
A Framework for Automated Security Testing of
Android Applications on the Cloud

Sam Malek, Naeem Esfahani, Thabet Kacem, Riyadh Mahmood, Nariman Mirzaei, Angelos Stavrou
Computer Science Department

George Mason University
{smalek, nesfaha2, tkacem, rmahmoo2, nmirzaei, astavrou}@gmu.edu

I. INTRODUCTION

App markets are stirring a paradigm shift in the way
software is provisioned to the end users. The benefits of this
model are plenty, including the ability to rapidly and
effectively acquire, introduce, maintain, and enhance software
used by the consumers. By providing a medium for reaching a
large consumer market at a nominal cost, app markets have
leveled the playing field, allowing small entrepreneurs to
compete with the largest software development companies of
our times. The result of this has been an explosive growth in
the number of new apps for platforms, such as Mac, Android,
and iPhone, that have embraced this model of providing their
consumers with diverse, up-to-date, and low cost apps.

This paradigm shift, however, has given rise to a new set of
security challenges. In parallel with the emergence of app
markets, we have witnessed increased security threats that are
exploiting this model of provisioning software. Arguably, this
is nowhere more evident than in the Android market, where
numerous cases of apps infected with malwares and spywares
have been reported [4]. There are numerous culprits here, and
some are not even technical, such as the general lack of an
overseeing authority in the case of open markets and
inconsequential implication to those caught providing
applications with vulnerabilities or malicious capabilities.

However, from a technical standpoint, the key obstacle is
the ability to rapidly assess the security and robustness of
applications submitted to the market. The problem is that
security testing is generally a manual, expensive, and
cumbersome process. This is precisely the challenge that we
have begun to address in a DARPA (Defense Advanced
Research Projects Agency) sponsored project targeted at the
development of a framework that aids the analysts in testing the
security of Android apps. The framework is comprised of a
tool-suite that given an application automatically generates and
executes numerous test cases, and provides a report of
uncovered security vulnerabilities to the human analyst. We
have focused our research on Android as (1) it provides one of
the most widely used and at the same time vulnerable app
markets, (2) it dominates the smartphone consumer market, and
(3) it is open-source, lending itself naturally for research and
experimentation in the laboratory.

Security testing is known to be a notoriously difficult
activity. This is partly because unlike functional testing that
aims to show a software system complies with its specification,
security testing is a form of negative testing, i.e., showing that
a certain behavior does not exist in the system.

A form of automated security testing that does not require
test case specification or significant upfront effort is fuzz
testing, or simply fuzzing [6]. In short, fuzzing is a form of
negative software testing that feeds malformed and unexpected
input data to a program with the objective of revealing security
vulnerabilities. Programs that are used to create and examine
fuzz tests are called fuzzers. In the past, fuzzers have been
employed by the hacking community as one of the predominant
ways of breaking into a system and they have been very
successful at it [6]. An SMS protocol fuzzer [5] was recently
shown to be highly effective in finding severe security
vulnerabilities in all three major smartphone platforms, namely
Android, iPhone, and Windows Mobile. In the case of Android,
fuzzing found a security vulnerability triggered by simply
receiving a particular type of SMS message, which not only
kills the phone’s telephony process, but also kicks the target
device off the network [5].

In spite of the success stories, there is a lack of
sophisticated frameworks for fuzz testing apps, in particular
those targeted at smartphone platforms, including Android.
There are a few available fuzzers, such as Android’s Monkey
[1], that generate purely random test cases, and thus often not
very effective in practice. Moreover, fuzz testing is generally
considered to be a time consuming and computationally
expensive process, as the space of possible inputs to any real-
world program is often unbounded.

We are addressing these shortcomings by developing a
scalable approach for intelligent fuzz testing of Android
applications. The framework scales both in terms of code size
and number of applications by leveraging the unprecedented
computational power of cloud computing. The framework uses
numerous heuristics and software analysis techniques to
intelligently guide the generation of test cases aiming to boost
the likelihood of discovering vulnerabilities. Our research aims
to answer the following overarching question: Given advanced
software testing techniques and ample processing power, what
software security vulnerabilities could be uncovered
automatically? The framework enables the fledgling app
market community to harness the immense computational
power at our disposal together with novel automated testing
techniques to quickly, accurately, and cheaply find security
vulnerabilities.

