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Context: Modern middleware platforms provide the applications deployed on top of them with facilities
for their adaptation. However, the level of adaptation support provided by the state-of-the-art middle-
ware solutions is often limited to dynamically loading and off-loading of software components. Therefore,
it is left to the application developers to handle the details of change such that the system’s consistency is
not jeopardized.
Objective: We aim to change the status quo by providing the middleware facilities necessary to ensure
the consistency of software after adaptation. We would like these facilities to be reusable across different
applications, such that the middleware can streamline the process of achieving safe adaptation.
Method: Our approach addresses the current shortcomings by utilizing the information encoded in a soft-
ware system’s architectural style. This information drives the development of reusable adaptation pat-
terns. The patterns specify both the exact sequence of changes and the time at which those changes
need to occur. We use the patterns to provide advanced adaptation support on top of an existing archi-
tectural middleware platform.
Results: Our experience shows the feasibility of deriving detailed adaptation patterns for several architec-
tural styles. Applying the middleware to adapt two real-world software systems shows the approach is
effective in consistently adapting these systems without jeopardizing their consistency.
Conclusion: We conclude the approach is effective in alleviating the application developers from the
responsibility of managing the adaptation process at the application-level. Moreover, we believe this
study provides the foundation for changing the way adaptation support is realized in middleware
solutions.

� 2012 Elsevier B.V. All rights reserved.
1. Introduction

The unrelenting pattern of growth in size and complexity of
software systems that we have witnessed over the past few dec-
ades is likely to continue well into the foreseeable future. As soft-
ware engineers have developed new techniques to address the
complexity associated with the construction of modern-day soft-
ware systems, an equally pressing need has risen for mechanisms
that automate and simplify the management and modification of
software systems after they are deployed, i.e., during run-time.
This has called for the development of self-⁄ (self-configuring,
self-healing, self-optimizing, etc.) systems [1]. However, the con-
struction of such systems has been shown to be significantly more
challenging than traditional, relatively more static and predictable,
software systems [2].

Previous studies have shown that a promising approach to
resolve the challenges of constructing complex software systems
ll rights reserved.

, smalek@gmu.edu (S. Malek).
is to employ the principles of software architecture [3–5]. Software
architectures provide abstractions for representing the structure,
behavior, and key properties of a software system. They are
described in terms of software components (computational
elements), connectors (interaction elements), and their configura-
tions. A given software architectural style (e.g., Publish-Subscribe,
Peer-to-peer, Pipe-and-filter, and Client–Server) further refines a
vocabulary of component and connector types and a set of
constraints on how instances of those types may be combined in
a system [6].

Software architecture has also been shown to provide an
appropriate level of abstraction and generality to deal with the
complexity of dynamically adapting of software systems [7]. This
observation has led to research on architecture-based adaptation,
which is the process of reasoning about and adapting a system’s
software at the architectural level [7,8].

Architecture-based adaptation is often realized via the run-time
facilities provided by an implementation platform, such as
middleware. Unfortunately, the level of adaptation support pro-
vided by most state-of-the-art middleware solutions is limited to
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dynamically loading and offloading of software components [8].
They do not consider the state or dependency among the system’s
software components. This is driven by the fact that, in the general
case, component dependency relationships are application specific,
and cannot be predicted a priori by the middleware designers.

The lack of advanced adaptation management and coordination
facilities in the existing platforms forces the application developers
to implement them on their own. Unfortunately, the status quo
places significant burden on the application developers. The devel-
opers have to spend a significant amount of time understanding
the underlying details of a middleware platform, before they can
develop the required adaptation facilities. As a result, the theoret-
ical advances [9,10] for consistent and sound adaptation of a soft-
ware system remain untapped, and the application developers rely
on the rudimentary adaptation capabilities that the existing mid-
dlewares provide by default.

In this paper, we present an approach that attempts to alleviate
these shortcomings. The approach relies on the information
encoded in a software system’s architectural style. More specifi-
cally, an underlying insight guiding our research is that a software
system’s architectural style reveals a lot about the dependency
relationships among the system’s software components [11]. This
information is utilized to identify adaptation patterns, which
determine the recurring sequence of changes that need to occur
for adapting a software system built according to a given style.
An adaptation pattern ensures that the system is not left in an
inconsistent state and the application’s functionality is not
jeopardized.

We have realized the adaptation patterns on top of an existing
middleware platform. The middleware platform, called Prism-MW
[12], possesses several unique characteristics that make it suitable
for realizing the patterns presented in this paper. Most notably, it is
a style-aware middleware, allowing it to reflect on the style of the
running application and applying the appropriate patterns. Finally,
we describe our experience with realizing the approach on top of
Prism-MW and applying it to a real-world software system with
more than 40 KSLOC in size.

The paper is organized as follows. Section 2 presents a case
study, which is used throughout this paper for describing and eval-
uating this research. Section 3 provides the required background.
Section 4 motivates the work by summarizing the problems with
the existing approaches. Section 5 describes our overall approach.
Section 6 describes the extraction of adaptation patterns from
two representative architectural styles. Section 7 describes the
implementation of our approach on top of Prism-MW. Section 8
presents the evaluation of the approach as well as our experiences.
Finally, the paper concludes with an overview of the related work
and outline of our future work.

2. Motivating case study

We use a software system that was previously developed in col-
laboration with a government agency to motivate the problem, de-
scribe our contributions, and evaluate the research. In this section,
we provide an overview of its software architecture, including its
architectural style, as well as its implementation on top of a mid-
dleware, and the challenges that we have faced in its runtime
adaptation.

2.1. Description of application

The software system, called Emergency Deployment System (EDS)
[12], is intended for the deployment of personnel in emergency
response scenarios. As depicted in Fig. 1, it is comprised of two
types of subsystems: Headquarters and Search & Rescue Teams. Each
Headquarters has several Search & Rescue Teams, which are
equipped with smartphones and tablets running Mobile GUI com-
ponent, providing the emergency crew with an intuitive interface
to access the system’s services. These teams, which are deployed
in the incident area, provide a local assessment of situation using
Awareness Analyzer.

Headquarters manages the Search & Rescue Teams and merges
the received data into a coherent knowledge base layered on
top of a Map and supported by a Repository. The Headquarters also
provides Weather information managed by Weather GUI and a
Clock for the system. The Headquarters allows the users to decide
about deployment of the Search & Rescue Teams and assignment
of resources to them. Weather Analyzer provides the weather pre-
diction, which along with other information is used for making
the deployment decisions. Headquarters also keeps a Strategy
Analysis Knowledge Base, which provides the domain specific pol-
icies with respect to different deployment strategies. This knowl-
edge base is managed by SAKB GUI. A user uses the GUI of the
Headquarters to accomplish four main goals: (1) track the re-
sources using Resource Monitor, (2) distribute resources to the
Search & Rescue Teams using Resource Manager, (3) analyze differ-
ent deployment strategies using Strategy Analyzer, and finally (4)
find the required steps toward a selected strategy using Deploy-
ment Advisor. Interested reader may find a more detailed descrip-
tion of EDS in [12].

2.2. Architectural style

The architectural style of EDS is C2 [13]. In a C2 software sys-
tem, a component at a given layer may only depend on components
that are in layers above it. For instance, Strategy Analyzer in Fig. 1
depends on Weather Analyzer, but not on Deployment Advisor that
is at the same level and GUI that is below it. C2 Components asyn-
chronously communicate by sending request events that travel up
for invoking services of components above, and notification events
that travel down for carrying responses to components below.
Components in C2 style are required to communicate through con-
nectors. However, a component may at most connect to one con-
nector on its top and one on its bottom interface. For instance, in
Fig. 1, Clock is connected to a connector on its bottom interface,
SAKB GUI is connected to a connector on its top interface, and
MAP is connected to a connector on both its top and bottom inter-
faces. On the other hand, a C2Connector can be connected to multi-
ple components and connectors on each side. A C2 Connector
broadcasts a request event received from the bottom to all of its
interfaces on the top and any notification received from the top
to all of its interfaces on the bottom.

