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Abstract. The ever-growing complexity of software systems coupled
with their stringent availability requirements are challenging the manual
management of software after its deployment. This has motivated the
development of self-adaptive software systems. Self-adaptation endows
a software system with the ability to satisfy certain objectives by au-
tomatically modifying its behavior at runtime. While many promising
approaches for the construction of self-adaptive software systems have
been developed, the majority of them ignore the uncertainty underlying
the adaptation. This has been one of the key inhibitors to widespread
adoption of self-adaption techniques in risk-averse real-world applica-
tions. Uncertainty in this setting is a vaguely understood term. In this
paper, we characterize the sources of uncertainty in self-adaptive software
system, and demonstrate its impact on the system’s ability to satisfy its
objectives. We then provide an alternative notion of optimality that ex-
plicitly incorporates the uncertainty underlying the knowledge (models)
used for decision making. We discuss the state-of-the-art for dealing with
uncertainty in this setting, and conclude with a set of challenges, which
provide a road map for future research.
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1 Introduction

Self-adaptation is an effective approach in dealing with the changing dynamics
of many application domains, such as mobile and pervasive systems. In response
to changes in the environment or requirements, a self-adaptive software system
modifies itself to satisfy certain objectives [1-3]. While the benefits of such sys-
tems are plenty, their development has shown to be more challenging than tra-
ditional software systems [2,3]. One key culprit is that self-adaptation is subject
to uncertainty [2,3].

In general, in the field of software engineering, uncertainty is considered as a
second-order concept [4]. A common misconception is that by a set of practices
the effect of uncertainty can be removed to allow focusing on the “normal”
behavior. Although, it is generally true that having more information decreases
the amount of uncertainty [5], it is typically not possible to eliminate uncertainty
altogether as it is not practical nor desirable to collect all of the information
about a system. Engineering self-adaptive software is no exception. While the
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level of uncertainty could vary, it is rarely the case that a self-adaptive software
system is completely free of uncertainty.

Uncertainty can be observed in every facet of adaptation, albeit at varying
degrees. For instance, one reason behind uncertainty is the fact that the sys-
tem’s user, adaptation logic, and business logic are loosely coupled, introducing
numerous sources of uncertainty [6]. Consider that users often find it difficult
to accurately express their quality preferences, sensors employed for monitoring
often have uncontrollable noise, analytical models used for assessing the system’s
quality attributes by definition make simplifying assumptions that may not hold
at runtime, and so on. We refer to these factors as sources of uncertainty. All of
these factors challenge the confidence with which the adaptation decisions are
made. We believe considering uncertainty as a first-class concept improves the
quality or sometimes even the correctness of adaptation decisions.

In spite the fact that uncertainty is prevalent in self-adaptive software sys-
tems, it is often considered in an ad hoc fashion. One reason for this is that the
term uncertainty is a vaguely understood concept in the community, as there are
many different sources for uncertainty, and not all sources of uncertainty have
similar characteristics.

Some sources of uncertainty are external, while others are internal. External
uncertainty arises from the environment or domain in which the software is
deployed. For example, external uncertainty for a software system deployed in
an unmanned vehicle may include the likelihood of certain weather conditions
occurring. Software self-adaptation is one approach in dealing with the effects of
external uncertainty, e.g., in a snow storm the vehicles navigator component may
be replaced with a more conservative navigator to avoid a collision. On the other
hand, internal uncertainty is rooted in the difficulty of determining the impact
of adaptation on the systems quality objectives, e.g., determining the impact of
replacing a software component on the systems responsiveness, battery usage,
ete.

Moreover, not all sources of uncertainty have similar characteristics. Some-
times uncertainty is due to lack of knowledge, while other times it is due to the
variation in a parameter that affects the adaptation decisions (adaptation pa-
rameter). Techniques used to mitigate one type of uncertainty may be different
from techniques used to mitigate another type.

In this paper, we aim to change the status quo by first enumerating the com-
mon sources of uncertainty in self-adaptive software. We illustrate the sources of
uncertainty using a robotic software system developed in our prior work. This
also provides the intuition behind the challenges posed by uncertainty in this do-
main. We provide a more elaborate definition of uncertainty by enumerating its
characteristics in the context of prior literature. To that end, we present a concep-
tual model for better understanding the impact of uncertainty on self-adaptive
software. We also present an overview of mathematical techniques commonly
used for representing uncertainty and reasoning about it.

The crux of this paper is an intuitive, yet novel, definition of what is con-
sidered to be the optimal adaptation decision under uncertainty. Realizing the
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same definition using fuzzy mathematical techniques in our recent work [7] has
produced promising results. Finally, we provide a discussion of the state-of-the-
art approaches targeted at addressing the different faces of challenge posed by
uncertainty in this setting.

The rest of this paper is organized as follows: Section 2 provides an overview
of a self-adaptive robotic application that is used throughout the paper for illus-
tration purposes; Section 3 enumerates the sources of uncertainty in self-adaptive
software systems; Section 4 demonstrates the impact of uncertainty on making
adaptation decisions; Section 5 establishes a new definition for what is typically
considered to be the optimal adaptation decision; Section 6 provides a framework
for understanding uncertainty based on its characteristics; Section 7 discusses the
commonly used mathematical approaches for representing and reasoning about
uncertainty; Section 8 provides an overview of the state-of-the-art in this area;
and finally the paper concludes in Section 9 with a summary of contributions
and a set of remaining research challenges.

2 Illustrative Example

To demonstrate the ideas and help the discussion, we use a robotic software
system that have been developed in our previous work [8] as a running example.
The robotic software is part of a distributed search and rescue system [8] aimed
at supporting the government agencies in dealing with emergency crises (e.g.,
fire, hurricane). Fig. 1b provides an abridged view of the robotic system’s ar-
chitecture. The software components comprising the robotic system range from
abstractions of the physical entities, such as software controlled sensors and
actuators on board the robot, to purely logical functionalities, such as image
detection and navigation. Such a system may be comprised of many different
execution scenarios. For instance, the bold path in Fig. 1b indicates the Maneu-
ver execution scenario, which aims to safely steer the robot. The Camera feed is
sent to Obstacle Detector, which runs an image processing algorithm to identify
obstacles. Obstacle information is used by Nawigator to plan the direction and
speed of movement, which are then put into effect by the Controller.

