
focus is primarily on the application layer. 

C. Taxonomy of Self-Adaptive Software 

Reference [35] is a comprehensive survey on self-
adaptive software in general. It offers a taxonomy of self-
adaptation that covers a variety of dimensions, such as 
objects to adapt, realization approach, adaptation type, 
temporal characteristics, and degree of human interactions. 
Some security-relevant ones include: 
 Adaptation layers, such as middleware or application-

layer, as defined by McKinkey et al. [25] 
 Realization approach, such as static vs. dynamic 

decision making, and external vs. internal 
 Realization type, such as open vs. close, model-based 

vs. model-free, or specific vs. generic 
 Temporal characteristics, such as reactive vs. proactive 

adaptation 
 Trust. The paper offers different views on the 

interpretation of trust on self-adaptive systems without 
offering a definitive taxonomy 

Even though many of these dimensions are relevant for 
self-protection, they need to be further defined in the specific 
context of security before they become useful. 

D. Intrusion-Tolerant System (ITS) Architectures 

Reference [29] offers an up-to-date survey on ITS, a 
class of self-protecting systems that focus on continued 
system operations even in the presence of intrusion attacks. 
ITS architectures are often based on fault tolerance 
techniques. This paper classifies ITS approaches using a 
taxonomy with four categories: (1) Detection-triggered, (2) 
Algorithm-driven, (3) Recovery-based, and (4) Hybrid of the 
three. The paper identified a rich set of research initiatives, 
some of which are also covered in our analysis in Section V. 

This taxonomy is closely related to other classifications 
identified earlier. For example, detection-triggered 
approaches are by definition “reactive” approaches, while 
recovery-based approaches are “proactive” in nature. As 
correctly pointed out by the authors, these approaches are by 
no means mutually exclusive and may be used together. 

E. Other related taxonomies 

A number of surveys focused on classifying security 
patterns. Reference [6], for example, uses metrics such as 
purpose (creational, structural, and behavioral) and 
abstraction level (network, host, application). Even though 
they are used to classify security patterns, metrics such as 
abstraction level will apply to adaptive security approaches 
as well. 

It is worth noting that software systems today have 
evolved to include another layer of abstraction beyond 
middleware and software applications – namely, the services 
layer. SOA as an architecture style promotes loose-coupling, 
heterogeneity and composability, and deserves security 
treatment in its own right. 

A similar effort [14] proposed other ways to organize 
security patterns, many of which are applicable to classifying 
self-protection approaches: 
 Along the “CIA” model [51], i.e. Confidentiality, 

Integrity, and Availability; 
 Along the context of where the security patterns are 

applied: perimeter security, core security, and external 
security; 

 Along Microsoft’s classification scheme of Stakeholder, 
Function, Data, and Test; 

 Along the Zachman’s Enterprise Architecture 
Framework [57] which uses the familiar “What, Where, 
Who, When, Why, How” dimensions; 

 Along the “STRIDE” security threat model [40]: 
Spoofing, Tampering, Repudiation, Information 
Disclosure, Denial of Service, Elevation of Privilege. 

Other related taxonomies include those on software 
vulnerabilities [53], and fault tolerance schemes [2]. 

F. Observations 

The aforementioned taxonomies, though relevant and 
useful, are not sufficiently specific and systematic enough 
for classifying self-protection approaches in that they either: 



 focus on adaptive systems in general, but not 
specifically on security, or 

 focus on software security in general, but not on 
autonomic and adaptive security, or 

 focus only on certain layers of self-protection systems 
(such as middleware), or 

 are too generic (e.g., open vs. closed) and need to be 
further qualified in the self-protection context. 

Furthermore, many of the taxonomies and classification 
schemes lean heavily towards implementation tactics and 
techniques (such as those for implementation patterns) but 
perhaps fall short on covering architectural strategies or 
styles (with [29] being an exception). 

In the next section, we propose our taxonomy to help 
classify existing self-protection and adaptive security 
research. 