2.3. Implementation

We have previously implemented EDS on top of Prism-MW.
Prism-MW is an architectural middleware [12], which is a type of
middleware that provides one-to-one mapping between architec-
tural abstractions and their implementation counterparts. In other
words, Prism-MW provides programming language constructs for
realizing architectural concepts, such as components, connectors,
and configurations. Most importantly, Prism-MW provides exten-
sive support for software architectural styles. This is an important
facet of Prism-MW that we have leveraged in realizing the research
described here. Below, we provide an overview of a subset of EDS’s
implementation on top of Prism-MW to help the reader under-
stand its usage. Later, in Section 7, we provide an overview of
Prism-MW’s design and its new enhancements to support the
research described here.

Fig. 2a shows a subset of EDS for which the implementation
fragments are provided below. Fig. 2b shows the main method that
bootstraps the system. Here, we have abridged the code to improve



Fig. 1. The architecture of Emergency Deployment System (EDS) composed of Headquarters and Search and Rescue Team.
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its readability. Yet the code captures the essence of Prism-MW in
its extensive support for architecture-based development. Intui-
tively, the code in Fig. 2b specifies descriptive architecture of the
system as follows: (1) line 5 instantiates the Architecture object,
called arch, which serves as a container for all of the constructs
executing on a single host, (2) lines 8–10 instantiate the C2Compo-
nents and C2Connectors that comprise the system, (3) lines 13–15
add them to the architecture, (4) lines 18–19 compose (weld) com-
ponents and connectors into a configuration by connecting their
ports, and finally (5) line 22 starts the architecture, which in turn
triggers the execution of components comprising the architecture.

This example also demonstrates how event-based communica-
tion facility in Prism-MW can be used to enable interactions
between the two components. As depicted in Fig. 2c, the SAKB
GUI component creates and sends a request event to update a rule
with two parameters in its payload (i.e., ruleID and reliability of the
rule), in response to which in Fig. 2d, the Strategy Analysis KB
component updates the corresponding rule and sends an acknowl-
edgment back via a corresponding notification event.

In core Prism-MW, an event does not need to identify its recipi-
ent components. They are uniquely defined by the topology of the
architecture and routing policies of the employed connectors [12].
This simple example shows how Prism-MW aids the programmer
in building a system, such as EDS, in a manner that ensures compli-
ance to its architectural specifications.
2.4. Challenges with architecture-based adaptation

Typically, middleware support for architecture-based adapta-
tion is realized in the form of adding, removing, and replacing
software components. For instance, replacing a component in
Prism-MW is achieved by a call to remove method followed by a
call to add method on the existing architecture (recall arch in
Fig. 2b). However, such changes could jeopardize the integrity of
a software system; they could leave the system in an inconsistent
state. For instance, consider a scenario where we would like to
replace the Map component. This could be realized by removing
the old Map component and adding a new instance of it [8]. This
solution, however, ignores other components (e.g., Strategy
Analyzer) that depend on Map for delivering their services.

Let us assume the end-user makes a ‘‘Strategy Analysis’’ request
using the GUI component. Fig. 3 shows the interactions (events/
messages) that result in response to this request. If such a request
is made while the Map component is being replaced, and thus
temporarily unavailable, it may be processed by the Strategy
Analyzer and old Map, but not the new Map. The effect of this
may manifest itself in the form of functional failure: the new
Map may not receive event 2, resulting in the system to never
respond to the user (i.e., events 3–10 do not occur).

At first blush it may seem that buffering events intended for the
Map component would solve the problem. However, buffering by
itself cannot address consistency issues that may arise. Consider
the situation in which Map component is replaced after it has sent
out event 3, but before receiving event 4. In this case, it is possible
for the old Map to process event 2, and the new Map to process
event 4, assuming it is buffered for later processing. However, this
may violate Map’s interaction protocol (i.e., event 4 can be
processed only after event 2 has, which would not be the case with
the newly installed Map). Since the new Map may not have the
correct state, the system may become inconsistent.

Note that even if the component is stateless, inconsistency
problems may arise. This typically happens when a stateless com-
ponent provides a reverse functionality. For instance, consider a
stateless encryption component that stores/retrieves data from a
file using two interfaces that are reverse of one another: cipher
and decipher. Replacing this component with one that uses a
different type of encryption algorithm in the middle of a transac-
tion could break the system’s functionality, since decipher
interface cannot be used on data that was ciphered using the old
component.

By the same reasoning, in the case of stateful components, even
if there is support for state transfer (i.e., ability to extract and set
the component’s state externally), the issue of consistency cannot
be fully addressed. The reason is that the consistency of a system
depends not only on the component’s internal state, but also the
state of its interaction with other components.



Fig. 2. Illustration of EDS implementation on top of Prism-MW: (a) the architecture
of a subset of EDS; (b) architecture initialization; (c) SAKB GUI sends a request
event; and (d) Strategy Analysis KB handles the request and responds.

Fig. 3. The Strategy Analysis transaction and the corresponding component depen-
dencies in EDS.

1 This approach is often not practical. Detecting the dynamic dependencies in the
future operation of a software component that behaves non-deterministically is
undecidable over Turing machines as Halting problem can be reduced to it.
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3. Research background

A solution to the problem of ensuring consistency during the
runtime adaptation of software was proposed by Kramer and Ma-
gee’s seminal model of dynamic change management, known as
quiescence [9]. In this work, a transaction is defined as an exchange
of information (e.g., message, event) between two components,
initiated by one of the components. Each step depicted in Fig. 3
corresponds to a transaction. A dependent transaction is defined
as a two-party transaction whose completion may depend on the
completion of other consequent transactions. Steps 1–10 in Fig. 3
form a dependent transaction.

Their work also identifies two possible states for a software
component during the adaptation process. Each state defines
how a component behaves during the corresponding phase of
adaptation. The two states are, (1) active: A component can start,
receive, and process transactions. (2) passive: A component in this
state will continue to receive and process transactions, but will not
initiate any new transactions.

Quiescence is defined as the required property of adapted com-
ponent for a system to remain in a consistent state [9]. Quiescence
implies that a component (1) is not currently involved in a transac-
tion, (2) will not start any new transactions, and (3) no transactions
have been or will be initiated by other components that require
service from this node. For satisfying the quiescence property the
component should be in the passive state. Moreover, quiescence
implies that all the nodes that can initiate transactions on the
updated component must be passive. This is known as the passive
set [9]. By definition, quiescence also solves the situation in which
there are cyclic or mutual dependencies between components.

For building the passive set only the static dependencies, which
are the superset of all the dependencies, are considered. Some
approaches (e.g., [10]) have considered dynamic dependencies for
special kinds of components that can provide information about
their dependencies in the future.1 However, they still rely on static
dependencies for a fall back as the reachability of a consistent state
for adaptation is not guaranteed when only the dynamic dependen-
cies are considered. Considering the dynamic dependencies can help
in reducing the disruption caused by adaptation and we are studying
them in a different thread of research. In this paper, however, we
focus on static dependencies, and dynamic dependencies fall outside
the scope of this research.
4. Research problem

From a theoretical perspective, the approach presented above
solves the problem of ensuring consistency during adaptation.
However, applying this approach in real-world software systems
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remains a challenge. It is typically left to the application developers
to implement the required change management and coordination
facilities. These facilities would provide the logic that ensures the
system’s consistency during adaptation (i.e., the order in which
the various components are activated and passivated).

The implementation of these facilities is a major burden on the
application developers for the following reasons:

1. Identifying the component dependencies: Determining the
changes that need to occur in the system to place a software
component in a particular adaptation state (i.e., active, passive)
depends on the component dependencies. In event based
systems, which are the focus of our work, component
dependencies can be expressed in terms of transactions. Two
components depend on one another, if there is a (dependent)
transaction between the two. However, identifying transactions,
in particular dependent transactions, requires understanding
the details of the application logic (e.g., Fig. 3), which defeats
the purpose of treating components as black boxes and adapting
a system at the architectural level. Identifying the dependency
relationships in a large software system is very difficult.