The software components comprising this system are customizable, meaning
that they can be configured to operate in different modes of operation. Fig. 1a
shows some of the available configuration dimensions. For instance, Power is
a configuration dimension for the Controller component. A Controller could
operate in either Energy Saving or Full Power mode. A component may have
many configuration dimensions.

The configuration of a software component determines its quality attributes
(e.g., response time) and resource usage (e.g., memory), which could also impact
the properties of the entire system. For instance, given the resource-constrained
nature of the mobile robots, the configuration decisions of each component have
a significant impact on the system’s performance as well as its battery life. Such
decisions can only be effectively made at runtime, since the system properties
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Fig. 1. A subset of the robotic software: (a) configuration dimensions and alternatives
for components of the robot, (b) software architecture, and (c) utility functions defined
in terms of quality attributes.

(e.g., available bandwidth) are often not known at design-time and may change
at runtime.

As shown in Fig. 1c, for making runtime decisions, utility functions capturing
the user’s satisfaction with different levels of quality attribute (e.g., availability)
are used. The adaptation logic uses analytical models to estimate the effect of
configuration decision on the system’s quality attributes, and in turn the result-
ing utility. For example, given the configuration of the robot’s components, an
analytical model, such as Queueing Network model [9], may be used to quantify
the response time of a particular scenario. The objective of the self-adaptive
system is to maintain a configuration for the system that achieves the maximum
overall utility.

In the next section, we elaborate on the various forms of uncertainty faced
by a self-adaptive software system such as this.

3 Sources of Uncertainty in Self-Adaptive Software

We borrow concepts from FORMS, a reference architecture for self-adaptive
software systems developed in our prior work [10], to describe the sources of
uncertainty, and exemplify them in the robotics software system. Fig. 2 depicts
the high level view of a self-adaptive software system according to FORMS. In
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this model, the self-adaptive software system can be broken down into two parts:
Meta-Level and Base-Level. The base-level subsystem provides the main func-
tionality of the software (i.e., application logic), while the meta-level subsystem
manages the base-level subsystem by reflecting on its behavior (i.e., adaptation
logic). Inside the meta-level subsystem we have the MAPE-K feedback control
loop [11] from IBM. In this architecture, there are four types of components that
operate on the managed subsystem (i.e., base-level) and are devoted to Moni-
toring, Analysis, Planning, and FEzecution (MAPE). MAPE components share
various models using what is known as Knowledge (MAPE-K).

The other two entities in Fig. 2 are User and Environment. The user uses the
services of base-level subsystem and provides her expectations from the base-level
subsystem to the meta-level subsystem by specifying objectives. For instance,
Fig. 1c shows user’s expectations for the robotic software system in terms of two
QoS parameters (i.e., Response Time and Reliability) of the Maneuver execu-
tion scenario. These expectations are depicted using utility functions. The self-
adaptive software system operates in an environment and hence the base-level
subsystem interacts with entities from that environment. Since the meta-level
subsystem is responsible for keeping the base-level subsystem on track (i.e., en-
sure it satisfies the user’s objectives), it also needs to monitor the environment.
For instance, in the robotic software system depicted in Fig. 1, the meta-level
subsystem uses sensors to estimate the amount of light in the environment to
adjust the Camera accordingly.

The entities in Fig. 2 are loosely coupled. The meta-level subsystem needs to
use models of other entities in Fig. 2 as their abstractions to make adaptation
decisions. The loose coupling between the meta-level subsystem and the other
elements of a self-adaptive software (i.e., User, Base-Level, and Environment) is
the root cause of uncertainty in self-adaptive software. Sometimes this separation
among the elements of a self-adaptive software is unavoidable (e.g., distinction
between system and environment), while other times it is simply necessary for
enabling reuse and to manage the complexity of constructing such systems (e.g.,
distinction between managing parts and managed parts of a system [10,12]). We
discuss the sources of uncertainty due to this loose coupling as well as a few
others in the following;:

e Uncertainty due to simplifying assumptions: This source of uncer-
tainty is related to the “Manages” interface in Fig. 2 and is due to inac-
curacy in the analytical models representing complex base-level subsystem.
These analytical models are used to reason about the impact of adaptation
choices on system’s quality attributes. The error in those estimates is magni-
fied when the modeling abstractions become inaccurate representation of the
system. One of the reasons for inaccuracy is that sometimes the assumptions
underlying the model are not held at runtime. For instance, an analytical
model quantifying the system’s response time may account for the dominant
factors, such as execution time of components, and ignore others, such as
the transmission delay difference between TCP and UDP. Response time
estimates provisioned by such a formulation are not only error-prone, but
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Fig. 2. High level view of self-adaptive software.

also the magnitude of error varies depending on the circumstances. In other
words, although the models are not wrong, simplifying assumptions decrease
their accuracy.

Uncertainty due to model drift: This source of uncertainty is related
to “Is Monitored” and “Manages” interface. As we discussed earlier, for
the sake of generality and reuse, the meta-level subsystem should be sepa-
rated from the rest of elements in Fig. 2; therefore, due to loose coupling
between the meta-level subsystem and base-level subsystem, models (knowl-
edge) used for making decisions in the meta-level subsystem may become
inaccurate representations of the base-level subsystem. Another reason for
inaccuracy is the adaptation itself. Certain changes may not be enacted ex-
actly as meta-level subsystem requests, creating a drift between the models
and actual base-level subsystem. In the above example, consider the sce-
nario in which the meta-level subsystem requests the base-level subsystem
to change the communication protocol from TCP to UDP (i.e., replace a con-
nector). If the base-level subsystem fails to enforce this change, the models
used for reasoning by the meta-level subsystem become inconsistent rep-
resentation of the actual base-level subsystem. Compared to the previous
source of uncertainty, here we are talking about the models that over time
become wrong and do not represent the base-level subsystem correctly.
Uncertainty due to noise: This source of uncertainty corresponds to “Is
Monitored” interfaces and is due to variation in a phenomenon, such as a
monitored system parameter, which rarely corresponds to a single value, but
rather a set of values obtained over the observation period. Consider that
a sensor monitoring the available network bandwidth may return a slightly
different number every time a sample is collected, even if the actual value
of the bandwidth is fixed. This type of uncertainty is referred to as noise to
indicate the error in the employed probes.