IV. PROPOSED TAXONOMY 

The proposed taxonomy builds on top of the existing 
work surveyed in the previous section. It consists of nine 
dimensions that fall into two categories: Research 
Positioning and Technique Characterization. The dimensions 
and their allowed values are shown in Table 1, along with 
examples using the simple online banking service scenario 
given in Section II.C.  

The first category, Research Positioning, helps 
characterize the “WHAT” aspects, that is, the objectives and 
intent of self-protection research. It includes four 
dimensions: 

1) Self-Protection Levels. This dimension focuses on the 
sophistication of self-protection mechanisms, and is inspired 
by the Monitor, Analyze, Plan, Excute (MAPE) value chain 
proposed in [16]. “Monitor & Detect” is the most basic 
level, followed by “Analyze & Characterize”, which focuses 
on the characterization and understanding of the nature/type 
of the attacks. The third level is “Plan & Prevent” that 
represents the highest level of sophistication; a security 
approach reaching this level will allow a system to predict 
security issues and plan for countermeasures in an 
autonomous fashion. The three levels are also consistent 
with Kramer and Magee’s three level reference architecture 
for self-managed systems [17], namely, Component 
Management, Change Management, and Goal Management.  

2) Architecture Levels. This dimension denotes which 
architecture layer is the focus of a particular research effort, 
namely: 
 Network – focusing on communication links, protocols, 

intrusion detection, and intrusion protection 
 Host – dealing with hardware, firmware, OS, and 

virtualization 
 Software/applications – concerning programming 

languages, middleware, and application platforms 
 Services – seeking to protect web services and service 

interactions, a recent security area attributed to the rise 
of SOA [49]. 

This dimension also includes a 5th level, called “abstract 
architecture”, to indicate any self-protection research that 
focuses on the architecture as a whole, at the abstract level, 
i.e., dealing with architecture components, connectors, 
configurations, and architecture styles. An architecture-based 
approach enjoys many benefits such as generality, 
abstraction, and potential for scalability, as pointed out in 
[17]. 

3) Lifecycle Focus. This dimension indicates what part 
of the software development lifecycle is a research effort 
concerned with. For the purposes of this paper we simply 
use two phases, Development Time and Runtime. 
Obviously self-protection is for the most part concerned 
with a system at runtime, however, it is also necessary to 
consider how to design, develop, test, and deploy software 
systems for self-protection. 

4) Protection Goals. This dimension specifies the 
security goal(s) of a research approach. Here we follow the 
same traditional CIA model for its simplicity, as used in 
[29] and [14].  
 Confidentiality – to protect against unauthorized access, 

spoofing, impersonation, etc. 
 Integrity – to protect against system tampering, 

hijacking, defacing, and subversion 
 Availability – to protect against degradation or denial of 

service 
Other goals such as Authenticity and Non-Repudiation 

may also be considered as implicit sub-goals that fit under 
this model. 

The second category, Technique Characterization, is 
concerned with describing the “HOW” aspects of self-
protection research. It includes five dimensions: 

5) Adaptation Topology looks at whether a security 
approach focuses on the local (i.e., a single host or node) or 
global scale of the system. For those approaches focusing on 
the global scale, this dimension also specifies whether they 
use centralized or decentralized coordination and planning. 
In a decentralized topology, the nodes often “federate” with 
each other in a peer-to-peer fashion without relying on a 
central node. 

6) Adaptation Decision-Making. This dimension deals 
with how the adaptive security decisions are made – is it 
made by a human user? If it is made autonomously by the 
system, is it driven by an algorithm, or by heuristics such as 
policies or rule sets? This dimension is important in the 
sense that it characterizes the extent of the “intelligence” 
behind an adaptive security approach. 

7) Adaptation Tempo. This dimension indicates when 
and how often adaptations occur, which in turn is dependent 
on whether the approach is reactive or proactive. In reactive 
mode, system adaptation occurs in response to detected 
threats. In proactive mode, system adaptation may occur 
according to a predefined schedule, with or without detected 
threats. 