2. High complexity: Realizing such facilities requires the develop-
ment of complex state management and coordination logic.

3. Lack of reuse: Since each component has its own unique set of
dependencies with other components, one component’s state
management logic cannot be easily reused by other software
components that may need to be updated at run-time.

4. High coupling: Since the state management logic depends on the
component dependency relationships, the resulting software is
very fragile. That is as soon as the software evolves (e.g., compo-
nents change the way they interact and use one another), the
state management logic needs to be modified.

Traditionally, one method of reducing complexity and increas-
ing the developer’s productivity is to employ middlewares. The
middleware engineers develop the frequently needed facilities
(e.g., data marshalization, remote method invocation, service dis-
covery), and provide them as reusable modules to any application
that is developed on top of the middleware. Unfortunately,
employing the same approach in the context of adaptation is not
feasible, since the middleware designers cannot predict a priori
which software components will be deployed on top of a middle-
ware, how they will be configured, and what will be their depen-
dencies. Therefore, modern middleware platforms do not provide
change management facilities beyond simple dynamic addition
and removal of components. This is precisely the research problem
that we have aimed to solve in this paper through the use of
knowledge embedded in architectural styles and the capabilities
of a unique style aware middleware.

5. Approach overview

In light of the challenges mentioned above, currently three
methods of adapting a software system are employed: (1) Query
the component itself to provide information about its depen-
dency relationships. This relates to the first problem in Section
4, i.e., violates the black box treatment of components. Moreover,
it hinders reusability of components developed in this manner.
(2) Remove the old component abruptly and replace it with a
new one. As exemplified using the EDS application in Section
2.4, this approach could leave the system in an inconsistent state.
(3) Bring down the entire system before adapting it, and restart
it afterwards. This approach results in severe disruption in sys-
tem’s execution. None of the existing approaches make use of ad-
vances in dynamic change management [9,10] and hence are not
desirable.
We propose a new approach that builds on the quiescence mod-
el of dynamic change management (recall Section 3). The key
underlying insight, established in our preliminary work [11] is that
a software system’s architectural style could reveal the dependency
relationships among the components of a given system, even if the
components are indirectly connected to one another. The depen-
dency relationships are critical when adapting a software system,
as they determine the impact of change on the system [9,10].

An architectural style is a named collection of design decision,
which constraint the design to a well-documented subset of possi-
ble choices [14]. Some of the most important properties of a given
style are the allowable relationships among its components and
connectors. If a given software system adheres to the rules and
constraints of a style, we can infer the dependency relations auto-
matically. To that end, we use the well-documented rules and con-
straints of a given architectural style to infer the component
dependencies for the software system adhering to that style with-
out needing additional specific information about the system.

An example of this can be seen in Fig. 1. Since we already now
that the style of EDS is C2, without knowing the details of its appli-
cation logic, we can derive dependency relationships between its
components. For instance, since SAKB GUI is below Strategy Analysis
KB, before doing any change to the latter, we need to make sure
that the former is in a passive state. Note that this relationship is
derived only from the style and topology of the architecture and
without using any internal knowledge about the application. In
other words, the proposed approach does not require availability
of a detailed model of the component interactions in the system,
such as that shown in Fig. 3, for reasoning about quiescence.

The component dependencies are in turn used to determine a
reusable sequence of steps for placing a component of a given style
in the appropriate adaptation state. Such a recurring sequence of
changes, which are coordinated among the system’s architectural
constructs (e.g., components, connectors), is called an adaptation
pattern. An adaptation pattern provides a template for making
changes to a software system built according to a given style with-
out jeopardizing its consistency.

An adaptation pattern for a given style is guaranteed to be gen-
erally applicable for systems built according to that style, since (1)
quiescence is guaranteed to be reachable [9], and (2) applications
built according to the style must comply with the dependency rela-
tionships established in that style.

We have enhanced an existing middleware platform with style-
induced adaptation patterns discussed above. Unlike any existing
solution, the middleware ensures the consistency of the adapted
software system. Since each style acts according to a predefined
set of rules, which are enforced by the middleware, the adaptation
capability can be reused for any software built according to that
style. Therefore, the middleware alleviates the application devel-
opers from implementing the same complex and error-prone func-
tionality. Our experience suggests that the proposed approach
effectively alleviates the challenges mentioned in Section 4. The
following sections describe the approach in more detail.

Fig. 4 depicts the relationships between the different compo-
nents of our approach. An application is developed according to a
style, which comes from a set of known architectural styles. For
each style in this set, the related adaptation pattern is derived
and maintained in a repository. An adaptation pattern is used to
orchestrate the process of runtime change in the applications of
the corresponding style. This way an application benefits from
the reusable adaptation facilities provided by a middleware once
it is deployed on top of it. Application developers can also extend
the set of architectural styles and corresponding adaptation patterns
to account for domain-specific styles. In the following section we
describe the derivation of adaptation patterns for two complex
and well-documented architectural styles.



Fig. 4. Overview of the approach.
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6. Style-driven adaptation patterns

In this section, we describe the process of extracting adaptation
patterns for two representative and complex architectural styles,
C2 [13] and D3 [15]. In extracting such patterns we assume that
a given component has a single style. This does not prevent a
software system from having a composition of different styles as
long as the components are not shared among styles. Note that
while the overall approach can be applied similarly to any style,
the details of the patterns, their accuracy, and level of disruption
due to adaptation directly depend on the characteristics of the
style. The styles with rich properties and rules inevitably result
in more interesting and effective patterns.

6.1. Adaptation patterns for C2 style

During normal operation a C2Component receives asynchronous
messages from an associated C2Connector. The C2 style defines
how each of the architectural constructs can be connected: each
C2Component must be connected to at least one and at most two
C2Connectors, while a C2Connector can be connected to as many
C2Components and C2Connectors as required. A software system
built in the C2 style consists of layers (similar to Fig. 1), where
request events travel upward, while notification events travel
downward [13]. Request and notification events received from
bottom and top connectors are evaluated to determine which need
to be processed (depicted in Fig. 5). If the event is not intended for
the component, it returns to the Waiting state. Otherwise, the
event is processed and additional request and notification events
are generated as needed. After the processing has completed and
the appropriate events are sent, the component returns to the
Waiting state.
Fig. 5. Life cycle of a C2Component during normal operation.
We chose C2 style [13] due to its intended use in dynamic
settings [8], and its rich set of rules and constraints that form a
superset of those in simpler styles (e.g., Client–Server). Moreover,
any C2 software system typically consists of many dependent
transactions, making it a suitable style for describing adaptation
patterns.

Adaptation of a software system requires its constituents (e.g.,
components, connectors) to coordinate the changes that need to
occur. It is the responsibility of the adaptation module to track
the adaptation state (e.g., active, passive) of the component and
neighboring architectural constructs. This recurring coordination
constitutes the adaptation pattern for an architectural construct
in a given style.

An adaptation pattern could be expressed using statechart mod-
els (Fig. 6). Each pattern contains one or more statecharts that
define the sequence of steps a component goes through during
the adaptation process. In essence, each statechart describes the
run-time behavior of a component type (e.g., Client in Client–
Server, Publisher in Publish-Subscribe) provisioned by a style
during the adaptation process.

The adaptation process requires a component that is to be
updated to satisfy the quiescence property. The statechart in
Fig. 6a presents the transitions that take an Active C2Component
that is being adapted to satisfy the quiescence property. When in
the Active state, component processes received events. The first
step toward quiescing the component can take one of three paths.
Let us first consider the scenario where the component has no
bottom connector (i.e., no other components depend on it). In this
case, either the component is currently processing or waiting
(idle). If the component is waiting, then it simply transitions to
Quiescent. If the component is processing, it starts Quiescing Itself,
and waits. When the processing has completed, it transitions to
Quiescent.