Uncertainty of parameters in future operation: This source of uncer-
tainty is also related to “Is Monitored” interfaces and is due to the actual
changes in the monitored phenomenon. Without considering the behavior
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of the system in its future operation, a self-adaptive software may not be
able to achieve its objective. For instance, our robotic software system uses
sensors to measure the amount of light, which may change as the robot
navigates a terrain, to adjust the configuration of Camera component. The
changes in light can be predicted based on the trajectory of robot movement.
If the robotic software system does not consider the predictions and make
decisions only based on the current amount of light, the adjustments to the
Camera may not result in optimal improvement. Such a system is also sus-
ceptible to continuous adaptation of the system, and loss of stability, as the
self-adaptation logic optimizes the system for current operating conditions,
which are continuously invalidated due to changes.

Uncertainty due to human in the loop: Self-adaptive software sys-
tems are increasingly permeating a variety of domains, including medical,
industrial automation, and emergency response. This is partially caused by
a paradigm shift from software systems used merely as data processing en-
tities deployed on isolated servers to becoming ubiquitous and engaging the
users in their daily activities. These new breeds of software often depend
on correct human behavior. However, human behavior is inherently uncer-
tain [4,13], which in turn creates uncertainty in the software system. This
type of uncertainty is related to “Uses” interface between the base-level sub-
system and the user. For instance, in the case of the robotic software system
depicted in Fig. 1, it is expected for the robot to interact with the rescue
crew to fulfill its assignment. However, as described before, the behavior of
the crew may be very unpredictable.

Uncertainty in the objectives: This type of uncertainty corresponds to
the “Specifies Objectives” interface and is due to the complexity of express-
ing users’ requirements and eliciting preferences. While the previous source
is rooted in software’s dependency on human behavior, uncertainty in the
objectives is the reverse relationship, i.e., it is related to human’s dependency
on software. In a large-scale multi-user system, users often have multiple con-
cerns, some of which may be conflicting with one another. Eliciting user’s
preferences in terms of utility functions, such as those depicted in Fig. 1c,
is a well-known challenge [2], as the users often have difficulty expressing
their preferences and expectations using mathematical functions. Thus, the
overall accuracy of such preferences remains subjective, making the analysis
based on them prone to uncertainty.

Uncertainty due to decentralization: In a self-organizing system several
meta-level subsystems manage different base-level subsystems [3]. They cre-
ate a decentralized system, where the knowledge is scattered among the self-
organization units comprising the system. A self-organizing unit typically
does not have complete control over the actions of other units. In such a set-
ting, the meta-level subsystems are expected to work collectively and collab-
oratively to reach the system’s objectives. In other words, in self-organizing
software systems, the meta-level subsystem is decentralized among different
entities, which makes the system prone to uncertainty. For instance, in our
robotic software system, different robots may collaborate with each other
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to devise and update a plan for searching an area (e.g., a building that is
damaged due to an earthquake) for victims with the goal of covering the
area as fast as possible. This high-level collaboration adds to uncertainty as
no robot may have complete knowledge of the entire system in real-time and
may not be able to control the other robots.

e Uncertainty in the context: Many self-adaptive software systems are in-
tended to be used in different execution contexts. To that end, the meta-level
subsystem is expected to detect the change in the context and adapt the base-
level subsystem to behave appropriately. Portable and embedded computing
devices (e.g., cell-phones) are representative of systems in this category. Here,
software developers are forced to cope with additional sources of complex-
ity introduced by the growing class of mobile and pervasive software, which
are innately dynamic and unpredictable. The performance of these software
systems heavily depends on availability of the resources [4], which is subject
to change as the context of execution changes. For instance, in the robotic
software system, a robot may move to a place in which a barrier shields its
signal and prevents it from communicating with other robots, making the
status of that robot unknown to the rest of system.

e Uncertainty in cyber-physical systems: As computation continues to
become cheaper and more widespread, software and physical spaces become
increasingly intertwined and tightly integrated. As a result, physical con-
cepts are becoming increasingly important in software systems. In fact, self-
adaptation capabilities are often sought after to manage the interactions
between software and physical entities. This increases non-determinism and
uncertainty in the software due to the fact that the physical world itself
is inherently uncertain. Uncertainty caused by the effect of physical world
on the software is a subset of context, which was described in the previ-
ous source. However, software can also effect the physical world, and this
interaction can also host uncertainty. For instance, a robotic software sys-
tem’s ability to maneuver a terrain is not only a function of the accuracy
of its software (e.g., routing algorithms), but also the precision in the phys-
ical steering components, as well as the physical conditions of the terrain.
A self-adaptive software aimed at ensuring the robot’s ability to maneuver
the terrains would have to take into account the uncertainty due to the
interaction between software, hardware, and physical entities in its analysis.

To mitigate uncertainty in self-adaptive software systems one should consider
its sources enumerated above. Some of these sources (e.g., cyber-physical sys-
tems) have been observed in other fields of science and there are well-established
approaches for addressing them. On the other hand, some of these sources (e.g.,
model drift) are relatively new and specific to self-adaptive systems, hence new
approaches may need to be devised for addressing them.
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Fig. 3. Impact of uncertainty on the process of making adaptation decisions to satisfy
the system’s objectives: (a) 16 candidate configurations in a battery usage and response
time trade-off, (b) application of utility function to resolve the trade-offs, (c) battery
usage versus response time under uncertainty, where each rectangle represents the space
of values that an architecture may take, and (d) the range of utility values expected
for the 16 configurations under uncertainty.