8) Adaptation Point represents where in the system 
security adaptations occur. Here we adopt a metric from 
[14] and define the values as System Boundary or System 
Internal. In the former case, the system self-protection relies 
on peremeter security. For the latter, the system relies on 
internal security mechanisms. 

9) Adaptation Patterns indicate any recurring 
architectural patterns that rise from the self-protection 
approaches. Many architecture and design patterns exist, but 
five key patterns have emerged in our research as being 
especially effective in establishing self-protecting behavior: 
 Containment – use proxies, wrappers, or containers 

around the protected resource, so that the request to and 
response from the resource may be monitored and 
sanitized in a way that is transparent to the resource. The 
SITAR system [43], for instance, protects COTS servers 
by deploying an adaptive proxy server in the front, 
which detects and reacts to intrusions. Invalid 
requests/responses trigger reconfiguration of the COTS 
server. 

 Redundancy – use replicas in parallel or failover 
configurations. To safely switch requests from one 
instance to another, the system may need to use 
checkpointing to save the current system state. 
Redundancy is a well-known pattern that is widely used 
in self-protecting systems (e.g., to mitigate denial of 
service attacks) and often combined with other patterns. 

 Diversity – develop different implementations for the 
same software specification, in the hope that the attacks 
to one implementation may not affect others. This may 
be achieved through the use of different programming 
languages, OS, or hardware platforms. The HACQIT 
system [32] combines redundancy and diversity by 
using two software components with identical functional 
specifications (such as a Microsoft IIS web server and 
an Apache web server) for error detection and failure 
recovery. The TALENT system [30] uses OS-level 
heterogeneity such as deployment C-language programs 
on different OS kernels to thwart platform-specific 
attacks. 

 Recomposition – Use techniques such as reorganization, 

 Dimension Value Example (Illustrated using the Simple Online Banking System in Section II.C) 
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Self-Protection 
Levels 

Monitor & Detect Network based instruction detection function of the router detects intrusion event 

Analyze & Characterize System Management (SM) component analyzes intrusion event and matches against known attacks 

Plan & Prevent SM reconfigures router policy to prevent similar attack types 

Architecture 
Levels 

Network Firewall adapts policies on ports and protocols based on security threat levels 

Host SM pushes OS patches to the server in response to new Windows vulnerabilities 

Software/Apps SM instructs application server to disable the faulting application module 

Services The online banking web service disables trust for the infected user account 

Abstract Architecture Triggered by slow response time, SM uses adapation strategy to spawn a new app server instance 

Lifecycle Focus 
Development Time The intrusion was captured as a new security test case in the system dev/test environments 

Runtime See all examples for the “Self-Protection Level” and “Archtiecture Level” dimensions 

Protection Goals 

Confidentiality Prevent intruder from getting user financial or personal data 

Integrity Prevent intruder from altering or erasing user financial data 

Availability Prevent intruder from bringing down the banking app or web service 
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Adaptation 
Topology 

Local only Adaptative security measures within a single app server 

Centralized When the SM monitors and controls multiple host servers 

Decentralized The system in Figure 1 are deployed in multiple sites, interconnected with one another 

Adaptation 
Decision-Making 

Human-driven Intrusion alert is sent to system administrator, who immediately logs in to disable access to server 

Heuristics-driven A policy states “When the data retrieval amount exceeds 100KB threshold, disable user account” 

Algorithm-driven There are N servers running concurrently; SM uses voting algorithm to identify the infected server 

Adaptation Tempo 
Reactive System reacts to the intrusion event by disabling old server, connect router to backup server 

Proactive System runs penetration testing every night to ensure system integrity 

Adaptation Point 
System boundary System relies on network based instruction detection function of the router 

System internal System relies on access control policies managed within the SM 

Adaptation 
Patterns 

Containment App server has a proxy serve that inspects every request before it is sent to the banking app 