If the component has a bottom connector (i.e., other compo-
nents depend on it), then the component sends a Passivate
request to the bottom connector to passivate the dependent com-
ponents. Once an ACK reply is received from the bottom connector,
the component transitions to either Quiescent if it is waiting, or to
Quiescing Itself if it is processing. In the latter case, the component
eventually transitions to the Quiescent when the component has
completed the work. Note that according to Kramer and Magee
[9] a component can only be in two states (i.e., active, passive).
In our adaptation patterns, we are modeling additional states



Fig. 6. The statecharts of C2 adaptation patterns: (a) A C2Component that is being adapted; (b) A C2Connector in the substrate that depends on the adapted C2Component;
and (c) A C2Component in the substrate that depends on the adapted C2Component.
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(e.g., Quiescent), which refer to the intermediary steps during the
adaptation process, and not the state of a component.

Fig. 6b shows the transitions that take a C2Connector in the
substrate (i.e., a connector that depends on the C2Component that
is currently being adapted) from Active to Passive state. The first
step a connector takes is to request all of its bottom components
to become passivated. Once all of the connector’s bottom compo-
nents have become passivated, if it is currently waiting, it transi-
tions to the Passive state. Otherwise, if the connector is busy
handling (routing) messages, it transitions to the Passivating Itself
state and waits for the job to finish before transitioning to the
Passive state.

Similar to the previous two adaptation patterns, Fig. 6c shows
the transitions that take a C2Component in the substrate (i.e., a
C2Component that depends on the component currently being
adapted) from Active to the Passive state.

These patterns ensure that once the component/connector
transitions to the Quiescence state, all the components/connectors
that may depend on it have also transitioned to Passive state.
This means that the quiescence property holds for the compo-
nent. By executing these patterns, the middleware waits until
the component that is being adapted achieves the quiescence
state before replacing it. We further detail the middleware’s role
in Section 7.

The patterns described above, while simple, codify the struc-
tural rules and constraints of C2 style into reusable logic that al-
lows for consistent adaptation of any C2 software system. Due to
space constraints we do not show the adaptation patterns of other
generic styles (e.g., Publish-Subscribe, Client–Server) that we have
developed so far.2 While the overall approach of developing adapta-
tion patterns for other styles is the same as what has been presented
above, our experience suggests that different styles often result in
drastically different patterns.
2 Interested reader can access the growing repository of adaptation patterns at
http://cs.gmu.edu/~smalek/AdaptationPatterns.
6.2. Adaptation patterns for D3 style

In the previous section we described a generic architectural
style. As another example, in this section we describe a domain-
specific software architectural style, called D3 [15]. Domain-specific
software architecture [16–18] aims to increase productivity and
reuse in the construction of software systems for a particular appli-
cation domain. It captures the best practices and experiences from
the domain engineers in such a way that guides the future design
of similar systems [19]. An effective method of representing this
knowledge is to define domain-specific component/connector
types, and rules that guide their interaction, in the form of a
domain-specific software architectural style.

D3 [15] is an example of a domain-specific architectural style
that targets the domain of Computer Supported Collaborative
Design. Software systems developed for this domain facilitate
concurrent construction, sharing, and synchronization of design
artifacts among a distributed group of users. There are three types
of components in this domain: (1) Procedure components are state-
less functions that mainly perform commonly required transfor-
mations on the data; (2) Object components encapsulate data
about design artifacts and the operations defined on top of them;
and (3) Agent components are active entities which are used to
help each designer to work with the system. As depicted in
Fig. 7, the components are organized in three layers of sets. In each
layer a component can depend on the components that are in the
layer below or at the same layer. In other words, An Agent
Fig. 7. Layering between component sets in D3 reproduced from Li et al.

http://www.cs.gmu.edu/~smalek/AdaptationPatterns
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component can access (and depend on) other Agent, Object, and
Procedure components; while an Object component can only
access other Object and Procedure components; and finally a Pro-
cedure component can only access other Procedure components.

The components communicate with one another via a domain-
specific connector, called TriBus. TriBus connector provisions asyn-
chronous request and response communication. Furthermore, the
TriBus connectors enforce the rules of layering and each connec-
tion between two components should go through it. To that end,
components register themselves and request connections to other
components using TriBus which plays the role of mediator
between two components.
Fig. 8. The statecharts of D3 adaptation patterns: (a) A Procedure that is being adapte
Procedure that depends on the adapted Component; (e) An Object that depends on the a
The TriBus (Connector in D3 style) that is connected to the component being adapted o
The communication between components does not go beyond
short term request-response relationships except communication
among Agents; Agents can have long living communication
sessions, which are managed using style-specific messages, such
as INFORM, REQUEST, PROPOSE, ACCEPT, and DECLINE. An Agent
can voluntarily end any prior engagement with other Agent
components at any time by sending a DECLINE message to them.
However, it should wait for receiving the DECLINE message back
from other Agents before finishing the session.

Fig. 8 depicts the adaptation pattern for the architectural
constructs comprising D3 style. The Procedure component is one-
time application of a function on data which makes the component
d; (b) An Object that is being adapted; (c) An Agent that is being adapted; (d) A
dapted Component; (f) An Agent that depends on the adapted Component; and (g)
r passivated.
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stateless by definition. Therefore, the adaptation patterns for the
Procedure component (see Fig. 8a and d) do not need to passivate
the dependent components and simple queuing of received events
suffices. Note that this does not contradict with the argument
about stateless components in Section 2.4, as the Procedure com-
ponents are applied one-time only and do not provide a reverse
functionality. On the other hand, the patterns for stateful compo-
nents (see Object and Agent) need to establish the passive set first
(i.e., Fig. 8b, c, e and f).

Extra care should be taken for managing long living communi-
cation sessions between Agents. Before adapting an Agent, all the
sessions in which the Agent is present should be finished. This is
achieved through sending DECLINE message to all collaborating
Agents (i.e., Fig. 8c and f). The information about active sessions
is encapsulated in TriBus therefore broadcasting the DECLINE mes-
sage is left to adaptation pattern of TriBus (see Fig. 8g), which is
discussed further below. An Agent may receive DECLINE message
from other Agents; the Agent should process the message and DE-
CLINE back. Note that receiving DECLINE message cannot happen
after the Agent has received an ACK from TriBus, as all the sessions
have already finished.

Fig. 8g shows the adaptation pattern for TriBus. Note that the
pattern only manages the adaptation state related to the part of
connector that deals with the connections between the component
being adapted and its dependent components. In other words, the
other connections established through the same TriBus are
unaffected. When the TriBus receives the Passivate request from
a component, it looks into its registry to find the dependent com-
ponents. If the component sending the Passivate request is an
Agent component and there are other Agent components depend-
ing on it, TriBus sends them the DECLINE message and waits for
them to acknowledge that by sending a DECLINE message back.
When that is not the case (i.e., no other Agent component is depen-
dent on the one being adapted), the pattern passivates all the
dependent components. Afterwards, the TriBus transitions into
Passive state and sends an ACK to the component that initiated
the process (i.e., sent Passivate request to the TriBus). As in other
patterns, when the TriBus is (Re)Activated, it also (Re)Activates
all of the passivated components.

We next focus on the second contribution of our work, describ-
ing how the adaptation patterns described above can be used to
advance the state of the art in middleware design.

7. Style-aware adaptation

We have leveraged the style-driven adaptation patterns de-
scribed above to provide advanced run-time adaptation facilities
in Prism-MW [12]. Prism-MW is an architectural middleware, which
supports architecture-based development by providing implemen-
tation-level modules (e.g., classes) for representing each architec-
tural element, with operations for creating, manipulating, and
destroying the element. These abstractions enable direct mapping
between a system’s software architectural model and its imple-
mentation. As a result, in Prism-MW, the architectural models are
completely synchronized with the implementation of the system,
which alleviates the problem of architectural erosion. Prism-MW
provides three key capabilities that we have relied on to realize
the proposed approach. It provides support for (1) basic architec-
ture-level dynamism, (2) multiple architectural styles, and (3)
architectural reflection. In this section, we first provide an overview
of these capabilities to familiarize the reader with this middleware.
Afterwards, we provide a detailed description of the enhancements
made to Prism-MW to realize style-aware adaptation of software
systems. Finally, we conclude this section with a discussion of the
performance consequences associated with using the revised ver-
sion of the middleware.
7.1. Overview of Prism-MW

Fig. 9 shows the class diagram view of Prism-MW. The gray
classes constitute the middleware core. Brick is an abstract class
that represents an architectural building block. It encapsulates
common features of its subclasses (Architecture, Component,
Connector, and Port). Architecture records the configuration of its
constituent components, connectors, and ports, and provides
facilities for their addition, removal, and reconnection, possibly
at system run-time. Events are used to capture communication in
the architecture. Components perform computations in the archi-
tecture. The developer provides the application-specific logic by
extending the component class. Connectors are used to control
the routing of events among the attached components. Compo-
nents and connectors can have an arbitrary number of attached
Ports, which they use to attach to one another and interact. Every
Brick in Prism-MW is associated with the Scaffold class, which pro-
vides a number of facilities for queuing, scheduling, monitoring,
and routing of events in a distributed setting.