4 TImpact of Uncertainty on Self-Adaptive Software

Uncertainty has a significant impact on a self-adaptive software system’s abil-
ity to satisfy its objectives. Prior research for the most part have ignored the
challenges posed by uncertainty, which hamper their adoption in real-world risk-
averse domains. We collectively refer to these as the traditional approaches. We
illustrate their shortcoming using an instance of the robotic software system in
which the objective is to choose from a pool of 16 candidate configurations, such
that battery usage and response time are minimized.

The traditional approaches assume that the impact of candidate configura-
tions on properties of interest can be precisely estimated. If that was the case,
then one could visualize the situation as in Fig. 3a. Here, for the sake of clarity,
the values for response time and battery usage are normalized between zero and
one. Assuming both properties have the same level of importance, to compare
the 16 configurations, for each configuration we first sum up the values obtained
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from the corresponding utility function. Recall that utility functions are used to
quantify the users’ preferences with the values attained in properties. Fig. 3b
achieves just that, as it shows the overall value for the candidate configurations.
In this space, configurations can be compared with one another. For example, we
can see that Ap3 is the best configuration, as it obtains the largest total value.

While the aforementioned approach is theoretically sound, it is not useful in
practice, as it does not incorporate the underlying uncertainty in every facet of
the approach, including the fact that analytical models often cannot precisely
quantify the impact of alternative configuration on properties of interest (i.e.,
there is always some amount of noise), the utility functions may not be accurately
representing the users’ preferences, etc.

The complexity of incorporating uncertainty in the analysis is shown in
Fig. 3c. Here, the uncertainty is represented in terms of range of impact that a
configuration candidate may have on the properties of interest. For example, the
impact of a given configuration on battery usage is no longer a single number,
but rather a range of values. As a result, each configuration candidate may ob-
tain a value anywhere within the area occupied by the corresponding rectangle.
Clearly, comparing two configurations with overlapping rectangles is difficult.

The rectangles in Fig. 3c can be transformed to a space where the trade-off
analysis can be performed by applying the utility function on the most optimistic
and pessimistic behavior of a given configuration. Fig. 3d shows the resulting
range of behavior that one would expect, assuming that uncertainty in various
facets of the system can be quantified. Unlike the earlier example, it is not clear
what is the optimal configuration, as the behavior of each configuration is now
specified as a range, and the ranges offer trade-offs. As described in the next
section, there is a need for an alternative definition of optimality in this setting
that explicitly takes the uncertainty into consideration.

To gain a better appreciation for the complexity of this problem consider that
the simple example used in Fig. 3 consists of only 16 configuration candidates and
2 properties of interest, but a typical self-adaptive software system often consists
of many more candidates and properties. Manually exploring and solving this
problem is a big burden. Incorporating uncertainty into the analysis makes a
problem that is already challenging, so overwhelmingly complex that a manual
assessment without the appropriate tools and techniques becomes impossible,
which has been the motivation for this research.

5 Reconceptualizing Optimality under Uncertainty

We argue that to tackle the complexity introduced by uncertainty, we need to
reconceptualize the definition of the optimality in self-adaptation decision mak-
ing process to account for the uncertainty underlying the analysis. We provide an
intuitive overview of a new definition of optimality and use the robotic software
example from the previous section to illustrate it.

Figure 4a shows the shortcomings of the prevalent definition of optimality in
making adaptation decisions while ignoring uncertainty. The system is initially
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Fig. 4. The utility of a self-adaptive system based on the decision using: (a) traditional
definition of optimality, where the uncertainty is not considered, and (b) advocated
approach, which considers uncertainty.

executing with utility U; prior to time T3. At time 77, due to either an internal or
external change, the systems utility drops to Us. By time T5, the self-adaptation
logic detects this drop in utility, finds and effects an optimal configuration, which
is conventionally defined as the one achieving the maximum utility. As shown
in Fig. 4a, this corresponds to Us, which represents the expected utility of the
best configuration for the system. In practice, however, the actual utility of the
system may vary between the two dashed lines, representing the likely positive
and negative consequences of uncertainty. By not accounting for uncertainty, the
approach is vulnerable to gross overestimation of the utility. In other words, the
selected optimal solution is rather risky, and in the worst case may be a very
poor choice.

We propose an alternative definition of optimality in making adaptation de-
cisions that incorporates uncertainty. Similar to the scenario of Figure 4a, a new
configuration is effected at time 75, except we say a configuration is optimal if
it concurrently satisfies the following three objectives: (1) maximizes Us, which
represents the most likely utility for the system under uncertainty; (2) maxi-
mizes the positive consequence of uncertainty, which represents the likelihood of
the solution being better than Us; and (3) minimizes the negative consequence
of uncertainty, which represents the likelihood of the solution being worse than
Us.

The new concept of optimality defined above can be realized using several
alternative mathematical approaches (e.g., both probabilistic and fuzzy num-
bers could be used to indicate the extent of uncertainty). Regardless of how
the optimality criteria is realized, we can make a general observation. As de-
picted in Figure 4, concurrent satisfaction of the three objectives may result
in a smaller value of expected utility (i.e., Us) using this approach compared
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to that of the traditional approach. But since the information used to estimate
the expected utility is uncertain, expected utility is not guaranteed to occur in
practice. Therefore, it is reasonable to argue that the true quality of a solution
is determined by the range of possible utility.

Furthermore, we argue that the new notion of optimality could be extended
to also account for uncertainty in the future operation of a software system.
Figure 5a depicts a configuration picked by the traditional approach in which
uncertainty in future operation of the system is neglected. As a result, a solu-
tion with the highest utility may actually be a very bad choice, since due to
uncertainty in future operation of the system, it may in effect obtain a very low
utility. Note that for illustration in Figure 5 the behavior over time is depicted
linearly, but in general the behavior over time may follow a different trajectory.