Redundancy Multiple app server instances are running at the same time 

Diversity System runs two implementations of the banking web service, one in Java, the other in .NET 

Recomposition SM uses instrumentation interfaces to adjust the maximum concurrent requests to app server 

Rejuvenation System recycles the existing app server instance every 15 minutes 

Table 1: Proposed Taxonomy for Self-Protection Approaches, with Examples. 



parameterization, orchestration, or aspect-orientation to 
dynamically change the behavior of a software 
component at runtime. The E2R Autonomic Security 
Framework [18], for example, allows each node to 
collect and derive security context information from 
neighboring nodes. When a node fails, other nodes can 
use their security contexts and pre-defined policies to 
reorganize the network and prevent service disruption. 
The approach is especially suited for protecting 
pervasive distributed systems, such as wireless sensor 
networks. 

 Rejuvenation – periodically regenerates or recycles 
system to valid state. The R-Xen framework [21], for 
example, used hypervisor-based software rejuvenation 
techniques to proactively regenerate new Virtual 
Machines (VM) that can seamlessly take over control 
from potentially compromised VMs.  

These patterns are not mutually exclusive. It is 
conceivable that a system may use a combination of them to 
provide more robust and flexible self-protection behavior. 

V. APPLYING THE PROPOSED TAXONOMY 

A number of research efforts related to self-protecting 
systems and adaptive security have been identified in this 
survey, and are then evaluated against the proposed 
taxonomy. The results are summarized in Table 2. 

Note that the survey is meant to be representative not 
exhaustive, and the check marks in the table are meant to 
indicate the primary focus of the research effort. For 
example, if the “Availability” under Protection Goals is not 
checked for a certain research effort, it does not necessarily 
mean that this approach cannot help address availability 
issues. Rather, it simply means availability is not its primary 
focus. 

The number of the research papers surveyed will not 
allow elaboration on each one of them in this paper. Rather, 
we highlight some of them as examples in the following 
observations section. 

VI. OBSERVATIONS AND ANALYSIS 

By using the proposed taxonomy as a consistent point of 
reference, many insightful observations may be drawn from 
the survey results of Table 2. 

1) Correlating Self-Protection Levels and Architecture 
Levels 

Here we see that abundant research approaches focus on 
the “Monitor & Detect” level, such as detecting security-
relevant events and enforcing security policies that respond 
to these events. For example, reference [38] uses Event 
Calculus to specify security monitoring patterns for detecting 
breaches in confidentiality, integrity and availability, 
respectively. Reference [20] uses policy-aware OS kernels 
that can dynamically change device protection levels. At the 
“Analyze & Characterize” level, research efforts attempt to 
characterize and understand the nature of security events. For 
example, reference [22] uses forensic analysis of victim 
server’s memory to generate attack message signatures. At 
the highest “Plan & Prevent” level, research efforts are 

relatively speaking not as abundant; such efforts seek to 
tackle the harder problem of planning for security adaptation 
to counter existing and future threats. Techniques and 
approaches vary greatly, from fuzzy reasoning [46] for 
predicting network intrusions to architecture regeneration 
based on Quality of Service scenarios [26]. 

Along the Architecture Levels dimension, we see many 
adaptive security approaches focusing on the “traditional” 
architecture layers, such as network, host, and application 
code. At the network level, abundant research can be found 
in the field of intrusion-detection and intrusion-prevention, 
as represented by [46] and [11]. Because network 
vulnerabilities are closely linked to the network topology and 
equipment configurations, devoted research can also be 
found on adapting network security policies based on such 
network characteristics [5]. At the host/node level, antivirus 
and malware detection/prevention have been receiving a lot 
of attention from the research community (a latest example 
on adaptive rule-based malware detection can be found in 
[4]). As we move up to the application level, adaptive 
security research is more concerned with programming 
language level vulnerabilities such as those concerning 
pointers, memory buffers, and program execution points. 
Reference [23], for example, presents a technique, called 
From Failures to Vaccine (FFTV), that detects faults using 
code-level assertions and analyzes the application to identify 
relevant programming points that can mitigate the failures. 