Prism-MW’s core provides the necessary support for developing
arbitrarily complex applications, as long as one relies on the
provided default facilities (e.g., event scheduling, dispatching,
and routing). The first step a developer takes is to subclass from
the Component class for all components in the architecture to
implement their application-specific methods. The next step is to
instantiate the Architecture class and to define the needed
instances of components, connectors, and ports. Finally, attaching
component and connector instances into a configuration is
achieved by using the weld method of the Architecture class.

Through the use of the style-specific classes shown in orange in
Fig. 9, the middleware’s default style-agnostic behavior can be
modified. This feature of Prism-MW has been successfully em-
ployed to provide support for more than 20 different architectural
styles, including C2, Client–Server, Publish-Subscribe, and Pipe-
and-Filter [12]. For instance, a style-specific component, such as
Server, Publisher, or C2Component can be constructed by sub-
classing from the regular Component class and providing the
style-specific logic. Similarly, as depicted in Fig. 9, other sub-clas-
ses of Brick (i.e., Architecture, Connector, and Port) can be extended
to realize the proper stylistic behavior. Interested reader may refer
to [12] for more details on Prism-MW.

7.2. Style-aware adaptation support

In order to support the run-time changes to the application,
Prism-MW components and connectors can be added, removed,
and welded during the execution of the system. As discussed
further below, we have enhanced the middleware’s basic
dynamism with the style-driven adaptation patterns to ensure
the consistency of the system during such changes.

We have realized support for the adaptation patterns in
Prism-MW through three new facilities: (1) management and
enforcement of the adaptation state (e.g., passive, passivating
dependents, quiescence) of components and connectors, (2) realiza-
tion of the adaptation patterns via several pluggable modules, and
(3) execution of adaptation patterns and coordination of change
management via meta-level components. We first describe each
of these enhancements in detail below. We then discuss the impli-
cations of distribution on these facilities. Finally, we present an
example to illustrate how the different parts of the middleware fit
together to support style-aware adaptation of software.

7.2.1. Adaptation state
A status variable is associated with every Brick to determine the

adaptation state of components and connectors. Recall from Fig. 9
that both Prism-MW’s Component and Connector extend the Brick.



Fig. 9. Simplified UML Class diagram of Prism-MW: middleware core shown in gray, style-specific extensions shown in orange, and enhancements for style-aware adaptation
support shown in blue. (For interpretation of the references to color in this figure legend, the reader is referred to the web version of this article.)
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The Brick abstract class also provides setter and getter methods for
accessing the status of a component and connector. Note that
while some existing middleware platforms may provide informa-
tion about the ‘‘liveness’’ property of a software component (i.e.,
whether or not it is active), most cannot provide additional infor-
mation, such as which components are in passive mode and which
ones satisfy the quiescent property. As further described below,
Prism-MW tracks and updates the adaptation state of each compo-
nent in the system, alleviating the component’s application logic
from managing its adaptation state.

In Prism-MW, Component class is extended for realizing the
application logic. Among other services, Component class provides
the ability to send and receive events to the application logic. We
have used the same mechanism to enforce the components behav-
ing according to their adaptation status. The Component class pro-
vides a wrapper that prevents ‘‘rogue’’ application logic from
initiating a new transaction when in the Passive state. This also al-
lows the middleware to detect the ‘‘rogue’’ components that ignore
the passivate command and keep the active state for unlimited
time. There are different ways of dealing with such components.
In some domains a simple time-out mechanism [20] can solve the
problem. However, in risk-averse domains informing the end-user
is the best option, as this may be the sign of a problem with the
component’s functionality and trustworthiness. Currently, Prism-
MW could be configured to take either approach.

The third party components can also be wrapped using the
Component abstract class in Prism-MW to enable control over
them. This way Prism-MW is able to manage the component’s life-
cycle in the adaptation process. Prism-MW is also compatible with
a third party component that can be used in different applications
(e.g., services), as long as the component manages the separation
between usages in different applications (e.g., state isolation) and
provides a separate interface to Prism-MW for controlling the
component in each usage.

7.2.2. Adaptation module
The adaptation patterns have been realized as pluggable Adap-

tation Modules, depicted as blue classes in Fig. 9. A style-specific
Adaptation Module needs to override and provide an implementa-
tion for two methods inherited from Abstract Adaptation Module:
establishPassiveSet and revive. The first one returns the steps
necessary for transitioning a component (connector) from active
to passive, while the second one returns the same for achieving
the reverse (i.e., from passive to active). These two methods codify
state machines that correspond to the adaptation patterns, such as
those described in Sections 6.1 and 6.2. Each step represents one of
the transition labels in the statechart of adaptation pattern. Each
step is realized as a triplet-tuple of the form <condition, state
change, action>.

One of the goals in Prism-MW, which is also something we
strived for in providing the style-aware adaptation support, is the
extensibility of the middleware for the needs of application devel-
opers. One of the ways that developers can extend Prism-MW is
the introduction of new architectural styles [12]. Our design also
allows the developers to provide adaptation support for a new
style by implementing the corresponding Adaptation Module. Thus,
depending on the architectural style of a given application, differ-
ent instance of Adaptation Module is associated with the Architec-
ture object. There is no hidden feature for this as we use the
same approach for providing the adaptation support for the styles
currently supported in Prism-MW.

7.2.3. Admin component
As shown in blue in Fig. 9, we have developed a meta-level com-

ponent, called Admin Component, which is in charge of coordinating
the execution of adaptation patterns. An Admin Component is
instantiated with every instance of the middleware and coexists
with the application-level components on the same architecture
container. Unlike the other components, however, it has a pointer
to the Architecture object. Through this pointer, the Admin Compo-
nent is capable of reflecting on both the middleware and the
running application. It can identify the architectural style of the
running application, use the style-specific Adaptation Modules,
access the application’s architectural constructs, and use the setter
and getter methods to set their adaptation state.

Admin component provides three interfaces: quiesce, passivate,
and activate. They are used to place a given component in the appro-
priate adaptation state before/after the Architecture’s add, remove,
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and replace methods are invoked. Given a component to be qui-
esced, the Admin Component uses the configuration of the architec-
ture to determine the affected components and connectors (i.e.,
those that need to be passivated). It also uses the Adaptation Mod-
ule’s establishPassiveSet to determine the sequence of steps neces-
sary for placing those components and connectors in passive
state. Executing these steps may result in further invocations of
the Adaptation Module’s establishPassiveSet on new component. Ad-
min Component executes the steps by directly invoking the compo-
nents using the status setter and getter methods described in Section
7.2.1. A similar process is employed to activate the components.

7.2.4. Distribution
Support for distribution in Prism-MW is provided through

distribution ports (see [12] for details). These ports allow communi-
cation between different address spaces (hardware hosts). For
instance, Fig. 10 shows a distributed variation of the small C2
architecture shown in Fig. 2a, where the basic ports connecting
SAKB GUI and Connector 3 are changed to distribution ports.

Prism-MW uses the same basic mechanism for communication
that spans address spaces as it does for local communication: A
sending component or connector places its outgoing event on an
attached port. However, instead of depositing the event on the
local event queue, the distribution port deposits the event on the
network. Once the event is propagated across the network, the
distribution port on the recipient address space uses its internal
thread to retrieve the incoming event and places it on its local
event queue. This mechanism provides distribution transparency
in the system and allows components in the middleware to behave
as they would without distribution.