Given the variability in system and environmental parameters, an optimal
solution is not the one that achieves the highest utility at the point in time in
which the decision is made, but the one that anticipates the future behavior
(potentially in the form of a probabilistic prediction such as the ones obtained
from Hidden Markov Models [14]) of the selected configuration over time. As
depicted in Figure 5b, the optimal solution is the one that considers the behavior
of the selected configuration over time, i.e., selects a configuration that may have
a lower utility at the moment in which the decision is made with the expectation
of achieving a better utility over a period of time in future. Another benefit of the
new optimality criteria advocated here, but not depicted in the figure, is that
since under the reconceptualized notion of optimality the system is expected
to maintain a higher utility in its future operation, our approach decreases the
number of adaptations compared to the traditional approach. This in essence
results in more stable self-adaptive software systems.

These two extension (i.e., Figures 4 and 5) can also be combined. As a result,
the range will be formed around the trend line and the size of the range can vary
for different points in time.

We believe this new model of reasoning about optimality provides a good
foundation for studying the role of uncertainty in self-adaptive software. In our
recent work [7] we have used fuzzy mathematical techniques to realize the new
model of optimality, which has produced promising results. Our experience shows
that the revised definition of optimality increases the accuracy of adaptation
decisions, and allows for construction of self-adaptive software that is resilient
to fluctuations in the system properties and environmental parameters. While
our experience with realizing this approach using fuzzy mathematics has been
promising, we believe there are other methods of realizing the approach outlined
above (e.g., Bayesian probabilities), as further detailed in Section 7. Finally, as
we describe in Section 8, some researchers have already observed the limita-
tion of the existing definition of optimality (i.e., traditional approach) and have
investigated possible solutions to this limitation.
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6 Uncertainty Distilled

All sources of uncertainty in self-adaptive software do not have the same char-
acteristics. Although there are some philosophical debates about the true dis-
tinction between the different types of uncertainty (e.g., [15]), it is commonly
agreed that it is useful to categorize different types of uncertainty in practice.
This is because the approaches for modeling different kinds of uncertainty are
very different from one another. For instance, often times it is not possible to
represent the user’s uncertainty in the specification of objectives in terms of
utility functions as a probability distribution, since the uncertainty is due to the
lack of knowledge, and not variability. In the following subsections we enumerate
the different characteristics of uncertainty, which we believe in turn sheds light
on the appropriate techniques that should be used to tackle the different sources
of uncertainty.

6.1 Reducibility versus Irreducibility

When something is inherently unknowable, the uncertainty associated with it is
irreducible. On the other hand, the uncertainty associated with knowable things
which are unknowns at a given time is reducible. Sometimes distinction between
these two kinds of uncertainty becomes a philosophical problem, which depends
on the point of view. One of the main reasons behind irreducible uncertainty is
intractable complexity of phenomena with existing progress in science. For in-
stance, it is a known fact that the physical world behaves in a non-linear fashion;
however, there is little known about non-linear mathematics. Instead, non-linear
phenomena are modeled using linear mathematics and hence the models have
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irreducible uncertainty. One may argue that this kind of uncertainty is not in-
herently irreducible as it can be mitigated by studying non-linear mathematics.
In this paper, we stay away from philosophical debates as we want to study the
practical aspects of uncertainty.

6.2 Variability versus Lack of Knowledge

From a different perspective uncertainty can be categorized as aleatory or epis-
temic [5]. The root of aleatory is the Latin word &leator, which means gambler,
while the root of epistemic is the Greek word epistemé, which means scien-
tific knowledge. Aleatory uncertainty captures the uncertainty that is caused
by randomness and is usually modeled using probabilities. On the other hand,
epistemic uncertainty corresponds to lack of knowledge and sometimes is re-
ferred to as parameter uncertainty. This distinction is motivated by the location
of the uncertainty — in the decision-maker or in the physical system. [5] In other
words, variability is considered as uncertainty in the studied system, while lack
of knowledge is considered as uncertainty on the decision-maker’s side.

It may be tempting to map variability to irreducibility and lack of knowledge
to reducibility. However, this is not generally true. For instance, if irreducible un-
certainty directly implies variability, the next recipient of Turing Award, which
in not known right now, would be a random phenomenon! Similar to the philo-
sophical argument about reducibility versus irreducibility, there are arguments
about distinction between aleatory and epistemic uncertainties. For instance,
some argue that variability observed in the world is due to limitation of scien-
tific models and hence lack of knowledge [15]. While these arguments are true,
we should mention that these distinctions are relative and depend on the point
of view. In other words, it is true that sometimes a phenomenon, which is un-
certain due to variability from a given point of view, can be uncertain due to
lack of knowledge from a different point of view, but, this does not mean that
variability is not a characteristic of uncertainty.

Both the reducible and irreducible uncertainties can have aleatory and epis-
temic components. Aleatory and epistemic represent the essence of uncertainty,
while irreducible and reducible represent the managerial aspect of uncertainty.

6.3 Spectrum of Uncertainty

Fig. 6 depicts the spectrum of uncertainty. Current Information falls anywhere
between Ignorance and Certainty. The range between the Current Information
and Certainty is the Imprecision. Complete Information indicates the threshold
where all the knowable are known and falls anywhere between the Current Infor-
mation and Certainty (i.e., inside Imprecision). In a sense, the Complete Infor-
mation is a limit for the Current Information indicating the maximum amount
that the uncertainty can be reduced. Therefore, the range between the Cur-
rent Information and the Complete Information is the Reducible Uncertainty.
On the other hand, the range between the Complete Information and Certainty
indicates the Irreducible Uncertainty.
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Fig. 6. The spectrum of uncertainty based on the knowledge (adopted and extended
from [5]).

Based on the nature of a given system, the length of any of these ranges (i.e.,
imprecision, reducible uncertainty, and irreducible uncertainty) can be zero. For
instance, when the complete information and certainty point to the same spot,
there is no irreducible uncertainty. This definition also implies the fact that, as
the current information increases and approaches the complete information, the
imprecision becomes mainly due to irreducible uncertainty. Usually as the cur-
rent information gets closer to the complete information, increasing the knowl-
edge becomes more expensive. Sometimes increasing the knowledge may not even
worth spending resources, as the added value becomes limited. We revisit this
issue in the next section.