More recent research has started to focus on adaptive 
security for web services in a SOA. Such research is 
generally around service trust [27], service-level monitoring 
[39], and service middleware [1]. Research around the 
security behavior of a collection of services (such as a BPEL 
orchestration or a composite service), however, seems to be 
lacking. 

Even less research seems to be focusing on the adaptation 
of the abstract software architecture as a whole, let alone 
from the adaptive security perspective. The RAINBOW [12] 
and SASSY [26] frameworks are two examples that fit into 
this category, even though they are not specifically focused 
on self-protection alone. 

To take a further look at the research trends, we use Self-
Protection Levels and Architecture Levels as two 
crosscutting dimensions to map out the existing adaptive 
security research approaches, as shown in Figure 2. In the 
plot, a dot represents a research effort presented in the 
referenced paper. A cloud represents a cluster of rich 
research that exists but not covered in detail here in this 
paper. From this plot it becomes more apparent that existing 
research starts to “thin out” as we move up the two 
respective levels. Autonomic and adaptive security 
approaches that apply to service-based architectures or 
abstract architectures seem like a research gap to be filled. 

2) Lifecycle Focus 
As expected, a vast majority of self-protection research 

focuses on runtime not development time, as it is generally 
assumed that software components will never be completely 
fault-free and vulnerability-free. 



Still, a few research efforts can be 
found to also involve development time 
activities. The FFTV approach [23], for 
instance, complements runtime 
healing/protection strategies with design-
time construction of “oracles” and analysis 
of relevant program points, and also with 
test-time generation of reference data on 
successful executions. In [15], the 
dynamically reconfigurable security 
policies for mobile Java programs also rely 
on supporting mechanisms put in at 
development time (such as policy class 
loaders). 

Because the philosophy, structure, and 
process through which software 
components are constructed could have a 
significant impact on their quality of 
protection at runtime, we feel that 
combining development-time and run-time 
approaches will result in the best self-
protection of software systems – another 
research opportunity.  

3) Balancing the Protection Goals 
Along the Protection Goals dimension (see Table 2), the 

survey results revealed that research efforts seem to focus on 
either Confidentiality+Integrity or Availability+Integrity, but 
not all three goals. The dichotomy between confidentiality 
and availability objectives is not surprising: the former seeks 
mainly to protect the information within the system, but is 
not so much concerned with keeping the system always 
available; the opposite is true for the latter. For example, 
when a network intrusion is detected, reconfiguration of the 
network settings (such as VPN settings [11]) oftentimes 
involves cutting off the affected host/node – system 
confidentiality and integrity are preserved, whereas 
availability suffers. 

In fact, preserving system availability goes beyond the 
security realm and is closely related to system QoS, thus 
requiring different treatments. Intrusion Tolerant Systems 
(e.g., [37], [42], [43]), for example, addresses availability 
especially well by leveraging fault tolerance mechanisms, 
though they tend to focus on the network and host levels 
rather than taking a broader architectural approach. 

This observation, though a bit subtle, shows that a self-
protecting system may need to include a “best of breed” 
combination of adaptive security techniques rather than 
relying on a single mechanism, to meet all protection goals. 

4) Topology Tradeoffs 
Survey results along the Adaptation Topology metric (see 

Table 2) clearly shows that adaptive security approaches 
functioning at the global level are predominantly centralized. 
For example, many research efforts (e.g., [19] and [24]) 
recognize the need for coordination between local and global 
security policies. In most cases, the coordination is through a 
central controller (e.g., [28]). One of the few exceptions 
seems to be the Malicious-and Accidental-Fault Tolerance 
for Internet Applications (MAFTIA) effort [23], which uses 

local middleware controllers (called “wormholes”) at each 
node that are interconnected, but do not require a central 
controller. 