In the next section, we provide an overview of this
framework and its underlying architecture.

II. FRAMEWORK OVERVIEW
Figure 1 shows an overview of the

framework. As depicted, parts of the
framework execute on a cloud platform to
allow for the generation and execution of
large number of test cases on many instances
of a given application.

Given an Android application for testing,
the first step is to automatically Identify
Input/Output Interfaces, as shown in the top
left corner of Figure 1. An application’s
input interfaces represent the different ways
in which it can be invoked by either the
execution environment or user. They may
include GUIs, network interfaces, files,
APIs, messages, etc. An application’s output
interfaces are also important, as their
abnormal behavior could lead to detecting
vulnerabilities. We are leveraging a variety
of analysis techniques to identify an
application’s interfaces, even those that may
be hidden or disguised. For instance, we
have developed a program analysis technique to identify all the
graphical user interfaces widgets through which the user can
interact with a system. The program analysis technique
leverages numerous sources of information obtained from the
app’s implementation, including the app’s call graph, abstract
syntax tree, and manifest file that provides lots of meta-
information about the application’s architecture and it access
permissions. Here, if the source code of an Android app is not
available, we reverse engineer its APK file, which is the
installation package file, using one of the existing tools (e.g.,
dextojar [2]).

Following that, and as shown in Figure 1, Input Generator
engines are leveraged to create the candidate test cases. We are
developing several different types of input generators, each of
which would leverage a different set of heuristics for guiding
the generation of test cases. This allows for diversity among the
test cases, as each input generator provides unique strengths,
enabling the framework to achieve good coverage and test a
wide-range of boundary conditions. Since some of the
generators are computationally expensive and may take a
significant amount of time to run, the framework executes
many instances of them in parallel on the cloud. For instance,
we are revising Java Pathfinder—a Java symbolic execution
engine previously developed at NASA Ames—to be able to
generate test cases for Android apps. Using the Android-
specific Java Pathfinder, we are able to systematically execute
an Android app to generate test cases that exercise different
parts of the app, and thus achieve good code coverage.

Following the generation of test cases, the Test Execution
Environment is deployed to simultaneously execute the tests on
numerous instances of the same application. We execute the
majority of the test cases on virtual nodes running the Android
Emulator on the cloud. However, a cluster of actual Android
devices is also employed for executing a small subset of the
tests that require high fidelity. Several Android-specific
Monitoring Facilities (e.g., Intent Sniffer [3]) are leveraged and

deployed to collect runtime data as tests execute. The
monitoring facilities record issues and errors (e.g., crashes,
exceptions, access violations, resource thrashing) that arise
during the testing in the Runtime Error Repository.

 Exception Analysis engine (shown in Figure 1) then
investigates the Runtime Error Repository to correlate the
executed tests cases to the reported issues, and thus potential
security vulnerabilities. Moreover, the Exception Analysis
engine prunes the collected data to filter any redundancy, since
the same vulnerability may be encountered by multiple test
cases. It also looks for anomalous behavior, such as
performance degradations, which may also indicate
vulnerabilities (e.g., an input test that could be used to instigate
a denial of service attack). The results of these analyses are
stored in a Test Report Repository, which is then used by the
Interactive Reporting Environment to enable the security
analyst to evaluate the application’s robustness and understand
its vulnerabilities.

ACKNOWLEDGMENT
This research is supported by grant D11AP00282 from

Defense Advanced Research Projects Agency.

REFERENCES
[1] Android Monkey.

http://developer.android.com/guide/developing/tools/monkey.html
[2] Dextojar. from http://code.google.com/p/dex2jar/
[3] Intent Sniffer. http://www.isecpartners.com/mobile-security-tools/
[4] Malicious Mobile Threats Report 2010/2011, White paper, Juniper

Networks Global Threat Center Research.
http://www.juniper.net/us/en/local/pdf/whitepapers/2000415-en.pdf

[5] C. Mulliner, and C. Miller. Fuzzing the Phone in your Phone. Black Hat,
USA, July 2009.

[6] A. Takanen, et al. Fuzzing for Software Security Testing and Quality
Assurance. Artech House, Information Security and Privacy Series,
Norwood, MA, 2008.

Figure 1. Overview of the framework. Components contained in the bubble indicate the parts that can

execute in parallel on the cloud.