The Admin Components in different address spaces use distribu-
tion ports to coordinate the adaptation in a distributed setting. The
local Admin Component sends an adaptation step that needs to
execute remotely to its counterpart via the distribution ports. For
instance, consider the situation in which Connector 3 in Fig. 10 is
being passivated, in turn requiring SAKB GUI to also be passivated.
Since Admin Component of Address Space ‘‘A’’ cannot directly control
SAKB GUI, it uses its distribution port to send a request to the Admin
Component in Address Space ‘‘B’’ to passivate SAKB GUI. The resulting
confirmation also traverses back through the same distribution
ports.

7.2.5. An example
We now illustrate the interactions among the different

elements of the middleware in applying the C2 adaptation patterns
(recall Fig. 6) on a subset of the EDS architecture depicted in
Fig. 10. In this example, we consider a scenario in which Strategy
Analysis KB in Fig. 10 is being updated with a newer version of
the component and hence needs to transition to the quiescent
Fig. 10. Admin Components managing the adaptation in a distributed setting.
state. Fig. 11 depicts the resulting interactions within the middle-
ware constructs and with the application components/connectors
for making this transition possible.

The scenario starts when a quiesce request for Strategy Analysis
KB is received by the Admin Component of address space ‘‘A’’ (step
1). The Admin Component consults with the local Adaptation Module
to determine the appropriate sequence of change management
steps (steps 2–3). Per instructions received from the Adaptation
Module and given the current configuration of the architecture,
the Admin Component transitions the status of Strategy Analysis KB
to Passivating Dependents (step 4) and recursively calls itself to pas-
sivate the bottom connector (step 5). This recursive call results in
the Admin Component again consulting with the local Adaptation
Module to determine the set of steps for passivating the connector
(step 6–7). Per received instructions, the Admin Component then
sets the status of the connector to Passivating Dependents (step
8). The Admin Component also sends a Prism-MW event using the
distribution ports to the remote Admin Component running on
address space ‘‘B’’ to passivate the SAKB GUI component (step 9).
The remote Admin Component consults the Adaptation Module on
host ‘‘B’’ to place SAKB GUI in the passive state and executes the
necessary steps (steps 10–14). Through its pointer to the architec-
ture, the remote Admin Component is able to determine that there
are no additional components/connectors that depend on SAKB
GUI. Following the confirmation that SAKB GUI is passive (step
15), the Admin Component proceeds with executing the remaining
steps to place the connector in the passive state (steps 16–19) and
subsequently placing the Strategy Analysis KB in the quiescent state
(steps 20–23).

In summary, Fig. 11 shows the manifestation of the middle-
ware’s realization of the C2 adaptation patterns in this example.
Indeed, there is a very close correspondence between the interac-
tions depicted in Fig. 11 and the statecharts representing the C2
adaptation patterns in Fig. 6.

7.3. Efficiency of adaptation

Adaptation patterns provide a reasonable compromise between
abruptly replacing a component, which achieves fast adaptation at
the expense of jeopardizing the system’s consistency, and com-
plete restart of the system, which is very slow, but provides the
only other alternative to quiescent for ensuring consistent
adaptation of the software. The time it takes to place a software
component in quiescence is determined by the time it takes to
establish the passive set for that component. This is represented
as Time(PSc), where PSc represents the set of components that need
to be passivated for component c.

When two or more components need to be quiesced at the same
time, a combination of three general cases may occur: (1) passive
sets of components are completely disjointed, (2) some compo-
nents’ passive sets are completely subsumed in the others’ passive
sets, and (3) components’ passive sets partially overlap. If adapta-
tion actions (commands) corresponding to the adaptation patterns
can proceed in parallel, then the time taken to place all of the com-
ponents in quiescence is bounded by the time required to place the
component that takes longest in quiescence. That is, for n compo-
nents, we say Time(PS1. . .n) = max{Time(PS1), . . . , Time(PSn)}. On the
other hand, if the commands can only proceed sequentially, then
the time taken to place all of the components in quiescence is
bounded by the sum of the times required to quiesce components
individually. That is, for n components, Time(PS1. . .n) = Ri=1. . .n

Time(PSi). Finally, note that since some components’ passive sets
may overlap, the actual time it takes to achieve quiescence is often
smaller than the theoretical bound provided above.

In the current implementation of the approach in Prism-MW,
putting multiple components in quiescence occurs sequentially.



Fig. 11. Procedure for making Strategy Analysis KB in Fig. 10 quiescent, which involves communication between Admin Components of different address spaces.
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In practice, however, the time taken to actually adapt (replace) a
set of components takes a bit longer than the time it takes to
achieve quiescence, as there is also an additional delay associated
with the API calls to remove the old components, and instantiate
and start the new ones.
8. Evaluation

Our experiences with enhancing Prism-MW to provide adapta-
tion support for several well-known architectural styles (C2,
Client–Server, Publish-Subscribe, D3, and Pipe-and-Filter) and its
application on two real-world software systems have been very
positive. In this section, we first present the empirical results
obtained in our controlled experiments in the laboratory, which
demonstrate the benefits and characteristics of our approach,
followed by a qualitative overview of our experience in the context
of applying the approach in practice.
8.1. Benchmarks

We performed extensive benchmarks of the middleware in a
controlled experimental setup in the laboratory to measure and
evaluate our approach. These experiments were performed using
the enhanced version of Prism-MW and on EDS to empirically
evaluate the advantages of our approach versus the existing
approaches enumerated in Section 5.3 We do not consider the naive
approach that assumes a component can provision its dependencies,
since in an event-based system it breaks the information hiding and
3 Interested reader may download the original version of Prism-MW from http://
csse.usc.edu/~softarch/Prism/and the version of Prism-MW enhanced with adaptation
patterns from http://cs.gmu.edu/~smalek/AdaptationPatterns/.
black box principles that form the fundamental premises of our
work, as well as works by others in change management [9].

Our approach can be applied in a distributed setting by simply
leveraging Prism-MW’s distribution facilities [12]. However, for a
fair comparison, we restricted the evaluation of adaptation
patterns to a local system, i.e., the headquarters portion of EDS
depicted in Fig. 1. This allowed us to ignore network delays as well
as other factors associated with distribution that may influence the
results. We experimented with three adaptation scenarios, each
involving the replacement of one of the following four compo-
nents: Weather Analyzer, Strategy Analyzer, Deployment Advisor,
and Resource Manager. Weather Analyzer is a batch processing com-
ponent that based on the Weather data provides weather related
predictions. This component is one of the most computationally
intensive components in the system. The other three components,
on the other hand, are interactive and sporadically invoked. We
applied each adaptation scenario in 33 different executions of the
system and established a 95% confidence interval to obtain the
results reported here.

Fig. 12 shows the possibility of placing the system in an incon-
sistent state as a result of abruptly replacing the corresponding
component in the 33 experiments. These experiments were
performed on the version of Prism-MW without support for
adaptation patterns. Each data point is a probability that is
obtained through instrumentation of the system (e.g., utilization
metrics, transaction traces) and represents the amount of time a
component is busy in the measured period. As shown, replacement
of the Weather Analyzer component is more likely to result in an
inconsistency (i.e., on average 93%) than the other two compo-
nents. The reason is that the Weather Analyzer is a batch processing
component that is constantly utilized, while the other three are
sporadically invoked as a result of interactions initiated by the
user. The utilization of Resource Manager is also relatively high,

http://www.csse.usc.edu/~softarch/Prism/
http://www.csse.usc.edu/~softarch/Prism/
http://www.cs.gmu.edu/~smalek/AdaptationPatterns/


Fig. 12. Likelihood of inconsistency due to abrupt replacement of 3 EDS compo-
nents in 33 different scenarios.