A central controller makes coordination and global 
optimization easier, yet runs the risk of becoming the single 
point of failure of the system, prone to denial of service and 
subversion attacks. Therefore, some approaches put more 
robust protection around the central controller, such as using 
hardened and trusted hardware/software [42], or putting the 
controller in dedicated network zones [31]. 

Another potential disadvantage for the centralized 
approach is scalability. For pervasive systems with highly 
distributed computing resources, it may be inefficient and 
costly to have all of the resources communicate with a 
central controller. Decentralized security approaches in such 
case hold more promise in their resilience and scalability, 
and may need more research attention. 

5) Basis of Adaptation Decision-Making 
Security threats are diverse and often unpredictable; 

wrong decisions usually will lead to severe consequences. As 
such, few approaches in this survey leave adaptive security 
decisions (such as reconfiguration or conflict resolution) 
solely to an algorithm. Instead, most approaches use heuristic 
rules/policies, in such forms as expert system rule sets [4], 
policy specification languages [5], event-condition-action 
rules [10], or human input as a last resort [45]. 

The limited few algorithm-based approaches are only 
used against narrowly focused problems, such as anomaly 
detection (e.g., using security automata [9]), event pattern 
recognition (e.g., using event calculus [38]), or fault isolation 
(e.g., using Byzantine agreement or threshold cryptography 
[33] [37]). The algorithms are often used in conjunction with 
heuristic policies. 

The lack of algorithm-based methods may be explained 
by the daunting challenge of quantitatively assessing the 
overall security posture of a complex software system. 

	

Figure 2: Correlating Self-Protection Levels with Architecture Levels. 



Reference [36] proposes the concept of a Security Health 
Index comprised of a weighted basket of security metrics as 
an attempt at this goal, but it is not clear whether the 
approach has been empirically validated. This is definitely a 
pressing research need, especially in today’s heated domain 
of cyber warfare.  

6) Proactive Defense 
From Table 2, we can see that survey results along the 

Adaptation Tempo dimension indicate reactive adaptation 
based on the “sense and respond” paradigm still seems to be 
the norm for self-protection. That being said, the survey 

results also show an interesting trend that proactive security 
architectures are gaining ground. The TALENT system [30], 
for example, addresses software security and survivability 
using a “cyber moving target” approach, which periodically 
migrates running applications across different platforms 
while preserving application state. The SCIT system [28] 
uses redundant and diverse servers to periodically “self-
cleanse” the system to pristine state. The aforementioned R-
Xen framework [21] proactively instantiate new VM 
instances to ensure system reliability, a technique much 
faster than rebooting hardware servers thanks to hypervisor-
based virtualization technology   [21]. 

Table 2: Applying the Proposed Taxonomy to Self-Protection Research Approaches. 
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[1] GEMOM x x x  x x   x x x x x  x   x x  x     x  x  x   
[4] LCS x     x    x  x  x    x     x   x       
[5]   x x  x      x x x   x   x   x   x      x   
[9] SASI x    x x    x  x  x     x  x    x  x      
[10] SECURE x    x x    x x x   x   x     x   x       
[11] IDIAN x x x x      x x x   x  x x   x   x      x   
[12] RAINBOW x x x     x  x x x x  x  x x   x     x    x   
[13]   x x  x x x    x x x   x   x   x     x       
[15]   x     x   x x x x  x    x     x  x  x   x   
[18] E2R x x  x x x    x x x    x  x   x   x      x   
[19] ASPF x x x   x    x x x x  x x  x   x     x    x   
[20] VSK x x x  x     x x x  x    x   x    x     x   
[21] X-Spy, R-Xen x    x     x x x x x    x   x   x   x    x  
[22] COVERS x    x    x x x x   x    x    x x         
[23] FFTV x x x   x   x x  x  x   x x   x     x x   x   
[24] ASI  x      x  x x x x  x x  x     x   x       
[26] SASSY x x x   x x x x x x x x  x   x   x     x    x   
[27] WSAF x x     x      x  x   x x    x  x     x   
[28] SCIT x x x  x     x  x x  x   x x   x  x     x  x  
[30] TALENT   x   x   x x  x x x   x x    x    x  x x    
[31] DPASA x x  x x     x  x x  x   x   x   x   x x x    
[32] HACQIT x x x x x     x  x x  x   x   x   x   x x     
[33] VM-FIT x x x  x     x   x x    x x   x  x   x x   x  
[36] GEMOM x   x x x    x x x   x   x x    x   x       
[37] PRM x x x x x     x  x x     x x  x x    x  x   x  
[38]   x      x   x x x x  x    x    x   x       
[39]   x x     x   x x x x  x    x    x  x        
[42] MAFTIA x x x  x x    x  x x   x  x x  x     x  x x    
[43] SITAR x x x  x x   x x  x x  x   x x  x   x   x x     
[45]   x x x  x x   x x x x   x  x x   x     x x      
[46] ADAT x   x x     x x x   x    x  x   x         
[48] WILLOW x x x x x     x  x x  x   x   x     x    x   