6.4 Characterizing the Sources of Uncertainty

Table 1 characterizes the sources of uncertainty based in relation to the spec-
trum of uncertainty. To that end, we specify if a source of uncertainty is due to
variability or lack of knowledge.

Uncertainty related to Simplifying assumptions, Drift, Human in the loop,
Objectives, Decentralization, and Cyber-physical systems are due to the lack of
knowledge. Be it for the complexity of the models, loose coupling, ambiguity, or
distribution, the lack of complete knowledge in these facets of self-adaptation
makes the adaptation decisions prone to uncertainty.

On the other hand, uncertainty related to Noise, Parameters over time, and
Context is due to the variability. In this case, uncertainty is rooted in the fact

Table 1. Characteristics of different sources of uncertainty.
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that the behavior of the system may change after the adaptation decision is
made.

We drew the conclusions presented in Table 1 from examples of the sources
of uncertainty that we have found in the literature, as well as our own prior
experiences with the construction of such systems. Some of these examples were
enumerated in Section 3. Since it is possible to have several sources of uncer-
tainty in a single phenomenon, uncertainty related to that phenomenon may be
both due to variability and lack of knowledge. For instance, one may make a
Simplifying assumptions and approximate the Noise of a given parameter by a
well-known probability distribution even if the value of that parameter does not
exactly follow the distribution.

7 Mathematical Techniques for Representing and
Incorporating Uncertainty

This section provides an overview of two widely applicable approaches for rep-
resenting and incorporating uncertainty in self-adaptation. As will be described
in the next section, existing state-of-the-art has often relied on one of these
approaches.

7.1 Probability Theory

Probability theory [16] is the most widely used approach to represent uncertainty.
Humans have long observed that some events are to some extent predictable.
Mathematical probabilities, which are dated from 18th century, were an ap-
proach to study the regularities in the games of chance. Nowadays, probability
is learned mainly through Kolmogorov’s axioms [17], which allows for adoption
of probability theory in broader class of problems (e.g., physical, social, indus-
trial, etc.). Most researchers are familiar with the mathematics of probability
but quite few are aware of philosophical debates regarding different interpreta-
tions of probability. Therefore, here we focus on interpretations of probability.
The prominent interpretations of probability until late twentieth century were
classical and frequentist interpretations.

Probability theory was originally conceived with the classical interpretation.
As we mentioned, probability was originally rooted in the games of chance, and
so was the classical interpretation. A fundamental assumption in classical prob-
ability is the fact that all the outcomes of a phenomenon are equally probable.
This assumption is shown to cause inconsistencies when it is used in more gen-
eral problems (i.e., beyond games of chance). Motivated by the limitations of the
classical interpretation, the frequentist interpretation was developed. In this in-
terpretation the probability of an event is defined as limit of its relative frequency
in large number of trials, hence the name of this interpretation is frequentist.
Although this definition goes beyond classical definition, it narrows the scope of
the frequentist interpretation to repeatable, random phenomena.
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Bayesian theory [18] is based on subjective interpretation of the probabil-
ity. In this interpretation the probability is defined as an expression of a rational
agent’s degrees of belief about uncertain propositions. The scope of this interpre-
tation is more general than frequentist interpretation as it extends the definition
of probability by allowing probability assignment to a single experiment regard-
less of whether it is part of a larger number of experiments or not. Therefore,
Bayesian could be used in the problems in which there is not enough data for
frequentist interpretation. For instance, frequentists cannot analyze a new dis-
ease for which enough data is not available, while Bayesians can use subjective
information based on related diseases to analyze the new disease.

Bayesian inference is as old as probability. However, it was disfavored due to
positive orientation of Western nineteenth and twentieth century science, which
was considering subjectivity to be non-scientific. Moreover, complex Bayesian
models require large amount of computation, which were not possible until late
twentieth century. With computational advances in the late twentieth century
there has been a resurgence towards Bayesian approaches as they are a uni-
fied theory for both data-rich and data-poor problems. Many modern machine
learning methods are based on Bayesian principles.

7.2 Fuzzy Sets and Possibility Theory

Fuzzy set theory [19] is an extension of classical set theory. In classical set theory,
the membership of an element in a set is a binary condition: the element is either
in the set with membership value of 1 or it is not in the set with the membership
value of 0. However, in fuzzy set theory, the membership of an element in a
set is not a binary condition, but rather a “sort of” concept. To that end, the
membership value of an element with regard to a set is any value between 0 and
1. The higher the membership value is, the more likely that element belongs to
the set. Therefore, the boundary of a fuzzy set is not clearly defined, whereas
the boundary of a classical set is crisply defined.

Fuzzy sets can be applied to domains where the information is incomplete
or imprecise. For instance, fuzzy sets have been used in linguistics to deal with
vagueness and ambiguity of the statements. For instance, temperatures that
are considered to be cold and warm are not uniquely defined and they may
be different from person to person. In fact, there are some temperatures that
can be considered both cold and warm to some extent. A program that tries to
understand written text can use the fuzzy definition of coldness and warmness
to have a better understanding of the text.

Possibility theory [20] is a theory for handling incomplete information, which
is based on fuzzy sets. Among several interpretations of possibility theory, the
basic interpretation is the most common one. This interpretation defines possi-
bility as a mapping from the power set of sample space to any value between 0
and 1. In other word, any event, which is a subset of sample space, has a possi-
bility defined by this mapping. One of the reasons that fuzzy logic is adopted in
engineering is the simplicity and efficiency of its operations.
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While probability theory deals with the statistical characteristic of data,
possibility theory focuses on the meaning of data. There are several studies
[21,22] about the relationships of the two theories. Although, sometimes the two
theories can be used interchangeably, it has been shown that the two theories are
different. Some researchers have described the usability of two theories using an
spectrum: possibility theory is useful when there is little information, however,
when more information becomes available it is better to use probability theory.