Fig. 13. Comparing the adaptation time of our approach against the complete
restart of EDS in 33 different scenarios.
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as it provides services to several other components, and thus the
inconsistency is more likely (i.e., on average 26%) if it is changed
abruptly. The possibility of inconsistency is significantly lower in
the case of Strategy Analyzer and Deployment Advisor. However,
they remain high enough to pose a significant risk to the correct
operation of the system.

In comparison to the results of Fig. 12, applying the same adap-
tations in the 33 experiments using the version of Prism-MW with
support for adaptation patterns showed no inconsistent behavior.
This result is not surprising per se, since our approach is designed
to ensure consistency through application of adaptation patterns
and establishment of passive sets. However, the experiments high-
light a key weakness of the modern middleware platforms and
demonstrates the high likelyhood of functional inconsistency due
to adaptation, in particular, in situations where the software is
highly utilized.

Fig. 13 compares the adaptation time of our approach against
the complete restart of the system, which is the only approach that
can ensure consistent adaptation of the software. Here, we
compare six adaptation scenarios with one another: four scenarios
involve replacement of the individual components, one scenario
involves replacement of two components (Weather Analyzer and
Resource Manager), and finally the last scenario involves complete
restart of the system, indicated as All in Fig. 13.

Replacing Weather Analyzer requires more time than the other
three components. This is expected, due to the fact that Weather
Analyzer is significantly more utilized (i.e., it is more likely to be
actively involved in transactions) than the other three components,
hence it is more likely for the middleware to have to wait for the
current running transaction to finish execution (and thus achieve
quiescence) before replacing it. As one would expect, the results
also corroborate that restarting All of the components takes signif-
icantly more time than using the adaptation patterns to achieve
quiescence and adapt the components at runtime.

From Fig. 13 we can see the result of evaluating the patterns for
adapting the Weather Analyzer and Resource Manager at the same
time. Recall from Section 7.3 that in Prism-MW quiescing multiple
components involves sequential application of adaptation patterns
on those components. Therefore, the theoretical bound on the time
it takes to put Weather Analyzer and Resource Manager components
in quiescence at the same time is the sum of the times that would
take to quiesce them individually. In this case, the theoretical
bound at 95% confidence would be 207.1 ms + 86.09 ms =
293.19 ms. However, from Fig. 13, we can see that in practice,
the actual time it takes to apply the patterns, achieve quiescence,
and adapt the components is significantly smaller, i.e., 239.8 ms.
As we mentioned in Section 7.3, this is due to the fact that the
adapted components (i.e., Weather Analyzer and Resource Manager)
are sharing several components in their passive sets (i.e., Strategy
Analyzer, Deployment Advisor, and GUI). Therefore, once the middle-
ware is done with putting one of the components in quiescence,
some (if not all) of the members of the passive set of the other
component are already passivated. This also has another good side
effect. Due to passivation the load on the second component also
decreases, hence, quiescence for the second component can be
reached much faster compared to when the process starts from
scratch.

Finally, note that unlike complete restart of the system, using our
approach a significant portion of the system remained operational
during the adaptation process. For instance, Weather GUI and SAKB
GUI could be used to access a significant subset of system’s capabil-
ities on the Headquarters platform, while Search and Rescue devices
could access the Headquarters services throughout the adaptation
scenarios that do not affect those parts of the system.

8.2. Experience

Beyond the experimental results discussed in the previous
section, we have had experience with applying the approach in a
real-world software system, called MIDAS [3], which was
developed previously on top of Prism-MW and in collaboration
with Bosch Research and Technology Center engineers for their
family of smart-spaces sensor network systems. We do not provide
a detailed description of MIDAS and point the interested reader to
[3]. MIDAS employs a heterogeneous domain specific architectural
style, which incorporates characteristics from several other
well-known styles, including SOA, Publish-Subscribe, and Pipe-
and-Filter. This experience helped us make certain observations,
which we summarize according to the four problems mentioned
in Section 4 that have motivated this research:
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� High complexity: Developing the patterns and implementing the
extensions to Prism-MW to realize the patterns required a grad-
uate student unfamiliar with Prism-MW an effort of approxi-
mately 1000 man-hour over a period of one year. The task
required the developer to become familiar with 80% of the mid-
dleware’s existing code. This experience shows that realizing
such facilities requires thorough understanding of the middle-
ware and poses a severe burden on the application developers.
On the other hand, the middleware engineers (i.e., in our
research, the graduate students that have developed this mid-
dleware), who are naturally most familiar with the middle-
ware’s implementation, can provide the same facilities rapidly
and with only a few hours of programming.
� Lack of reuse: For the styles that were shared between MIDAS

and EDS, we were able to reuse the same version of the middle-
ware to consistently adapt both systems. This corroborates our
assertion that since adaptation patterns for a given style are
generally applicable to any software system built in that style,
the realization of patterns in the middleware could be reused
across different software systems.
� High coupling: Our experience with the evolution of MIDAS

application over a period of six month, during which close to
20% of the 40KSLOC code base was changed, showed no impact
on the middleware’s adaptation logic. This was expected as the
patterns were able to automatically determine the component
dependency relationships based solely on the style, as opposed
to the changes in the internal application logic. This experience
shows that our approach provides a separation between the
middleware’s adaptation logic and the evolution of the applica-
tion logic, as long as the evolution does not entail a change in
the application’s architectural style.
� Identifying the component dependencies: We have been able to

develop an adaptation pattern for all the styles we have encoun-
tered so far, including C2, Client–Server, D3, Publish-Subscribe,
MIDAS, and Pipe-and-Filter. Our experience has showed that dif-
ferent styles result in very different adaptation patterns. These
patterns were all able to consistently identify the static compo-
nent dependency relationships in both MIDAS and EDS system,
and when required transition a component to the quiescence
state. Finally, among the styles that we have looked at so far,
we observed that those with a rich set of rules and constraints
result in more interesting and detailed patterns, which in turn
allow for refined and less disruptive adaptation support in the
middleware.

9. Related work

This work relates to four different areas of research: (1) pat-
terns; (2) dynamic software adaptation; (3) models at runtime;
and (4) middleware technologies. We have categorized the related
work according to these areas as follows.
9.1. Patterns

The object oriented programming community has been study-
ing solutions to recurring problems in software development.
They have abstracted these solutions in terms of lessons learned
and experiences at programming language level. The result is ex-
pressed as Problem–Solution pairs in terms of design patterns
[21]. After successful adoption of design patterns, patterns in dif-
ferent parts of the software development lifecycle were also
studied [22–27]. The main benefit of a pattern is the fact that
it can represent a set of complex design and implementation
choices as a single reusable abstraction [6,28]. Related to our
adaptation patterns are the following approaches:

� Gomaa and Hussein [29] suggest the development of reconfigu-
ration patterns for software product lines. Their approach does
not consider dependent transactions and their implications. The
reconfiguration patterns are also not realized on top an imple-
mentation platform.
� Ramirez and Cheng [30] introduced a set of design patterns for

building dynamic adaptive software systems. The purpose of
patterns proposed in their work is different from ours. Their
patterns are at the level of software design, and are aimed to
facilitate the design and construction of a self-adaptive software
system. On the other hand, our patterns deal with ensuring the
consistency of software during adaptation.
� Tyson et al. [31] developed a pattern, called component pattern,

in which Peer-to-Peer overlay networks can be effectively
developed for the purposes of adaptation. Their pattern can be
encoded as a style in Prism-MW for building Peer-to-Peer over-
lay networks, and the style can be used to derive the adaptation
patterns similar to what we have discussed in this paper. To
that end, we believe their work is complementary to the
research presented in this paper.