7) From Perimeter Security to Overall Protection 
The Adaptation Point dimension of Table 2 shows that 

many adaptive security approaches still rely on perimeter 
security, especially those that focus on intrusion detection 
and intrusion tolerance. Systems relying solely on perimeter 
security, however, are often rendered helpless when the 
perimeter is breached; nor can they effectively deal with 
threats that originate from inside of the system. 

To counter this, some approaches follow the “defense-in-
depth” principle and establish multiple layers of perimeters 
or security zones [31], but the disadvantage still exists. 

In light of this, we feel there is a need to shift focus from 
perimeter security to overall system protection, especially 
from monitoring the system boundary to monitoring overall 
system behavior. Recent research on service-based systems, 
for instance, has started to focus on monitoring and 
analyzing service interaction patterns [39] [41]. 

8) Determining Adaptation Patterns 
Another revealing insight from the survey results is that 

adaptation patterns are often determined by, or strongly 
correlated with, the other dimensions in the taxonomy. Their 
relationship is briefly described in Table 3. 

It is perhaps not entirely a surprise that the positioning 
and techniques employed by a self-protection approach will 
to some extent determine the architectural patterns being 
used. This observation, however, does point to a critical 
research opportunity, that is, to further identify and catalogue 
such correlations, to codify them into machine-readable 
forms, so that a system may dynamically re-architect itself 
using repeatable patterns as requirements and environments 
change. This is a higher level of self-protection and may only 
be enabled through an architecture-based approach. 

VII. CONCLUSION 

Self-protection of software systems is becoming 
increasingly important as these systems face increasing 
external threats from the outside and adopt more dynamic 
architecture behavior from within. Self-protection, like other 
self-* properties, allows the system to adapt to the changing 
environment through autonomic means without much human 
intervention, and can thereby be responsive, agile, and cost 
effective. Existing research has made significant progress 
towards autonomic and adaptive security, but gaps and 
challenges remain. This paper proposes a comprehensive 
taxonomy to classify and characterize research efforts in this 
arena. The analysis of past and ongoing research efforts 
using this taxonomy has revealed some gaps and needs for 
future research. Specifically, to stay ahead of today’s 
advancing cyber threats, adaptive security research needs to:  
 Concurrently advance (a) from monitoring and analysis 

to planning and goal management, and (b) from 
network, host, and application levels to service-based 
and holistic architecture-based approaches 

 Pursue more “integrated” approaches that span both 
development-time and runtime 

 Explore more decentralized coordination, planning, and 
optimization approaches 

 Explore qualitative and quantitative measures that can 
be used to dynamically assess overall system security 
posture 

 Continue the paradigm shift from perimeter security to 
overall system protection and monitoring 

 Catalog and automate security adaptation patterns at the 
abstract architecture level 
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