8 State-of-the-Art

The research community has made great strides in tackling the complexity of
constructing self-adaptive software systems [1-3]. However, as corroborated by
others [2,3], there is a dearth of applicable techniques for handling uncertainty
in this setting. A few researchers have recently begun to address uncertainty.
Table 2 summarizes their work with regard to the sources of uncertainty they
are dealing with. In the following subsections we provide an overview of these
approaches.

8.1 Rainbow

Cheng and Garlan [6] described three specific sources of uncertainty in self-
adaptation (problem-state identification, strategy selection, and strategy out-
come) and provided high-level guidelines for mitigating them in Rainbow frame-
work [12]. Problem-state identification is related to Monitoring and Analysis
activities from the MAPE loop, while strategy selection and strategy outcome
are related to Planning and Execution activities, respectively. In other words,
they try to mitigate uncertainty in the activities of the adaptation feedback
control loop.

To mitigate uncertainty in problem-state identification, they use running
average in monitoring to counter variability and stochastic properties of the en-
vironment. The observations are then compared with architectural descriptions
that are augmented with probabilistic information to detect trend of behavior.
Once the problem is detected, a strategy is selected to resolve the problem. The
uncertainty in strategy selection is mitigated by using the Stitch language. This
language allows for modeling uncertainty in strategies. Therefore, when Rainbow
attempts to select a strategy at runtime, it can decide based on the expected
value (which is capturing the uncertainty) of different strategies. Finally, once a
strategy is selected and put into effect, it may succeed or fail. Instead of dealing
with this uncertainty in the next adaptation loop, they consider the uncertainty
in strategy outcome by specifying how long Rainbow should monitor the im-
plementation of the strategy before committing to the change. This is another
attribute of the approach that can be modeled using the Stitch language.

By augmenting architectural models with probabilistic models, Rainbow mit-
igates the uncertainty due to simplifying assumptions and noise. Moreover, by
monitoring the system after adaptation Rainbow mitigates the uncertainty due
to drift in the architectural models.
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8.2 RELAX

Whittle et al. introduced RELAX [23], a formal requirements specification lan-
guage that relies on Fuzzy Branching Temporal Logic to specify the uncertain
requirements in self-adaptive systems (i.e., as indicated in Table 2, RELAX
uses possibility theory to deal with the uncertainty of the Objectives). RELAX
allows for explicit expression of environmental uncertainty and its effect on re-
quirements. Depending on the state of environment, RELAX specifies the re-
quirements that can be disabled or “relaxed”. To that end, RELAX introduces
a set of operators that can be used in forming the requirements. These opera-
tors also define how the requirement can be relaxed at runtime. Moreover, the
operators capture the kind of uncertainty (uncertainty factor) that can initiate
the relaxation of requirements.

In a subsequent publication [24], Cheng et al. extended RELAX with goal
modeling to specify the uncertainty in the objectives. They first build the goal
lattice and then use it in a bottom-up fashion to look for sources of uncertainty,
which are the elements of domain/environment and can endanger satisfaction
of goals. In their approach, they identify uncertainty through a variation of
threat modeling, which is used to identify security threats in a system. Once the
uncertainty is identified, its impact is assessed to devise mitigation tactics. The
ultimate tactic for mitigating uncertainty (when all other tactics fail) is to add
flexibility to the goal by “relaxing” it.

8.3 FLAGS

FLAGS [25] also uses possibility theory to mitigate the uncertainty of the Ob-
jectives. Similar to RELAX, FLAGS aims to achieve the basic goal of adaptive
systems at the requirements level: mitigate the uncertainty associated with the
environment and new business needs by embedding adaptability in the software
system as early as requirement elicitation. In other words, FLAGS considers self-
adaptation as a special kind of requirement, which affects other requirements.
These special requirements are called adaptive goals and FLAGS allows for the
definition of counter measures that must be performed if some goals are not
fulfilled as expected (due to predicted uncertainty).

FLAGS also deals with another source of uncertainty in addition to the uncer-
tainty in the context of the software: the uncertainty in the goals themselves. As
satisfaction of some goals cannot be specified by simple yes—no answer, FLAGS
relies on fuzzy goals for which properties are not fully known, the complete speci-
fication is not available, and small temporary violations are tolerated. Therefore,
FLAGS ends up with two sets of goals: crisp goals and fuzzy goals. It formal-
izes the crisp goals using Linear Temporal Logic (LTL), and fuzzy goals using
fuzzy temporal language, which in the end is unified with the LTL specification.
Therefore, all the software requirements can be specified in a single coherent
language.
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Table 2. The mathematical theories that are used by existing approaches for dealing
with sources of uncertainty.
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ADC Prob.
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POISED |Poss. Prob. Poss.

8.4 FUSION

FUSION [26] is a learning based approach to engineering self-adaptive systems.
Instead of relying on static analytical models that are subject to simplifying
assumptions, FUSION uses machine learning, namely Model Trees Learning
(MTL) to self-tune the adaptive behavior of the system to unanticipated changes.
This allows FUSION to mitigate the uncertainty associated with the change in
the context of software system as it gradually learns the right adaptation be-
havior in the new environment. The result of learning is a set of relationships
between the adaptation actions in the system and the quality attributes of in-
terest (e.g., response time, availability). These rules consider the interaction of
adaptation actions and hence to some extent mitigate the uncertainty caused due
to synergy. The quality attributes of interest could be measured and collected
from the running system through instrumentation of the software or sensors
provided by the implementation platform. The adaptation actions correspond
to variation points in the software that could be exercised at runtime.