9.2. Dynamic software adaptation

Existing research on dynamic software adaptation falls into two
categories: design concepts and implementation mechanisms. We
elaborate on the most related works from both categories below.
Design concepts provide the theoretical foundations for modeling
and reasoning about dynamic changes in a software system. In Sec-
tion 3 we provided an overview of a related research work [9] that
has shaped the theoretical basis of our research. The following
works are also related:

� Kramer and Magee [7] state that software architectures provide
an appropriate level of abstraction for modeling and reasoning
about dynamic adaptation. They define a three-layer model
(component control, change management, and goal manage-
ment) to address the challenges associated with the develop-
ment of self-managed systems. Our work addresses some of
the challenges associated with component control and change
management layers.
� Garlan et al. [32] propose a methodology for architecture-based

adaptation of software systems with a focus on the reusability
issues. They recognize the importance of the knowledge
expressed in architectural styles. However, they do not present
an approach to codify this knowledge into reusable patterns.
Moreover, their approach is neither realized in a middleware
platform, nor does it ensure the system’s consistency.
� Vandewoude et al. [10] propose Tranquility as a necessary condi-

tion for consistent adaptation of software systems. Tranquility
builds on the notion of Quiescence proposed by Kramer and
Magee, except it relaxes some of the constraints to achieve faster
adaptation times. However, unlike Quiescence, Tranquility is not
guaranteed to be reachable. Vandewoude et al. extended the
Draco middleware [10] to provide support for Tranquility. How-
ever, Draco relies on software components to provide the mid-
dleware with not only a list of transactions they have already
participated in the past, but also transactions they will partici-
pate in the future. This assumption breaks the black-box treat-
ment of components, and is not practical, since it is not feasible
for a third-party component to know a priori in which transac-
tions it will participate. This is exactly the problem we have tried
to address in our work.
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9.3. Models at runtime

The fact that we maintain the architectural models of the sys-
tem synchronized with the running code to avoid architectural
drift and erosion is related to the work of models at runtime com-
munity [33]. The following approaches also have similar concepts
to our work, but none deals with the notions of quiescence and
functional consistency of the system during/after adaptation:

� Co-ev framework [34] keeps the architectural models of the
system and its runtime implementation synchronized. This is
crucial as the models are used to verify adaptations before they
are applied to the system. Confirmed adaptations are then com-
mitted to both models and runtime implementation to keep
them synchronized with one another. We achieve the same goal
in Prism-MW, but in a different way. Prism-MW is an architec-
tural middleware and provides implementation-level modules
that correspond to the system’s software architectural con-
structs. In other words, in Prism-MW, the model and code are
indistinguishable from one another, and therefore, they can
only be changed together, which avoids the problem of design
erosion.
� Giese and Wagner [35] use triple graph grammar to synchronize

models in different layers of abstraction. Triple graph grammar
allows for bidirectional and non-destructive model transforma-
tion. This way any change in low-level models (e.g., implemen-
tation level) directly manifests itself in the high-level models as
well. Since architectural models and running system are tightly
coupled with each other in Prism-MW, any change would be
applied on both the architecture and implementation of the sys-
tem at the same time. In other words, the layers of abstraction
in Prism-MW are constantly synchronized but not through
model transformation.
� FIESTA framework [36] uses the state-of-the-art aspect oriented

techniques to integrate new functionality into the architecture
of the system. The notion of adaptation pattern discussed in this
paper is different and complementary to this work, as it aims to
provide functional consistency during adaptation, which is
required no matter how the change is applied to the system.

9.4. Middleware

The implementation mechanisms deal with technologies and
middleware solutions intended for adaptive and dynamic settings.
None of the existing implementation technologies that we are
aware of provides support for consistent adaptation of a software
system based on its stylistic characteristics:

� C2 framework [8] is an architectural middleware intended for
the development of software systems according to C2 style. It
provides rudimentary support for adaptation in terms of simply
adding and removing components, but does not ensure consis-
tency of the system during such changes.
� MobiPADS [37] is a reflective middleware that supports active

deployment of augmented services for mobile computing.
MobiPADS supports dynamic adaptation in order to provide
flexible configuration of resources and optimize the perfor-
mance of mobile applications.
� OpenCom [38] is component-based systems-building technol-

ogy for building low-level system software. It has a simple, effi-
cient, minimal kernel, which provides a set of extension
mechanisms. A subset of these extensions is the reflective
extension, which provides generic support for inspecting,
adapting and extending the structure and behavior of systems
at run-time. In the follow up work [31,39], the OpenCom tech-
nology has been used to build adaptive software systems.
� Fractal Component Model [40] is a hierarchical and reflective
model for the development of component based software. A
key concept in this model is membrane. Similar to Component
abstract class in Prism-MW (recall Fig. 9), membrane plays
the role of a wrapper for a Fractal component, which adds facil-
ities beyond the functional behavior of the wrapped compo-
nent. Similar to Component in Prism-MW, which is customized
through extensions, membrane can also be customized. The
membrane can contain several forms of controllers each of
which provides different reflective features. Life-Cycle controller
facilitates reconfiguration; for instance, it provides support for
starting and stopping a component. However, these controls
are at the component control layer [7], while the quiescence
adaptation patterns are at the change management layer [7],
which is one level of abstraction higher. An extension to Fractal
Component Model is [41], which takes into account the integ-
rity of adaptation. To that end, the reconfiguration is certified
if only pre/post conditions on the new configuration are satis-
fied. The integrity constraints are very similar to constraints
of a given style in Prism-MW, as they determine what is a valid
architecture. The adaptation patterns described in this paper are
different, as they specify the required steps for driving a soft-
ware component in a given style to quiescence.
� ArchJava [42] is an extension to Java that unifies software archi-

tecture with implementation, ensuring that the implementation
conforms to the architectural constraints. ArchJava currently
has several limitations that would likely limit its applicability:
Communication between ArchJava components is achieved
solely via method calls, ArchJava is only applicable to applica-
tions running in a single address space, it is currently limited
to Java and its efficiency has not yet been assessed.
� Aura [43] is an architectural style and supporting middleware

for ubiquitous computing applications with a special focus on
user mobility, context awareness, and context switching.
Similarly to Prism-MW, Aura has explicit, first-class connectors.
Aura also provides a set of components that perform manage-
ment of tasks, environment monitoring, context observing,
and service supplying. This suggests that the Aura style could
be successfully supported using Prism-MW augmented with a
set of Aura-specific extensions. This would eliminate the need
for performing optimizations of Aura’s current implementation
support, which has to date only been tested on traditional,
desktop platforms.
� MUSIC [44], which is based on MADAM [45,46], is an open-

sources middleware for ubiquitous, mobile and context-aware
systems. The goal of MUSIC is to allow software deployed on
mobile devices to be adapted based on the contextual informa-
tion, non-functional requirements (Quality of Service), and avail-
ability of services. Adaptations supported in MUSIC consist of
reconfiguration of the system by changing its parameters or
selecting alternative components. In a recent, MUSIC has been
extended to support Service Oriented Architectures. MUSIC
allows a service and a local component to realize the same com-
ponent type and then the application can adapt by selecting
which one to use at runtime. Unlike our work, the consistency
of system during adaptation has not been the focus of MUSIC.

10. Conclusion

Most state-of-the-art middleware solutions provide rudimen-
tary support for dynamic adaptation of software systems. They lack
the ability to handle the implications of replacing a software com-
ponent. Therefore, the application developers are burdened with
the responsibility of managing the adaptation process at the appli-
cation-level. We have developed a new approach that addresses
the current shortcomings. It leverages the rules and characteristics



N. Esfahani, S. Malek / Information and Software Technology 54 (2012) 786–801 801
of an architectural style to determine adaptation patterns for soft-
ware systems built according to that style. These patterns specify
the required sequence of actions to put a software component in
a state that can be adapted without jeopardizing the software sys-
tem’s consistency, and hence its functionality. By codifying these
patterns in a style-aware middleware, we have been able to pro-
vide significantly more advanced adaptation capabilities than that
is currently offered by other platforms.

In our future work, we plan to develop a catalog of adaptation
patterns for commonly employed architectural styles. Such a cata-
log would be of great interest to both the software engineering and
middleware community. We also plan to realize our approach on
middleware platforms widely used in the industry (e.g., J2EE Java
Message Service, Corba, and Enterprise Service Bus). Given that
the level of architectural support provided by these middlewares
varies, they may have to be adjusted and extended appropriately
to accommodate the work presented in this paper. Finally, our
adaptation patterns currently cannot handle faults during the pro-
cess of placing a component in quiescence. Enhancing the patterns
to handle such cases would be another interesting avenue of future
research.
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