FUSION has two complementary cycles: learning cycle and adaptation cycle.
The learning cycle relates the measurements of quality attributes to the adap-
tation actions. The learning cycle constantly monitors the environment to find
possible errors in the learned relations. Persistence of such errors, which can
be either due to drift or change in the context, triggers relearning the new be-
havior. When quality of software decreases over time and drops below a certain
threshold, the adaptation cycle kicks in and uses the learned knowledge to make
informed adaptation decision to improve the quality attributes. The quality of
the software system is defined as aggregate collection of individual quality at-
tributes. However, since some quality attributes may conflict with each other,
the notion of utility is used to allow for making trade-offs.
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8.5 Anticipatory Dynamic Configuration (ADC)

Poladian et al. [27] studied dynamic configuration of resource-aware services,
where they showed how to select an appropriate set of services to carry out a
user task, and allocate resources among those services at runtime. The original
work did not consider the uncertainty in the environment. Subsequently, the
work was extended to make anticipatory decisions [28], and considered the in-
accuracy of future resource usage predictions. To that end, they built on the
previous work of one of the authors [29] and used historical profiling to find
an application’s resource requirements for different configurations. Considering
resource availability over time mitigates the uncertainty in monitoring as it pro-
vides more accurate models of the environment being monitored. As indicated in
Table 2, they use probability theory to achieve this (i.e., Mitigate the uncertainty
related to Parameters over time).

By considering the resource availability prediction, the anticipatory model of
configuration chooses a configuration that maximizes the cumulative expected
value of utility over time. This reduces the number of possible future reconfig-
urations and as a result disruptions in the system. In making the adaptation
decisions, the cost of switching between the configurations is also considered. If
the cost of switching is low, this approach selects a configuration that performs
better at the moment and when the quality of selected configuration drops the
configuration is switched. On the other hand, if the cost of switching is high,
a temporal under-optimum configuration is accepted. That is, from the begin-
ning an alternative configuration, which performs better over time, is selected
to prevent switching later on.

8.6 RESIST

RESIST [14] uses information from several sources, such as monitoring internal
and external software properties, changes in the structure of the software, and
contextual properties to continuously furnish refined reliability predictions at
runtime. The up-to-date reliability predictions express the reliability of the sys-
tem in near future using probabilities. These predictions are then used to decide
about changing the configuration of the software to improve its reliability in a
proactive fashion. RESIST is targeted for situated software systems, which are
prominently mobile, embedded, and pervasive. The uncertainty in these systems
are prevalent as they have highly dynamic configuration, unknown operational
profile/context, and fluctuating conditions, yet they are usually deployed in mis-
sion critical environments (e.g., emergency response) and have stringent relia-
bility requirements. RESIST mitigates the uncertainty due to the context and
simplifying assumptions through constant learning. Moreover, slight changes in
the reliability are modeled as probability distributions indicating the noise.
RESIST takes a compositional approach to reliability estimation; the process
starts with analysis at the component level, which in turn makes it possible to
assess the impact of the adaptation choices on the system’s reliability. The com-
ponent level reliability is estimated stochastically using a Discrete Time Markov
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Chain and in terms of the fraction of the time spent in failure state by the compo-
nent. Once the reliability of all components is obtained, a compositional model
is used to determine the reliability of specific system configurations. RESIST
models the uncertainty in the learning using probabilities.

8.7 POISED

POISED [7] is a quantitative approach for tackling the complexity of automat-
ically making adaptation decisions under uncertainty. It builds on possibility
theory and fuzzy mathematics to assess both the positive and negative conse-
quences of uncertainty. The goal in POISED is to improve the quality attributes
of a software system through reconfiguration of its components to achieve a
global optimal configuration for the software system. POISED redefines the con-
ventional definition of optimal adaptation decision to one that has the best range
of behavior. In turn, the selected solution has the highest likelihood of satisfying
the system’s quality objectives, even if due to uncertainty, properties expected
of the system are not borne out in practice. This is different from conventional
approaches, which do not incorporate uncertainty in their analysis. Such ap-
proaches consider the behavior of the system as a point estimate, while POISED
consider a range of behavior.

POISED provides a framework to gather and build up uncertainties into a
coherent representation, which lends itself well to decision making. POISED re-
lies on Possibilistic Linear Programming to make the trade-off between different
configuration alternatives. The configuration knobs in POISED allow the deci-
sion maker to specify what aspect of uncertainty is more important: in some
cases a solution capable of providing certain guarantees in the worst case sce-
nario would be desirable, in others a solution with higher risk, but the potential
of higher quality may be desirable.

9 Conclusion

Uncertainty is a well-known challenge in the construction of dependable self-
adaptive software, yet it is a relatively unexplored topic in this area of research.
We believe lack of a coherent understanding of uncertainty has hindered the
development of suitable techniques to mitigate it. This in turn has prevented
the application of solutions developed and evaluated in the academic settings to
real-world software systems that are often risk-averse. We believe for widespread
adoption of self-adaptation capabilities in real-world application, the research
community needs to first develop suitable and practical mechanisms to control
the risk associated with self-adaptation of software under uncertainty.

This paper has aimed to address this issue by shedding light on the role of
uncertainty in self-adaptive software and distilling its characteristics. We used
a robotic software system to illustrate the impact of uncertainty in process of
making adaptation decisions, and proposed an alternative method of reasoning
about optimality of adaptation decisions that takes imprecision and variability of
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the knowledge into account. We also provided an overview of the state-of-the-art
approaches that have tackled the different facets of uncertainty in self-adaptive
software.

While a series of recent publications in this area of research have provided
a good foundation for addressing uncertainty issues in self-adaptation, several
research challenges remain. One of the most critical issues is that the majority of
mathematical techniques for dealing with uncertainty are computationally very
expensive. For instance, the standard operations research technique for making
decisions under probability theory is called stochastic programming. However,
stochastic programming is known to be computationally expensive for execution,
which makes it unsuitable for use at runtime, where often decisions have to be
made very fast.

Another challenge is the ability to quantify uncertainty, which is necessary to
be able to reason about uncertainty and adopt the new definition of optimality
advocated in this paper (recall Section 5). This is particularly difficult when
the uncertainty is in sources that are not necessarily under the control of self-
adaptive software (e.g., uncertainty is in the environment). While generally this
is a challenging problem that requires further research, our recent work [7] shows
that even if uncertainty can only be partially quantified (i.e., roughly estimated),
by incorporating it in the analysis, self-adaptation logic is able to make better
choices than if it was to completely ignore uncertainty.
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